]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/xfs/linux-2.6/xfs_super.c
4fb0fc65af34a5ac292941ca3281ad54e041c071
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / linux-2.6 / xfs_super.c
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_clnt.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_itable.h"
44 #include "xfs_rw.h"
45 #include "xfs_acl.h"
46 #include "xfs_cap.h"
47 #include "xfs_mac.h"
48 #include "xfs_attr.h"
49 #include "xfs_buf_item.h"
50 #include "xfs_utils.h"
51 #include "xfs_version.h"
52
53 #include <linux/namei.h>
54 #include <linux/init.h>
55 #include <linux/mount.h>
56 #include <linux/mempool.h>
57 #include <linux/writeback.h>
58 #include <linux/kthread.h>
59
60 STATIC struct quotactl_ops xfs_quotactl_operations;
61 STATIC struct super_operations xfs_super_operations;
62 STATIC kmem_zone_t *xfs_vnode_zone;
63 STATIC kmem_zone_t *xfs_ioend_zone;
64 mempool_t *xfs_ioend_pool;
65
66 STATIC struct xfs_mount_args *
67 xfs_args_allocate(
68 struct super_block *sb,
69 int silent)
70 {
71 struct xfs_mount_args *args;
72
73 args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
74 args->logbufs = args->logbufsize = -1;
75 strncpy(args->fsname, sb->s_id, MAXNAMELEN);
76
77 /* Copy the already-parsed mount(2) flags we're interested in */
78 if (sb->s_flags & MS_DIRSYNC)
79 args->flags |= XFSMNT_DIRSYNC;
80 if (sb->s_flags & MS_SYNCHRONOUS)
81 args->flags |= XFSMNT_WSYNC;
82 if (silent)
83 args->flags |= XFSMNT_QUIET;
84 args->flags |= XFSMNT_32BITINODES;
85
86 return args;
87 }
88
89 __uint64_t
90 xfs_max_file_offset(
91 unsigned int blockshift)
92 {
93 unsigned int pagefactor = 1;
94 unsigned int bitshift = BITS_PER_LONG - 1;
95
96 /* Figure out maximum filesize, on Linux this can depend on
97 * the filesystem blocksize (on 32 bit platforms).
98 * __block_prepare_write does this in an [unsigned] long...
99 * page->index << (PAGE_CACHE_SHIFT - bbits)
100 * So, for page sized blocks (4K on 32 bit platforms),
101 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
102 * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
103 * but for smaller blocksizes it is less (bbits = log2 bsize).
104 * Note1: get_block_t takes a long (implicit cast from above)
105 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
106 * can optionally convert the [unsigned] long from above into
107 * an [unsigned] long long.
108 */
109
110 #if BITS_PER_LONG == 32
111 # if defined(CONFIG_LBD)
112 ASSERT(sizeof(sector_t) == 8);
113 pagefactor = PAGE_CACHE_SIZE;
114 bitshift = BITS_PER_LONG;
115 # else
116 pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
117 # endif
118 #endif
119
120 return (((__uint64_t)pagefactor) << bitshift) - 1;
121 }
122
123 STATIC __inline__ void
124 xfs_set_inodeops(
125 struct inode *inode)
126 {
127 switch (inode->i_mode & S_IFMT) {
128 case S_IFREG:
129 inode->i_op = &xfs_inode_operations;
130 inode->i_fop = &xfs_file_operations;
131 inode->i_mapping->a_ops = &xfs_address_space_operations;
132 break;
133 case S_IFDIR:
134 inode->i_op = &xfs_dir_inode_operations;
135 inode->i_fop = &xfs_dir_file_operations;
136 break;
137 case S_IFLNK:
138 inode->i_op = &xfs_symlink_inode_operations;
139 if (inode->i_blocks)
140 inode->i_mapping->a_ops = &xfs_address_space_operations;
141 break;
142 default:
143 inode->i_op = &xfs_inode_operations;
144 init_special_inode(inode, inode->i_mode, inode->i_rdev);
145 break;
146 }
147 }
148
149 STATIC __inline__ void
150 xfs_revalidate_inode(
151 xfs_mount_t *mp,
152 bhv_vnode_t *vp,
153 xfs_inode_t *ip)
154 {
155 struct inode *inode = vn_to_inode(vp);
156
157 inode->i_mode = ip->i_d.di_mode;
158 inode->i_nlink = ip->i_d.di_nlink;
159 inode->i_uid = ip->i_d.di_uid;
160 inode->i_gid = ip->i_d.di_gid;
161
162 switch (inode->i_mode & S_IFMT) {
163 case S_IFBLK:
164 case S_IFCHR:
165 inode->i_rdev =
166 MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
167 sysv_minor(ip->i_df.if_u2.if_rdev));
168 break;
169 default:
170 inode->i_rdev = 0;
171 break;
172 }
173
174 inode->i_blksize = xfs_preferred_iosize(mp);
175 inode->i_generation = ip->i_d.di_gen;
176 i_size_write(inode, ip->i_d.di_size);
177 inode->i_blocks =
178 XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
179 inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec;
180 inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec;
181 inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec;
182 inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec;
183 inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec;
184 inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec;
185 if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
186 inode->i_flags |= S_IMMUTABLE;
187 else
188 inode->i_flags &= ~S_IMMUTABLE;
189 if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
190 inode->i_flags |= S_APPEND;
191 else
192 inode->i_flags &= ~S_APPEND;
193 if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
194 inode->i_flags |= S_SYNC;
195 else
196 inode->i_flags &= ~S_SYNC;
197 if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
198 inode->i_flags |= S_NOATIME;
199 else
200 inode->i_flags &= ~S_NOATIME;
201 vp->v_flag &= ~VMODIFIED;
202 }
203
204 void
205 xfs_initialize_vnode(
206 bhv_desc_t *bdp,
207 bhv_vnode_t *vp,
208 bhv_desc_t *inode_bhv,
209 int unlock)
210 {
211 xfs_inode_t *ip = XFS_BHVTOI(inode_bhv);
212 struct inode *inode = vn_to_inode(vp);
213
214 if (!inode_bhv->bd_vobj) {
215 vp->v_vfsp = bhvtovfs(bdp);
216 bhv_desc_init(inode_bhv, ip, vp, &xfs_vnodeops);
217 bhv_insert(VN_BHV_HEAD(vp), inode_bhv);
218 }
219
220 /*
221 * We need to set the ops vectors, and unlock the inode, but if
222 * we have been called during the new inode create process, it is
223 * too early to fill in the Linux inode. We will get called a
224 * second time once the inode is properly set up, and then we can
225 * finish our work.
226 */
227 if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) {
228 xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip);
229 xfs_set_inodeops(inode);
230
231 ip->i_flags &= ~XFS_INEW;
232 barrier();
233
234 unlock_new_inode(inode);
235 }
236 }
237
238 int
239 xfs_blkdev_get(
240 xfs_mount_t *mp,
241 const char *name,
242 struct block_device **bdevp)
243 {
244 int error = 0;
245
246 *bdevp = open_bdev_excl(name, 0, mp);
247 if (IS_ERR(*bdevp)) {
248 error = PTR_ERR(*bdevp);
249 printk("XFS: Invalid device [%s], error=%d\n", name, error);
250 }
251
252 return -error;
253 }
254
255 void
256 xfs_blkdev_put(
257 struct block_device *bdev)
258 {
259 if (bdev)
260 close_bdev_excl(bdev);
261 }
262
263 /*
264 * Try to write out the superblock using barriers.
265 */
266 STATIC int
267 xfs_barrier_test(
268 xfs_mount_t *mp)
269 {
270 xfs_buf_t *sbp = xfs_getsb(mp, 0);
271 int error;
272
273 XFS_BUF_UNDONE(sbp);
274 XFS_BUF_UNREAD(sbp);
275 XFS_BUF_UNDELAYWRITE(sbp);
276 XFS_BUF_WRITE(sbp);
277 XFS_BUF_UNASYNC(sbp);
278 XFS_BUF_ORDERED(sbp);
279
280 xfsbdstrat(mp, sbp);
281 error = xfs_iowait(sbp);
282
283 /*
284 * Clear all the flags we set and possible error state in the
285 * buffer. We only did the write to try out whether barriers
286 * worked and shouldn't leave any traces in the superblock
287 * buffer.
288 */
289 XFS_BUF_DONE(sbp);
290 XFS_BUF_ERROR(sbp, 0);
291 XFS_BUF_UNORDERED(sbp);
292
293 xfs_buf_relse(sbp);
294 return error;
295 }
296
297 void
298 xfs_mountfs_check_barriers(xfs_mount_t *mp)
299 {
300 int error;
301
302 if (mp->m_logdev_targp != mp->m_ddev_targp) {
303 xfs_fs_cmn_err(CE_NOTE, mp,
304 "Disabling barriers, not supported with external log device");
305 mp->m_flags &= ~XFS_MOUNT_BARRIER;
306 return;
307 }
308
309 if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
310 QUEUE_ORDERED_NONE) {
311 xfs_fs_cmn_err(CE_NOTE, mp,
312 "Disabling barriers, not supported by the underlying device");
313 mp->m_flags &= ~XFS_MOUNT_BARRIER;
314 return;
315 }
316
317 error = xfs_barrier_test(mp);
318 if (error) {
319 xfs_fs_cmn_err(CE_NOTE, mp,
320 "Disabling barriers, trial barrier write failed");
321 mp->m_flags &= ~XFS_MOUNT_BARRIER;
322 return;
323 }
324 }
325
326 void
327 xfs_blkdev_issue_flush(
328 xfs_buftarg_t *buftarg)
329 {
330 blkdev_issue_flush(buftarg->bt_bdev, NULL);
331 }
332
333 STATIC struct inode *
334 xfs_fs_alloc_inode(
335 struct super_block *sb)
336 {
337 bhv_vnode_t *vp;
338
339 vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
340 if (unlikely(!vp))
341 return NULL;
342 return vn_to_inode(vp);
343 }
344
345 STATIC void
346 xfs_fs_destroy_inode(
347 struct inode *inode)
348 {
349 kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
350 }
351
352 STATIC void
353 xfs_fs_inode_init_once(
354 void *vnode,
355 kmem_zone_t *zonep,
356 unsigned long flags)
357 {
358 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
359 SLAB_CTOR_CONSTRUCTOR)
360 inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
361 }
362
363 STATIC int
364 xfs_init_zones(void)
365 {
366 xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
367 KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
368 KM_ZONE_SPREAD,
369 xfs_fs_inode_init_once);
370 if (!xfs_vnode_zone)
371 goto out;
372
373 xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
374 if (!xfs_ioend_zone)
375 goto out_destroy_vnode_zone;
376
377 xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
378 xfs_ioend_zone);
379 if (!xfs_ioend_pool)
380 goto out_free_ioend_zone;
381 return 0;
382
383 out_free_ioend_zone:
384 kmem_zone_destroy(xfs_ioend_zone);
385 out_destroy_vnode_zone:
386 kmem_zone_destroy(xfs_vnode_zone);
387 out:
388 return -ENOMEM;
389 }
390
391 STATIC void
392 xfs_destroy_zones(void)
393 {
394 mempool_destroy(xfs_ioend_pool);
395 kmem_zone_destroy(xfs_vnode_zone);
396 kmem_zone_destroy(xfs_ioend_zone);
397 }
398
399 /*
400 * Attempt to flush the inode, this will actually fail
401 * if the inode is pinned, but we dirty the inode again
402 * at the point when it is unpinned after a log write,
403 * since this is when the inode itself becomes flushable.
404 */
405 STATIC int
406 xfs_fs_write_inode(
407 struct inode *inode,
408 int sync)
409 {
410 bhv_vnode_t *vp = vn_from_inode(inode);
411 int error = 0, flags = FLUSH_INODE;
412
413 if (vp) {
414 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
415 if (sync)
416 flags |= FLUSH_SYNC;
417 error = bhv_vop_iflush(vp, flags);
418 if (error == EAGAIN)
419 error = sync? bhv_vop_iflush(vp, flags | FLUSH_LOG) : 0;
420 }
421 return -error;
422 }
423
424 STATIC void
425 xfs_fs_clear_inode(
426 struct inode *inode)
427 {
428 bhv_vnode_t *vp = vn_from_inode(inode);
429
430 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
431
432 XFS_STATS_INC(vn_rele);
433 XFS_STATS_INC(vn_remove);
434 XFS_STATS_INC(vn_reclaim);
435 XFS_STATS_DEC(vn_active);
436
437 /*
438 * This can happen because xfs_iget_core calls xfs_idestroy if we
439 * find an inode with di_mode == 0 but without IGET_CREATE set.
440 */
441 if (VNHEAD(vp))
442 bhv_vop_inactive(vp, NULL);
443
444 VN_LOCK(vp);
445 vp->v_flag &= ~VMODIFIED;
446 VN_UNLOCK(vp, 0);
447
448 if (VNHEAD(vp))
449 if (bhv_vop_reclaim(vp))
450 panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, vp);
451
452 ASSERT(VNHEAD(vp) == NULL);
453
454 #ifdef XFS_VNODE_TRACE
455 ktrace_free(vp->v_trace);
456 #endif
457 }
458
459 /*
460 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
461 * Doing this has two advantages:
462 * - It saves on stack space, which is tight in certain situations
463 * - It can be used (with care) as a mechanism to avoid deadlocks.
464 * Flushing while allocating in a full filesystem requires both.
465 */
466 STATIC void
467 xfs_syncd_queue_work(
468 struct bhv_vfs *vfs,
469 void *data,
470 void (*syncer)(bhv_vfs_t *, void *))
471 {
472 struct bhv_vfs_sync_work *work;
473
474 work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
475 INIT_LIST_HEAD(&work->w_list);
476 work->w_syncer = syncer;
477 work->w_data = data;
478 work->w_vfs = vfs;
479 spin_lock(&vfs->vfs_sync_lock);
480 list_add_tail(&work->w_list, &vfs->vfs_sync_list);
481 spin_unlock(&vfs->vfs_sync_lock);
482 wake_up_process(vfs->vfs_sync_task);
483 }
484
485 /*
486 * Flush delayed allocate data, attempting to free up reserved space
487 * from existing allocations. At this point a new allocation attempt
488 * has failed with ENOSPC and we are in the process of scratching our
489 * heads, looking about for more room...
490 */
491 STATIC void
492 xfs_flush_inode_work(
493 bhv_vfs_t *vfs,
494 void *inode)
495 {
496 filemap_flush(((struct inode *)inode)->i_mapping);
497 iput((struct inode *)inode);
498 }
499
500 void
501 xfs_flush_inode(
502 xfs_inode_t *ip)
503 {
504 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
505 struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
506
507 igrab(inode);
508 xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work);
509 delay(msecs_to_jiffies(500));
510 }
511
512 /*
513 * This is the "bigger hammer" version of xfs_flush_inode_work...
514 * (IOW, "If at first you don't succeed, use a Bigger Hammer").
515 */
516 STATIC void
517 xfs_flush_device_work(
518 bhv_vfs_t *vfs,
519 void *inode)
520 {
521 sync_blockdev(vfs->vfs_super->s_bdev);
522 iput((struct inode *)inode);
523 }
524
525 void
526 xfs_flush_device(
527 xfs_inode_t *ip)
528 {
529 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
530 struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
531
532 igrab(inode);
533 xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work);
534 delay(msecs_to_jiffies(500));
535 xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
536 }
537
538 STATIC void
539 vfs_sync_worker(
540 bhv_vfs_t *vfsp,
541 void *unused)
542 {
543 int error;
544
545 if (!(vfsp->vfs_flag & VFS_RDONLY))
546 error = bhv_vfs_sync(vfsp, SYNC_FSDATA | SYNC_BDFLUSH | \
547 SYNC_ATTR | SYNC_REFCACHE, NULL);
548 vfsp->vfs_sync_seq++;
549 wmb();
550 wake_up(&vfsp->vfs_wait_single_sync_task);
551 }
552
553 STATIC int
554 xfssyncd(
555 void *arg)
556 {
557 long timeleft;
558 bhv_vfs_t *vfsp = (bhv_vfs_t *) arg;
559 bhv_vfs_sync_work_t *work, *n;
560 LIST_HEAD (tmp);
561
562 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
563 for (;;) {
564 timeleft = schedule_timeout_interruptible(timeleft);
565 /* swsusp */
566 try_to_freeze();
567 if (kthread_should_stop() && list_empty(&vfsp->vfs_sync_list))
568 break;
569
570 spin_lock(&vfsp->vfs_sync_lock);
571 /*
572 * We can get woken by laptop mode, to do a sync -
573 * that's the (only!) case where the list would be
574 * empty with time remaining.
575 */
576 if (!timeleft || list_empty(&vfsp->vfs_sync_list)) {
577 if (!timeleft)
578 timeleft = xfs_syncd_centisecs *
579 msecs_to_jiffies(10);
580 INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list);
581 list_add_tail(&vfsp->vfs_sync_work.w_list,
582 &vfsp->vfs_sync_list);
583 }
584 list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list)
585 list_move(&work->w_list, &tmp);
586 spin_unlock(&vfsp->vfs_sync_lock);
587
588 list_for_each_entry_safe(work, n, &tmp, w_list) {
589 (*work->w_syncer)(vfsp, work->w_data);
590 list_del(&work->w_list);
591 if (work == &vfsp->vfs_sync_work)
592 continue;
593 kmem_free(work, sizeof(struct bhv_vfs_sync_work));
594 }
595 }
596
597 return 0;
598 }
599
600 STATIC int
601 xfs_fs_start_syncd(
602 bhv_vfs_t *vfsp)
603 {
604 vfsp->vfs_sync_work.w_syncer = vfs_sync_worker;
605 vfsp->vfs_sync_work.w_vfs = vfsp;
606 vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd");
607 if (IS_ERR(vfsp->vfs_sync_task))
608 return -PTR_ERR(vfsp->vfs_sync_task);
609 return 0;
610 }
611
612 STATIC void
613 xfs_fs_stop_syncd(
614 bhv_vfs_t *vfsp)
615 {
616 kthread_stop(vfsp->vfs_sync_task);
617 }
618
619 STATIC void
620 xfs_fs_put_super(
621 struct super_block *sb)
622 {
623 bhv_vfs_t *vfsp = vfs_from_sb(sb);
624 int error;
625
626 xfs_fs_stop_syncd(vfsp);
627 bhv_vfs_sync(vfsp, SYNC_ATTR | SYNC_DELWRI, NULL);
628 error = bhv_vfs_unmount(vfsp, 0, NULL);
629 if (error) {
630 printk("XFS: unmount got error=%d\n", error);
631 printk("%s: vfs=0x%p left dangling!\n", __FUNCTION__, vfsp);
632 } else {
633 vfs_deallocate(vfsp);
634 }
635 }
636
637 STATIC void
638 xfs_fs_write_super(
639 struct super_block *sb)
640 {
641 if (!(sb->s_flags & MS_RDONLY))
642 bhv_vfs_sync(vfs_from_sb(sb), SYNC_FSDATA, NULL);
643 sb->s_dirt = 0;
644 }
645
646 STATIC int
647 xfs_fs_sync_super(
648 struct super_block *sb,
649 int wait)
650 {
651 bhv_vfs_t *vfsp = vfs_from_sb(sb);
652 int error;
653 int flags;
654
655 if (unlikely(sb->s_frozen == SB_FREEZE_WRITE))
656 flags = SYNC_QUIESCE;
657 else
658 flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0);
659
660 error = bhv_vfs_sync(vfsp, flags, NULL);
661 sb->s_dirt = 0;
662
663 if (unlikely(laptop_mode)) {
664 int prev_sync_seq = vfsp->vfs_sync_seq;
665
666 /*
667 * The disk must be active because we're syncing.
668 * We schedule xfssyncd now (now that the disk is
669 * active) instead of later (when it might not be).
670 */
671 wake_up_process(vfsp->vfs_sync_task);
672 /*
673 * We have to wait for the sync iteration to complete.
674 * If we don't, the disk activity caused by the sync
675 * will come after the sync is completed, and that
676 * triggers another sync from laptop mode.
677 */
678 wait_event(vfsp->vfs_wait_single_sync_task,
679 vfsp->vfs_sync_seq != prev_sync_seq);
680 }
681
682 return -error;
683 }
684
685 STATIC int
686 xfs_fs_statfs(
687 struct dentry *dentry,
688 struct kstatfs *statp)
689 {
690 return -bhv_vfs_statvfs(vfs_from_sb(dentry->d_sb), statp, NULL);
691 }
692
693 STATIC int
694 xfs_fs_remount(
695 struct super_block *sb,
696 int *flags,
697 char *options)
698 {
699 bhv_vfs_t *vfsp = vfs_from_sb(sb);
700 struct xfs_mount_args *args = xfs_args_allocate(sb, 0);
701 int error;
702
703 error = bhv_vfs_parseargs(vfsp, options, args, 1);
704 if (!error)
705 error = bhv_vfs_mntupdate(vfsp, flags, args);
706 kmem_free(args, sizeof(*args));
707 return -error;
708 }
709
710 STATIC void
711 xfs_fs_lockfs(
712 struct super_block *sb)
713 {
714 bhv_vfs_freeze(vfs_from_sb(sb));
715 }
716
717 STATIC int
718 xfs_fs_show_options(
719 struct seq_file *m,
720 struct vfsmount *mnt)
721 {
722 return -bhv_vfs_showargs(vfs_from_sb(mnt->mnt_sb), m);
723 }
724
725 STATIC int
726 xfs_fs_quotasync(
727 struct super_block *sb,
728 int type)
729 {
730 return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XQUOTASYNC, 0, NULL);
731 }
732
733 STATIC int
734 xfs_fs_getxstate(
735 struct super_block *sb,
736 struct fs_quota_stat *fqs)
737 {
738 return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
739 }
740
741 STATIC int
742 xfs_fs_setxstate(
743 struct super_block *sb,
744 unsigned int flags,
745 int op)
746 {
747 return -bhv_vfs_quotactl(vfs_from_sb(sb), op, 0, (caddr_t)&flags);
748 }
749
750 STATIC int
751 xfs_fs_getxquota(
752 struct super_block *sb,
753 int type,
754 qid_t id,
755 struct fs_disk_quota *fdq)
756 {
757 return -bhv_vfs_quotactl(vfs_from_sb(sb),
758 (type == USRQUOTA) ? Q_XGETQUOTA :
759 ((type == GRPQUOTA) ? Q_XGETGQUOTA :
760 Q_XGETPQUOTA), id, (caddr_t)fdq);
761 }
762
763 STATIC int
764 xfs_fs_setxquota(
765 struct super_block *sb,
766 int type,
767 qid_t id,
768 struct fs_disk_quota *fdq)
769 {
770 return -bhv_vfs_quotactl(vfs_from_sb(sb),
771 (type == USRQUOTA) ? Q_XSETQLIM :
772 ((type == GRPQUOTA) ? Q_XSETGQLIM :
773 Q_XSETPQLIM), id, (caddr_t)fdq);
774 }
775
776 STATIC int
777 xfs_fs_fill_super(
778 struct super_block *sb,
779 void *data,
780 int silent)
781 {
782 struct bhv_vnode *rootvp;
783 struct bhv_vfs *vfsp = vfs_allocate(sb);
784 struct xfs_mount_args *args = xfs_args_allocate(sb, silent);
785 struct kstatfs statvfs;
786 int error;
787
788 bhv_insert_all_vfsops(vfsp);
789
790 error = bhv_vfs_parseargs(vfsp, (char *)data, args, 0);
791 if (error) {
792 bhv_remove_all_vfsops(vfsp, 1);
793 goto fail_vfsop;
794 }
795
796 sb_min_blocksize(sb, BBSIZE);
797 sb->s_export_op = &xfs_export_operations;
798 sb->s_qcop = &xfs_quotactl_operations;
799 sb->s_op = &xfs_super_operations;
800
801 error = bhv_vfs_mount(vfsp, args, NULL);
802 if (error) {
803 bhv_remove_all_vfsops(vfsp, 1);
804 goto fail_vfsop;
805 }
806
807 error = bhv_vfs_statvfs(vfsp, &statvfs, NULL);
808 if (error)
809 goto fail_unmount;
810
811 sb->s_dirt = 1;
812 sb->s_magic = statvfs.f_type;
813 sb->s_blocksize = statvfs.f_bsize;
814 sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
815 sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
816 sb->s_time_gran = 1;
817 set_posix_acl_flag(sb);
818
819 error = bhv_vfs_root(vfsp, &rootvp);
820 if (error)
821 goto fail_unmount;
822
823 sb->s_root = d_alloc_root(vn_to_inode(rootvp));
824 if (!sb->s_root) {
825 error = ENOMEM;
826 goto fail_vnrele;
827 }
828 if (is_bad_inode(sb->s_root->d_inode)) {
829 error = EINVAL;
830 goto fail_vnrele;
831 }
832 if ((error = xfs_fs_start_syncd(vfsp)))
833 goto fail_vnrele;
834 vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address);
835
836 kmem_free(args, sizeof(*args));
837 return 0;
838
839 fail_vnrele:
840 if (sb->s_root) {
841 dput(sb->s_root);
842 sb->s_root = NULL;
843 } else {
844 VN_RELE(rootvp);
845 }
846
847 fail_unmount:
848 bhv_vfs_unmount(vfsp, 0, NULL);
849
850 fail_vfsop:
851 vfs_deallocate(vfsp);
852 kmem_free(args, sizeof(*args));
853 return -error;
854 }
855
856 STATIC int
857 xfs_fs_get_sb(
858 struct file_system_type *fs_type,
859 int flags,
860 const char *dev_name,
861 void *data,
862 struct vfsmount *mnt)
863 {
864 return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
865 mnt);
866 }
867
868 STATIC struct super_operations xfs_super_operations = {
869 .alloc_inode = xfs_fs_alloc_inode,
870 .destroy_inode = xfs_fs_destroy_inode,
871 .write_inode = xfs_fs_write_inode,
872 .clear_inode = xfs_fs_clear_inode,
873 .put_super = xfs_fs_put_super,
874 .write_super = xfs_fs_write_super,
875 .sync_fs = xfs_fs_sync_super,
876 .write_super_lockfs = xfs_fs_lockfs,
877 .statfs = xfs_fs_statfs,
878 .remount_fs = xfs_fs_remount,
879 .show_options = xfs_fs_show_options,
880 };
881
882 STATIC struct quotactl_ops xfs_quotactl_operations = {
883 .quota_sync = xfs_fs_quotasync,
884 .get_xstate = xfs_fs_getxstate,
885 .set_xstate = xfs_fs_setxstate,
886 .get_xquota = xfs_fs_getxquota,
887 .set_xquota = xfs_fs_setxquota,
888 };
889
890 STATIC struct file_system_type xfs_fs_type = {
891 .owner = THIS_MODULE,
892 .name = "xfs",
893 .get_sb = xfs_fs_get_sb,
894 .kill_sb = kill_block_super,
895 .fs_flags = FS_REQUIRES_DEV,
896 };
897
898
899 STATIC int __init
900 init_xfs_fs( void )
901 {
902 int error;
903 struct sysinfo si;
904 static char message[] __initdata = KERN_INFO \
905 XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
906
907 printk(message);
908
909 si_meminfo(&si);
910 xfs_physmem = si.totalram;
911
912 ktrace_init(64);
913
914 error = xfs_init_zones();
915 if (error < 0)
916 goto undo_zones;
917
918 error = xfs_buf_init();
919 if (error < 0)
920 goto undo_buffers;
921
922 vn_init();
923 xfs_init();
924 uuid_init();
925 vfs_initquota();
926
927 error = register_filesystem(&xfs_fs_type);
928 if (error)
929 goto undo_register;
930 return 0;
931
932 undo_register:
933 xfs_buf_terminate();
934
935 undo_buffers:
936 xfs_destroy_zones();
937
938 undo_zones:
939 return error;
940 }
941
942 STATIC void __exit
943 exit_xfs_fs( void )
944 {
945 vfs_exitquota();
946 unregister_filesystem(&xfs_fs_type);
947 xfs_cleanup();
948 xfs_buf_terminate();
949 xfs_destroy_zones();
950 ktrace_uninit();
951 }
952
953 module_init(init_xfs_fs);
954 module_exit(exit_xfs_fs);
955
956 MODULE_AUTHOR("Silicon Graphics, Inc.");
957 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
958 MODULE_LICENSE("GPL");