]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/super.c
inode: convert inode lru list to generic lru list code.
[mirror_ubuntu-bionic-kernel.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include "internal.h"
38
39
40 LIST_HEAD(super_blocks);
41 DEFINE_SPINLOCK(sb_lock);
42
43 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
44 "sb_writers",
45 "sb_pagefaults",
46 "sb_internal",
47 };
48
49 /*
50 * One thing we have to be careful of with a per-sb shrinker is that we don't
51 * drop the last active reference to the superblock from within the shrinker.
52 * If that happens we could trigger unregistering the shrinker from within the
53 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
54 * take a passive reference to the superblock to avoid this from occurring.
55 */
56 static unsigned long super_cache_scan(struct shrinker *shrink,
57 struct shrink_control *sc)
58 {
59 struct super_block *sb;
60 long fs_objects = 0;
61 long total_objects;
62 long freed = 0;
63 long dentries;
64 long inodes;
65
66 sb = container_of(shrink, struct super_block, s_shrink);
67
68 /*
69 * Deadlock avoidance. We may hold various FS locks, and we don't want
70 * to recurse into the FS that called us in clear_inode() and friends..
71 */
72 if (!(sc->gfp_mask & __GFP_FS))
73 return SHRINK_STOP;
74
75 if (!grab_super_passive(sb))
76 return SHRINK_STOP;
77
78 if (sb->s_op->nr_cached_objects)
79 fs_objects = sb->s_op->nr_cached_objects(sb);
80
81 inodes = list_lru_count(&sb->s_inode_lru);
82 total_objects = sb->s_nr_dentry_unused + inodes + fs_objects + 1;
83
84 /* proportion the scan between the caches */
85 dentries = mult_frac(sc->nr_to_scan, sb->s_nr_dentry_unused,
86 total_objects);
87 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
88
89 /*
90 * prune the dcache first as the icache is pinned by it, then
91 * prune the icache, followed by the filesystem specific caches
92 */
93 freed = prune_dcache_sb(sb, dentries);
94 freed += prune_icache_sb(sb, inodes);
95
96 if (fs_objects) {
97 fs_objects = mult_frac(sc->nr_to_scan, fs_objects,
98 total_objects);
99 freed += sb->s_op->free_cached_objects(sb, fs_objects);
100 }
101
102 drop_super(sb);
103 return freed;
104 }
105
106 static unsigned long super_cache_count(struct shrinker *shrink,
107 struct shrink_control *sc)
108 {
109 struct super_block *sb;
110 long total_objects = 0;
111
112 sb = container_of(shrink, struct super_block, s_shrink);
113
114 if (!grab_super_passive(sb))
115 return 0;
116
117 if (sb->s_op && sb->s_op->nr_cached_objects)
118 total_objects = sb->s_op->nr_cached_objects(sb);
119
120 total_objects += sb->s_nr_dentry_unused;
121 total_objects += list_lru_count(&sb->s_inode_lru);
122
123 total_objects = vfs_pressure_ratio(total_objects);
124 drop_super(sb);
125 return total_objects;
126 }
127
128 static int init_sb_writers(struct super_block *s, struct file_system_type *type)
129 {
130 int err;
131 int i;
132
133 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
134 err = percpu_counter_init(&s->s_writers.counter[i], 0);
135 if (err < 0)
136 goto err_out;
137 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
138 &type->s_writers_key[i], 0);
139 }
140 init_waitqueue_head(&s->s_writers.wait);
141 init_waitqueue_head(&s->s_writers.wait_unfrozen);
142 return 0;
143 err_out:
144 while (--i >= 0)
145 percpu_counter_destroy(&s->s_writers.counter[i]);
146 return err;
147 }
148
149 static void destroy_sb_writers(struct super_block *s)
150 {
151 int i;
152
153 for (i = 0; i < SB_FREEZE_LEVELS; i++)
154 percpu_counter_destroy(&s->s_writers.counter[i]);
155 }
156
157 /**
158 * alloc_super - create new superblock
159 * @type: filesystem type superblock should belong to
160 * @flags: the mount flags
161 *
162 * Allocates and initializes a new &struct super_block. alloc_super()
163 * returns a pointer new superblock or %NULL if allocation had failed.
164 */
165 static struct super_block *alloc_super(struct file_system_type *type, int flags)
166 {
167 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
168 static const struct super_operations default_op;
169
170 if (s) {
171 if (security_sb_alloc(s))
172 goto out_free_sb;
173
174 #ifdef CONFIG_SMP
175 s->s_files = alloc_percpu(struct list_head);
176 if (!s->s_files)
177 goto err_out;
178 else {
179 int i;
180
181 for_each_possible_cpu(i)
182 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
183 }
184 #else
185 INIT_LIST_HEAD(&s->s_files);
186 #endif
187 if (init_sb_writers(s, type))
188 goto err_out;
189 s->s_flags = flags;
190 s->s_bdi = &default_backing_dev_info;
191 INIT_HLIST_NODE(&s->s_instances);
192 INIT_HLIST_BL_HEAD(&s->s_anon);
193 INIT_LIST_HEAD(&s->s_inodes);
194 INIT_LIST_HEAD(&s->s_dentry_lru);
195 spin_lock_init(&s->s_dentry_lru_lock);
196 list_lru_init(&s->s_inode_lru);
197 INIT_LIST_HEAD(&s->s_mounts);
198 init_rwsem(&s->s_umount);
199 lockdep_set_class(&s->s_umount, &type->s_umount_key);
200 /*
201 * sget() can have s_umount recursion.
202 *
203 * When it cannot find a suitable sb, it allocates a new
204 * one (this one), and tries again to find a suitable old
205 * one.
206 *
207 * In case that succeeds, it will acquire the s_umount
208 * lock of the old one. Since these are clearly distrinct
209 * locks, and this object isn't exposed yet, there's no
210 * risk of deadlocks.
211 *
212 * Annotate this by putting this lock in a different
213 * subclass.
214 */
215 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
216 s->s_count = 1;
217 atomic_set(&s->s_active, 1);
218 mutex_init(&s->s_vfs_rename_mutex);
219 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
220 mutex_init(&s->s_dquot.dqio_mutex);
221 mutex_init(&s->s_dquot.dqonoff_mutex);
222 init_rwsem(&s->s_dquot.dqptr_sem);
223 s->s_maxbytes = MAX_NON_LFS;
224 s->s_op = &default_op;
225 s->s_time_gran = 1000000000;
226 s->cleancache_poolid = -1;
227
228 s->s_shrink.seeks = DEFAULT_SEEKS;
229 s->s_shrink.scan_objects = super_cache_scan;
230 s->s_shrink.count_objects = super_cache_count;
231 s->s_shrink.batch = 1024;
232 }
233 out:
234 return s;
235 err_out:
236 security_sb_free(s);
237 #ifdef CONFIG_SMP
238 if (s->s_files)
239 free_percpu(s->s_files);
240 #endif
241 destroy_sb_writers(s);
242 out_free_sb:
243 kfree(s);
244 s = NULL;
245 goto out;
246 }
247
248 /**
249 * destroy_super - frees a superblock
250 * @s: superblock to free
251 *
252 * Frees a superblock.
253 */
254 static inline void destroy_super(struct super_block *s)
255 {
256 #ifdef CONFIG_SMP
257 free_percpu(s->s_files);
258 #endif
259 destroy_sb_writers(s);
260 security_sb_free(s);
261 WARN_ON(!list_empty(&s->s_mounts));
262 kfree(s->s_subtype);
263 kfree(s->s_options);
264 kfree(s);
265 }
266
267 /* Superblock refcounting */
268
269 /*
270 * Drop a superblock's refcount. The caller must hold sb_lock.
271 */
272 static void __put_super(struct super_block *sb)
273 {
274 if (!--sb->s_count) {
275 list_del_init(&sb->s_list);
276 destroy_super(sb);
277 }
278 }
279
280 /**
281 * put_super - drop a temporary reference to superblock
282 * @sb: superblock in question
283 *
284 * Drops a temporary reference, frees superblock if there's no
285 * references left.
286 */
287 static void put_super(struct super_block *sb)
288 {
289 spin_lock(&sb_lock);
290 __put_super(sb);
291 spin_unlock(&sb_lock);
292 }
293
294
295 /**
296 * deactivate_locked_super - drop an active reference to superblock
297 * @s: superblock to deactivate
298 *
299 * Drops an active reference to superblock, converting it into a temprory
300 * one if there is no other active references left. In that case we
301 * tell fs driver to shut it down and drop the temporary reference we
302 * had just acquired.
303 *
304 * Caller holds exclusive lock on superblock; that lock is released.
305 */
306 void deactivate_locked_super(struct super_block *s)
307 {
308 struct file_system_type *fs = s->s_type;
309 if (atomic_dec_and_test(&s->s_active)) {
310 cleancache_invalidate_fs(s);
311 fs->kill_sb(s);
312
313 /* caches are now gone, we can safely kill the shrinker now */
314 unregister_shrinker(&s->s_shrink);
315 put_filesystem(fs);
316 put_super(s);
317 } else {
318 up_write(&s->s_umount);
319 }
320 }
321
322 EXPORT_SYMBOL(deactivate_locked_super);
323
324 /**
325 * deactivate_super - drop an active reference to superblock
326 * @s: superblock to deactivate
327 *
328 * Variant of deactivate_locked_super(), except that superblock is *not*
329 * locked by caller. If we are going to drop the final active reference,
330 * lock will be acquired prior to that.
331 */
332 void deactivate_super(struct super_block *s)
333 {
334 if (!atomic_add_unless(&s->s_active, -1, 1)) {
335 down_write(&s->s_umount);
336 deactivate_locked_super(s);
337 }
338 }
339
340 EXPORT_SYMBOL(deactivate_super);
341
342 /**
343 * grab_super - acquire an active reference
344 * @s: reference we are trying to make active
345 *
346 * Tries to acquire an active reference. grab_super() is used when we
347 * had just found a superblock in super_blocks or fs_type->fs_supers
348 * and want to turn it into a full-blown active reference. grab_super()
349 * is called with sb_lock held and drops it. Returns 1 in case of
350 * success, 0 if we had failed (superblock contents was already dead or
351 * dying when grab_super() had been called). Note that this is only
352 * called for superblocks not in rundown mode (== ones still on ->fs_supers
353 * of their type), so increment of ->s_count is OK here.
354 */
355 static int grab_super(struct super_block *s) __releases(sb_lock)
356 {
357 s->s_count++;
358 spin_unlock(&sb_lock);
359 down_write(&s->s_umount);
360 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
361 put_super(s);
362 return 1;
363 }
364 up_write(&s->s_umount);
365 put_super(s);
366 return 0;
367 }
368
369 /*
370 * grab_super_passive - acquire a passive reference
371 * @sb: reference we are trying to grab
372 *
373 * Tries to acquire a passive reference. This is used in places where we
374 * cannot take an active reference but we need to ensure that the
375 * superblock does not go away while we are working on it. It returns
376 * false if a reference was not gained, and returns true with the s_umount
377 * lock held in read mode if a reference is gained. On successful return,
378 * the caller must drop the s_umount lock and the passive reference when
379 * done.
380 */
381 bool grab_super_passive(struct super_block *sb)
382 {
383 spin_lock(&sb_lock);
384 if (hlist_unhashed(&sb->s_instances)) {
385 spin_unlock(&sb_lock);
386 return false;
387 }
388
389 sb->s_count++;
390 spin_unlock(&sb_lock);
391
392 if (down_read_trylock(&sb->s_umount)) {
393 if (sb->s_root && (sb->s_flags & MS_BORN))
394 return true;
395 up_read(&sb->s_umount);
396 }
397
398 put_super(sb);
399 return false;
400 }
401
402 /**
403 * generic_shutdown_super - common helper for ->kill_sb()
404 * @sb: superblock to kill
405 *
406 * generic_shutdown_super() does all fs-independent work on superblock
407 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
408 * that need destruction out of superblock, call generic_shutdown_super()
409 * and release aforementioned objects. Note: dentries and inodes _are_
410 * taken care of and do not need specific handling.
411 *
412 * Upon calling this function, the filesystem may no longer alter or
413 * rearrange the set of dentries belonging to this super_block, nor may it
414 * change the attachments of dentries to inodes.
415 */
416 void generic_shutdown_super(struct super_block *sb)
417 {
418 const struct super_operations *sop = sb->s_op;
419
420 if (sb->s_root) {
421 shrink_dcache_for_umount(sb);
422 sync_filesystem(sb);
423 sb->s_flags &= ~MS_ACTIVE;
424
425 fsnotify_unmount_inodes(&sb->s_inodes);
426
427 evict_inodes(sb);
428
429 if (sb->s_dio_done_wq) {
430 destroy_workqueue(sb->s_dio_done_wq);
431 sb->s_dio_done_wq = NULL;
432 }
433
434 if (sop->put_super)
435 sop->put_super(sb);
436
437 if (!list_empty(&sb->s_inodes)) {
438 printk("VFS: Busy inodes after unmount of %s. "
439 "Self-destruct in 5 seconds. Have a nice day...\n",
440 sb->s_id);
441 }
442 }
443 spin_lock(&sb_lock);
444 /* should be initialized for __put_super_and_need_restart() */
445 hlist_del_init(&sb->s_instances);
446 spin_unlock(&sb_lock);
447 up_write(&sb->s_umount);
448 }
449
450 EXPORT_SYMBOL(generic_shutdown_super);
451
452 /**
453 * sget - find or create a superblock
454 * @type: filesystem type superblock should belong to
455 * @test: comparison callback
456 * @set: setup callback
457 * @flags: mount flags
458 * @data: argument to each of them
459 */
460 struct super_block *sget(struct file_system_type *type,
461 int (*test)(struct super_block *,void *),
462 int (*set)(struct super_block *,void *),
463 int flags,
464 void *data)
465 {
466 struct super_block *s = NULL;
467 struct super_block *old;
468 int err;
469
470 retry:
471 spin_lock(&sb_lock);
472 if (test) {
473 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
474 if (!test(old, data))
475 continue;
476 if (!grab_super(old))
477 goto retry;
478 if (s) {
479 up_write(&s->s_umount);
480 destroy_super(s);
481 s = NULL;
482 }
483 return old;
484 }
485 }
486 if (!s) {
487 spin_unlock(&sb_lock);
488 s = alloc_super(type, flags);
489 if (!s)
490 return ERR_PTR(-ENOMEM);
491 goto retry;
492 }
493
494 err = set(s, data);
495 if (err) {
496 spin_unlock(&sb_lock);
497 up_write(&s->s_umount);
498 destroy_super(s);
499 return ERR_PTR(err);
500 }
501 s->s_type = type;
502 strlcpy(s->s_id, type->name, sizeof(s->s_id));
503 list_add_tail(&s->s_list, &super_blocks);
504 hlist_add_head(&s->s_instances, &type->fs_supers);
505 spin_unlock(&sb_lock);
506 get_filesystem(type);
507 register_shrinker(&s->s_shrink);
508 return s;
509 }
510
511 EXPORT_SYMBOL(sget);
512
513 void drop_super(struct super_block *sb)
514 {
515 up_read(&sb->s_umount);
516 put_super(sb);
517 }
518
519 EXPORT_SYMBOL(drop_super);
520
521 /**
522 * iterate_supers - call function for all active superblocks
523 * @f: function to call
524 * @arg: argument to pass to it
525 *
526 * Scans the superblock list and calls given function, passing it
527 * locked superblock and given argument.
528 */
529 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
530 {
531 struct super_block *sb, *p = NULL;
532
533 spin_lock(&sb_lock);
534 list_for_each_entry(sb, &super_blocks, s_list) {
535 if (hlist_unhashed(&sb->s_instances))
536 continue;
537 sb->s_count++;
538 spin_unlock(&sb_lock);
539
540 down_read(&sb->s_umount);
541 if (sb->s_root && (sb->s_flags & MS_BORN))
542 f(sb, arg);
543 up_read(&sb->s_umount);
544
545 spin_lock(&sb_lock);
546 if (p)
547 __put_super(p);
548 p = sb;
549 }
550 if (p)
551 __put_super(p);
552 spin_unlock(&sb_lock);
553 }
554
555 /**
556 * iterate_supers_type - call function for superblocks of given type
557 * @type: fs type
558 * @f: function to call
559 * @arg: argument to pass to it
560 *
561 * Scans the superblock list and calls given function, passing it
562 * locked superblock and given argument.
563 */
564 void iterate_supers_type(struct file_system_type *type,
565 void (*f)(struct super_block *, void *), void *arg)
566 {
567 struct super_block *sb, *p = NULL;
568
569 spin_lock(&sb_lock);
570 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
571 sb->s_count++;
572 spin_unlock(&sb_lock);
573
574 down_read(&sb->s_umount);
575 if (sb->s_root && (sb->s_flags & MS_BORN))
576 f(sb, arg);
577 up_read(&sb->s_umount);
578
579 spin_lock(&sb_lock);
580 if (p)
581 __put_super(p);
582 p = sb;
583 }
584 if (p)
585 __put_super(p);
586 spin_unlock(&sb_lock);
587 }
588
589 EXPORT_SYMBOL(iterate_supers_type);
590
591 /**
592 * get_super - get the superblock of a device
593 * @bdev: device to get the superblock for
594 *
595 * Scans the superblock list and finds the superblock of the file system
596 * mounted on the device given. %NULL is returned if no match is found.
597 */
598
599 struct super_block *get_super(struct block_device *bdev)
600 {
601 struct super_block *sb;
602
603 if (!bdev)
604 return NULL;
605
606 spin_lock(&sb_lock);
607 rescan:
608 list_for_each_entry(sb, &super_blocks, s_list) {
609 if (hlist_unhashed(&sb->s_instances))
610 continue;
611 if (sb->s_bdev == bdev) {
612 sb->s_count++;
613 spin_unlock(&sb_lock);
614 down_read(&sb->s_umount);
615 /* still alive? */
616 if (sb->s_root && (sb->s_flags & MS_BORN))
617 return sb;
618 up_read(&sb->s_umount);
619 /* nope, got unmounted */
620 spin_lock(&sb_lock);
621 __put_super(sb);
622 goto rescan;
623 }
624 }
625 spin_unlock(&sb_lock);
626 return NULL;
627 }
628
629 EXPORT_SYMBOL(get_super);
630
631 /**
632 * get_super_thawed - get thawed superblock of a device
633 * @bdev: device to get the superblock for
634 *
635 * Scans the superblock list and finds the superblock of the file system
636 * mounted on the device. The superblock is returned once it is thawed
637 * (or immediately if it was not frozen). %NULL is returned if no match
638 * is found.
639 */
640 struct super_block *get_super_thawed(struct block_device *bdev)
641 {
642 while (1) {
643 struct super_block *s = get_super(bdev);
644 if (!s || s->s_writers.frozen == SB_UNFROZEN)
645 return s;
646 up_read(&s->s_umount);
647 wait_event(s->s_writers.wait_unfrozen,
648 s->s_writers.frozen == SB_UNFROZEN);
649 put_super(s);
650 }
651 }
652 EXPORT_SYMBOL(get_super_thawed);
653
654 /**
655 * get_active_super - get an active reference to the superblock of a device
656 * @bdev: device to get the superblock for
657 *
658 * Scans the superblock list and finds the superblock of the file system
659 * mounted on the device given. Returns the superblock with an active
660 * reference or %NULL if none was found.
661 */
662 struct super_block *get_active_super(struct block_device *bdev)
663 {
664 struct super_block *sb;
665
666 if (!bdev)
667 return NULL;
668
669 restart:
670 spin_lock(&sb_lock);
671 list_for_each_entry(sb, &super_blocks, s_list) {
672 if (hlist_unhashed(&sb->s_instances))
673 continue;
674 if (sb->s_bdev == bdev) {
675 if (!grab_super(sb))
676 goto restart;
677 up_write(&sb->s_umount);
678 return sb;
679 }
680 }
681 spin_unlock(&sb_lock);
682 return NULL;
683 }
684
685 struct super_block *user_get_super(dev_t dev)
686 {
687 struct super_block *sb;
688
689 spin_lock(&sb_lock);
690 rescan:
691 list_for_each_entry(sb, &super_blocks, s_list) {
692 if (hlist_unhashed(&sb->s_instances))
693 continue;
694 if (sb->s_dev == dev) {
695 sb->s_count++;
696 spin_unlock(&sb_lock);
697 down_read(&sb->s_umount);
698 /* still alive? */
699 if (sb->s_root && (sb->s_flags & MS_BORN))
700 return sb;
701 up_read(&sb->s_umount);
702 /* nope, got unmounted */
703 spin_lock(&sb_lock);
704 __put_super(sb);
705 goto rescan;
706 }
707 }
708 spin_unlock(&sb_lock);
709 return NULL;
710 }
711
712 /**
713 * do_remount_sb - asks filesystem to change mount options.
714 * @sb: superblock in question
715 * @flags: numeric part of options
716 * @data: the rest of options
717 * @force: whether or not to force the change
718 *
719 * Alters the mount options of a mounted file system.
720 */
721 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
722 {
723 int retval;
724 int remount_ro;
725
726 if (sb->s_writers.frozen != SB_UNFROZEN)
727 return -EBUSY;
728
729 #ifdef CONFIG_BLOCK
730 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
731 return -EACCES;
732 #endif
733
734 if (flags & MS_RDONLY)
735 acct_auto_close(sb);
736 shrink_dcache_sb(sb);
737 sync_filesystem(sb);
738
739 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
740
741 /* If we are remounting RDONLY and current sb is read/write,
742 make sure there are no rw files opened */
743 if (remount_ro) {
744 if (force) {
745 mark_files_ro(sb);
746 } else {
747 retval = sb_prepare_remount_readonly(sb);
748 if (retval)
749 return retval;
750 }
751 }
752
753 if (sb->s_op->remount_fs) {
754 retval = sb->s_op->remount_fs(sb, &flags, data);
755 if (retval) {
756 if (!force)
757 goto cancel_readonly;
758 /* If forced remount, go ahead despite any errors */
759 WARN(1, "forced remount of a %s fs returned %i\n",
760 sb->s_type->name, retval);
761 }
762 }
763 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
764 /* Needs to be ordered wrt mnt_is_readonly() */
765 smp_wmb();
766 sb->s_readonly_remount = 0;
767
768 /*
769 * Some filesystems modify their metadata via some other path than the
770 * bdev buffer cache (eg. use a private mapping, or directories in
771 * pagecache, etc). Also file data modifications go via their own
772 * mappings. So If we try to mount readonly then copy the filesystem
773 * from bdev, we could get stale data, so invalidate it to give a best
774 * effort at coherency.
775 */
776 if (remount_ro && sb->s_bdev)
777 invalidate_bdev(sb->s_bdev);
778 return 0;
779
780 cancel_readonly:
781 sb->s_readonly_remount = 0;
782 return retval;
783 }
784
785 static void do_emergency_remount(struct work_struct *work)
786 {
787 struct super_block *sb, *p = NULL;
788
789 spin_lock(&sb_lock);
790 list_for_each_entry(sb, &super_blocks, s_list) {
791 if (hlist_unhashed(&sb->s_instances))
792 continue;
793 sb->s_count++;
794 spin_unlock(&sb_lock);
795 down_write(&sb->s_umount);
796 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
797 !(sb->s_flags & MS_RDONLY)) {
798 /*
799 * What lock protects sb->s_flags??
800 */
801 do_remount_sb(sb, MS_RDONLY, NULL, 1);
802 }
803 up_write(&sb->s_umount);
804 spin_lock(&sb_lock);
805 if (p)
806 __put_super(p);
807 p = sb;
808 }
809 if (p)
810 __put_super(p);
811 spin_unlock(&sb_lock);
812 kfree(work);
813 printk("Emergency Remount complete\n");
814 }
815
816 void emergency_remount(void)
817 {
818 struct work_struct *work;
819
820 work = kmalloc(sizeof(*work), GFP_ATOMIC);
821 if (work) {
822 INIT_WORK(work, do_emergency_remount);
823 schedule_work(work);
824 }
825 }
826
827 /*
828 * Unnamed block devices are dummy devices used by virtual
829 * filesystems which don't use real block-devices. -- jrs
830 */
831
832 static DEFINE_IDA(unnamed_dev_ida);
833 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
834 static int unnamed_dev_start = 0; /* don't bother trying below it */
835
836 int get_anon_bdev(dev_t *p)
837 {
838 int dev;
839 int error;
840
841 retry:
842 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
843 return -ENOMEM;
844 spin_lock(&unnamed_dev_lock);
845 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
846 if (!error)
847 unnamed_dev_start = dev + 1;
848 spin_unlock(&unnamed_dev_lock);
849 if (error == -EAGAIN)
850 /* We raced and lost with another CPU. */
851 goto retry;
852 else if (error)
853 return -EAGAIN;
854
855 if (dev == (1 << MINORBITS)) {
856 spin_lock(&unnamed_dev_lock);
857 ida_remove(&unnamed_dev_ida, dev);
858 if (unnamed_dev_start > dev)
859 unnamed_dev_start = dev;
860 spin_unlock(&unnamed_dev_lock);
861 return -EMFILE;
862 }
863 *p = MKDEV(0, dev & MINORMASK);
864 return 0;
865 }
866 EXPORT_SYMBOL(get_anon_bdev);
867
868 void free_anon_bdev(dev_t dev)
869 {
870 int slot = MINOR(dev);
871 spin_lock(&unnamed_dev_lock);
872 ida_remove(&unnamed_dev_ida, slot);
873 if (slot < unnamed_dev_start)
874 unnamed_dev_start = slot;
875 spin_unlock(&unnamed_dev_lock);
876 }
877 EXPORT_SYMBOL(free_anon_bdev);
878
879 int set_anon_super(struct super_block *s, void *data)
880 {
881 int error = get_anon_bdev(&s->s_dev);
882 if (!error)
883 s->s_bdi = &noop_backing_dev_info;
884 return error;
885 }
886
887 EXPORT_SYMBOL(set_anon_super);
888
889 void kill_anon_super(struct super_block *sb)
890 {
891 dev_t dev = sb->s_dev;
892 generic_shutdown_super(sb);
893 free_anon_bdev(dev);
894 }
895
896 EXPORT_SYMBOL(kill_anon_super);
897
898 void kill_litter_super(struct super_block *sb)
899 {
900 if (sb->s_root)
901 d_genocide(sb->s_root);
902 kill_anon_super(sb);
903 }
904
905 EXPORT_SYMBOL(kill_litter_super);
906
907 static int ns_test_super(struct super_block *sb, void *data)
908 {
909 return sb->s_fs_info == data;
910 }
911
912 static int ns_set_super(struct super_block *sb, void *data)
913 {
914 sb->s_fs_info = data;
915 return set_anon_super(sb, NULL);
916 }
917
918 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
919 void *data, int (*fill_super)(struct super_block *, void *, int))
920 {
921 struct super_block *sb;
922
923 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
924 if (IS_ERR(sb))
925 return ERR_CAST(sb);
926
927 if (!sb->s_root) {
928 int err;
929 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
930 if (err) {
931 deactivate_locked_super(sb);
932 return ERR_PTR(err);
933 }
934
935 sb->s_flags |= MS_ACTIVE;
936 }
937
938 return dget(sb->s_root);
939 }
940
941 EXPORT_SYMBOL(mount_ns);
942
943 #ifdef CONFIG_BLOCK
944 static int set_bdev_super(struct super_block *s, void *data)
945 {
946 s->s_bdev = data;
947 s->s_dev = s->s_bdev->bd_dev;
948
949 /*
950 * We set the bdi here to the queue backing, file systems can
951 * overwrite this in ->fill_super()
952 */
953 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
954 return 0;
955 }
956
957 static int test_bdev_super(struct super_block *s, void *data)
958 {
959 return (void *)s->s_bdev == data;
960 }
961
962 struct dentry *mount_bdev(struct file_system_type *fs_type,
963 int flags, const char *dev_name, void *data,
964 int (*fill_super)(struct super_block *, void *, int))
965 {
966 struct block_device *bdev;
967 struct super_block *s;
968 fmode_t mode = FMODE_READ | FMODE_EXCL;
969 int error = 0;
970
971 if (!(flags & MS_RDONLY))
972 mode |= FMODE_WRITE;
973
974 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
975 if (IS_ERR(bdev))
976 return ERR_CAST(bdev);
977
978 /*
979 * once the super is inserted into the list by sget, s_umount
980 * will protect the lockfs code from trying to start a snapshot
981 * while we are mounting
982 */
983 mutex_lock(&bdev->bd_fsfreeze_mutex);
984 if (bdev->bd_fsfreeze_count > 0) {
985 mutex_unlock(&bdev->bd_fsfreeze_mutex);
986 error = -EBUSY;
987 goto error_bdev;
988 }
989 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
990 bdev);
991 mutex_unlock(&bdev->bd_fsfreeze_mutex);
992 if (IS_ERR(s))
993 goto error_s;
994
995 if (s->s_root) {
996 if ((flags ^ s->s_flags) & MS_RDONLY) {
997 deactivate_locked_super(s);
998 error = -EBUSY;
999 goto error_bdev;
1000 }
1001
1002 /*
1003 * s_umount nests inside bd_mutex during
1004 * __invalidate_device(). blkdev_put() acquires
1005 * bd_mutex and can't be called under s_umount. Drop
1006 * s_umount temporarily. This is safe as we're
1007 * holding an active reference.
1008 */
1009 up_write(&s->s_umount);
1010 blkdev_put(bdev, mode);
1011 down_write(&s->s_umount);
1012 } else {
1013 char b[BDEVNAME_SIZE];
1014
1015 s->s_mode = mode;
1016 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1017 sb_set_blocksize(s, block_size(bdev));
1018 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1019 if (error) {
1020 deactivate_locked_super(s);
1021 goto error;
1022 }
1023
1024 s->s_flags |= MS_ACTIVE;
1025 bdev->bd_super = s;
1026 }
1027
1028 return dget(s->s_root);
1029
1030 error_s:
1031 error = PTR_ERR(s);
1032 error_bdev:
1033 blkdev_put(bdev, mode);
1034 error:
1035 return ERR_PTR(error);
1036 }
1037 EXPORT_SYMBOL(mount_bdev);
1038
1039 void kill_block_super(struct super_block *sb)
1040 {
1041 struct block_device *bdev = sb->s_bdev;
1042 fmode_t mode = sb->s_mode;
1043
1044 bdev->bd_super = NULL;
1045 generic_shutdown_super(sb);
1046 sync_blockdev(bdev);
1047 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1048 blkdev_put(bdev, mode | FMODE_EXCL);
1049 }
1050
1051 EXPORT_SYMBOL(kill_block_super);
1052 #endif
1053
1054 struct dentry *mount_nodev(struct file_system_type *fs_type,
1055 int flags, void *data,
1056 int (*fill_super)(struct super_block *, void *, int))
1057 {
1058 int error;
1059 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1060
1061 if (IS_ERR(s))
1062 return ERR_CAST(s);
1063
1064 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1065 if (error) {
1066 deactivate_locked_super(s);
1067 return ERR_PTR(error);
1068 }
1069 s->s_flags |= MS_ACTIVE;
1070 return dget(s->s_root);
1071 }
1072 EXPORT_SYMBOL(mount_nodev);
1073
1074 static int compare_single(struct super_block *s, void *p)
1075 {
1076 return 1;
1077 }
1078
1079 struct dentry *mount_single(struct file_system_type *fs_type,
1080 int flags, void *data,
1081 int (*fill_super)(struct super_block *, void *, int))
1082 {
1083 struct super_block *s;
1084 int error;
1085
1086 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1087 if (IS_ERR(s))
1088 return ERR_CAST(s);
1089 if (!s->s_root) {
1090 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1091 if (error) {
1092 deactivate_locked_super(s);
1093 return ERR_PTR(error);
1094 }
1095 s->s_flags |= MS_ACTIVE;
1096 } else {
1097 do_remount_sb(s, flags, data, 0);
1098 }
1099 return dget(s->s_root);
1100 }
1101 EXPORT_SYMBOL(mount_single);
1102
1103 struct dentry *
1104 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1105 {
1106 struct dentry *root;
1107 struct super_block *sb;
1108 char *secdata = NULL;
1109 int error = -ENOMEM;
1110
1111 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1112 secdata = alloc_secdata();
1113 if (!secdata)
1114 goto out;
1115
1116 error = security_sb_copy_data(data, secdata);
1117 if (error)
1118 goto out_free_secdata;
1119 }
1120
1121 root = type->mount(type, flags, name, data);
1122 if (IS_ERR(root)) {
1123 error = PTR_ERR(root);
1124 goto out_free_secdata;
1125 }
1126 sb = root->d_sb;
1127 BUG_ON(!sb);
1128 WARN_ON(!sb->s_bdi);
1129 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1130 sb->s_flags |= MS_BORN;
1131
1132 error = security_sb_kern_mount(sb, flags, secdata);
1133 if (error)
1134 goto out_sb;
1135
1136 /*
1137 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1138 * but s_maxbytes was an unsigned long long for many releases. Throw
1139 * this warning for a little while to try and catch filesystems that
1140 * violate this rule.
1141 */
1142 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1143 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1144
1145 up_write(&sb->s_umount);
1146 free_secdata(secdata);
1147 return root;
1148 out_sb:
1149 dput(root);
1150 deactivate_locked_super(sb);
1151 out_free_secdata:
1152 free_secdata(secdata);
1153 out:
1154 return ERR_PTR(error);
1155 }
1156
1157 /*
1158 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1159 * instead.
1160 */
1161 void __sb_end_write(struct super_block *sb, int level)
1162 {
1163 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1164 /*
1165 * Make sure s_writers are updated before we wake up waiters in
1166 * freeze_super().
1167 */
1168 smp_mb();
1169 if (waitqueue_active(&sb->s_writers.wait))
1170 wake_up(&sb->s_writers.wait);
1171 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1172 }
1173 EXPORT_SYMBOL(__sb_end_write);
1174
1175 #ifdef CONFIG_LOCKDEP
1176 /*
1177 * We want lockdep to tell us about possible deadlocks with freezing but
1178 * it's it bit tricky to properly instrument it. Getting a freeze protection
1179 * works as getting a read lock but there are subtle problems. XFS for example
1180 * gets freeze protection on internal level twice in some cases, which is OK
1181 * only because we already hold a freeze protection also on higher level. Due
1182 * to these cases we have to tell lockdep we are doing trylock when we
1183 * already hold a freeze protection for a higher freeze level.
1184 */
1185 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1186 unsigned long ip)
1187 {
1188 int i;
1189
1190 if (!trylock) {
1191 for (i = 0; i < level - 1; i++)
1192 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1193 trylock = true;
1194 break;
1195 }
1196 }
1197 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1198 }
1199 #endif
1200
1201 /*
1202 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1203 * instead.
1204 */
1205 int __sb_start_write(struct super_block *sb, int level, bool wait)
1206 {
1207 retry:
1208 if (unlikely(sb->s_writers.frozen >= level)) {
1209 if (!wait)
1210 return 0;
1211 wait_event(sb->s_writers.wait_unfrozen,
1212 sb->s_writers.frozen < level);
1213 }
1214
1215 #ifdef CONFIG_LOCKDEP
1216 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1217 #endif
1218 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1219 /*
1220 * Make sure counter is updated before we check for frozen.
1221 * freeze_super() first sets frozen and then checks the counter.
1222 */
1223 smp_mb();
1224 if (unlikely(sb->s_writers.frozen >= level)) {
1225 __sb_end_write(sb, level);
1226 goto retry;
1227 }
1228 return 1;
1229 }
1230 EXPORT_SYMBOL(__sb_start_write);
1231
1232 /**
1233 * sb_wait_write - wait until all writers to given file system finish
1234 * @sb: the super for which we wait
1235 * @level: type of writers we wait for (normal vs page fault)
1236 *
1237 * This function waits until there are no writers of given type to given file
1238 * system. Caller of this function should make sure there can be no new writers
1239 * of type @level before calling this function. Otherwise this function can
1240 * livelock.
1241 */
1242 static void sb_wait_write(struct super_block *sb, int level)
1243 {
1244 s64 writers;
1245
1246 /*
1247 * We just cycle-through lockdep here so that it does not complain
1248 * about returning with lock to userspace
1249 */
1250 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1251 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1252
1253 do {
1254 DEFINE_WAIT(wait);
1255
1256 /*
1257 * We use a barrier in prepare_to_wait() to separate setting
1258 * of frozen and checking of the counter
1259 */
1260 prepare_to_wait(&sb->s_writers.wait, &wait,
1261 TASK_UNINTERRUPTIBLE);
1262
1263 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1264 if (writers)
1265 schedule();
1266
1267 finish_wait(&sb->s_writers.wait, &wait);
1268 } while (writers);
1269 }
1270
1271 /**
1272 * freeze_super - lock the filesystem and force it into a consistent state
1273 * @sb: the super to lock
1274 *
1275 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1276 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1277 * -EBUSY.
1278 *
1279 * During this function, sb->s_writers.frozen goes through these values:
1280 *
1281 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1282 *
1283 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1284 * writes should be blocked, though page faults are still allowed. We wait for
1285 * all writes to complete and then proceed to the next stage.
1286 *
1287 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1288 * but internal fs threads can still modify the filesystem (although they
1289 * should not dirty new pages or inodes), writeback can run etc. After waiting
1290 * for all running page faults we sync the filesystem which will clean all
1291 * dirty pages and inodes (no new dirty pages or inodes can be created when
1292 * sync is running).
1293 *
1294 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1295 * modification are blocked (e.g. XFS preallocation truncation on inode
1296 * reclaim). This is usually implemented by blocking new transactions for
1297 * filesystems that have them and need this additional guard. After all
1298 * internal writers are finished we call ->freeze_fs() to finish filesystem
1299 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1300 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1301 *
1302 * sb->s_writers.frozen is protected by sb->s_umount.
1303 */
1304 int freeze_super(struct super_block *sb)
1305 {
1306 int ret;
1307
1308 atomic_inc(&sb->s_active);
1309 down_write(&sb->s_umount);
1310 if (sb->s_writers.frozen != SB_UNFROZEN) {
1311 deactivate_locked_super(sb);
1312 return -EBUSY;
1313 }
1314
1315 if (!(sb->s_flags & MS_BORN)) {
1316 up_write(&sb->s_umount);
1317 return 0; /* sic - it's "nothing to do" */
1318 }
1319
1320 if (sb->s_flags & MS_RDONLY) {
1321 /* Nothing to do really... */
1322 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1323 up_write(&sb->s_umount);
1324 return 0;
1325 }
1326
1327 /* From now on, no new normal writers can start */
1328 sb->s_writers.frozen = SB_FREEZE_WRITE;
1329 smp_wmb();
1330
1331 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1332 up_write(&sb->s_umount);
1333
1334 sb_wait_write(sb, SB_FREEZE_WRITE);
1335
1336 /* Now we go and block page faults... */
1337 down_write(&sb->s_umount);
1338 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1339 smp_wmb();
1340
1341 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1342
1343 /* All writers are done so after syncing there won't be dirty data */
1344 sync_filesystem(sb);
1345
1346 /* Now wait for internal filesystem counter */
1347 sb->s_writers.frozen = SB_FREEZE_FS;
1348 smp_wmb();
1349 sb_wait_write(sb, SB_FREEZE_FS);
1350
1351 if (sb->s_op->freeze_fs) {
1352 ret = sb->s_op->freeze_fs(sb);
1353 if (ret) {
1354 printk(KERN_ERR
1355 "VFS:Filesystem freeze failed\n");
1356 sb->s_writers.frozen = SB_UNFROZEN;
1357 smp_wmb();
1358 wake_up(&sb->s_writers.wait_unfrozen);
1359 deactivate_locked_super(sb);
1360 return ret;
1361 }
1362 }
1363 /*
1364 * This is just for debugging purposes so that fs can warn if it
1365 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1366 */
1367 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1368 up_write(&sb->s_umount);
1369 return 0;
1370 }
1371 EXPORT_SYMBOL(freeze_super);
1372
1373 /**
1374 * thaw_super -- unlock filesystem
1375 * @sb: the super to thaw
1376 *
1377 * Unlocks the filesystem and marks it writeable again after freeze_super().
1378 */
1379 int thaw_super(struct super_block *sb)
1380 {
1381 int error;
1382
1383 down_write(&sb->s_umount);
1384 if (sb->s_writers.frozen == SB_UNFROZEN) {
1385 up_write(&sb->s_umount);
1386 return -EINVAL;
1387 }
1388
1389 if (sb->s_flags & MS_RDONLY)
1390 goto out;
1391
1392 if (sb->s_op->unfreeze_fs) {
1393 error = sb->s_op->unfreeze_fs(sb);
1394 if (error) {
1395 printk(KERN_ERR
1396 "VFS:Filesystem thaw failed\n");
1397 up_write(&sb->s_umount);
1398 return error;
1399 }
1400 }
1401
1402 out:
1403 sb->s_writers.frozen = SB_UNFROZEN;
1404 smp_wmb();
1405 wake_up(&sb->s_writers.wait_unfrozen);
1406 deactivate_locked_super(sb);
1407
1408 return 0;
1409 }
1410 EXPORT_SYMBOL(thaw_super);