]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/libxfs/xfs_iext_tree.c
workqueue: avoid hard lockups in show_workqueue_state()
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / libxfs / xfs_iext_tree.c
1 /*
2 * Copyright (c) 2017 Christoph Hellwig.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 */
13
14 #include <linux/cache.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include "xfs.h"
18 #include "xfs_format.h"
19 #include "xfs_bit.h"
20 #include "xfs_log_format.h"
21 #include "xfs_inode.h"
22 #include "xfs_inode_fork.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_trace.h"
26
27 /*
28 * In-core extent record layout:
29 *
30 * +-------+----------------------------+
31 * | 00:53 | all 54 bits of startoff |
32 * | 54:63 | low 10 bits of startblock |
33 * +-------+----------------------------+
34 * | 00:20 | all 21 bits of length |
35 * | 21 | unwritten extent bit |
36 * | 22:63 | high 42 bits of startblock |
37 * +-------+----------------------------+
38 */
39 #define XFS_IEXT_STARTOFF_MASK xfs_mask64lo(BMBT_STARTOFF_BITLEN)
40 #define XFS_IEXT_LENGTH_MASK xfs_mask64lo(BMBT_BLOCKCOUNT_BITLEN)
41 #define XFS_IEXT_STARTBLOCK_MASK xfs_mask64lo(BMBT_STARTBLOCK_BITLEN)
42
43 struct xfs_iext_rec {
44 uint64_t lo;
45 uint64_t hi;
46 };
47
48 /*
49 * Given that the length can't be a zero, only an empty hi value indicates an
50 * unused record.
51 */
52 static bool xfs_iext_rec_is_empty(struct xfs_iext_rec *rec)
53 {
54 return rec->hi == 0;
55 }
56
57 static inline void xfs_iext_rec_clear(struct xfs_iext_rec *rec)
58 {
59 rec->lo = 0;
60 rec->hi = 0;
61 }
62
63 static void
64 xfs_iext_set(
65 struct xfs_iext_rec *rec,
66 struct xfs_bmbt_irec *irec)
67 {
68 ASSERT((irec->br_startoff & ~XFS_IEXT_STARTOFF_MASK) == 0);
69 ASSERT((irec->br_blockcount & ~XFS_IEXT_LENGTH_MASK) == 0);
70 ASSERT((irec->br_startblock & ~XFS_IEXT_STARTBLOCK_MASK) == 0);
71
72 rec->lo = irec->br_startoff & XFS_IEXT_STARTOFF_MASK;
73 rec->hi = irec->br_blockcount & XFS_IEXT_LENGTH_MASK;
74
75 rec->lo |= (irec->br_startblock << 54);
76 rec->hi |= ((irec->br_startblock & ~xfs_mask64lo(10)) << (22 - 10));
77
78 if (irec->br_state == XFS_EXT_UNWRITTEN)
79 rec->hi |= (1 << 21);
80 }
81
82 static void
83 xfs_iext_get(
84 struct xfs_bmbt_irec *irec,
85 struct xfs_iext_rec *rec)
86 {
87 irec->br_startoff = rec->lo & XFS_IEXT_STARTOFF_MASK;
88 irec->br_blockcount = rec->hi & XFS_IEXT_LENGTH_MASK;
89
90 irec->br_startblock = rec->lo >> 54;
91 irec->br_startblock |= (rec->hi & xfs_mask64hi(42)) >> (22 - 10);
92
93 if (rec->hi & (1 << 21))
94 irec->br_state = XFS_EXT_UNWRITTEN;
95 else
96 irec->br_state = XFS_EXT_NORM;
97 }
98
99 enum {
100 NODE_SIZE = 256,
101 KEYS_PER_NODE = NODE_SIZE / (sizeof(uint64_t) + sizeof(void *)),
102 RECS_PER_LEAF = (NODE_SIZE - (2 * sizeof(struct xfs_iext_leaf *))) /
103 sizeof(struct xfs_iext_rec),
104 };
105
106 /*
107 * In-core extent btree block layout:
108 *
109 * There are two types of blocks in the btree: leaf and inner (non-leaf) blocks.
110 *
111 * The leaf blocks are made up by %KEYS_PER_NODE extent records, which each
112 * contain the startoffset, blockcount, startblock and unwritten extent flag.
113 * See above for the exact format, followed by pointers to the previous and next
114 * leaf blocks (if there are any).
115 *
116 * The inner (non-leaf) blocks first contain KEYS_PER_NODE lookup keys, followed
117 * by an equal number of pointers to the btree blocks at the next lower level.
118 *
119 * +-------+-------+-------+-------+-------+----------+----------+
120 * Leaf: | rec 1 | rec 2 | rec 3 | rec 4 | rec N | prev-ptr | next-ptr |
121 * +-------+-------+-------+-------+-------+----------+----------+
122 *
123 * +-------+-------+-------+-------+-------+-------+------+-------+
124 * Inner: | key 1 | key 2 | key 3 | key N | ptr 1 | ptr 2 | ptr3 | ptr N |
125 * +-------+-------+-------+-------+-------+-------+------+-------+
126 */
127 struct xfs_iext_node {
128 uint64_t keys[KEYS_PER_NODE];
129 #define XFS_IEXT_KEY_INVALID (1ULL << 63)
130 void *ptrs[KEYS_PER_NODE];
131 };
132
133 struct xfs_iext_leaf {
134 struct xfs_iext_rec recs[RECS_PER_LEAF];
135 struct xfs_iext_leaf *prev;
136 struct xfs_iext_leaf *next;
137 };
138
139 inline xfs_extnum_t xfs_iext_count(struct xfs_ifork *ifp)
140 {
141 return ifp->if_bytes / sizeof(struct xfs_iext_rec);
142 }
143
144 static inline int xfs_iext_max_recs(struct xfs_ifork *ifp)
145 {
146 if (ifp->if_height == 1)
147 return xfs_iext_count(ifp);
148 return RECS_PER_LEAF;
149 }
150
151 static inline struct xfs_iext_rec *cur_rec(struct xfs_iext_cursor *cur)
152 {
153 return &cur->leaf->recs[cur->pos];
154 }
155
156 static inline bool xfs_iext_valid(struct xfs_ifork *ifp,
157 struct xfs_iext_cursor *cur)
158 {
159 if (!cur->leaf)
160 return false;
161 if (cur->pos < 0 || cur->pos >= xfs_iext_max_recs(ifp))
162 return false;
163 if (xfs_iext_rec_is_empty(cur_rec(cur)))
164 return false;
165 return true;
166 }
167
168 static void *
169 xfs_iext_find_first_leaf(
170 struct xfs_ifork *ifp)
171 {
172 struct xfs_iext_node *node = ifp->if_u1.if_root;
173 int height;
174
175 if (!ifp->if_height)
176 return NULL;
177
178 for (height = ifp->if_height; height > 1; height--) {
179 node = node->ptrs[0];
180 ASSERT(node);
181 }
182
183 return node;
184 }
185
186 static void *
187 xfs_iext_find_last_leaf(
188 struct xfs_ifork *ifp)
189 {
190 struct xfs_iext_node *node = ifp->if_u1.if_root;
191 int height, i;
192
193 if (!ifp->if_height)
194 return NULL;
195
196 for (height = ifp->if_height; height > 1; height--) {
197 for (i = 1; i < KEYS_PER_NODE; i++)
198 if (!node->ptrs[i])
199 break;
200 node = node->ptrs[i - 1];
201 ASSERT(node);
202 }
203
204 return node;
205 }
206
207 void
208 xfs_iext_first(
209 struct xfs_ifork *ifp,
210 struct xfs_iext_cursor *cur)
211 {
212 cur->pos = 0;
213 cur->leaf = xfs_iext_find_first_leaf(ifp);
214 }
215
216 void
217 xfs_iext_last(
218 struct xfs_ifork *ifp,
219 struct xfs_iext_cursor *cur)
220 {
221 int i;
222
223 cur->leaf = xfs_iext_find_last_leaf(ifp);
224 if (!cur->leaf) {
225 cur->pos = 0;
226 return;
227 }
228
229 for (i = 1; i < xfs_iext_max_recs(ifp); i++) {
230 if (xfs_iext_rec_is_empty(&cur->leaf->recs[i]))
231 break;
232 }
233 cur->pos = i - 1;
234 }
235
236 void
237 xfs_iext_next(
238 struct xfs_ifork *ifp,
239 struct xfs_iext_cursor *cur)
240 {
241 if (!cur->leaf) {
242 ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
243 xfs_iext_first(ifp, cur);
244 return;
245 }
246
247 ASSERT(cur->pos >= 0);
248 ASSERT(cur->pos < xfs_iext_max_recs(ifp));
249
250 cur->pos++;
251 if (ifp->if_height > 1 && !xfs_iext_valid(ifp, cur) &&
252 cur->leaf->next) {
253 cur->leaf = cur->leaf->next;
254 cur->pos = 0;
255 }
256 }
257
258 void
259 xfs_iext_prev(
260 struct xfs_ifork *ifp,
261 struct xfs_iext_cursor *cur)
262 {
263 if (!cur->leaf) {
264 ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
265 xfs_iext_last(ifp, cur);
266 return;
267 }
268
269 ASSERT(cur->pos >= 0);
270 ASSERT(cur->pos <= RECS_PER_LEAF);
271
272 recurse:
273 do {
274 cur->pos--;
275 if (xfs_iext_valid(ifp, cur))
276 return;
277 } while (cur->pos > 0);
278
279 if (ifp->if_height > 1 && cur->leaf->prev) {
280 cur->leaf = cur->leaf->prev;
281 cur->pos = RECS_PER_LEAF;
282 goto recurse;
283 }
284 }
285
286 static inline int
287 xfs_iext_key_cmp(
288 struct xfs_iext_node *node,
289 int n,
290 xfs_fileoff_t offset)
291 {
292 if (node->keys[n] > offset)
293 return 1;
294 if (node->keys[n] < offset)
295 return -1;
296 return 0;
297 }
298
299 static inline int
300 xfs_iext_rec_cmp(
301 struct xfs_iext_rec *rec,
302 xfs_fileoff_t offset)
303 {
304 uint64_t rec_offset = rec->lo & XFS_IEXT_STARTOFF_MASK;
305 uint32_t rec_len = rec->hi & XFS_IEXT_LENGTH_MASK;
306
307 if (rec_offset > offset)
308 return 1;
309 if (rec_offset + rec_len <= offset)
310 return -1;
311 return 0;
312 }
313
314 static void *
315 xfs_iext_find_level(
316 struct xfs_ifork *ifp,
317 xfs_fileoff_t offset,
318 int level)
319 {
320 struct xfs_iext_node *node = ifp->if_u1.if_root;
321 int height, i;
322
323 if (!ifp->if_height)
324 return NULL;
325
326 for (height = ifp->if_height; height > level; height--) {
327 for (i = 1; i < KEYS_PER_NODE; i++)
328 if (xfs_iext_key_cmp(node, i, offset) > 0)
329 break;
330
331 node = node->ptrs[i - 1];
332 if (!node)
333 break;
334 }
335
336 return node;
337 }
338
339 static int
340 xfs_iext_node_pos(
341 struct xfs_iext_node *node,
342 xfs_fileoff_t offset)
343 {
344 int i;
345
346 for (i = 1; i < KEYS_PER_NODE; i++) {
347 if (xfs_iext_key_cmp(node, i, offset) > 0)
348 break;
349 }
350
351 return i - 1;
352 }
353
354 static int
355 xfs_iext_node_insert_pos(
356 struct xfs_iext_node *node,
357 xfs_fileoff_t offset)
358 {
359 int i;
360
361 for (i = 0; i < KEYS_PER_NODE; i++) {
362 if (xfs_iext_key_cmp(node, i, offset) > 0)
363 return i;
364 }
365
366 return KEYS_PER_NODE;
367 }
368
369 static int
370 xfs_iext_node_nr_entries(
371 struct xfs_iext_node *node,
372 int start)
373 {
374 int i;
375
376 for (i = start; i < KEYS_PER_NODE; i++) {
377 if (node->keys[i] == XFS_IEXT_KEY_INVALID)
378 break;
379 }
380
381 return i;
382 }
383
384 static int
385 xfs_iext_leaf_nr_entries(
386 struct xfs_ifork *ifp,
387 struct xfs_iext_leaf *leaf,
388 int start)
389 {
390 int i;
391
392 for (i = start; i < xfs_iext_max_recs(ifp); i++) {
393 if (xfs_iext_rec_is_empty(&leaf->recs[i]))
394 break;
395 }
396
397 return i;
398 }
399
400 static inline uint64_t
401 xfs_iext_leaf_key(
402 struct xfs_iext_leaf *leaf,
403 int n)
404 {
405 return leaf->recs[n].lo & XFS_IEXT_STARTOFF_MASK;
406 }
407
408 static void
409 xfs_iext_grow(
410 struct xfs_ifork *ifp)
411 {
412 struct xfs_iext_node *node = kmem_zalloc(NODE_SIZE, KM_NOFS);
413 int i;
414
415 if (ifp->if_height == 1) {
416 struct xfs_iext_leaf *prev = ifp->if_u1.if_root;
417
418 node->keys[0] = xfs_iext_leaf_key(prev, 0);
419 node->ptrs[0] = prev;
420 } else {
421 struct xfs_iext_node *prev = ifp->if_u1.if_root;
422
423 ASSERT(ifp->if_height > 1);
424
425 node->keys[0] = prev->keys[0];
426 node->ptrs[0] = prev;
427 }
428
429 for (i = 1; i < KEYS_PER_NODE; i++)
430 node->keys[i] = XFS_IEXT_KEY_INVALID;
431
432 ifp->if_u1.if_root = node;
433 ifp->if_height++;
434 }
435
436 static void
437 xfs_iext_update_node(
438 struct xfs_ifork *ifp,
439 xfs_fileoff_t old_offset,
440 xfs_fileoff_t new_offset,
441 int level,
442 void *ptr)
443 {
444 struct xfs_iext_node *node = ifp->if_u1.if_root;
445 int height, i;
446
447 for (height = ifp->if_height; height > level; height--) {
448 for (i = 0; i < KEYS_PER_NODE; i++) {
449 if (i > 0 && xfs_iext_key_cmp(node, i, old_offset) > 0)
450 break;
451 if (node->keys[i] == old_offset)
452 node->keys[i] = new_offset;
453 }
454 node = node->ptrs[i - 1];
455 ASSERT(node);
456 }
457
458 ASSERT(node == ptr);
459 }
460
461 static struct xfs_iext_node *
462 xfs_iext_split_node(
463 struct xfs_iext_node **nodep,
464 int *pos,
465 int *nr_entries)
466 {
467 struct xfs_iext_node *node = *nodep;
468 struct xfs_iext_node *new = kmem_zalloc(NODE_SIZE, KM_NOFS);
469 const int nr_move = KEYS_PER_NODE / 2;
470 int nr_keep = nr_move + (KEYS_PER_NODE & 1);
471 int i = 0;
472
473 /* for sequential append operations just spill over into the new node */
474 if (*pos == KEYS_PER_NODE) {
475 *nodep = new;
476 *pos = 0;
477 *nr_entries = 0;
478 goto done;
479 }
480
481
482 for (i = 0; i < nr_move; i++) {
483 new->keys[i] = node->keys[nr_keep + i];
484 new->ptrs[i] = node->ptrs[nr_keep + i];
485
486 node->keys[nr_keep + i] = XFS_IEXT_KEY_INVALID;
487 node->ptrs[nr_keep + i] = NULL;
488 }
489
490 if (*pos >= nr_keep) {
491 *nodep = new;
492 *pos -= nr_keep;
493 *nr_entries = nr_move;
494 } else {
495 *nr_entries = nr_keep;
496 }
497 done:
498 for (; i < KEYS_PER_NODE; i++)
499 new->keys[i] = XFS_IEXT_KEY_INVALID;
500 return new;
501 }
502
503 static void
504 xfs_iext_insert_node(
505 struct xfs_ifork *ifp,
506 uint64_t offset,
507 void *ptr,
508 int level)
509 {
510 struct xfs_iext_node *node, *new;
511 int i, pos, nr_entries;
512
513 again:
514 if (ifp->if_height < level)
515 xfs_iext_grow(ifp);
516
517 new = NULL;
518 node = xfs_iext_find_level(ifp, offset, level);
519 pos = xfs_iext_node_insert_pos(node, offset);
520 nr_entries = xfs_iext_node_nr_entries(node, pos);
521
522 ASSERT(pos >= nr_entries || xfs_iext_key_cmp(node, pos, offset) != 0);
523 ASSERT(nr_entries <= KEYS_PER_NODE);
524
525 if (nr_entries == KEYS_PER_NODE)
526 new = xfs_iext_split_node(&node, &pos, &nr_entries);
527
528 /*
529 * Update the pointers in higher levels if the first entry changes
530 * in an existing node.
531 */
532 if (node != new && pos == 0 && nr_entries > 0)
533 xfs_iext_update_node(ifp, node->keys[0], offset, level, node);
534
535 for (i = nr_entries; i > pos; i--) {
536 node->keys[i] = node->keys[i - 1];
537 node->ptrs[i] = node->ptrs[i - 1];
538 }
539 node->keys[pos] = offset;
540 node->ptrs[pos] = ptr;
541
542 if (new) {
543 offset = new->keys[0];
544 ptr = new;
545 level++;
546 goto again;
547 }
548 }
549
550 static struct xfs_iext_leaf *
551 xfs_iext_split_leaf(
552 struct xfs_iext_cursor *cur,
553 int *nr_entries)
554 {
555 struct xfs_iext_leaf *leaf = cur->leaf;
556 struct xfs_iext_leaf *new = kmem_zalloc(NODE_SIZE, KM_NOFS);
557 const int nr_move = RECS_PER_LEAF / 2;
558 int nr_keep = nr_move + (RECS_PER_LEAF & 1);
559 int i;
560
561 /* for sequential append operations just spill over into the new node */
562 if (cur->pos == RECS_PER_LEAF) {
563 cur->leaf = new;
564 cur->pos = 0;
565 *nr_entries = 0;
566 goto done;
567 }
568
569 for (i = 0; i < nr_move; i++) {
570 new->recs[i] = leaf->recs[nr_keep + i];
571 xfs_iext_rec_clear(&leaf->recs[nr_keep + i]);
572 }
573
574 if (cur->pos >= nr_keep) {
575 cur->leaf = new;
576 cur->pos -= nr_keep;
577 *nr_entries = nr_move;
578 } else {
579 *nr_entries = nr_keep;
580 }
581 done:
582 if (leaf->next)
583 leaf->next->prev = new;
584 new->next = leaf->next;
585 new->prev = leaf;
586 leaf->next = new;
587 return new;
588 }
589
590 static void
591 xfs_iext_alloc_root(
592 struct xfs_ifork *ifp,
593 struct xfs_iext_cursor *cur)
594 {
595 ASSERT(ifp->if_bytes == 0);
596
597 ifp->if_u1.if_root = kmem_zalloc(sizeof(struct xfs_iext_rec), KM_NOFS);
598 ifp->if_height = 1;
599
600 /* now that we have a node step into it */
601 cur->leaf = ifp->if_u1.if_root;
602 cur->pos = 0;
603 }
604
605 static void
606 xfs_iext_realloc_root(
607 struct xfs_ifork *ifp,
608 struct xfs_iext_cursor *cur)
609 {
610 size_t new_size = ifp->if_bytes + sizeof(struct xfs_iext_rec);
611 void *new;
612
613 /* account for the prev/next pointers */
614 if (new_size / sizeof(struct xfs_iext_rec) == RECS_PER_LEAF)
615 new_size = NODE_SIZE;
616
617 new = kmem_realloc(ifp->if_u1.if_root, new_size, KM_NOFS);
618 memset(new + ifp->if_bytes, 0, new_size - ifp->if_bytes);
619 ifp->if_u1.if_root = new;
620 cur->leaf = new;
621 }
622
623 void
624 xfs_iext_insert(
625 struct xfs_inode *ip,
626 struct xfs_iext_cursor *cur,
627 struct xfs_bmbt_irec *irec,
628 int state)
629 {
630 struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
631 xfs_fileoff_t offset = irec->br_startoff;
632 struct xfs_iext_leaf *new = NULL;
633 int nr_entries, i;
634
635 trace_xfs_iext_insert(ip, cur, state, _RET_IP_);
636
637 if (ifp->if_height == 0)
638 xfs_iext_alloc_root(ifp, cur);
639 else if (ifp->if_height == 1)
640 xfs_iext_realloc_root(ifp, cur);
641
642 nr_entries = xfs_iext_leaf_nr_entries(ifp, cur->leaf, cur->pos);
643 ASSERT(nr_entries <= RECS_PER_LEAF);
644 ASSERT(cur->pos >= nr_entries ||
645 xfs_iext_rec_cmp(cur_rec(cur), irec->br_startoff) != 0);
646
647 if (nr_entries == RECS_PER_LEAF)
648 new = xfs_iext_split_leaf(cur, &nr_entries);
649
650 /*
651 * Update the pointers in higher levels if the first entry changes
652 * in an existing node.
653 */
654 if (cur->leaf != new && cur->pos == 0 && nr_entries > 0) {
655 xfs_iext_update_node(ifp, xfs_iext_leaf_key(cur->leaf, 0),
656 offset, 1, cur->leaf);
657 }
658
659 for (i = nr_entries; i > cur->pos; i--)
660 cur->leaf->recs[i] = cur->leaf->recs[i - 1];
661 xfs_iext_set(cur_rec(cur), irec);
662 ifp->if_bytes += sizeof(struct xfs_iext_rec);
663
664 if (new)
665 xfs_iext_insert_node(ifp, xfs_iext_leaf_key(new, 0), new, 2);
666 }
667
668 static struct xfs_iext_node *
669 xfs_iext_rebalance_node(
670 struct xfs_iext_node *parent,
671 int *pos,
672 struct xfs_iext_node *node,
673 int nr_entries)
674 {
675 /*
676 * If the neighbouring nodes are completely full, or have different
677 * parents, we might never be able to merge our node, and will only
678 * delete it once the number of entries hits zero.
679 */
680 if (nr_entries == 0)
681 return node;
682
683 if (*pos > 0) {
684 struct xfs_iext_node *prev = parent->ptrs[*pos - 1];
685 int nr_prev = xfs_iext_node_nr_entries(prev, 0), i;
686
687 if (nr_prev + nr_entries <= KEYS_PER_NODE) {
688 for (i = 0; i < nr_entries; i++) {
689 prev->keys[nr_prev + i] = node->keys[i];
690 prev->ptrs[nr_prev + i] = node->ptrs[i];
691 }
692 return node;
693 }
694 }
695
696 if (*pos + 1 < xfs_iext_node_nr_entries(parent, *pos)) {
697 struct xfs_iext_node *next = parent->ptrs[*pos + 1];
698 int nr_next = xfs_iext_node_nr_entries(next, 0), i;
699
700 if (nr_entries + nr_next <= KEYS_PER_NODE) {
701 /*
702 * Merge the next node into this node so that we don't
703 * have to do an additional update of the keys in the
704 * higher levels.
705 */
706 for (i = 0; i < nr_next; i++) {
707 node->keys[nr_entries + i] = next->keys[i];
708 node->ptrs[nr_entries + i] = next->ptrs[i];
709 }
710
711 ++*pos;
712 return next;
713 }
714 }
715
716 return NULL;
717 }
718
719 static void
720 xfs_iext_remove_node(
721 struct xfs_ifork *ifp,
722 xfs_fileoff_t offset,
723 void *victim)
724 {
725 struct xfs_iext_node *node, *parent;
726 int level = 2, pos, nr_entries, i;
727
728 ASSERT(level <= ifp->if_height);
729 node = xfs_iext_find_level(ifp, offset, level);
730 pos = xfs_iext_node_pos(node, offset);
731 again:
732 ASSERT(node->ptrs[pos]);
733 ASSERT(node->ptrs[pos] == victim);
734 kmem_free(victim);
735
736 nr_entries = xfs_iext_node_nr_entries(node, pos) - 1;
737 offset = node->keys[0];
738 for (i = pos; i < nr_entries; i++) {
739 node->keys[i] = node->keys[i + 1];
740 node->ptrs[i] = node->ptrs[i + 1];
741 }
742 node->keys[nr_entries] = XFS_IEXT_KEY_INVALID;
743 node->ptrs[nr_entries] = NULL;
744
745 if (pos == 0 && nr_entries > 0) {
746 xfs_iext_update_node(ifp, offset, node->keys[0], level, node);
747 offset = node->keys[0];
748 }
749
750 if (nr_entries >= KEYS_PER_NODE / 2)
751 return;
752
753 if (level < ifp->if_height) {
754 /*
755 * If we aren't at the root yet try to find a neighbour node to
756 * merge with (or delete the node if it is empty), and then
757 * recurse up to the next level.
758 */
759 level++;
760 parent = xfs_iext_find_level(ifp, offset, level);
761 pos = xfs_iext_node_pos(parent, offset);
762
763 ASSERT(pos != KEYS_PER_NODE);
764 ASSERT(parent->ptrs[pos] == node);
765
766 node = xfs_iext_rebalance_node(parent, &pos, node, nr_entries);
767 if (node) {
768 victim = node;
769 node = parent;
770 goto again;
771 }
772 } else if (nr_entries == 1) {
773 /*
774 * If we are at the root and only one entry is left we can just
775 * free this node and update the root pointer.
776 */
777 ASSERT(node == ifp->if_u1.if_root);
778 ifp->if_u1.if_root = node->ptrs[0];
779 ifp->if_height--;
780 kmem_free(node);
781 }
782 }
783
784 static void
785 xfs_iext_rebalance_leaf(
786 struct xfs_ifork *ifp,
787 struct xfs_iext_cursor *cur,
788 struct xfs_iext_leaf *leaf,
789 xfs_fileoff_t offset,
790 int nr_entries)
791 {
792 /*
793 * If the neighbouring nodes are completely full we might never be able
794 * to merge our node, and will only delete it once the number of
795 * entries hits zero.
796 */
797 if (nr_entries == 0)
798 goto remove_node;
799
800 if (leaf->prev) {
801 int nr_prev = xfs_iext_leaf_nr_entries(ifp, leaf->prev, 0), i;
802
803 if (nr_prev + nr_entries <= RECS_PER_LEAF) {
804 for (i = 0; i < nr_entries; i++)
805 leaf->prev->recs[nr_prev + i] = leaf->recs[i];
806
807 if (cur->leaf == leaf) {
808 cur->leaf = leaf->prev;
809 cur->pos += nr_prev;
810 }
811 goto remove_node;
812 }
813 }
814
815 if (leaf->next) {
816 int nr_next = xfs_iext_leaf_nr_entries(ifp, leaf->next, 0), i;
817
818 if (nr_entries + nr_next <= RECS_PER_LEAF) {
819 /*
820 * Merge the next node into this node so that we don't
821 * have to do an additional update of the keys in the
822 * higher levels.
823 */
824 for (i = 0; i < nr_next; i++) {
825 leaf->recs[nr_entries + i] =
826 leaf->next->recs[i];
827 }
828
829 if (cur->leaf == leaf->next) {
830 cur->leaf = leaf;
831 cur->pos += nr_entries;
832 }
833
834 offset = xfs_iext_leaf_key(leaf->next, 0);
835 leaf = leaf->next;
836 goto remove_node;
837 }
838 }
839
840 return;
841 remove_node:
842 if (leaf->prev)
843 leaf->prev->next = leaf->next;
844 if (leaf->next)
845 leaf->next->prev = leaf->prev;
846 xfs_iext_remove_node(ifp, offset, leaf);
847 }
848
849 static void
850 xfs_iext_free_last_leaf(
851 struct xfs_ifork *ifp)
852 {
853 ifp->if_height--;
854 kmem_free(ifp->if_u1.if_root);
855 ifp->if_u1.if_root = NULL;
856 }
857
858 void
859 xfs_iext_remove(
860 struct xfs_inode *ip,
861 struct xfs_iext_cursor *cur,
862 int state)
863 {
864 struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
865 struct xfs_iext_leaf *leaf = cur->leaf;
866 xfs_fileoff_t offset = xfs_iext_leaf_key(leaf, 0);
867 int i, nr_entries;
868
869 trace_xfs_iext_remove(ip, cur, state, _RET_IP_);
870
871 ASSERT(ifp->if_height > 0);
872 ASSERT(ifp->if_u1.if_root != NULL);
873 ASSERT(xfs_iext_valid(ifp, cur));
874
875 nr_entries = xfs_iext_leaf_nr_entries(ifp, leaf, cur->pos) - 1;
876 for (i = cur->pos; i < nr_entries; i++)
877 leaf->recs[i] = leaf->recs[i + 1];
878 xfs_iext_rec_clear(&leaf->recs[nr_entries]);
879 ifp->if_bytes -= sizeof(struct xfs_iext_rec);
880
881 if (cur->pos == 0 && nr_entries > 0) {
882 xfs_iext_update_node(ifp, offset, xfs_iext_leaf_key(leaf, 0), 1,
883 leaf);
884 offset = xfs_iext_leaf_key(leaf, 0);
885 } else if (cur->pos == nr_entries) {
886 if (ifp->if_height > 1 && leaf->next)
887 cur->leaf = leaf->next;
888 else
889 cur->leaf = NULL;
890 cur->pos = 0;
891 }
892
893 if (nr_entries >= RECS_PER_LEAF / 2)
894 return;
895
896 if (ifp->if_height > 1)
897 xfs_iext_rebalance_leaf(ifp, cur, leaf, offset, nr_entries);
898 else if (nr_entries == 0)
899 xfs_iext_free_last_leaf(ifp);
900 }
901
902 /*
903 * Lookup the extent covering bno.
904 *
905 * If there is an extent covering bno return the extent index, and store the
906 * expanded extent structure in *gotp, and the extent cursor in *cur.
907 * If there is no extent covering bno, but there is an extent after it (e.g.
908 * it lies in a hole) return that extent in *gotp and its cursor in *cur
909 * instead.
910 * If bno is beyond the last extent return false, and return an invalid
911 * cursor value.
912 */
913 bool
914 xfs_iext_lookup_extent(
915 struct xfs_inode *ip,
916 struct xfs_ifork *ifp,
917 xfs_fileoff_t offset,
918 struct xfs_iext_cursor *cur,
919 struct xfs_bmbt_irec *gotp)
920 {
921 XFS_STATS_INC(ip->i_mount, xs_look_exlist);
922
923 cur->leaf = xfs_iext_find_level(ifp, offset, 1);
924 if (!cur->leaf) {
925 cur->pos = 0;
926 return false;
927 }
928
929 for (cur->pos = 0; cur->pos < xfs_iext_max_recs(ifp); cur->pos++) {
930 struct xfs_iext_rec *rec = cur_rec(cur);
931
932 if (xfs_iext_rec_is_empty(rec))
933 break;
934 if (xfs_iext_rec_cmp(rec, offset) >= 0)
935 goto found;
936 }
937
938 /* Try looking in the next node for an entry > offset */
939 if (ifp->if_height == 1 || !cur->leaf->next)
940 return false;
941 cur->leaf = cur->leaf->next;
942 cur->pos = 0;
943 if (!xfs_iext_valid(ifp, cur))
944 return false;
945 found:
946 xfs_iext_get(gotp, cur_rec(cur));
947 return true;
948 }
949
950 /*
951 * Returns the last extent before end, and if this extent doesn't cover
952 * end, update end to the end of the extent.
953 */
954 bool
955 xfs_iext_lookup_extent_before(
956 struct xfs_inode *ip,
957 struct xfs_ifork *ifp,
958 xfs_fileoff_t *end,
959 struct xfs_iext_cursor *cur,
960 struct xfs_bmbt_irec *gotp)
961 {
962 /* could be optimized to not even look up the next on a match.. */
963 if (xfs_iext_lookup_extent(ip, ifp, *end - 1, cur, gotp) &&
964 gotp->br_startoff <= *end - 1)
965 return true;
966 if (!xfs_iext_prev_extent(ifp, cur, gotp))
967 return false;
968 *end = gotp->br_startoff + gotp->br_blockcount;
969 return true;
970 }
971
972 void
973 xfs_iext_update_extent(
974 struct xfs_inode *ip,
975 int state,
976 struct xfs_iext_cursor *cur,
977 struct xfs_bmbt_irec *new)
978 {
979 struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
980
981 if (cur->pos == 0) {
982 struct xfs_bmbt_irec old;
983
984 xfs_iext_get(&old, cur_rec(cur));
985 if (new->br_startoff != old.br_startoff) {
986 xfs_iext_update_node(ifp, old.br_startoff,
987 new->br_startoff, 1, cur->leaf);
988 }
989 }
990
991 trace_xfs_bmap_pre_update(ip, cur, state, _RET_IP_);
992 xfs_iext_set(cur_rec(cur), new);
993 trace_xfs_bmap_post_update(ip, cur, state, _RET_IP_);
994 }
995
996 /*
997 * Return true if the cursor points at an extent and return the extent structure
998 * in gotp. Else return false.
999 */
1000 bool
1001 xfs_iext_get_extent(
1002 struct xfs_ifork *ifp,
1003 struct xfs_iext_cursor *cur,
1004 struct xfs_bmbt_irec *gotp)
1005 {
1006 if (!xfs_iext_valid(ifp, cur))
1007 return false;
1008 xfs_iext_get(gotp, cur_rec(cur));
1009 return true;
1010 }
1011
1012 /*
1013 * This is a recursive function, because of that we need to be extremely
1014 * careful with stack usage.
1015 */
1016 static void
1017 xfs_iext_destroy_node(
1018 struct xfs_iext_node *node,
1019 int level)
1020 {
1021 int i;
1022
1023 if (level > 1) {
1024 for (i = 0; i < KEYS_PER_NODE; i++) {
1025 if (node->keys[i] == XFS_IEXT_KEY_INVALID)
1026 break;
1027 xfs_iext_destroy_node(node->ptrs[i], level - 1);
1028 }
1029 }
1030
1031 kmem_free(node);
1032 }
1033
1034 void
1035 xfs_iext_destroy(
1036 struct xfs_ifork *ifp)
1037 {
1038 xfs_iext_destroy_node(ifp->if_u1.if_root, ifp->if_height);
1039
1040 ifp->if_bytes = 0;
1041 ifp->if_height = 0;
1042 ifp->if_u1.if_root = NULL;
1043 }