]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/ubifs/journal.c
ubifs: Use a random number for cookies
[mirror_ubuntu-zesty-kernel.git] / fs / ubifs / journal.c
1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23 /*
24 * This file implements UBIFS journal.
25 *
26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27 * length and position, while a bud logical eraseblock is any LEB in the main
28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29 * contains only references to buds and some other stuff like commit
30 * start node. The idea is that when we commit the journal, we do
31 * not copy the data, the buds just become indexed. Since after the commit the
32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34 * become leafs in the future.
35 *
36 * The journal is multi-headed because we want to write data to the journal as
37 * optimally as possible. It is nice to have nodes belonging to the same inode
38 * in one LEB, so we may write data owned by different inodes to different
39 * journal heads, although at present only one data head is used.
40 *
41 * For recovery reasons, the base head contains all inode nodes, all directory
42 * entry nodes and all truncate nodes. This means that the other heads contain
43 * only data nodes.
44 *
45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46 * time of commit, the bud is retained to continue to be used in the journal,
47 * even though the "front" of the LEB is now indexed. In that case, the log
48 * reference contains the offset where the bud starts for the purposes of the
49 * journal.
50 *
51 * The journal size has to be limited, because the larger is the journal, the
52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53 * takes (indexing in the TNC).
54 *
55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
58 * all the nodes.
59 */
60
61 #include "ubifs.h"
62
63 /**
64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65 * @ino: the inode to zero out
66 */
67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
68 {
69 memset(ino->padding1, 0, 4);
70 memset(ino->padding2, 0, 26);
71 }
72
73 /**
74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
75 * entry node.
76 * @dent: the directory entry to zero out
77 */
78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
79 {
80 dent->padding1 = 0;
81 }
82
83 /**
84 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
85 * node.
86 * @trun: the truncation node to zero out
87 */
88 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
89 {
90 memset(trun->padding, 0, 12);
91 }
92
93 /**
94 * reserve_space - reserve space in the journal.
95 * @c: UBIFS file-system description object
96 * @jhead: journal head number
97 * @len: node length
98 *
99 * This function reserves space in journal head @head. If the reservation
100 * succeeded, the journal head stays locked and later has to be unlocked using
101 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
102 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
103 * other negative error codes in case of other failures.
104 */
105 static int reserve_space(struct ubifs_info *c, int jhead, int len)
106 {
107 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
108 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
109
110 /*
111 * Typically, the base head has smaller nodes written to it, so it is
112 * better to try to allocate space at the ends of eraseblocks. This is
113 * what the squeeze parameter does.
114 */
115 ubifs_assert(!c->ro_media && !c->ro_mount);
116 squeeze = (jhead == BASEHD);
117 again:
118 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
119
120 if (c->ro_error) {
121 err = -EROFS;
122 goto out_unlock;
123 }
124
125 avail = c->leb_size - wbuf->offs - wbuf->used;
126 if (wbuf->lnum != -1 && avail >= len)
127 return 0;
128
129 /*
130 * Write buffer wasn't seek'ed or there is no enough space - look for an
131 * LEB with some empty space.
132 */
133 lnum = ubifs_find_free_space(c, len, &offs, squeeze);
134 if (lnum >= 0)
135 goto out;
136
137 err = lnum;
138 if (err != -ENOSPC)
139 goto out_unlock;
140
141 /*
142 * No free space, we have to run garbage collector to make
143 * some. But the write-buffer mutex has to be unlocked because
144 * GC also takes it.
145 */
146 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
147 mutex_unlock(&wbuf->io_mutex);
148
149 lnum = ubifs_garbage_collect(c, 0);
150 if (lnum < 0) {
151 err = lnum;
152 if (err != -ENOSPC)
153 return err;
154
155 /*
156 * GC could not make a free LEB. But someone else may
157 * have allocated new bud for this journal head,
158 * because we dropped @wbuf->io_mutex, so try once
159 * again.
160 */
161 dbg_jnl("GC couldn't make a free LEB for jhead %s",
162 dbg_jhead(jhead));
163 if (retries++ < 2) {
164 dbg_jnl("retry (%d)", retries);
165 goto again;
166 }
167
168 dbg_jnl("return -ENOSPC");
169 return err;
170 }
171
172 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
173 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
174 avail = c->leb_size - wbuf->offs - wbuf->used;
175
176 if (wbuf->lnum != -1 && avail >= len) {
177 /*
178 * Someone else has switched the journal head and we have
179 * enough space now. This happens when more than one process is
180 * trying to write to the same journal head at the same time.
181 */
182 dbg_jnl("return LEB %d back, already have LEB %d:%d",
183 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
184 err = ubifs_return_leb(c, lnum);
185 if (err)
186 goto out_unlock;
187 return 0;
188 }
189
190 offs = 0;
191
192 out:
193 /*
194 * Make sure we synchronize the write-buffer before we add the new bud
195 * to the log. Otherwise we may have a power cut after the log
196 * reference node for the last bud (@lnum) is written but before the
197 * write-buffer data are written to the next-to-last bud
198 * (@wbuf->lnum). And the effect would be that the recovery would see
199 * that there is corruption in the next-to-last bud.
200 */
201 err = ubifs_wbuf_sync_nolock(wbuf);
202 if (err)
203 goto out_return;
204 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
205 if (err)
206 goto out_return;
207 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
208 if (err)
209 goto out_unlock;
210
211 return 0;
212
213 out_unlock:
214 mutex_unlock(&wbuf->io_mutex);
215 return err;
216
217 out_return:
218 /* An error occurred and the LEB has to be returned to lprops */
219 ubifs_assert(err < 0);
220 err1 = ubifs_return_leb(c, lnum);
221 if (err1 && err == -EAGAIN)
222 /*
223 * Return original error code only if it is not %-EAGAIN,
224 * which is not really an error. Otherwise, return the error
225 * code of 'ubifs_return_leb()'.
226 */
227 err = err1;
228 mutex_unlock(&wbuf->io_mutex);
229 return err;
230 }
231
232 /**
233 * write_node - write node to a journal head.
234 * @c: UBIFS file-system description object
235 * @jhead: journal head
236 * @node: node to write
237 * @len: node length
238 * @lnum: LEB number written is returned here
239 * @offs: offset written is returned here
240 *
241 * This function writes a node to reserved space of journal head @jhead.
242 * Returns zero in case of success and a negative error code in case of
243 * failure.
244 */
245 static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
246 int *lnum, int *offs)
247 {
248 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
249
250 ubifs_assert(jhead != GCHD);
251
252 *lnum = c->jheads[jhead].wbuf.lnum;
253 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
254
255 dbg_jnl("jhead %s, LEB %d:%d, len %d",
256 dbg_jhead(jhead), *lnum, *offs, len);
257 ubifs_prepare_node(c, node, len, 0);
258
259 return ubifs_wbuf_write_nolock(wbuf, node, len);
260 }
261
262 /**
263 * write_head - write data to a journal head.
264 * @c: UBIFS file-system description object
265 * @jhead: journal head
266 * @buf: buffer to write
267 * @len: length to write
268 * @lnum: LEB number written is returned here
269 * @offs: offset written is returned here
270 * @sync: non-zero if the write-buffer has to by synchronized
271 *
272 * This function is the same as 'write_node()' but it does not assume the
273 * buffer it is writing is a node, so it does not prepare it (which means
274 * initializing common header and calculating CRC).
275 */
276 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
277 int *lnum, int *offs, int sync)
278 {
279 int err;
280 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
281
282 ubifs_assert(jhead != GCHD);
283
284 *lnum = c->jheads[jhead].wbuf.lnum;
285 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
286 dbg_jnl("jhead %s, LEB %d:%d, len %d",
287 dbg_jhead(jhead), *lnum, *offs, len);
288
289 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
290 if (err)
291 return err;
292 if (sync)
293 err = ubifs_wbuf_sync_nolock(wbuf);
294 return err;
295 }
296
297 /**
298 * make_reservation - reserve journal space.
299 * @c: UBIFS file-system description object
300 * @jhead: journal head
301 * @len: how many bytes to reserve
302 *
303 * This function makes space reservation in journal head @jhead. The function
304 * takes the commit lock and locks the journal head, and the caller has to
305 * unlock the head and finish the reservation with 'finish_reservation()'.
306 * Returns zero in case of success and a negative error code in case of
307 * failure.
308 *
309 * Note, the journal head may be unlocked as soon as the data is written, while
310 * the commit lock has to be released after the data has been added to the
311 * TNC.
312 */
313 static int make_reservation(struct ubifs_info *c, int jhead, int len)
314 {
315 int err, cmt_retries = 0, nospc_retries = 0;
316
317 again:
318 down_read(&c->commit_sem);
319 err = reserve_space(c, jhead, len);
320 if (!err)
321 return 0;
322 up_read(&c->commit_sem);
323
324 if (err == -ENOSPC) {
325 /*
326 * GC could not make any progress. We should try to commit
327 * once because it could make some dirty space and GC would
328 * make progress, so make the error -EAGAIN so that the below
329 * will commit and re-try.
330 */
331 if (nospc_retries++ < 2) {
332 dbg_jnl("no space, retry");
333 err = -EAGAIN;
334 }
335
336 /*
337 * This means that the budgeting is incorrect. We always have
338 * to be able to write to the media, because all operations are
339 * budgeted. Deletions are not budgeted, though, but we reserve
340 * an extra LEB for them.
341 */
342 }
343
344 if (err != -EAGAIN)
345 goto out;
346
347 /*
348 * -EAGAIN means that the journal is full or too large, or the above
349 * code wants to do one commit. Do this and re-try.
350 */
351 if (cmt_retries > 128) {
352 /*
353 * This should not happen unless the journal size limitations
354 * are too tough.
355 */
356 ubifs_err(c, "stuck in space allocation");
357 err = -ENOSPC;
358 goto out;
359 } else if (cmt_retries > 32)
360 ubifs_warn(c, "too many space allocation re-tries (%d)",
361 cmt_retries);
362
363 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
364 cmt_retries);
365 cmt_retries += 1;
366
367 err = ubifs_run_commit(c);
368 if (err)
369 return err;
370 goto again;
371
372 out:
373 ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
374 len, jhead, err);
375 if (err == -ENOSPC) {
376 /* This are some budgeting problems, print useful information */
377 down_write(&c->commit_sem);
378 dump_stack();
379 ubifs_dump_budg(c, &c->bi);
380 ubifs_dump_lprops(c);
381 cmt_retries = dbg_check_lprops(c);
382 up_write(&c->commit_sem);
383 }
384 return err;
385 }
386
387 /**
388 * release_head - release a journal head.
389 * @c: UBIFS file-system description object
390 * @jhead: journal head
391 *
392 * This function releases journal head @jhead which was locked by
393 * the 'make_reservation()' function. It has to be called after each successful
394 * 'make_reservation()' invocation.
395 */
396 static inline void release_head(struct ubifs_info *c, int jhead)
397 {
398 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
399 }
400
401 /**
402 * finish_reservation - finish a reservation.
403 * @c: UBIFS file-system description object
404 *
405 * This function finishes journal space reservation. It must be called after
406 * 'make_reservation()'.
407 */
408 static void finish_reservation(struct ubifs_info *c)
409 {
410 up_read(&c->commit_sem);
411 }
412
413 /**
414 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
415 * @mode: inode mode
416 */
417 static int get_dent_type(int mode)
418 {
419 switch (mode & S_IFMT) {
420 case S_IFREG:
421 return UBIFS_ITYPE_REG;
422 case S_IFDIR:
423 return UBIFS_ITYPE_DIR;
424 case S_IFLNK:
425 return UBIFS_ITYPE_LNK;
426 case S_IFBLK:
427 return UBIFS_ITYPE_BLK;
428 case S_IFCHR:
429 return UBIFS_ITYPE_CHR;
430 case S_IFIFO:
431 return UBIFS_ITYPE_FIFO;
432 case S_IFSOCK:
433 return UBIFS_ITYPE_SOCK;
434 default:
435 BUG();
436 }
437 return 0;
438 }
439
440 /**
441 * pack_inode - pack an inode node.
442 * @c: UBIFS file-system description object
443 * @ino: buffer in which to pack inode node
444 * @inode: inode to pack
445 * @last: indicates the last node of the group
446 */
447 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
448 const struct inode *inode, int last)
449 {
450 int data_len = 0, last_reference = !inode->i_nlink;
451 struct ubifs_inode *ui = ubifs_inode(inode);
452
453 ino->ch.node_type = UBIFS_INO_NODE;
454 ino_key_init_flash(c, &ino->key, inode->i_ino);
455 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
456 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec);
457 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
458 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec);
459 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
460 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec);
461 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
462 ino->uid = cpu_to_le32(i_uid_read(inode));
463 ino->gid = cpu_to_le32(i_gid_read(inode));
464 ino->mode = cpu_to_le32(inode->i_mode);
465 ino->flags = cpu_to_le32(ui->flags);
466 ino->size = cpu_to_le64(ui->ui_size);
467 ino->nlink = cpu_to_le32(inode->i_nlink);
468 ino->compr_type = cpu_to_le16(ui->compr_type);
469 ino->data_len = cpu_to_le32(ui->data_len);
470 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
471 ino->xattr_size = cpu_to_le32(ui->xattr_size);
472 ino->xattr_names = cpu_to_le32(ui->xattr_names);
473 zero_ino_node_unused(ino);
474
475 /*
476 * Drop the attached data if this is a deletion inode, the data is not
477 * needed anymore.
478 */
479 if (!last_reference) {
480 memcpy(ino->data, ui->data, ui->data_len);
481 data_len = ui->data_len;
482 }
483
484 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
485 }
486
487 /**
488 * mark_inode_clean - mark UBIFS inode as clean.
489 * @c: UBIFS file-system description object
490 * @ui: UBIFS inode to mark as clean
491 *
492 * This helper function marks UBIFS inode @ui as clean by cleaning the
493 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
494 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
495 * just do nothing.
496 */
497 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
498 {
499 if (ui->dirty)
500 ubifs_release_dirty_inode_budget(c, ui);
501 ui->dirty = 0;
502 }
503
504 /**
505 * ubifs_jnl_update - update inode.
506 * @c: UBIFS file-system description object
507 * @dir: parent inode or host inode in case of extended attributes
508 * @nm: directory entry name
509 * @inode: inode to update
510 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
511 * @xent: non-zero if the directory entry is an extended attribute entry
512 *
513 * This function updates an inode by writing a directory entry (or extended
514 * attribute entry), the inode itself, and the parent directory inode (or the
515 * host inode) to the journal.
516 *
517 * The function writes the host inode @dir last, which is important in case of
518 * extended attributes. Indeed, then we guarantee that if the host inode gets
519 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
520 * the extended attribute inode gets flushed too. And this is exactly what the
521 * user expects - synchronizing the host inode synchronizes its extended
522 * attributes. Similarly, this guarantees that if @dir is synchronized, its
523 * directory entry corresponding to @nm gets synchronized too.
524 *
525 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
526 * function synchronizes the write-buffer.
527 *
528 * This function marks the @dir and @inode inodes as clean and returns zero on
529 * success. In case of failure, a negative error code is returned.
530 */
531 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
532 const struct fscrypt_name *nm, const struct inode *inode,
533 int deletion, int xent)
534 {
535 int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
536 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
537 int last_reference = !!(deletion && inode->i_nlink == 0);
538 struct ubifs_inode *ui = ubifs_inode(inode);
539 struct ubifs_inode *host_ui = ubifs_inode(dir);
540 struct ubifs_dent_node *dent;
541 struct ubifs_ino_node *ino;
542 union ubifs_key dent_key, ino_key;
543
544 //dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
545 // inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
546 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
547
548 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
549 ilen = UBIFS_INO_NODE_SZ;
550
551 /*
552 * If the last reference to the inode is being deleted, then there is
553 * no need to attach and write inode data, it is being deleted anyway.
554 * And if the inode is being deleted, no need to synchronize
555 * write-buffer even if the inode is synchronous.
556 */
557 if (!last_reference) {
558 ilen += ui->data_len;
559 sync |= IS_SYNC(inode);
560 }
561
562 aligned_dlen = ALIGN(dlen, 8);
563 aligned_ilen = ALIGN(ilen, 8);
564
565 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
566 /* Make sure to also account for extended attributes */
567 len += host_ui->data_len;
568
569 dent = kmalloc(len, GFP_NOFS);
570 if (!dent)
571 return -ENOMEM;
572
573 /* Make reservation before allocating sequence numbers */
574 err = make_reservation(c, BASEHD, len);
575 if (err)
576 goto out_free;
577
578 if (!xent) {
579 dent->ch.node_type = UBIFS_DENT_NODE;
580 dent_key_init(c, &dent_key, dir->i_ino, nm);
581 } else {
582 dent->ch.node_type = UBIFS_XENT_NODE;
583 xent_key_init(c, &dent_key, dir->i_ino, nm);
584 }
585
586 key_write(c, &dent_key, dent->key);
587 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
588 dent->type = get_dent_type(inode->i_mode);
589 dent->nlen = cpu_to_le16(fname_len(nm));
590 memcpy(dent->name, fname_name(nm), fname_len(nm));
591 dent->name[fname_len(nm)] = '\0';
592 dent->cookie = prandom_u32();
593
594 zero_dent_node_unused(dent);
595 ubifs_prep_grp_node(c, dent, dlen, 0);
596
597 ino = (void *)dent + aligned_dlen;
598 pack_inode(c, ino, inode, 0);
599 ino = (void *)ino + aligned_ilen;
600 pack_inode(c, ino, dir, 1);
601
602 if (last_reference) {
603 err = ubifs_add_orphan(c, inode->i_ino);
604 if (err) {
605 release_head(c, BASEHD);
606 goto out_finish;
607 }
608 ui->del_cmtno = c->cmt_no;
609 }
610
611 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
612 if (err)
613 goto out_release;
614 if (!sync) {
615 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
616
617 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
618 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
619 }
620 release_head(c, BASEHD);
621 kfree(dent);
622
623 if (deletion) {
624 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
625 if (err)
626 goto out_ro;
627 err = ubifs_add_dirt(c, lnum, dlen);
628 } else
629 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
630 if (err)
631 goto out_ro;
632
633 /*
634 * Note, we do not remove the inode from TNC even if the last reference
635 * to it has just been deleted, because the inode may still be opened.
636 * Instead, the inode has been added to orphan lists and the orphan
637 * subsystem will take further care about it.
638 */
639 ino_key_init(c, &ino_key, inode->i_ino);
640 ino_offs = dent_offs + aligned_dlen;
641 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
642 if (err)
643 goto out_ro;
644
645 ino_key_init(c, &ino_key, dir->i_ino);
646 ino_offs += aligned_ilen;
647 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
648 UBIFS_INO_NODE_SZ + host_ui->data_len);
649 if (err)
650 goto out_ro;
651
652 finish_reservation(c);
653 spin_lock(&ui->ui_lock);
654 ui->synced_i_size = ui->ui_size;
655 spin_unlock(&ui->ui_lock);
656 mark_inode_clean(c, ui);
657 mark_inode_clean(c, host_ui);
658 return 0;
659
660 out_finish:
661 finish_reservation(c);
662 out_free:
663 kfree(dent);
664 return err;
665
666 out_release:
667 release_head(c, BASEHD);
668 kfree(dent);
669 out_ro:
670 ubifs_ro_mode(c, err);
671 if (last_reference)
672 ubifs_delete_orphan(c, inode->i_ino);
673 finish_reservation(c);
674 return err;
675 }
676
677 /**
678 * ubifs_jnl_write_data - write a data node to the journal.
679 * @c: UBIFS file-system description object
680 * @inode: inode the data node belongs to
681 * @key: node key
682 * @buf: buffer to write
683 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
684 *
685 * This function writes a data node to the journal. Returns %0 if the data node
686 * was successfully written, and a negative error code in case of failure.
687 */
688 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
689 const union ubifs_key *key, const void *buf, int len)
690 {
691 struct ubifs_data_node *data;
692 int err, lnum, offs, compr_type, out_len, compr_len;
693 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
694 struct ubifs_inode *ui = ubifs_inode(inode);
695 bool encrypted = ubifs_crypt_is_encrypted(inode);
696
697 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
698 (unsigned long)key_inum(c, key), key_block(c, key), len);
699 ubifs_assert(len <= UBIFS_BLOCK_SIZE);
700
701 if (encrypted)
702 dlen += UBIFS_CIPHER_BLOCK_SIZE;
703
704 data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN);
705 if (!data) {
706 /*
707 * Fall-back to the write reserve buffer. Note, we might be
708 * currently on the memory reclaim path, when the kernel is
709 * trying to free some memory by writing out dirty pages. The
710 * write reserve buffer helps us to guarantee that we are
711 * always able to write the data.
712 */
713 allocated = 0;
714 mutex_lock(&c->write_reserve_mutex);
715 data = c->write_reserve_buf;
716 }
717
718 data->ch.node_type = UBIFS_DATA_NODE;
719 key_write(c, key, &data->key);
720 data->size = cpu_to_le32(len);
721
722 if (!(ui->flags & UBIFS_COMPR_FL))
723 /* Compression is disabled for this inode */
724 compr_type = UBIFS_COMPR_NONE;
725 else
726 compr_type = ui->compr_type;
727
728 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
729 ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
730 ubifs_assert(compr_len <= UBIFS_BLOCK_SIZE);
731
732 if (encrypted) {
733 err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
734 if (err)
735 goto out_free;
736
737 } else {
738 data->compr_size = 0;
739 }
740
741 dlen = UBIFS_DATA_NODE_SZ + out_len;
742 data->compr_type = cpu_to_le16(compr_type);
743
744 /* Make reservation before allocating sequence numbers */
745 err = make_reservation(c, DATAHD, dlen);
746 if (err)
747 goto out_free;
748
749 err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
750 if (err)
751 goto out_release;
752 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
753 release_head(c, DATAHD);
754
755 err = ubifs_tnc_add(c, key, lnum, offs, dlen);
756 if (err)
757 goto out_ro;
758
759 finish_reservation(c);
760 if (!allocated)
761 mutex_unlock(&c->write_reserve_mutex);
762 else
763 kfree(data);
764 return 0;
765
766 out_release:
767 release_head(c, DATAHD);
768 out_ro:
769 ubifs_ro_mode(c, err);
770 finish_reservation(c);
771 out_free:
772 if (!allocated)
773 mutex_unlock(&c->write_reserve_mutex);
774 else
775 kfree(data);
776 return err;
777 }
778
779 /**
780 * ubifs_jnl_write_inode - flush inode to the journal.
781 * @c: UBIFS file-system description object
782 * @inode: inode to flush
783 *
784 * This function writes inode @inode to the journal. If the inode is
785 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
786 * success and a negative error code in case of failure.
787 */
788 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
789 {
790 int err, lnum, offs;
791 struct ubifs_ino_node *ino;
792 struct ubifs_inode *ui = ubifs_inode(inode);
793 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
794
795 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
796
797 /*
798 * If the inode is being deleted, do not write the attached data. No
799 * need to synchronize the write-buffer either.
800 */
801 if (!last_reference) {
802 len += ui->data_len;
803 sync = IS_SYNC(inode);
804 }
805 ino = kmalloc(len, GFP_NOFS);
806 if (!ino)
807 return -ENOMEM;
808
809 /* Make reservation before allocating sequence numbers */
810 err = make_reservation(c, BASEHD, len);
811 if (err)
812 goto out_free;
813
814 pack_inode(c, ino, inode, 1);
815 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
816 if (err)
817 goto out_release;
818 if (!sync)
819 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
820 inode->i_ino);
821 release_head(c, BASEHD);
822
823 if (last_reference) {
824 err = ubifs_tnc_remove_ino(c, inode->i_ino);
825 if (err)
826 goto out_ro;
827 ubifs_delete_orphan(c, inode->i_ino);
828 err = ubifs_add_dirt(c, lnum, len);
829 } else {
830 union ubifs_key key;
831
832 ino_key_init(c, &key, inode->i_ino);
833 err = ubifs_tnc_add(c, &key, lnum, offs, len);
834 }
835 if (err)
836 goto out_ro;
837
838 finish_reservation(c);
839 spin_lock(&ui->ui_lock);
840 ui->synced_i_size = ui->ui_size;
841 spin_unlock(&ui->ui_lock);
842 kfree(ino);
843 return 0;
844
845 out_release:
846 release_head(c, BASEHD);
847 out_ro:
848 ubifs_ro_mode(c, err);
849 finish_reservation(c);
850 out_free:
851 kfree(ino);
852 return err;
853 }
854
855 /**
856 * ubifs_jnl_delete_inode - delete an inode.
857 * @c: UBIFS file-system description object
858 * @inode: inode to delete
859 *
860 * This function deletes inode @inode which includes removing it from orphans,
861 * deleting it from TNC and, in some cases, writing a deletion inode to the
862 * journal.
863 *
864 * When regular file inodes are unlinked or a directory inode is removed, the
865 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
866 * direntry to the media, and adds the inode to orphans. After this, when the
867 * last reference to this inode has been dropped, this function is called. In
868 * general, it has to write one more deletion inode to the media, because if
869 * a commit happened between 'ubifs_jnl_update()' and
870 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
871 * anymore, and in fact it might not be on the flash anymore, because it might
872 * have been garbage-collected already. And for optimization reasons UBIFS does
873 * not read the orphan area if it has been unmounted cleanly, so it would have
874 * no indication in the journal that there is a deleted inode which has to be
875 * removed from TNC.
876 *
877 * However, if there was no commit between 'ubifs_jnl_update()' and
878 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
879 * inode to the media for the second time. And this is quite a typical case.
880 *
881 * This function returns zero in case of success and a negative error code in
882 * case of failure.
883 */
884 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
885 {
886 int err;
887 struct ubifs_inode *ui = ubifs_inode(inode);
888
889 ubifs_assert(inode->i_nlink == 0);
890
891 if (ui->del_cmtno != c->cmt_no)
892 /* A commit happened for sure */
893 return ubifs_jnl_write_inode(c, inode);
894
895 down_read(&c->commit_sem);
896 /*
897 * Check commit number again, because the first test has been done
898 * without @c->commit_sem, so a commit might have happened.
899 */
900 if (ui->del_cmtno != c->cmt_no) {
901 up_read(&c->commit_sem);
902 return ubifs_jnl_write_inode(c, inode);
903 }
904
905 err = ubifs_tnc_remove_ino(c, inode->i_ino);
906 if (err)
907 ubifs_ro_mode(c, err);
908 else
909 ubifs_delete_orphan(c, inode->i_ino);
910 up_read(&c->commit_sem);
911 return err;
912 }
913
914 /**
915 * ubifs_jnl_xrename - cross rename two directory entries.
916 * @c: UBIFS file-system description object
917 * @fst_dir: parent inode of 1st directory entry to exchange
918 * @fst_inode: 1st inode to exchange
919 * @fst_nm: name of 1st inode to exchange
920 * @snd_dir: parent inode of 2nd directory entry to exchange
921 * @snd_inode: 2nd inode to exchange
922 * @snd_nm: name of 2nd inode to exchange
923 * @sync: non-zero if the write-buffer has to be synchronized
924 *
925 * This function implements the cross rename operation which may involve
926 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
927 * and returns zero on success. In case of failure, a negative error code is
928 * returned.
929 */
930 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
931 const struct inode *fst_inode,
932 const struct fscrypt_name *fst_nm,
933 const struct inode *snd_dir,
934 const struct inode *snd_inode,
935 const struct fscrypt_name *snd_nm, int sync)
936 {
937 union ubifs_key key;
938 struct ubifs_dent_node *dent1, *dent2;
939 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
940 int aligned_dlen1, aligned_dlen2;
941 int twoparents = (fst_dir != snd_dir);
942 void *p;
943
944 //dbg_jnl("dent '%pd' in dir ino %lu between dent '%pd' in dir ino %lu",
945 // fst_dentry, fst_dir->i_ino, snd_dentry, snd_dir->i_ino);
946
947 ubifs_assert(ubifs_inode(fst_dir)->data_len == 0);
948 ubifs_assert(ubifs_inode(snd_dir)->data_len == 0);
949 ubifs_assert(mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
950 ubifs_assert(mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
951
952 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
953 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
954 aligned_dlen1 = ALIGN(dlen1, 8);
955 aligned_dlen2 = ALIGN(dlen2, 8);
956
957 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
958 if (twoparents)
959 len += plen;
960
961 dent1 = kmalloc(len, GFP_NOFS);
962 if (!dent1)
963 return -ENOMEM;
964
965 /* Make reservation before allocating sequence numbers */
966 err = make_reservation(c, BASEHD, len);
967 if (err)
968 goto out_free;
969
970 /* Make new dent for 1st entry */
971 dent1->ch.node_type = UBIFS_DENT_NODE;
972 dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
973 dent1->inum = cpu_to_le64(fst_inode->i_ino);
974 dent1->type = get_dent_type(fst_inode->i_mode);
975 dent1->nlen = cpu_to_le16(fname_len(snd_nm));
976 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
977 dent1->name[fname_len(snd_nm)] = '\0';
978 zero_dent_node_unused(dent1);
979 ubifs_prep_grp_node(c, dent1, dlen1, 0);
980
981 /* Make new dent for 2nd entry */
982 dent2 = (void *)dent1 + aligned_dlen1;
983 dent2->ch.node_type = UBIFS_DENT_NODE;
984 dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
985 dent2->inum = cpu_to_le64(snd_inode->i_ino);
986 dent2->type = get_dent_type(snd_inode->i_mode);
987 dent2->nlen = cpu_to_le16(fname_len(fst_nm));
988 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
989 dent2->name[fname_len(fst_nm)] = '\0';
990 zero_dent_node_unused(dent2);
991 ubifs_prep_grp_node(c, dent2, dlen2, 0);
992
993 p = (void *)dent2 + aligned_dlen2;
994 if (!twoparents)
995 pack_inode(c, p, fst_dir, 1);
996 else {
997 pack_inode(c, p, fst_dir, 0);
998 p += ALIGN(plen, 8);
999 pack_inode(c, p, snd_dir, 1);
1000 }
1001
1002 err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1003 if (err)
1004 goto out_release;
1005 if (!sync) {
1006 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1007
1008 ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1009 ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1010 }
1011 release_head(c, BASEHD);
1012
1013 dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1014 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, snd_nm);
1015 if (err)
1016 goto out_ro;
1017
1018 offs += aligned_dlen1;
1019 dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1020 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, fst_nm);
1021 if (err)
1022 goto out_ro;
1023
1024 offs += aligned_dlen2;
1025
1026 ino_key_init(c, &key, fst_dir->i_ino);
1027 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1028 if (err)
1029 goto out_ro;
1030
1031 if (twoparents) {
1032 offs += ALIGN(plen, 8);
1033 ino_key_init(c, &key, snd_dir->i_ino);
1034 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1035 if (err)
1036 goto out_ro;
1037 }
1038
1039 finish_reservation(c);
1040
1041 mark_inode_clean(c, ubifs_inode(fst_dir));
1042 if (twoparents)
1043 mark_inode_clean(c, ubifs_inode(snd_dir));
1044 kfree(dent1);
1045 return 0;
1046
1047 out_release:
1048 release_head(c, BASEHD);
1049 out_ro:
1050 ubifs_ro_mode(c, err);
1051 finish_reservation(c);
1052 out_free:
1053 kfree(dent1);
1054 return err;
1055 }
1056
1057 /**
1058 * ubifs_jnl_rename - rename a directory entry.
1059 * @c: UBIFS file-system description object
1060 * @old_dir: parent inode of directory entry to rename
1061 * @old_dentry: directory entry to rename
1062 * @new_dir: parent inode of directory entry to rename
1063 * @new_dentry: new directory entry (or directory entry to replace)
1064 * @sync: non-zero if the write-buffer has to be synchronized
1065 *
1066 * This function implements the re-name operation which may involve writing up
1067 * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1068 * and returns zero on success. In case of failure, a negative error code is
1069 * returned.
1070 */
1071 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1072 const struct inode *old_inode,
1073 const struct fscrypt_name *old_nm,
1074 const struct inode *new_dir,
1075 const struct inode *new_inode,
1076 const struct fscrypt_name *new_nm,
1077 const struct inode *whiteout, int sync)
1078 {
1079 void *p;
1080 union ubifs_key key;
1081 struct ubifs_dent_node *dent, *dent2;
1082 int err, dlen1, dlen2, ilen, lnum, offs, len;
1083 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1084 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1085 int move = (old_dir != new_dir);
1086 struct ubifs_inode *uninitialized_var(new_ui);
1087
1088 //dbg_jnl("dent '%pd' in dir ino %lu to dent '%pd' in dir ino %lu",
1089 // old_dentry, old_dir->i_ino, new_dentry, new_dir->i_ino);
1090 ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
1091 ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
1092 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1093 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1094
1095 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1096 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1097 if (new_inode) {
1098 new_ui = ubifs_inode(new_inode);
1099 ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
1100 ilen = UBIFS_INO_NODE_SZ;
1101 if (!last_reference)
1102 ilen += new_ui->data_len;
1103 } else
1104 ilen = 0;
1105
1106 aligned_dlen1 = ALIGN(dlen1, 8);
1107 aligned_dlen2 = ALIGN(dlen2, 8);
1108 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
1109 if (move)
1110 len += plen;
1111 dent = kmalloc(len, GFP_NOFS);
1112 if (!dent)
1113 return -ENOMEM;
1114
1115 /* Make reservation before allocating sequence numbers */
1116 err = make_reservation(c, BASEHD, len);
1117 if (err)
1118 goto out_free;
1119
1120 /* Make new dent */
1121 dent->ch.node_type = UBIFS_DENT_NODE;
1122 dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1123 dent->inum = cpu_to_le64(old_inode->i_ino);
1124 dent->type = get_dent_type(old_inode->i_mode);
1125 dent->nlen = cpu_to_le16(fname_len(new_nm));
1126 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1127 dent->name[fname_len(new_nm)] = '\0';
1128 dent->cookie = prandom_u32();
1129 zero_dent_node_unused(dent);
1130 ubifs_prep_grp_node(c, dent, dlen1, 0);
1131
1132 dent2 = (void *)dent + aligned_dlen1;
1133 dent2->ch.node_type = UBIFS_DENT_NODE;
1134 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1135
1136 if (whiteout) {
1137 dent2->inum = cpu_to_le64(whiteout->i_ino);
1138 dent2->type = get_dent_type(whiteout->i_mode);
1139 } else {
1140 /* Make deletion dent */
1141 dent2->inum = 0;
1142 dent2->type = DT_UNKNOWN;
1143 }
1144 dent2->nlen = cpu_to_le16(fname_len(old_nm));
1145 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1146 dent2->name[fname_len(old_nm)] = '\0';
1147 dent2->cookie = prandom_u32();
1148 zero_dent_node_unused(dent2);
1149 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1150
1151 p = (void *)dent2 + aligned_dlen2;
1152 if (new_inode) {
1153 pack_inode(c, p, new_inode, 0);
1154 p += ALIGN(ilen, 8);
1155 }
1156
1157 if (!move)
1158 pack_inode(c, p, old_dir, 1);
1159 else {
1160 pack_inode(c, p, old_dir, 0);
1161 p += ALIGN(plen, 8);
1162 pack_inode(c, p, new_dir, 1);
1163 }
1164
1165 if (last_reference) {
1166 err = ubifs_add_orphan(c, new_inode->i_ino);
1167 if (err) {
1168 release_head(c, BASEHD);
1169 goto out_finish;
1170 }
1171 new_ui->del_cmtno = c->cmt_no;
1172 }
1173
1174 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1175 if (err)
1176 goto out_release;
1177 if (!sync) {
1178 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1179
1180 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1181 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1182 if (new_inode)
1183 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1184 new_inode->i_ino);
1185 }
1186 release_head(c, BASEHD);
1187
1188 dent_key_init(c, &key, new_dir->i_ino, new_nm);
1189 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, new_nm);
1190 if (err)
1191 goto out_ro;
1192
1193 offs += aligned_dlen1;
1194 if (whiteout) {
1195 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1196 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, old_nm);
1197 if (err)
1198 goto out_ro;
1199
1200 ubifs_delete_orphan(c, whiteout->i_ino);
1201 } else {
1202 err = ubifs_add_dirt(c, lnum, dlen2);
1203 if (err)
1204 goto out_ro;
1205
1206 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1207 err = ubifs_tnc_remove_nm(c, &key, old_nm);
1208 if (err)
1209 goto out_ro;
1210 }
1211
1212 offs += aligned_dlen2;
1213 if (new_inode) {
1214 ino_key_init(c, &key, new_inode->i_ino);
1215 err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1216 if (err)
1217 goto out_ro;
1218 offs += ALIGN(ilen, 8);
1219 }
1220
1221 ino_key_init(c, &key, old_dir->i_ino);
1222 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1223 if (err)
1224 goto out_ro;
1225
1226 if (move) {
1227 offs += ALIGN(plen, 8);
1228 ino_key_init(c, &key, new_dir->i_ino);
1229 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1230 if (err)
1231 goto out_ro;
1232 }
1233
1234 finish_reservation(c);
1235 if (new_inode) {
1236 mark_inode_clean(c, new_ui);
1237 spin_lock(&new_ui->ui_lock);
1238 new_ui->synced_i_size = new_ui->ui_size;
1239 spin_unlock(&new_ui->ui_lock);
1240 }
1241 mark_inode_clean(c, ubifs_inode(old_dir));
1242 if (move)
1243 mark_inode_clean(c, ubifs_inode(new_dir));
1244 kfree(dent);
1245 return 0;
1246
1247 out_release:
1248 release_head(c, BASEHD);
1249 out_ro:
1250 ubifs_ro_mode(c, err);
1251 if (last_reference)
1252 ubifs_delete_orphan(c, new_inode->i_ino);
1253 out_finish:
1254 finish_reservation(c);
1255 out_free:
1256 kfree(dent);
1257 return err;
1258 }
1259
1260 /**
1261 * truncate_data_node - re-compress/encrypt a truncated data node.
1262 * @c: UBIFS file-system description object
1263 * @inode: inode which referes to the data node
1264 * @block: data block number
1265 * @dn: data node to re-compress
1266 * @new_len: new length
1267 *
1268 * This function is used when an inode is truncated and the last data node of
1269 * the inode has to be re-compressed/encrypted and re-written.
1270 */
1271 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1272 unsigned int block, struct ubifs_data_node *dn,
1273 int *new_len)
1274 {
1275 void *buf;
1276 int err, dlen, compr_type, out_len, old_dlen;
1277
1278 out_len = le32_to_cpu(dn->size);
1279 buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1280 if (!buf)
1281 return -ENOMEM;
1282
1283 dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1284 compr_type = le16_to_cpu(dn->compr_type);
1285
1286 if (ubifs_crypt_is_encrypted(inode)) {
1287 err = ubifs_decrypt(inode, dn, &dlen, block);
1288 if (err)
1289 goto out;
1290 }
1291
1292 if (compr_type != UBIFS_COMPR_NONE) {
1293 err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1294 if (err)
1295 goto out;
1296
1297 ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1298 }
1299
1300 if (ubifs_crypt_is_encrypted(inode)) {
1301 err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block);
1302 if (err)
1303 goto out;
1304
1305 out_len = old_dlen;
1306 } else {
1307 dn->compr_size = 0;
1308 }
1309
1310 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
1311 dn->compr_type = cpu_to_le16(compr_type);
1312 dn->size = cpu_to_le32(*new_len);
1313 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1314 out:
1315 kfree(buf);
1316 return err;
1317 }
1318
1319 /**
1320 * ubifs_jnl_truncate - update the journal for a truncation.
1321 * @c: UBIFS file-system description object
1322 * @inode: inode to truncate
1323 * @old_size: old size
1324 * @new_size: new size
1325 *
1326 * When the size of a file decreases due to truncation, a truncation node is
1327 * written, the journal tree is updated, and the last data block is re-written
1328 * if it has been affected. The inode is also updated in order to synchronize
1329 * the new inode size.
1330 *
1331 * This function marks the inode as clean and returns zero on success. In case
1332 * of failure, a negative error code is returned.
1333 */
1334 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1335 loff_t old_size, loff_t new_size)
1336 {
1337 union ubifs_key key, to_key;
1338 struct ubifs_ino_node *ino;
1339 struct ubifs_trun_node *trun;
1340 struct ubifs_data_node *uninitialized_var(dn);
1341 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1342 struct ubifs_inode *ui = ubifs_inode(inode);
1343 ino_t inum = inode->i_ino;
1344 unsigned int blk;
1345
1346 dbg_jnl("ino %lu, size %lld -> %lld",
1347 (unsigned long)inum, old_size, new_size);
1348 ubifs_assert(!ui->data_len);
1349 ubifs_assert(S_ISREG(inode->i_mode));
1350 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1351
1352 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1353 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1354 ino = kmalloc(sz, GFP_NOFS);
1355 if (!ino)
1356 return -ENOMEM;
1357
1358 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1359 trun->ch.node_type = UBIFS_TRUN_NODE;
1360 trun->inum = cpu_to_le32(inum);
1361 trun->old_size = cpu_to_le64(old_size);
1362 trun->new_size = cpu_to_le64(new_size);
1363 zero_trun_node_unused(trun);
1364
1365 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1366 if (dlen) {
1367 /* Get last data block so it can be truncated */
1368 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1369 blk = new_size >> UBIFS_BLOCK_SHIFT;
1370 data_key_init(c, &key, inum, blk);
1371 dbg_jnlk(&key, "last block key ");
1372 err = ubifs_tnc_lookup(c, &key, dn);
1373 if (err == -ENOENT)
1374 dlen = 0; /* Not found (so it is a hole) */
1375 else if (err)
1376 goto out_free;
1377 else {
1378 if (le32_to_cpu(dn->size) <= dlen)
1379 dlen = 0; /* Nothing to do */
1380 else {
1381 err = truncate_data_node(c, inode, blk, dn, &dlen);
1382 if (err)
1383 goto out_free;
1384 }
1385 }
1386 }
1387
1388 /* Must make reservation before allocating sequence numbers */
1389 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1390 if (dlen)
1391 len += dlen;
1392 err = make_reservation(c, BASEHD, len);
1393 if (err)
1394 goto out_free;
1395
1396 pack_inode(c, ino, inode, 0);
1397 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1398 if (dlen)
1399 ubifs_prep_grp_node(c, dn, dlen, 1);
1400
1401 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1402 if (err)
1403 goto out_release;
1404 if (!sync)
1405 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1406 release_head(c, BASEHD);
1407
1408 if (dlen) {
1409 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1410 err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1411 if (err)
1412 goto out_ro;
1413 }
1414
1415 ino_key_init(c, &key, inum);
1416 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1417 if (err)
1418 goto out_ro;
1419
1420 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1421 if (err)
1422 goto out_ro;
1423
1424 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1425 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1426 data_key_init(c, &key, inum, blk);
1427
1428 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1429 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1430 data_key_init(c, &to_key, inum, blk);
1431
1432 err = ubifs_tnc_remove_range(c, &key, &to_key);
1433 if (err)
1434 goto out_ro;
1435
1436 finish_reservation(c);
1437 spin_lock(&ui->ui_lock);
1438 ui->synced_i_size = ui->ui_size;
1439 spin_unlock(&ui->ui_lock);
1440 mark_inode_clean(c, ui);
1441 kfree(ino);
1442 return 0;
1443
1444 out_release:
1445 release_head(c, BASEHD);
1446 out_ro:
1447 ubifs_ro_mode(c, err);
1448 finish_reservation(c);
1449 out_free:
1450 kfree(ino);
1451 return err;
1452 }
1453
1454
1455 /**
1456 * ubifs_jnl_delete_xattr - delete an extended attribute.
1457 * @c: UBIFS file-system description object
1458 * @host: host inode
1459 * @inode: extended attribute inode
1460 * @nm: extended attribute entry name
1461 *
1462 * This function delete an extended attribute which is very similar to
1463 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1464 * updates the target inode. Returns zero in case of success and a negative
1465 * error code in case of failure.
1466 */
1467 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1468 const struct inode *inode,
1469 const struct fscrypt_name *nm)
1470 {
1471 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1472 struct ubifs_dent_node *xent;
1473 struct ubifs_ino_node *ino;
1474 union ubifs_key xent_key, key1, key2;
1475 int sync = IS_DIRSYNC(host);
1476 struct ubifs_inode *host_ui = ubifs_inode(host);
1477
1478 //dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1479 // host->i_ino, inode->i_ino, nm->name,
1480 // ubifs_inode(inode)->data_len);
1481 ubifs_assert(inode->i_nlink == 0);
1482 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1483
1484 /*
1485 * Since we are deleting the inode, we do not bother to attach any data
1486 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1487 */
1488 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1489 aligned_xlen = ALIGN(xlen, 8);
1490 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1491 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1492
1493 xent = kmalloc(len, GFP_NOFS);
1494 if (!xent)
1495 return -ENOMEM;
1496
1497 /* Make reservation before allocating sequence numbers */
1498 err = make_reservation(c, BASEHD, len);
1499 if (err) {
1500 kfree(xent);
1501 return err;
1502 }
1503
1504 xent->ch.node_type = UBIFS_XENT_NODE;
1505 xent_key_init(c, &xent_key, host->i_ino, nm);
1506 key_write(c, &xent_key, xent->key);
1507 xent->inum = 0;
1508 xent->type = get_dent_type(inode->i_mode);
1509 xent->nlen = cpu_to_le16(fname_len(nm));
1510 memcpy(xent->name, fname_name(nm), fname_len(nm));
1511 xent->name[fname_len(nm)] = '\0';
1512 zero_dent_node_unused(xent);
1513 ubifs_prep_grp_node(c, xent, xlen, 0);
1514
1515 ino = (void *)xent + aligned_xlen;
1516 pack_inode(c, ino, inode, 0);
1517 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1518 pack_inode(c, ino, host, 1);
1519
1520 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1521 if (!sync && !err)
1522 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1523 release_head(c, BASEHD);
1524 kfree(xent);
1525 if (err)
1526 goto out_ro;
1527
1528 /* Remove the extended attribute entry from TNC */
1529 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1530 if (err)
1531 goto out_ro;
1532 err = ubifs_add_dirt(c, lnum, xlen);
1533 if (err)
1534 goto out_ro;
1535
1536 /*
1537 * Remove all nodes belonging to the extended attribute inode from TNC.
1538 * Well, there actually must be only one node - the inode itself.
1539 */
1540 lowest_ino_key(c, &key1, inode->i_ino);
1541 highest_ino_key(c, &key2, inode->i_ino);
1542 err = ubifs_tnc_remove_range(c, &key1, &key2);
1543 if (err)
1544 goto out_ro;
1545 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1546 if (err)
1547 goto out_ro;
1548
1549 /* And update TNC with the new host inode position */
1550 ino_key_init(c, &key1, host->i_ino);
1551 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1552 if (err)
1553 goto out_ro;
1554
1555 finish_reservation(c);
1556 spin_lock(&host_ui->ui_lock);
1557 host_ui->synced_i_size = host_ui->ui_size;
1558 spin_unlock(&host_ui->ui_lock);
1559 mark_inode_clean(c, host_ui);
1560 return 0;
1561
1562 out_ro:
1563 ubifs_ro_mode(c, err);
1564 finish_reservation(c);
1565 return err;
1566 }
1567
1568 /**
1569 * ubifs_jnl_change_xattr - change an extended attribute.
1570 * @c: UBIFS file-system description object
1571 * @inode: extended attribute inode
1572 * @host: host inode
1573 *
1574 * This function writes the updated version of an extended attribute inode and
1575 * the host inode to the journal (to the base head). The host inode is written
1576 * after the extended attribute inode in order to guarantee that the extended
1577 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1578 * consequently, the write-buffer is synchronized. This function returns zero
1579 * in case of success and a negative error code in case of failure.
1580 */
1581 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1582 const struct inode *host)
1583 {
1584 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1585 struct ubifs_inode *host_ui = ubifs_inode(host);
1586 struct ubifs_ino_node *ino;
1587 union ubifs_key key;
1588 int sync = IS_DIRSYNC(host);
1589
1590 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1591 ubifs_assert(host->i_nlink > 0);
1592 ubifs_assert(inode->i_nlink > 0);
1593 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1594
1595 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1596 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1597 aligned_len1 = ALIGN(len1, 8);
1598 aligned_len = aligned_len1 + ALIGN(len2, 8);
1599
1600 ino = kmalloc(aligned_len, GFP_NOFS);
1601 if (!ino)
1602 return -ENOMEM;
1603
1604 /* Make reservation before allocating sequence numbers */
1605 err = make_reservation(c, BASEHD, aligned_len);
1606 if (err)
1607 goto out_free;
1608
1609 pack_inode(c, ino, host, 0);
1610 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1611
1612 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1613 if (!sync && !err) {
1614 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1615
1616 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1617 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1618 }
1619 release_head(c, BASEHD);
1620 if (err)
1621 goto out_ro;
1622
1623 ino_key_init(c, &key, host->i_ino);
1624 err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1625 if (err)
1626 goto out_ro;
1627
1628 ino_key_init(c, &key, inode->i_ino);
1629 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1630 if (err)
1631 goto out_ro;
1632
1633 finish_reservation(c);
1634 spin_lock(&host_ui->ui_lock);
1635 host_ui->synced_i_size = host_ui->ui_size;
1636 spin_unlock(&host_ui->ui_lock);
1637 mark_inode_clean(c, host_ui);
1638 kfree(ino);
1639 return 0;
1640
1641 out_ro:
1642 ubifs_ro_mode(c, err);
1643 finish_reservation(c);
1644 out_free:
1645 kfree(ino);
1646 return err;
1647 }
1648