]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/udf/super.c
m68k/defconfig: Update defconfigs for v4.7-rc2
[mirror_ubuntu-artful-kernel.git] / fs / udf / super.c
1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC 0
68 #define VDS_POS_UNALLOC_SPACE_DESC 1
69 #define VDS_POS_LOGICAL_VOL_DESC 2
70 #define VDS_POS_PARTITION_DESC 3
71 #define VDS_POS_IMP_USE_VOL_DESC 4
72 #define VDS_POS_VOL_DESC_PTR 5
73 #define VDS_POS_TERMINATING_DESC 6
74 #define VDS_POS_LENGTH 7
75
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77
78 #define VSD_FIRST_SECTOR_OFFSET 32768
79 #define VSD_MAX_SECTOR_OFFSET 0x800000
80
81 /*
82 * Maximum number of Terminating Descriptor / Logical Volume Integrity
83 * Descriptor redirections. The chosen numbers are arbitrary - just that we
84 * hopefully don't limit any real use of rewritten inode on write-once media
85 * but avoid looping for too long on corrupted media.
86 */
87 #define UDF_MAX_TD_NESTING 64
88 #define UDF_MAX_LVID_NESTING 1000
89
90 enum { UDF_MAX_LINKS = 0xffff };
91
92 /* These are the "meat" - everything else is stuffing */
93 static int udf_fill_super(struct super_block *, void *, int);
94 static void udf_put_super(struct super_block *);
95 static int udf_sync_fs(struct super_block *, int);
96 static int udf_remount_fs(struct super_block *, int *, char *);
97 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
98 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
99 struct kernel_lb_addr *);
100 static void udf_load_fileset(struct super_block *, struct buffer_head *,
101 struct kernel_lb_addr *);
102 static void udf_open_lvid(struct super_block *);
103 static void udf_close_lvid(struct super_block *);
104 static unsigned int udf_count_free(struct super_block *);
105 static int udf_statfs(struct dentry *, struct kstatfs *);
106 static int udf_show_options(struct seq_file *, struct dentry *);
107
108 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
109 {
110 struct logicalVolIntegrityDesc *lvid;
111 unsigned int partnum;
112 unsigned int offset;
113
114 if (!UDF_SB(sb)->s_lvid_bh)
115 return NULL;
116 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
117 partnum = le32_to_cpu(lvid->numOfPartitions);
118 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
119 offsetof(struct logicalVolIntegrityDesc, impUse)) /
120 (2 * sizeof(uint32_t)) < partnum) {
121 udf_err(sb, "Logical volume integrity descriptor corrupted "
122 "(numOfPartitions = %u)!\n", partnum);
123 return NULL;
124 }
125 /* The offset is to skip freeSpaceTable and sizeTable arrays */
126 offset = partnum * 2 * sizeof(uint32_t);
127 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
128 }
129
130 /* UDF filesystem type */
131 static struct dentry *udf_mount(struct file_system_type *fs_type,
132 int flags, const char *dev_name, void *data)
133 {
134 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
135 }
136
137 static struct file_system_type udf_fstype = {
138 .owner = THIS_MODULE,
139 .name = "udf",
140 .mount = udf_mount,
141 .kill_sb = kill_block_super,
142 .fs_flags = FS_REQUIRES_DEV,
143 };
144 MODULE_ALIAS_FS("udf");
145
146 static struct kmem_cache *udf_inode_cachep;
147
148 static struct inode *udf_alloc_inode(struct super_block *sb)
149 {
150 struct udf_inode_info *ei;
151 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
152 if (!ei)
153 return NULL;
154
155 ei->i_unique = 0;
156 ei->i_lenExtents = 0;
157 ei->i_next_alloc_block = 0;
158 ei->i_next_alloc_goal = 0;
159 ei->i_strat4096 = 0;
160 init_rwsem(&ei->i_data_sem);
161 ei->cached_extent.lstart = -1;
162 spin_lock_init(&ei->i_extent_cache_lock);
163
164 return &ei->vfs_inode;
165 }
166
167 static void udf_i_callback(struct rcu_head *head)
168 {
169 struct inode *inode = container_of(head, struct inode, i_rcu);
170 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
171 }
172
173 static void udf_destroy_inode(struct inode *inode)
174 {
175 call_rcu(&inode->i_rcu, udf_i_callback);
176 }
177
178 static void init_once(void *foo)
179 {
180 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
181
182 ei->i_ext.i_data = NULL;
183 inode_init_once(&ei->vfs_inode);
184 }
185
186 static int __init init_inodecache(void)
187 {
188 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
189 sizeof(struct udf_inode_info),
190 0, (SLAB_RECLAIM_ACCOUNT |
191 SLAB_MEM_SPREAD |
192 SLAB_ACCOUNT),
193 init_once);
194 if (!udf_inode_cachep)
195 return -ENOMEM;
196 return 0;
197 }
198
199 static void destroy_inodecache(void)
200 {
201 /*
202 * Make sure all delayed rcu free inodes are flushed before we
203 * destroy cache.
204 */
205 rcu_barrier();
206 kmem_cache_destroy(udf_inode_cachep);
207 }
208
209 /* Superblock operations */
210 static const struct super_operations udf_sb_ops = {
211 .alloc_inode = udf_alloc_inode,
212 .destroy_inode = udf_destroy_inode,
213 .write_inode = udf_write_inode,
214 .evict_inode = udf_evict_inode,
215 .put_super = udf_put_super,
216 .sync_fs = udf_sync_fs,
217 .statfs = udf_statfs,
218 .remount_fs = udf_remount_fs,
219 .show_options = udf_show_options,
220 };
221
222 struct udf_options {
223 unsigned char novrs;
224 unsigned int blocksize;
225 unsigned int session;
226 unsigned int lastblock;
227 unsigned int anchor;
228 unsigned int volume;
229 unsigned short partition;
230 unsigned int fileset;
231 unsigned int rootdir;
232 unsigned int flags;
233 umode_t umask;
234 kgid_t gid;
235 kuid_t uid;
236 umode_t fmode;
237 umode_t dmode;
238 struct nls_table *nls_map;
239 };
240
241 static int __init init_udf_fs(void)
242 {
243 int err;
244
245 err = init_inodecache();
246 if (err)
247 goto out1;
248 err = register_filesystem(&udf_fstype);
249 if (err)
250 goto out;
251
252 return 0;
253
254 out:
255 destroy_inodecache();
256
257 out1:
258 return err;
259 }
260
261 static void __exit exit_udf_fs(void)
262 {
263 unregister_filesystem(&udf_fstype);
264 destroy_inodecache();
265 }
266
267 module_init(init_udf_fs)
268 module_exit(exit_udf_fs)
269
270 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
271 {
272 struct udf_sb_info *sbi = UDF_SB(sb);
273
274 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
275 GFP_KERNEL);
276 if (!sbi->s_partmaps) {
277 udf_err(sb, "Unable to allocate space for %d partition maps\n",
278 count);
279 sbi->s_partitions = 0;
280 return -ENOMEM;
281 }
282
283 sbi->s_partitions = count;
284 return 0;
285 }
286
287 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
288 {
289 int i;
290 int nr_groups = bitmap->s_nr_groups;
291
292 for (i = 0; i < nr_groups; i++)
293 if (bitmap->s_block_bitmap[i])
294 brelse(bitmap->s_block_bitmap[i]);
295
296 kvfree(bitmap);
297 }
298
299 static void udf_free_partition(struct udf_part_map *map)
300 {
301 int i;
302 struct udf_meta_data *mdata;
303
304 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
305 iput(map->s_uspace.s_table);
306 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
307 iput(map->s_fspace.s_table);
308 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
309 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
310 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
311 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
312 if (map->s_partition_type == UDF_SPARABLE_MAP15)
313 for (i = 0; i < 4; i++)
314 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
315 else if (map->s_partition_type == UDF_METADATA_MAP25) {
316 mdata = &map->s_type_specific.s_metadata;
317 iput(mdata->s_metadata_fe);
318 mdata->s_metadata_fe = NULL;
319
320 iput(mdata->s_mirror_fe);
321 mdata->s_mirror_fe = NULL;
322
323 iput(mdata->s_bitmap_fe);
324 mdata->s_bitmap_fe = NULL;
325 }
326 }
327
328 static void udf_sb_free_partitions(struct super_block *sb)
329 {
330 struct udf_sb_info *sbi = UDF_SB(sb);
331 int i;
332 if (sbi->s_partmaps == NULL)
333 return;
334 for (i = 0; i < sbi->s_partitions; i++)
335 udf_free_partition(&sbi->s_partmaps[i]);
336 kfree(sbi->s_partmaps);
337 sbi->s_partmaps = NULL;
338 }
339
340 static int udf_show_options(struct seq_file *seq, struct dentry *root)
341 {
342 struct super_block *sb = root->d_sb;
343 struct udf_sb_info *sbi = UDF_SB(sb);
344
345 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
346 seq_puts(seq, ",nostrict");
347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
348 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
349 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
350 seq_puts(seq, ",unhide");
351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
352 seq_puts(seq, ",undelete");
353 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
354 seq_puts(seq, ",noadinicb");
355 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
356 seq_puts(seq, ",shortad");
357 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
358 seq_puts(seq, ",uid=forget");
359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
360 seq_puts(seq, ",uid=ignore");
361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
362 seq_puts(seq, ",gid=forget");
363 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
364 seq_puts(seq, ",gid=ignore");
365 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
366 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
367 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
368 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
369 if (sbi->s_umask != 0)
370 seq_printf(seq, ",umask=%ho", sbi->s_umask);
371 if (sbi->s_fmode != UDF_INVALID_MODE)
372 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
373 if (sbi->s_dmode != UDF_INVALID_MODE)
374 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
375 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
376 seq_printf(seq, ",session=%u", sbi->s_session);
377 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
378 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
379 if (sbi->s_anchor != 0)
380 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
381 /*
382 * volume, partition, fileset and rootdir seem to be ignored
383 * currently
384 */
385 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
386 seq_puts(seq, ",utf8");
387 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
388 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
389
390 return 0;
391 }
392
393 /*
394 * udf_parse_options
395 *
396 * PURPOSE
397 * Parse mount options.
398 *
399 * DESCRIPTION
400 * The following mount options are supported:
401 *
402 * gid= Set the default group.
403 * umask= Set the default umask.
404 * mode= Set the default file permissions.
405 * dmode= Set the default directory permissions.
406 * uid= Set the default user.
407 * bs= Set the block size.
408 * unhide Show otherwise hidden files.
409 * undelete Show deleted files in lists.
410 * adinicb Embed data in the inode (default)
411 * noadinicb Don't embed data in the inode
412 * shortad Use short ad's
413 * longad Use long ad's (default)
414 * nostrict Unset strict conformance
415 * iocharset= Set the NLS character set
416 *
417 * The remaining are for debugging and disaster recovery:
418 *
419 * novrs Skip volume sequence recognition
420 *
421 * The following expect a offset from 0.
422 *
423 * session= Set the CDROM session (default= last session)
424 * anchor= Override standard anchor location. (default= 256)
425 * volume= Override the VolumeDesc location. (unused)
426 * partition= Override the PartitionDesc location. (unused)
427 * lastblock= Set the last block of the filesystem/
428 *
429 * The following expect a offset from the partition root.
430 *
431 * fileset= Override the fileset block location. (unused)
432 * rootdir= Override the root directory location. (unused)
433 * WARNING: overriding the rootdir to a non-directory may
434 * yield highly unpredictable results.
435 *
436 * PRE-CONDITIONS
437 * options Pointer to mount options string.
438 * uopts Pointer to mount options variable.
439 *
440 * POST-CONDITIONS
441 * <return> 1 Mount options parsed okay.
442 * <return> 0 Error parsing mount options.
443 *
444 * HISTORY
445 * July 1, 1997 - Andrew E. Mileski
446 * Written, tested, and released.
447 */
448
449 enum {
450 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
451 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
452 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
453 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
454 Opt_rootdir, Opt_utf8, Opt_iocharset,
455 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
456 Opt_fmode, Opt_dmode
457 };
458
459 static const match_table_t tokens = {
460 {Opt_novrs, "novrs"},
461 {Opt_nostrict, "nostrict"},
462 {Opt_bs, "bs=%u"},
463 {Opt_unhide, "unhide"},
464 {Opt_undelete, "undelete"},
465 {Opt_noadinicb, "noadinicb"},
466 {Opt_adinicb, "adinicb"},
467 {Opt_shortad, "shortad"},
468 {Opt_longad, "longad"},
469 {Opt_uforget, "uid=forget"},
470 {Opt_uignore, "uid=ignore"},
471 {Opt_gforget, "gid=forget"},
472 {Opt_gignore, "gid=ignore"},
473 {Opt_gid, "gid=%u"},
474 {Opt_uid, "uid=%u"},
475 {Opt_umask, "umask=%o"},
476 {Opt_session, "session=%u"},
477 {Opt_lastblock, "lastblock=%u"},
478 {Opt_anchor, "anchor=%u"},
479 {Opt_volume, "volume=%u"},
480 {Opt_partition, "partition=%u"},
481 {Opt_fileset, "fileset=%u"},
482 {Opt_rootdir, "rootdir=%u"},
483 {Opt_utf8, "utf8"},
484 {Opt_iocharset, "iocharset=%s"},
485 {Opt_fmode, "mode=%o"},
486 {Opt_dmode, "dmode=%o"},
487 {Opt_err, NULL}
488 };
489
490 static int udf_parse_options(char *options, struct udf_options *uopt,
491 bool remount)
492 {
493 char *p;
494 int option;
495
496 uopt->novrs = 0;
497 uopt->partition = 0xFFFF;
498 uopt->session = 0xFFFFFFFF;
499 uopt->lastblock = 0;
500 uopt->anchor = 0;
501 uopt->volume = 0xFFFFFFFF;
502 uopt->rootdir = 0xFFFFFFFF;
503 uopt->fileset = 0xFFFFFFFF;
504 uopt->nls_map = NULL;
505
506 if (!options)
507 return 1;
508
509 while ((p = strsep(&options, ",")) != NULL) {
510 substring_t args[MAX_OPT_ARGS];
511 int token;
512 unsigned n;
513 if (!*p)
514 continue;
515
516 token = match_token(p, tokens, args);
517 switch (token) {
518 case Opt_novrs:
519 uopt->novrs = 1;
520 break;
521 case Opt_bs:
522 if (match_int(&args[0], &option))
523 return 0;
524 n = option;
525 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
526 return 0;
527 uopt->blocksize = n;
528 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
529 break;
530 case Opt_unhide:
531 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
532 break;
533 case Opt_undelete:
534 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
535 break;
536 case Opt_noadinicb:
537 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
538 break;
539 case Opt_adinicb:
540 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
541 break;
542 case Opt_shortad:
543 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
544 break;
545 case Opt_longad:
546 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
547 break;
548 case Opt_gid:
549 if (match_int(args, &option))
550 return 0;
551 uopt->gid = make_kgid(current_user_ns(), option);
552 if (!gid_valid(uopt->gid))
553 return 0;
554 uopt->flags |= (1 << UDF_FLAG_GID_SET);
555 break;
556 case Opt_uid:
557 if (match_int(args, &option))
558 return 0;
559 uopt->uid = make_kuid(current_user_ns(), option);
560 if (!uid_valid(uopt->uid))
561 return 0;
562 uopt->flags |= (1 << UDF_FLAG_UID_SET);
563 break;
564 case Opt_umask:
565 if (match_octal(args, &option))
566 return 0;
567 uopt->umask = option;
568 break;
569 case Opt_nostrict:
570 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
571 break;
572 case Opt_session:
573 if (match_int(args, &option))
574 return 0;
575 uopt->session = option;
576 if (!remount)
577 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
578 break;
579 case Opt_lastblock:
580 if (match_int(args, &option))
581 return 0;
582 uopt->lastblock = option;
583 if (!remount)
584 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
585 break;
586 case Opt_anchor:
587 if (match_int(args, &option))
588 return 0;
589 uopt->anchor = option;
590 break;
591 case Opt_volume:
592 if (match_int(args, &option))
593 return 0;
594 uopt->volume = option;
595 break;
596 case Opt_partition:
597 if (match_int(args, &option))
598 return 0;
599 uopt->partition = option;
600 break;
601 case Opt_fileset:
602 if (match_int(args, &option))
603 return 0;
604 uopt->fileset = option;
605 break;
606 case Opt_rootdir:
607 if (match_int(args, &option))
608 return 0;
609 uopt->rootdir = option;
610 break;
611 case Opt_utf8:
612 uopt->flags |= (1 << UDF_FLAG_UTF8);
613 break;
614 #ifdef CONFIG_UDF_NLS
615 case Opt_iocharset:
616 uopt->nls_map = load_nls(args[0].from);
617 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
618 break;
619 #endif
620 case Opt_uignore:
621 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
622 break;
623 case Opt_uforget:
624 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
625 break;
626 case Opt_gignore:
627 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
628 break;
629 case Opt_gforget:
630 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
631 break;
632 case Opt_fmode:
633 if (match_octal(args, &option))
634 return 0;
635 uopt->fmode = option & 0777;
636 break;
637 case Opt_dmode:
638 if (match_octal(args, &option))
639 return 0;
640 uopt->dmode = option & 0777;
641 break;
642 default:
643 pr_err("bad mount option \"%s\" or missing value\n", p);
644 return 0;
645 }
646 }
647 return 1;
648 }
649
650 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
651 {
652 struct udf_options uopt;
653 struct udf_sb_info *sbi = UDF_SB(sb);
654 int error = 0;
655 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
656
657 sync_filesystem(sb);
658 if (lvidiu) {
659 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
660 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
661 return -EACCES;
662 }
663
664 uopt.flags = sbi->s_flags;
665 uopt.uid = sbi->s_uid;
666 uopt.gid = sbi->s_gid;
667 uopt.umask = sbi->s_umask;
668 uopt.fmode = sbi->s_fmode;
669 uopt.dmode = sbi->s_dmode;
670
671 if (!udf_parse_options(options, &uopt, true))
672 return -EINVAL;
673
674 write_lock(&sbi->s_cred_lock);
675 sbi->s_flags = uopt.flags;
676 sbi->s_uid = uopt.uid;
677 sbi->s_gid = uopt.gid;
678 sbi->s_umask = uopt.umask;
679 sbi->s_fmode = uopt.fmode;
680 sbi->s_dmode = uopt.dmode;
681 write_unlock(&sbi->s_cred_lock);
682
683 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
684 goto out_unlock;
685
686 if (*flags & MS_RDONLY)
687 udf_close_lvid(sb);
688 else
689 udf_open_lvid(sb);
690
691 out_unlock:
692 return error;
693 }
694
695 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
696 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
697 static loff_t udf_check_vsd(struct super_block *sb)
698 {
699 struct volStructDesc *vsd = NULL;
700 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
701 int sectorsize;
702 struct buffer_head *bh = NULL;
703 int nsr02 = 0;
704 int nsr03 = 0;
705 struct udf_sb_info *sbi;
706
707 sbi = UDF_SB(sb);
708 if (sb->s_blocksize < sizeof(struct volStructDesc))
709 sectorsize = sizeof(struct volStructDesc);
710 else
711 sectorsize = sb->s_blocksize;
712
713 sector += (sbi->s_session << sb->s_blocksize_bits);
714
715 udf_debug("Starting at sector %u (%ld byte sectors)\n",
716 (unsigned int)(sector >> sb->s_blocksize_bits),
717 sb->s_blocksize);
718 /* Process the sequence (if applicable). The hard limit on the sector
719 * offset is arbitrary, hopefully large enough so that all valid UDF
720 * filesystems will be recognised. There is no mention of an upper
721 * bound to the size of the volume recognition area in the standard.
722 * The limit will prevent the code to read all the sectors of a
723 * specially crafted image (like a bluray disc full of CD001 sectors),
724 * potentially causing minutes or even hours of uninterruptible I/O
725 * activity. This actually happened with uninitialised SSD partitions
726 * (all 0xFF) before the check for the limit and all valid IDs were
727 * added */
728 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
729 sector += sectorsize) {
730 /* Read a block */
731 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
732 if (!bh)
733 break;
734
735 /* Look for ISO descriptors */
736 vsd = (struct volStructDesc *)(bh->b_data +
737 (sector & (sb->s_blocksize - 1)));
738
739 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
740 VSD_STD_ID_LEN)) {
741 switch (vsd->structType) {
742 case 0:
743 udf_debug("ISO9660 Boot Record found\n");
744 break;
745 case 1:
746 udf_debug("ISO9660 Primary Volume Descriptor found\n");
747 break;
748 case 2:
749 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
750 break;
751 case 3:
752 udf_debug("ISO9660 Volume Partition Descriptor found\n");
753 break;
754 case 255:
755 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
756 break;
757 default:
758 udf_debug("ISO9660 VRS (%u) found\n",
759 vsd->structType);
760 break;
761 }
762 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
763 VSD_STD_ID_LEN))
764 ; /* nothing */
765 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
766 VSD_STD_ID_LEN)) {
767 brelse(bh);
768 break;
769 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
770 VSD_STD_ID_LEN))
771 nsr02 = sector;
772 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
773 VSD_STD_ID_LEN))
774 nsr03 = sector;
775 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
776 VSD_STD_ID_LEN))
777 ; /* nothing */
778 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
779 VSD_STD_ID_LEN))
780 ; /* nothing */
781 else {
782 /* invalid id : end of volume recognition area */
783 brelse(bh);
784 break;
785 }
786 brelse(bh);
787 }
788
789 if (nsr03)
790 return nsr03;
791 else if (nsr02)
792 return nsr02;
793 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
794 VSD_FIRST_SECTOR_OFFSET)
795 return -1;
796 else
797 return 0;
798 }
799
800 static int udf_find_fileset(struct super_block *sb,
801 struct kernel_lb_addr *fileset,
802 struct kernel_lb_addr *root)
803 {
804 struct buffer_head *bh = NULL;
805 long lastblock;
806 uint16_t ident;
807 struct udf_sb_info *sbi;
808
809 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
810 fileset->partitionReferenceNum != 0xFFFF) {
811 bh = udf_read_ptagged(sb, fileset, 0, &ident);
812
813 if (!bh) {
814 return 1;
815 } else if (ident != TAG_IDENT_FSD) {
816 brelse(bh);
817 return 1;
818 }
819
820 }
821
822 sbi = UDF_SB(sb);
823 if (!bh) {
824 /* Search backwards through the partitions */
825 struct kernel_lb_addr newfileset;
826
827 /* --> cvg: FIXME - is it reasonable? */
828 return 1;
829
830 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
831 (newfileset.partitionReferenceNum != 0xFFFF &&
832 fileset->logicalBlockNum == 0xFFFFFFFF &&
833 fileset->partitionReferenceNum == 0xFFFF);
834 newfileset.partitionReferenceNum--) {
835 lastblock = sbi->s_partmaps
836 [newfileset.partitionReferenceNum]
837 .s_partition_len;
838 newfileset.logicalBlockNum = 0;
839
840 do {
841 bh = udf_read_ptagged(sb, &newfileset, 0,
842 &ident);
843 if (!bh) {
844 newfileset.logicalBlockNum++;
845 continue;
846 }
847
848 switch (ident) {
849 case TAG_IDENT_SBD:
850 {
851 struct spaceBitmapDesc *sp;
852 sp = (struct spaceBitmapDesc *)
853 bh->b_data;
854 newfileset.logicalBlockNum += 1 +
855 ((le32_to_cpu(sp->numOfBytes) +
856 sizeof(struct spaceBitmapDesc)
857 - 1) >> sb->s_blocksize_bits);
858 brelse(bh);
859 break;
860 }
861 case TAG_IDENT_FSD:
862 *fileset = newfileset;
863 break;
864 default:
865 newfileset.logicalBlockNum++;
866 brelse(bh);
867 bh = NULL;
868 break;
869 }
870 } while (newfileset.logicalBlockNum < lastblock &&
871 fileset->logicalBlockNum == 0xFFFFFFFF &&
872 fileset->partitionReferenceNum == 0xFFFF);
873 }
874 }
875
876 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
877 fileset->partitionReferenceNum != 0xFFFF) && bh) {
878 udf_debug("Fileset at block=%d, partition=%d\n",
879 fileset->logicalBlockNum,
880 fileset->partitionReferenceNum);
881
882 sbi->s_partition = fileset->partitionReferenceNum;
883 udf_load_fileset(sb, bh, root);
884 brelse(bh);
885 return 0;
886 }
887 return 1;
888 }
889
890 /*
891 * Load primary Volume Descriptor Sequence
892 *
893 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
894 * should be tried.
895 */
896 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
897 {
898 struct primaryVolDesc *pvoldesc;
899 uint8_t *outstr;
900 struct buffer_head *bh;
901 uint16_t ident;
902 int ret = -ENOMEM;
903
904 outstr = kmalloc(128, GFP_NOFS);
905 if (!outstr)
906 return -ENOMEM;
907
908 bh = udf_read_tagged(sb, block, block, &ident);
909 if (!bh) {
910 ret = -EAGAIN;
911 goto out2;
912 }
913
914 if (ident != TAG_IDENT_PVD) {
915 ret = -EIO;
916 goto out_bh;
917 }
918
919 pvoldesc = (struct primaryVolDesc *)bh->b_data;
920
921 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
922 pvoldesc->recordingDateAndTime)) {
923 #ifdef UDFFS_DEBUG
924 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
925 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
926 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
927 ts->minute, le16_to_cpu(ts->typeAndTimezone));
928 #endif
929 }
930
931 ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
932 if (ret < 0)
933 goto out_bh;
934
935 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
936 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
937
938 ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
939 if (ret < 0)
940 goto out_bh;
941
942 outstr[ret] = 0;
943 udf_debug("volSetIdent[] = '%s'\n", outstr);
944
945 ret = 0;
946 out_bh:
947 brelse(bh);
948 out2:
949 kfree(outstr);
950 return ret;
951 }
952
953 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
954 u32 meta_file_loc, u32 partition_num)
955 {
956 struct kernel_lb_addr addr;
957 struct inode *metadata_fe;
958
959 addr.logicalBlockNum = meta_file_loc;
960 addr.partitionReferenceNum = partition_num;
961
962 metadata_fe = udf_iget_special(sb, &addr);
963
964 if (IS_ERR(metadata_fe)) {
965 udf_warn(sb, "metadata inode efe not found\n");
966 return metadata_fe;
967 }
968 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
969 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
970 iput(metadata_fe);
971 return ERR_PTR(-EIO);
972 }
973
974 return metadata_fe;
975 }
976
977 static int udf_load_metadata_files(struct super_block *sb, int partition)
978 {
979 struct udf_sb_info *sbi = UDF_SB(sb);
980 struct udf_part_map *map;
981 struct udf_meta_data *mdata;
982 struct kernel_lb_addr addr;
983 struct inode *fe;
984
985 map = &sbi->s_partmaps[partition];
986 mdata = &map->s_type_specific.s_metadata;
987
988 /* metadata address */
989 udf_debug("Metadata file location: block = %d part = %d\n",
990 mdata->s_meta_file_loc, map->s_partition_num);
991
992 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
993 map->s_partition_num);
994 if (IS_ERR(fe)) {
995 /* mirror file entry */
996 udf_debug("Mirror metadata file location: block = %d part = %d\n",
997 mdata->s_mirror_file_loc, map->s_partition_num);
998
999 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1000 map->s_partition_num);
1001
1002 if (IS_ERR(fe)) {
1003 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1004 return PTR_ERR(fe);
1005 }
1006 mdata->s_mirror_fe = fe;
1007 } else
1008 mdata->s_metadata_fe = fe;
1009
1010
1011 /*
1012 * bitmap file entry
1013 * Note:
1014 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1015 */
1016 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1017 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1018 addr.partitionReferenceNum = map->s_partition_num;
1019
1020 udf_debug("Bitmap file location: block = %d part = %d\n",
1021 addr.logicalBlockNum, addr.partitionReferenceNum);
1022
1023 fe = udf_iget_special(sb, &addr);
1024 if (IS_ERR(fe)) {
1025 if (sb->s_flags & MS_RDONLY)
1026 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1027 else {
1028 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1029 return PTR_ERR(fe);
1030 }
1031 } else
1032 mdata->s_bitmap_fe = fe;
1033 }
1034
1035 udf_debug("udf_load_metadata_files Ok\n");
1036 return 0;
1037 }
1038
1039 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1040 struct kernel_lb_addr *root)
1041 {
1042 struct fileSetDesc *fset;
1043
1044 fset = (struct fileSetDesc *)bh->b_data;
1045
1046 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1047
1048 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1049
1050 udf_debug("Rootdir at block=%d, partition=%d\n",
1051 root->logicalBlockNum, root->partitionReferenceNum);
1052 }
1053
1054 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1055 {
1056 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1057 return DIV_ROUND_UP(map->s_partition_len +
1058 (sizeof(struct spaceBitmapDesc) << 3),
1059 sb->s_blocksize * 8);
1060 }
1061
1062 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1063 {
1064 struct udf_bitmap *bitmap;
1065 int nr_groups;
1066 int size;
1067
1068 nr_groups = udf_compute_nr_groups(sb, index);
1069 size = sizeof(struct udf_bitmap) +
1070 (sizeof(struct buffer_head *) * nr_groups);
1071
1072 if (size <= PAGE_SIZE)
1073 bitmap = kzalloc(size, GFP_KERNEL);
1074 else
1075 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1076
1077 if (bitmap == NULL)
1078 return NULL;
1079
1080 bitmap->s_nr_groups = nr_groups;
1081 return bitmap;
1082 }
1083
1084 static int udf_fill_partdesc_info(struct super_block *sb,
1085 struct partitionDesc *p, int p_index)
1086 {
1087 struct udf_part_map *map;
1088 struct udf_sb_info *sbi = UDF_SB(sb);
1089 struct partitionHeaderDesc *phd;
1090
1091 map = &sbi->s_partmaps[p_index];
1092
1093 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1094 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1095
1096 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1097 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1098 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1099 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1100 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1101 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1102 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1103 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1104
1105 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1106 p_index, map->s_partition_type,
1107 map->s_partition_root, map->s_partition_len);
1108
1109 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1110 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1111 return 0;
1112
1113 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1114 if (phd->unallocSpaceTable.extLength) {
1115 struct kernel_lb_addr loc = {
1116 .logicalBlockNum = le32_to_cpu(
1117 phd->unallocSpaceTable.extPosition),
1118 .partitionReferenceNum = p_index,
1119 };
1120 struct inode *inode;
1121
1122 inode = udf_iget_special(sb, &loc);
1123 if (IS_ERR(inode)) {
1124 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1125 p_index);
1126 return PTR_ERR(inode);
1127 }
1128 map->s_uspace.s_table = inode;
1129 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1130 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1131 p_index, map->s_uspace.s_table->i_ino);
1132 }
1133
1134 if (phd->unallocSpaceBitmap.extLength) {
1135 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1136 if (!bitmap)
1137 return -ENOMEM;
1138 map->s_uspace.s_bitmap = bitmap;
1139 bitmap->s_extPosition = le32_to_cpu(
1140 phd->unallocSpaceBitmap.extPosition);
1141 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1142 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1143 p_index, bitmap->s_extPosition);
1144 }
1145
1146 if (phd->partitionIntegrityTable.extLength)
1147 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1148
1149 if (phd->freedSpaceTable.extLength) {
1150 struct kernel_lb_addr loc = {
1151 .logicalBlockNum = le32_to_cpu(
1152 phd->freedSpaceTable.extPosition),
1153 .partitionReferenceNum = p_index,
1154 };
1155 struct inode *inode;
1156
1157 inode = udf_iget_special(sb, &loc);
1158 if (IS_ERR(inode)) {
1159 udf_debug("cannot load freedSpaceTable (part %d)\n",
1160 p_index);
1161 return PTR_ERR(inode);
1162 }
1163 map->s_fspace.s_table = inode;
1164 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1165 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1166 p_index, map->s_fspace.s_table->i_ino);
1167 }
1168
1169 if (phd->freedSpaceBitmap.extLength) {
1170 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1171 if (!bitmap)
1172 return -ENOMEM;
1173 map->s_fspace.s_bitmap = bitmap;
1174 bitmap->s_extPosition = le32_to_cpu(
1175 phd->freedSpaceBitmap.extPosition);
1176 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1177 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1178 p_index, bitmap->s_extPosition);
1179 }
1180 return 0;
1181 }
1182
1183 static void udf_find_vat_block(struct super_block *sb, int p_index,
1184 int type1_index, sector_t start_block)
1185 {
1186 struct udf_sb_info *sbi = UDF_SB(sb);
1187 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1188 sector_t vat_block;
1189 struct kernel_lb_addr ino;
1190 struct inode *inode;
1191
1192 /*
1193 * VAT file entry is in the last recorded block. Some broken disks have
1194 * it a few blocks before so try a bit harder...
1195 */
1196 ino.partitionReferenceNum = type1_index;
1197 for (vat_block = start_block;
1198 vat_block >= map->s_partition_root &&
1199 vat_block >= start_block - 3; vat_block--) {
1200 ino.logicalBlockNum = vat_block - map->s_partition_root;
1201 inode = udf_iget_special(sb, &ino);
1202 if (!IS_ERR(inode)) {
1203 sbi->s_vat_inode = inode;
1204 break;
1205 }
1206 }
1207 }
1208
1209 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1210 {
1211 struct udf_sb_info *sbi = UDF_SB(sb);
1212 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1213 struct buffer_head *bh = NULL;
1214 struct udf_inode_info *vati;
1215 uint32_t pos;
1216 struct virtualAllocationTable20 *vat20;
1217 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1218
1219 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1220 if (!sbi->s_vat_inode &&
1221 sbi->s_last_block != blocks - 1) {
1222 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1223 (unsigned long)sbi->s_last_block,
1224 (unsigned long)blocks - 1);
1225 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1226 }
1227 if (!sbi->s_vat_inode)
1228 return -EIO;
1229
1230 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1231 map->s_type_specific.s_virtual.s_start_offset = 0;
1232 map->s_type_specific.s_virtual.s_num_entries =
1233 (sbi->s_vat_inode->i_size - 36) >> 2;
1234 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1235 vati = UDF_I(sbi->s_vat_inode);
1236 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1237 pos = udf_block_map(sbi->s_vat_inode, 0);
1238 bh = sb_bread(sb, pos);
1239 if (!bh)
1240 return -EIO;
1241 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1242 } else {
1243 vat20 = (struct virtualAllocationTable20 *)
1244 vati->i_ext.i_data;
1245 }
1246
1247 map->s_type_specific.s_virtual.s_start_offset =
1248 le16_to_cpu(vat20->lengthHeader);
1249 map->s_type_specific.s_virtual.s_num_entries =
1250 (sbi->s_vat_inode->i_size -
1251 map->s_type_specific.s_virtual.
1252 s_start_offset) >> 2;
1253 brelse(bh);
1254 }
1255 return 0;
1256 }
1257
1258 /*
1259 * Load partition descriptor block
1260 *
1261 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1262 * sequence.
1263 */
1264 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1265 {
1266 struct buffer_head *bh;
1267 struct partitionDesc *p;
1268 struct udf_part_map *map;
1269 struct udf_sb_info *sbi = UDF_SB(sb);
1270 int i, type1_idx;
1271 uint16_t partitionNumber;
1272 uint16_t ident;
1273 int ret;
1274
1275 bh = udf_read_tagged(sb, block, block, &ident);
1276 if (!bh)
1277 return -EAGAIN;
1278 if (ident != TAG_IDENT_PD) {
1279 ret = 0;
1280 goto out_bh;
1281 }
1282
1283 p = (struct partitionDesc *)bh->b_data;
1284 partitionNumber = le16_to_cpu(p->partitionNumber);
1285
1286 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1287 for (i = 0; i < sbi->s_partitions; i++) {
1288 map = &sbi->s_partmaps[i];
1289 udf_debug("Searching map: (%d == %d)\n",
1290 map->s_partition_num, partitionNumber);
1291 if (map->s_partition_num == partitionNumber &&
1292 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1293 map->s_partition_type == UDF_SPARABLE_MAP15))
1294 break;
1295 }
1296
1297 if (i >= sbi->s_partitions) {
1298 udf_debug("Partition (%d) not found in partition map\n",
1299 partitionNumber);
1300 ret = 0;
1301 goto out_bh;
1302 }
1303
1304 ret = udf_fill_partdesc_info(sb, p, i);
1305 if (ret < 0)
1306 goto out_bh;
1307
1308 /*
1309 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1310 * PHYSICAL partitions are already set up
1311 */
1312 type1_idx = i;
1313 #ifdef UDFFS_DEBUG
1314 map = NULL; /* supress 'maybe used uninitialized' warning */
1315 #endif
1316 for (i = 0; i < sbi->s_partitions; i++) {
1317 map = &sbi->s_partmaps[i];
1318
1319 if (map->s_partition_num == partitionNumber &&
1320 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1321 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1322 map->s_partition_type == UDF_METADATA_MAP25))
1323 break;
1324 }
1325
1326 if (i >= sbi->s_partitions) {
1327 ret = 0;
1328 goto out_bh;
1329 }
1330
1331 ret = udf_fill_partdesc_info(sb, p, i);
1332 if (ret < 0)
1333 goto out_bh;
1334
1335 if (map->s_partition_type == UDF_METADATA_MAP25) {
1336 ret = udf_load_metadata_files(sb, i);
1337 if (ret < 0) {
1338 udf_err(sb, "error loading MetaData partition map %d\n",
1339 i);
1340 goto out_bh;
1341 }
1342 } else {
1343 /*
1344 * If we have a partition with virtual map, we don't handle
1345 * writing to it (we overwrite blocks instead of relocating
1346 * them).
1347 */
1348 if (!(sb->s_flags & MS_RDONLY)) {
1349 ret = -EACCES;
1350 goto out_bh;
1351 }
1352 ret = udf_load_vat(sb, i, type1_idx);
1353 if (ret < 0)
1354 goto out_bh;
1355 }
1356 ret = 0;
1357 out_bh:
1358 /* In case loading failed, we handle cleanup in udf_fill_super */
1359 brelse(bh);
1360 return ret;
1361 }
1362
1363 static int udf_load_sparable_map(struct super_block *sb,
1364 struct udf_part_map *map,
1365 struct sparablePartitionMap *spm)
1366 {
1367 uint32_t loc;
1368 uint16_t ident;
1369 struct sparingTable *st;
1370 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1371 int i;
1372 struct buffer_head *bh;
1373
1374 map->s_partition_type = UDF_SPARABLE_MAP15;
1375 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1376 if (!is_power_of_2(sdata->s_packet_len)) {
1377 udf_err(sb, "error loading logical volume descriptor: "
1378 "Invalid packet length %u\n",
1379 (unsigned)sdata->s_packet_len);
1380 return -EIO;
1381 }
1382 if (spm->numSparingTables > 4) {
1383 udf_err(sb, "error loading logical volume descriptor: "
1384 "Too many sparing tables (%d)\n",
1385 (int)spm->numSparingTables);
1386 return -EIO;
1387 }
1388
1389 for (i = 0; i < spm->numSparingTables; i++) {
1390 loc = le32_to_cpu(spm->locSparingTable[i]);
1391 bh = udf_read_tagged(sb, loc, loc, &ident);
1392 if (!bh)
1393 continue;
1394
1395 st = (struct sparingTable *)bh->b_data;
1396 if (ident != 0 ||
1397 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1398 strlen(UDF_ID_SPARING)) ||
1399 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1400 sb->s_blocksize) {
1401 brelse(bh);
1402 continue;
1403 }
1404
1405 sdata->s_spar_map[i] = bh;
1406 }
1407 map->s_partition_func = udf_get_pblock_spar15;
1408 return 0;
1409 }
1410
1411 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1412 struct kernel_lb_addr *fileset)
1413 {
1414 struct logicalVolDesc *lvd;
1415 int i, offset;
1416 uint8_t type;
1417 struct udf_sb_info *sbi = UDF_SB(sb);
1418 struct genericPartitionMap *gpm;
1419 uint16_t ident;
1420 struct buffer_head *bh;
1421 unsigned int table_len;
1422 int ret;
1423
1424 bh = udf_read_tagged(sb, block, block, &ident);
1425 if (!bh)
1426 return -EAGAIN;
1427 BUG_ON(ident != TAG_IDENT_LVD);
1428 lvd = (struct logicalVolDesc *)bh->b_data;
1429 table_len = le32_to_cpu(lvd->mapTableLength);
1430 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1431 udf_err(sb, "error loading logical volume descriptor: "
1432 "Partition table too long (%u > %lu)\n", table_len,
1433 sb->s_blocksize - sizeof(*lvd));
1434 ret = -EIO;
1435 goto out_bh;
1436 }
1437
1438 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1439 if (ret)
1440 goto out_bh;
1441
1442 for (i = 0, offset = 0;
1443 i < sbi->s_partitions && offset < table_len;
1444 i++, offset += gpm->partitionMapLength) {
1445 struct udf_part_map *map = &sbi->s_partmaps[i];
1446 gpm = (struct genericPartitionMap *)
1447 &(lvd->partitionMaps[offset]);
1448 type = gpm->partitionMapType;
1449 if (type == 1) {
1450 struct genericPartitionMap1 *gpm1 =
1451 (struct genericPartitionMap1 *)gpm;
1452 map->s_partition_type = UDF_TYPE1_MAP15;
1453 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1454 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1455 map->s_partition_func = NULL;
1456 } else if (type == 2) {
1457 struct udfPartitionMap2 *upm2 =
1458 (struct udfPartitionMap2 *)gpm;
1459 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1460 strlen(UDF_ID_VIRTUAL))) {
1461 u16 suf =
1462 le16_to_cpu(((__le16 *)upm2->partIdent.
1463 identSuffix)[0]);
1464 if (suf < 0x0200) {
1465 map->s_partition_type =
1466 UDF_VIRTUAL_MAP15;
1467 map->s_partition_func =
1468 udf_get_pblock_virt15;
1469 } else {
1470 map->s_partition_type =
1471 UDF_VIRTUAL_MAP20;
1472 map->s_partition_func =
1473 udf_get_pblock_virt20;
1474 }
1475 } else if (!strncmp(upm2->partIdent.ident,
1476 UDF_ID_SPARABLE,
1477 strlen(UDF_ID_SPARABLE))) {
1478 ret = udf_load_sparable_map(sb, map,
1479 (struct sparablePartitionMap *)gpm);
1480 if (ret < 0)
1481 goto out_bh;
1482 } else if (!strncmp(upm2->partIdent.ident,
1483 UDF_ID_METADATA,
1484 strlen(UDF_ID_METADATA))) {
1485 struct udf_meta_data *mdata =
1486 &map->s_type_specific.s_metadata;
1487 struct metadataPartitionMap *mdm =
1488 (struct metadataPartitionMap *)
1489 &(lvd->partitionMaps[offset]);
1490 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1491 i, type, UDF_ID_METADATA);
1492
1493 map->s_partition_type = UDF_METADATA_MAP25;
1494 map->s_partition_func = udf_get_pblock_meta25;
1495
1496 mdata->s_meta_file_loc =
1497 le32_to_cpu(mdm->metadataFileLoc);
1498 mdata->s_mirror_file_loc =
1499 le32_to_cpu(mdm->metadataMirrorFileLoc);
1500 mdata->s_bitmap_file_loc =
1501 le32_to_cpu(mdm->metadataBitmapFileLoc);
1502 mdata->s_alloc_unit_size =
1503 le32_to_cpu(mdm->allocUnitSize);
1504 mdata->s_align_unit_size =
1505 le16_to_cpu(mdm->alignUnitSize);
1506 if (mdm->flags & 0x01)
1507 mdata->s_flags |= MF_DUPLICATE_MD;
1508
1509 udf_debug("Metadata Ident suffix=0x%x\n",
1510 le16_to_cpu(*(__le16 *)
1511 mdm->partIdent.identSuffix));
1512 udf_debug("Metadata part num=%d\n",
1513 le16_to_cpu(mdm->partitionNum));
1514 udf_debug("Metadata part alloc unit size=%d\n",
1515 le32_to_cpu(mdm->allocUnitSize));
1516 udf_debug("Metadata file loc=%d\n",
1517 le32_to_cpu(mdm->metadataFileLoc));
1518 udf_debug("Mirror file loc=%d\n",
1519 le32_to_cpu(mdm->metadataMirrorFileLoc));
1520 udf_debug("Bitmap file loc=%d\n",
1521 le32_to_cpu(mdm->metadataBitmapFileLoc));
1522 udf_debug("Flags: %d %d\n",
1523 mdata->s_flags, mdm->flags);
1524 } else {
1525 udf_debug("Unknown ident: %s\n",
1526 upm2->partIdent.ident);
1527 continue;
1528 }
1529 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1530 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1531 }
1532 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1533 i, map->s_partition_num, type, map->s_volumeseqnum);
1534 }
1535
1536 if (fileset) {
1537 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1538
1539 *fileset = lelb_to_cpu(la->extLocation);
1540 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1541 fileset->logicalBlockNum,
1542 fileset->partitionReferenceNum);
1543 }
1544 if (lvd->integritySeqExt.extLength)
1545 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1546 ret = 0;
1547 out_bh:
1548 brelse(bh);
1549 return ret;
1550 }
1551
1552 /*
1553 * Find the prevailing Logical Volume Integrity Descriptor.
1554 */
1555 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1556 {
1557 struct buffer_head *bh, *final_bh;
1558 uint16_t ident;
1559 struct udf_sb_info *sbi = UDF_SB(sb);
1560 struct logicalVolIntegrityDesc *lvid;
1561 int indirections = 0;
1562
1563 while (++indirections <= UDF_MAX_LVID_NESTING) {
1564 final_bh = NULL;
1565 while (loc.extLength > 0 &&
1566 (bh = udf_read_tagged(sb, loc.extLocation,
1567 loc.extLocation, &ident))) {
1568 if (ident != TAG_IDENT_LVID) {
1569 brelse(bh);
1570 break;
1571 }
1572
1573 brelse(final_bh);
1574 final_bh = bh;
1575
1576 loc.extLength -= sb->s_blocksize;
1577 loc.extLocation++;
1578 }
1579
1580 if (!final_bh)
1581 return;
1582
1583 brelse(sbi->s_lvid_bh);
1584 sbi->s_lvid_bh = final_bh;
1585
1586 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1587 if (lvid->nextIntegrityExt.extLength == 0)
1588 return;
1589
1590 loc = leea_to_cpu(lvid->nextIntegrityExt);
1591 }
1592
1593 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1594 UDF_MAX_LVID_NESTING);
1595 brelse(sbi->s_lvid_bh);
1596 sbi->s_lvid_bh = NULL;
1597 }
1598
1599
1600 /*
1601 * Process a main/reserve volume descriptor sequence.
1602 * @block First block of first extent of the sequence.
1603 * @lastblock Lastblock of first extent of the sequence.
1604 * @fileset There we store extent containing root fileset
1605 *
1606 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1607 * sequence
1608 */
1609 static noinline int udf_process_sequence(
1610 struct super_block *sb,
1611 sector_t block, sector_t lastblock,
1612 struct kernel_lb_addr *fileset)
1613 {
1614 struct buffer_head *bh = NULL;
1615 struct udf_vds_record vds[VDS_POS_LENGTH];
1616 struct udf_vds_record *curr;
1617 struct generic_desc *gd;
1618 struct volDescPtr *vdp;
1619 bool done = false;
1620 uint32_t vdsn;
1621 uint16_t ident;
1622 long next_s = 0, next_e = 0;
1623 int ret;
1624 unsigned int indirections = 0;
1625
1626 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1627
1628 /*
1629 * Read the main descriptor sequence and find which descriptors
1630 * are in it.
1631 */
1632 for (; (!done && block <= lastblock); block++) {
1633
1634 bh = udf_read_tagged(sb, block, block, &ident);
1635 if (!bh) {
1636 udf_err(sb,
1637 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1638 (unsigned long long)block);
1639 return -EAGAIN;
1640 }
1641
1642 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1643 gd = (struct generic_desc *)bh->b_data;
1644 vdsn = le32_to_cpu(gd->volDescSeqNum);
1645 switch (ident) {
1646 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1647 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1648 if (vdsn >= curr->volDescSeqNum) {
1649 curr->volDescSeqNum = vdsn;
1650 curr->block = block;
1651 }
1652 break;
1653 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1654 curr = &vds[VDS_POS_VOL_DESC_PTR];
1655 if (vdsn >= curr->volDescSeqNum) {
1656 curr->volDescSeqNum = vdsn;
1657 curr->block = block;
1658
1659 vdp = (struct volDescPtr *)bh->b_data;
1660 next_s = le32_to_cpu(
1661 vdp->nextVolDescSeqExt.extLocation);
1662 next_e = le32_to_cpu(
1663 vdp->nextVolDescSeqExt.extLength);
1664 next_e = next_e >> sb->s_blocksize_bits;
1665 next_e += next_s;
1666 }
1667 break;
1668 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1669 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1670 if (vdsn >= curr->volDescSeqNum) {
1671 curr->volDescSeqNum = vdsn;
1672 curr->block = block;
1673 }
1674 break;
1675 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1676 curr = &vds[VDS_POS_PARTITION_DESC];
1677 if (!curr->block)
1678 curr->block = block;
1679 break;
1680 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1681 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1682 if (vdsn >= curr->volDescSeqNum) {
1683 curr->volDescSeqNum = vdsn;
1684 curr->block = block;
1685 }
1686 break;
1687 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1688 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1689 if (vdsn >= curr->volDescSeqNum) {
1690 curr->volDescSeqNum = vdsn;
1691 curr->block = block;
1692 }
1693 break;
1694 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1695 if (++indirections > UDF_MAX_TD_NESTING) {
1696 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1697 brelse(bh);
1698 return -EIO;
1699 }
1700
1701 vds[VDS_POS_TERMINATING_DESC].block = block;
1702 if (next_e) {
1703 block = next_s;
1704 lastblock = next_e;
1705 next_s = next_e = 0;
1706 } else
1707 done = true;
1708 break;
1709 }
1710 brelse(bh);
1711 }
1712 /*
1713 * Now read interesting descriptors again and process them
1714 * in a suitable order
1715 */
1716 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1717 udf_err(sb, "Primary Volume Descriptor not found!\n");
1718 return -EAGAIN;
1719 }
1720 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1721 if (ret < 0)
1722 return ret;
1723
1724 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1725 ret = udf_load_logicalvol(sb,
1726 vds[VDS_POS_LOGICAL_VOL_DESC].block,
1727 fileset);
1728 if (ret < 0)
1729 return ret;
1730 }
1731
1732 if (vds[VDS_POS_PARTITION_DESC].block) {
1733 /*
1734 * We rescan the whole descriptor sequence to find
1735 * partition descriptor blocks and process them.
1736 */
1737 for (block = vds[VDS_POS_PARTITION_DESC].block;
1738 block < vds[VDS_POS_TERMINATING_DESC].block;
1739 block++) {
1740 ret = udf_load_partdesc(sb, block);
1741 if (ret < 0)
1742 return ret;
1743 }
1744 }
1745
1746 return 0;
1747 }
1748
1749 /*
1750 * Load Volume Descriptor Sequence described by anchor in bh
1751 *
1752 * Returns <0 on error, 0 on success
1753 */
1754 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1755 struct kernel_lb_addr *fileset)
1756 {
1757 struct anchorVolDescPtr *anchor;
1758 sector_t main_s, main_e, reserve_s, reserve_e;
1759 int ret;
1760
1761 anchor = (struct anchorVolDescPtr *)bh->b_data;
1762
1763 /* Locate the main sequence */
1764 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1765 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1766 main_e = main_e >> sb->s_blocksize_bits;
1767 main_e += main_s;
1768
1769 /* Locate the reserve sequence */
1770 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1771 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1772 reserve_e = reserve_e >> sb->s_blocksize_bits;
1773 reserve_e += reserve_s;
1774
1775 /* Process the main & reserve sequences */
1776 /* responsible for finding the PartitionDesc(s) */
1777 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1778 if (ret != -EAGAIN)
1779 return ret;
1780 udf_sb_free_partitions(sb);
1781 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1782 if (ret < 0) {
1783 udf_sb_free_partitions(sb);
1784 /* No sequence was OK, return -EIO */
1785 if (ret == -EAGAIN)
1786 ret = -EIO;
1787 }
1788 return ret;
1789 }
1790
1791 /*
1792 * Check whether there is an anchor block in the given block and
1793 * load Volume Descriptor Sequence if so.
1794 *
1795 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1796 * block
1797 */
1798 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1799 struct kernel_lb_addr *fileset)
1800 {
1801 struct buffer_head *bh;
1802 uint16_t ident;
1803 int ret;
1804
1805 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1806 udf_fixed_to_variable(block) >=
1807 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1808 return -EAGAIN;
1809
1810 bh = udf_read_tagged(sb, block, block, &ident);
1811 if (!bh)
1812 return -EAGAIN;
1813 if (ident != TAG_IDENT_AVDP) {
1814 brelse(bh);
1815 return -EAGAIN;
1816 }
1817 ret = udf_load_sequence(sb, bh, fileset);
1818 brelse(bh);
1819 return ret;
1820 }
1821
1822 /*
1823 * Search for an anchor volume descriptor pointer.
1824 *
1825 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1826 * of anchors.
1827 */
1828 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1829 struct kernel_lb_addr *fileset)
1830 {
1831 sector_t last[6];
1832 int i;
1833 struct udf_sb_info *sbi = UDF_SB(sb);
1834 int last_count = 0;
1835 int ret;
1836
1837 /* First try user provided anchor */
1838 if (sbi->s_anchor) {
1839 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1840 if (ret != -EAGAIN)
1841 return ret;
1842 }
1843 /*
1844 * according to spec, anchor is in either:
1845 * block 256
1846 * lastblock-256
1847 * lastblock
1848 * however, if the disc isn't closed, it could be 512.
1849 */
1850 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1851 if (ret != -EAGAIN)
1852 return ret;
1853 /*
1854 * The trouble is which block is the last one. Drives often misreport
1855 * this so we try various possibilities.
1856 */
1857 last[last_count++] = *lastblock;
1858 if (*lastblock >= 1)
1859 last[last_count++] = *lastblock - 1;
1860 last[last_count++] = *lastblock + 1;
1861 if (*lastblock >= 2)
1862 last[last_count++] = *lastblock - 2;
1863 if (*lastblock >= 150)
1864 last[last_count++] = *lastblock - 150;
1865 if (*lastblock >= 152)
1866 last[last_count++] = *lastblock - 152;
1867
1868 for (i = 0; i < last_count; i++) {
1869 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1870 sb->s_blocksize_bits)
1871 continue;
1872 ret = udf_check_anchor_block(sb, last[i], fileset);
1873 if (ret != -EAGAIN) {
1874 if (!ret)
1875 *lastblock = last[i];
1876 return ret;
1877 }
1878 if (last[i] < 256)
1879 continue;
1880 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1881 if (ret != -EAGAIN) {
1882 if (!ret)
1883 *lastblock = last[i];
1884 return ret;
1885 }
1886 }
1887
1888 /* Finally try block 512 in case media is open */
1889 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1890 }
1891
1892 /*
1893 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1894 * area specified by it. The function expects sbi->s_lastblock to be the last
1895 * block on the media.
1896 *
1897 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1898 * was not found.
1899 */
1900 static int udf_find_anchor(struct super_block *sb,
1901 struct kernel_lb_addr *fileset)
1902 {
1903 struct udf_sb_info *sbi = UDF_SB(sb);
1904 sector_t lastblock = sbi->s_last_block;
1905 int ret;
1906
1907 ret = udf_scan_anchors(sb, &lastblock, fileset);
1908 if (ret != -EAGAIN)
1909 goto out;
1910
1911 /* No anchor found? Try VARCONV conversion of block numbers */
1912 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1913 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1914 /* Firstly, we try to not convert number of the last block */
1915 ret = udf_scan_anchors(sb, &lastblock, fileset);
1916 if (ret != -EAGAIN)
1917 goto out;
1918
1919 lastblock = sbi->s_last_block;
1920 /* Secondly, we try with converted number of the last block */
1921 ret = udf_scan_anchors(sb, &lastblock, fileset);
1922 if (ret < 0) {
1923 /* VARCONV didn't help. Clear it. */
1924 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1925 }
1926 out:
1927 if (ret == 0)
1928 sbi->s_last_block = lastblock;
1929 return ret;
1930 }
1931
1932 /*
1933 * Check Volume Structure Descriptor, find Anchor block and load Volume
1934 * Descriptor Sequence.
1935 *
1936 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1937 * block was not found.
1938 */
1939 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1940 int silent, struct kernel_lb_addr *fileset)
1941 {
1942 struct udf_sb_info *sbi = UDF_SB(sb);
1943 loff_t nsr_off;
1944 int ret;
1945
1946 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1947 if (!silent)
1948 udf_warn(sb, "Bad block size\n");
1949 return -EINVAL;
1950 }
1951 sbi->s_last_block = uopt->lastblock;
1952 if (!uopt->novrs) {
1953 /* Check that it is NSR02 compliant */
1954 nsr_off = udf_check_vsd(sb);
1955 if (!nsr_off) {
1956 if (!silent)
1957 udf_warn(sb, "No VRS found\n");
1958 return 0;
1959 }
1960 if (nsr_off == -1)
1961 udf_debug("Failed to read sector at offset %d. "
1962 "Assuming open disc. Skipping validity "
1963 "check\n", VSD_FIRST_SECTOR_OFFSET);
1964 if (!sbi->s_last_block)
1965 sbi->s_last_block = udf_get_last_block(sb);
1966 } else {
1967 udf_debug("Validity check skipped because of novrs option\n");
1968 }
1969
1970 /* Look for anchor block and load Volume Descriptor Sequence */
1971 sbi->s_anchor = uopt->anchor;
1972 ret = udf_find_anchor(sb, fileset);
1973 if (ret < 0) {
1974 if (!silent && ret == -EAGAIN)
1975 udf_warn(sb, "No anchor found\n");
1976 return ret;
1977 }
1978 return 0;
1979 }
1980
1981 static void udf_open_lvid(struct super_block *sb)
1982 {
1983 struct udf_sb_info *sbi = UDF_SB(sb);
1984 struct buffer_head *bh = sbi->s_lvid_bh;
1985 struct logicalVolIntegrityDesc *lvid;
1986 struct logicalVolIntegrityDescImpUse *lvidiu;
1987
1988 if (!bh)
1989 return;
1990 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1991 lvidiu = udf_sb_lvidiu(sb);
1992 if (!lvidiu)
1993 return;
1994
1995 mutex_lock(&sbi->s_alloc_mutex);
1996 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1997 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1998 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1999 CURRENT_TIME);
2000 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2001
2002 lvid->descTag.descCRC = cpu_to_le16(
2003 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2004 le16_to_cpu(lvid->descTag.descCRCLength)));
2005
2006 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2007 mark_buffer_dirty(bh);
2008 sbi->s_lvid_dirty = 0;
2009 mutex_unlock(&sbi->s_alloc_mutex);
2010 /* Make opening of filesystem visible on the media immediately */
2011 sync_dirty_buffer(bh);
2012 }
2013
2014 static void udf_close_lvid(struct super_block *sb)
2015 {
2016 struct udf_sb_info *sbi = UDF_SB(sb);
2017 struct buffer_head *bh = sbi->s_lvid_bh;
2018 struct logicalVolIntegrityDesc *lvid;
2019 struct logicalVolIntegrityDescImpUse *lvidiu;
2020
2021 if (!bh)
2022 return;
2023 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2024 lvidiu = udf_sb_lvidiu(sb);
2025 if (!lvidiu)
2026 return;
2027
2028 mutex_lock(&sbi->s_alloc_mutex);
2029 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2030 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2031 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2032 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2033 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2034 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2035 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2036 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2037 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2038 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2039
2040 lvid->descTag.descCRC = cpu_to_le16(
2041 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2042 le16_to_cpu(lvid->descTag.descCRCLength)));
2043
2044 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2045 /*
2046 * We set buffer uptodate unconditionally here to avoid spurious
2047 * warnings from mark_buffer_dirty() when previous EIO has marked
2048 * the buffer as !uptodate
2049 */
2050 set_buffer_uptodate(bh);
2051 mark_buffer_dirty(bh);
2052 sbi->s_lvid_dirty = 0;
2053 mutex_unlock(&sbi->s_alloc_mutex);
2054 /* Make closing of filesystem visible on the media immediately */
2055 sync_dirty_buffer(bh);
2056 }
2057
2058 u64 lvid_get_unique_id(struct super_block *sb)
2059 {
2060 struct buffer_head *bh;
2061 struct udf_sb_info *sbi = UDF_SB(sb);
2062 struct logicalVolIntegrityDesc *lvid;
2063 struct logicalVolHeaderDesc *lvhd;
2064 u64 uniqueID;
2065 u64 ret;
2066
2067 bh = sbi->s_lvid_bh;
2068 if (!bh)
2069 return 0;
2070
2071 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2072 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2073
2074 mutex_lock(&sbi->s_alloc_mutex);
2075 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2076 if (!(++uniqueID & 0xFFFFFFFF))
2077 uniqueID += 16;
2078 lvhd->uniqueID = cpu_to_le64(uniqueID);
2079 mutex_unlock(&sbi->s_alloc_mutex);
2080 mark_buffer_dirty(bh);
2081
2082 return ret;
2083 }
2084
2085 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2086 {
2087 int ret = -EINVAL;
2088 struct inode *inode = NULL;
2089 struct udf_options uopt;
2090 struct kernel_lb_addr rootdir, fileset;
2091 struct udf_sb_info *sbi;
2092 bool lvid_open = false;
2093
2094 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2095 uopt.uid = INVALID_UID;
2096 uopt.gid = INVALID_GID;
2097 uopt.umask = 0;
2098 uopt.fmode = UDF_INVALID_MODE;
2099 uopt.dmode = UDF_INVALID_MODE;
2100
2101 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2102 if (!sbi)
2103 return -ENOMEM;
2104
2105 sb->s_fs_info = sbi;
2106
2107 mutex_init(&sbi->s_alloc_mutex);
2108
2109 if (!udf_parse_options((char *)options, &uopt, false))
2110 goto parse_options_failure;
2111
2112 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2113 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2114 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2115 goto parse_options_failure;
2116 }
2117 #ifdef CONFIG_UDF_NLS
2118 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2119 uopt.nls_map = load_nls_default();
2120 if (!uopt.nls_map)
2121 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2122 else
2123 udf_debug("Using default NLS map\n");
2124 }
2125 #endif
2126 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2127 uopt.flags |= (1 << UDF_FLAG_UTF8);
2128
2129 fileset.logicalBlockNum = 0xFFFFFFFF;
2130 fileset.partitionReferenceNum = 0xFFFF;
2131
2132 sbi->s_flags = uopt.flags;
2133 sbi->s_uid = uopt.uid;
2134 sbi->s_gid = uopt.gid;
2135 sbi->s_umask = uopt.umask;
2136 sbi->s_fmode = uopt.fmode;
2137 sbi->s_dmode = uopt.dmode;
2138 sbi->s_nls_map = uopt.nls_map;
2139 rwlock_init(&sbi->s_cred_lock);
2140
2141 if (uopt.session == 0xFFFFFFFF)
2142 sbi->s_session = udf_get_last_session(sb);
2143 else
2144 sbi->s_session = uopt.session;
2145
2146 udf_debug("Multi-session=%d\n", sbi->s_session);
2147
2148 /* Fill in the rest of the superblock */
2149 sb->s_op = &udf_sb_ops;
2150 sb->s_export_op = &udf_export_ops;
2151
2152 sb->s_magic = UDF_SUPER_MAGIC;
2153 sb->s_time_gran = 1000;
2154
2155 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2156 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2157 } else {
2158 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2159 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2160 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2161 if (!silent)
2162 pr_notice("Rescanning with blocksize %d\n",
2163 UDF_DEFAULT_BLOCKSIZE);
2164 brelse(sbi->s_lvid_bh);
2165 sbi->s_lvid_bh = NULL;
2166 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2167 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2168 }
2169 }
2170 if (ret < 0) {
2171 if (ret == -EAGAIN) {
2172 udf_warn(sb, "No partition found (1)\n");
2173 ret = -EINVAL;
2174 }
2175 goto error_out;
2176 }
2177
2178 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2179
2180 if (sbi->s_lvid_bh) {
2181 struct logicalVolIntegrityDescImpUse *lvidiu =
2182 udf_sb_lvidiu(sb);
2183 uint16_t minUDFReadRev;
2184 uint16_t minUDFWriteRev;
2185
2186 if (!lvidiu) {
2187 ret = -EINVAL;
2188 goto error_out;
2189 }
2190 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2191 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2192 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2193 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2194 minUDFReadRev,
2195 UDF_MAX_READ_VERSION);
2196 ret = -EINVAL;
2197 goto error_out;
2198 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2199 !(sb->s_flags & MS_RDONLY)) {
2200 ret = -EACCES;
2201 goto error_out;
2202 }
2203
2204 sbi->s_udfrev = minUDFWriteRev;
2205
2206 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2207 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2208 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2209 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2210 }
2211
2212 if (!sbi->s_partitions) {
2213 udf_warn(sb, "No partition found (2)\n");
2214 ret = -EINVAL;
2215 goto error_out;
2216 }
2217
2218 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2219 UDF_PART_FLAG_READ_ONLY &&
2220 !(sb->s_flags & MS_RDONLY)) {
2221 ret = -EACCES;
2222 goto error_out;
2223 }
2224
2225 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2226 udf_warn(sb, "No fileset found\n");
2227 ret = -EINVAL;
2228 goto error_out;
2229 }
2230
2231 if (!silent) {
2232 struct timestamp ts;
2233 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2234 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2235 sbi->s_volume_ident,
2236 le16_to_cpu(ts.year), ts.month, ts.day,
2237 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2238 }
2239 if (!(sb->s_flags & MS_RDONLY)) {
2240 udf_open_lvid(sb);
2241 lvid_open = true;
2242 }
2243
2244 /* Assign the root inode */
2245 /* assign inodes by physical block number */
2246 /* perhaps it's not extensible enough, but for now ... */
2247 inode = udf_iget(sb, &rootdir);
2248 if (IS_ERR(inode)) {
2249 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2250 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2251 ret = PTR_ERR(inode);
2252 goto error_out;
2253 }
2254
2255 /* Allocate a dentry for the root inode */
2256 sb->s_root = d_make_root(inode);
2257 if (!sb->s_root) {
2258 udf_err(sb, "Couldn't allocate root dentry\n");
2259 ret = -ENOMEM;
2260 goto error_out;
2261 }
2262 sb->s_maxbytes = MAX_LFS_FILESIZE;
2263 sb->s_max_links = UDF_MAX_LINKS;
2264 return 0;
2265
2266 error_out:
2267 iput(sbi->s_vat_inode);
2268 parse_options_failure:
2269 #ifdef CONFIG_UDF_NLS
2270 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2271 unload_nls(sbi->s_nls_map);
2272 #endif
2273 if (lvid_open)
2274 udf_close_lvid(sb);
2275 brelse(sbi->s_lvid_bh);
2276 udf_sb_free_partitions(sb);
2277 kfree(sbi);
2278 sb->s_fs_info = NULL;
2279
2280 return ret;
2281 }
2282
2283 void _udf_err(struct super_block *sb, const char *function,
2284 const char *fmt, ...)
2285 {
2286 struct va_format vaf;
2287 va_list args;
2288
2289 va_start(args, fmt);
2290
2291 vaf.fmt = fmt;
2292 vaf.va = &args;
2293
2294 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2295
2296 va_end(args);
2297 }
2298
2299 void _udf_warn(struct super_block *sb, const char *function,
2300 const char *fmt, ...)
2301 {
2302 struct va_format vaf;
2303 va_list args;
2304
2305 va_start(args, fmt);
2306
2307 vaf.fmt = fmt;
2308 vaf.va = &args;
2309
2310 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2311
2312 va_end(args);
2313 }
2314
2315 static void udf_put_super(struct super_block *sb)
2316 {
2317 struct udf_sb_info *sbi;
2318
2319 sbi = UDF_SB(sb);
2320
2321 iput(sbi->s_vat_inode);
2322 #ifdef CONFIG_UDF_NLS
2323 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2324 unload_nls(sbi->s_nls_map);
2325 #endif
2326 if (!(sb->s_flags & MS_RDONLY))
2327 udf_close_lvid(sb);
2328 brelse(sbi->s_lvid_bh);
2329 udf_sb_free_partitions(sb);
2330 mutex_destroy(&sbi->s_alloc_mutex);
2331 kfree(sb->s_fs_info);
2332 sb->s_fs_info = NULL;
2333 }
2334
2335 static int udf_sync_fs(struct super_block *sb, int wait)
2336 {
2337 struct udf_sb_info *sbi = UDF_SB(sb);
2338
2339 mutex_lock(&sbi->s_alloc_mutex);
2340 if (sbi->s_lvid_dirty) {
2341 /*
2342 * Blockdevice will be synced later so we don't have to submit
2343 * the buffer for IO
2344 */
2345 mark_buffer_dirty(sbi->s_lvid_bh);
2346 sbi->s_lvid_dirty = 0;
2347 }
2348 mutex_unlock(&sbi->s_alloc_mutex);
2349
2350 return 0;
2351 }
2352
2353 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2354 {
2355 struct super_block *sb = dentry->d_sb;
2356 struct udf_sb_info *sbi = UDF_SB(sb);
2357 struct logicalVolIntegrityDescImpUse *lvidiu;
2358 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2359
2360 lvidiu = udf_sb_lvidiu(sb);
2361 buf->f_type = UDF_SUPER_MAGIC;
2362 buf->f_bsize = sb->s_blocksize;
2363 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2364 buf->f_bfree = udf_count_free(sb);
2365 buf->f_bavail = buf->f_bfree;
2366 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2367 le32_to_cpu(lvidiu->numDirs)) : 0)
2368 + buf->f_bfree;
2369 buf->f_ffree = buf->f_bfree;
2370 buf->f_namelen = UDF_NAME_LEN;
2371 buf->f_fsid.val[0] = (u32)id;
2372 buf->f_fsid.val[1] = (u32)(id >> 32);
2373
2374 return 0;
2375 }
2376
2377 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2378 struct udf_bitmap *bitmap)
2379 {
2380 struct buffer_head *bh = NULL;
2381 unsigned int accum = 0;
2382 int index;
2383 int block = 0, newblock;
2384 struct kernel_lb_addr loc;
2385 uint32_t bytes;
2386 uint8_t *ptr;
2387 uint16_t ident;
2388 struct spaceBitmapDesc *bm;
2389
2390 loc.logicalBlockNum = bitmap->s_extPosition;
2391 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2392 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2393
2394 if (!bh) {
2395 udf_err(sb, "udf_count_free failed\n");
2396 goto out;
2397 } else if (ident != TAG_IDENT_SBD) {
2398 brelse(bh);
2399 udf_err(sb, "udf_count_free failed\n");
2400 goto out;
2401 }
2402
2403 bm = (struct spaceBitmapDesc *)bh->b_data;
2404 bytes = le32_to_cpu(bm->numOfBytes);
2405 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2406 ptr = (uint8_t *)bh->b_data;
2407
2408 while (bytes > 0) {
2409 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2410 accum += bitmap_weight((const unsigned long *)(ptr + index),
2411 cur_bytes * 8);
2412 bytes -= cur_bytes;
2413 if (bytes) {
2414 brelse(bh);
2415 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2416 bh = udf_tread(sb, newblock);
2417 if (!bh) {
2418 udf_debug("read failed\n");
2419 goto out;
2420 }
2421 index = 0;
2422 ptr = (uint8_t *)bh->b_data;
2423 }
2424 }
2425 brelse(bh);
2426 out:
2427 return accum;
2428 }
2429
2430 static unsigned int udf_count_free_table(struct super_block *sb,
2431 struct inode *table)
2432 {
2433 unsigned int accum = 0;
2434 uint32_t elen;
2435 struct kernel_lb_addr eloc;
2436 int8_t etype;
2437 struct extent_position epos;
2438
2439 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2440 epos.block = UDF_I(table)->i_location;
2441 epos.offset = sizeof(struct unallocSpaceEntry);
2442 epos.bh = NULL;
2443
2444 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2445 accum += (elen >> table->i_sb->s_blocksize_bits);
2446
2447 brelse(epos.bh);
2448 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2449
2450 return accum;
2451 }
2452
2453 static unsigned int udf_count_free(struct super_block *sb)
2454 {
2455 unsigned int accum = 0;
2456 struct udf_sb_info *sbi;
2457 struct udf_part_map *map;
2458
2459 sbi = UDF_SB(sb);
2460 if (sbi->s_lvid_bh) {
2461 struct logicalVolIntegrityDesc *lvid =
2462 (struct logicalVolIntegrityDesc *)
2463 sbi->s_lvid_bh->b_data;
2464 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2465 accum = le32_to_cpu(
2466 lvid->freeSpaceTable[sbi->s_partition]);
2467 if (accum == 0xFFFFFFFF)
2468 accum = 0;
2469 }
2470 }
2471
2472 if (accum)
2473 return accum;
2474
2475 map = &sbi->s_partmaps[sbi->s_partition];
2476 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2477 accum += udf_count_free_bitmap(sb,
2478 map->s_uspace.s_bitmap);
2479 }
2480 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2481 accum += udf_count_free_bitmap(sb,
2482 map->s_fspace.s_bitmap);
2483 }
2484 if (accum)
2485 return accum;
2486
2487 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2488 accum += udf_count_free_table(sb,
2489 map->s_uspace.s_table);
2490 }
2491 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2492 accum += udf_count_free_table(sb,
2493 map->s_fspace.s_table);
2494 }
2495
2496 return accum;
2497 }