]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/xfs/xfs_file.c
86ecc9b49e1582361551891cf252316e0e80773d
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_file.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41 #include "xfs_reflink.h"
42
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 #include <linux/backing-dev.h>
47
48 static const struct vm_operations_struct xfs_file_vm_ops;
49
50 /*
51 * Locking primitives for read and write IO paths to ensure we consistently use
52 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
53 */
54 static inline void
55 xfs_rw_ilock(
56 struct xfs_inode *ip,
57 int type)
58 {
59 if (type & XFS_IOLOCK_EXCL)
60 inode_lock(VFS_I(ip));
61 xfs_ilock(ip, type);
62 }
63
64 static inline void
65 xfs_rw_iunlock(
66 struct xfs_inode *ip,
67 int type)
68 {
69 xfs_iunlock(ip, type);
70 if (type & XFS_IOLOCK_EXCL)
71 inode_unlock(VFS_I(ip));
72 }
73
74 static inline void
75 xfs_rw_ilock_demote(
76 struct xfs_inode *ip,
77 int type)
78 {
79 xfs_ilock_demote(ip, type);
80 if (type & XFS_IOLOCK_EXCL)
81 inode_unlock(VFS_I(ip));
82 }
83
84 /*
85 * Clear the specified ranges to zero through either the pagecache or DAX.
86 * Holes and unwritten extents will be left as-is as they already are zeroed.
87 */
88 int
89 xfs_zero_range(
90 struct xfs_inode *ip,
91 xfs_off_t pos,
92 xfs_off_t count,
93 bool *did_zero)
94 {
95 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
96 }
97
98 int
99 xfs_update_prealloc_flags(
100 struct xfs_inode *ip,
101 enum xfs_prealloc_flags flags)
102 {
103 struct xfs_trans *tp;
104 int error;
105
106 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
107 0, 0, 0, &tp);
108 if (error)
109 return error;
110
111 xfs_ilock(ip, XFS_ILOCK_EXCL);
112 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
113
114 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
115 VFS_I(ip)->i_mode &= ~S_ISUID;
116 if (VFS_I(ip)->i_mode & S_IXGRP)
117 VFS_I(ip)->i_mode &= ~S_ISGID;
118 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
119 }
120
121 if (flags & XFS_PREALLOC_SET)
122 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
123 if (flags & XFS_PREALLOC_CLEAR)
124 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
125
126 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
127 if (flags & XFS_PREALLOC_SYNC)
128 xfs_trans_set_sync(tp);
129 return xfs_trans_commit(tp);
130 }
131
132 /*
133 * Fsync operations on directories are much simpler than on regular files,
134 * as there is no file data to flush, and thus also no need for explicit
135 * cache flush operations, and there are no non-transaction metadata updates
136 * on directories either.
137 */
138 STATIC int
139 xfs_dir_fsync(
140 struct file *file,
141 loff_t start,
142 loff_t end,
143 int datasync)
144 {
145 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
146 struct xfs_mount *mp = ip->i_mount;
147 xfs_lsn_t lsn = 0;
148
149 trace_xfs_dir_fsync(ip);
150
151 xfs_ilock(ip, XFS_ILOCK_SHARED);
152 if (xfs_ipincount(ip))
153 lsn = ip->i_itemp->ili_last_lsn;
154 xfs_iunlock(ip, XFS_ILOCK_SHARED);
155
156 if (!lsn)
157 return 0;
158 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
159 }
160
161 STATIC int
162 xfs_file_fsync(
163 struct file *file,
164 loff_t start,
165 loff_t end,
166 int datasync)
167 {
168 struct inode *inode = file->f_mapping->host;
169 struct xfs_inode *ip = XFS_I(inode);
170 struct xfs_mount *mp = ip->i_mount;
171 int error = 0;
172 int log_flushed = 0;
173 xfs_lsn_t lsn = 0;
174
175 trace_xfs_file_fsync(ip);
176
177 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
178 if (error)
179 return error;
180
181 if (XFS_FORCED_SHUTDOWN(mp))
182 return -EIO;
183
184 xfs_iflags_clear(ip, XFS_ITRUNCATED);
185
186 if (mp->m_flags & XFS_MOUNT_BARRIER) {
187 /*
188 * If we have an RT and/or log subvolume we need to make sure
189 * to flush the write cache the device used for file data
190 * first. This is to ensure newly written file data make
191 * it to disk before logging the new inode size in case of
192 * an extending write.
193 */
194 if (XFS_IS_REALTIME_INODE(ip))
195 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
196 else if (mp->m_logdev_targp != mp->m_ddev_targp)
197 xfs_blkdev_issue_flush(mp->m_ddev_targp);
198 }
199
200 /*
201 * All metadata updates are logged, which means that we just have to
202 * flush the log up to the latest LSN that touched the inode. If we have
203 * concurrent fsync/fdatasync() calls, we need them to all block on the
204 * log force before we clear the ili_fsync_fields field. This ensures
205 * that we don't get a racing sync operation that does not wait for the
206 * metadata to hit the journal before returning. If we race with
207 * clearing the ili_fsync_fields, then all that will happen is the log
208 * force will do nothing as the lsn will already be on disk. We can't
209 * race with setting ili_fsync_fields because that is done under
210 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
211 * until after the ili_fsync_fields is cleared.
212 */
213 xfs_ilock(ip, XFS_ILOCK_SHARED);
214 if (xfs_ipincount(ip)) {
215 if (!datasync ||
216 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
217 lsn = ip->i_itemp->ili_last_lsn;
218 }
219
220 if (lsn) {
221 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
222 ip->i_itemp->ili_fsync_fields = 0;
223 }
224 xfs_iunlock(ip, XFS_ILOCK_SHARED);
225
226 /*
227 * If we only have a single device, and the log force about was
228 * a no-op we might have to flush the data device cache here.
229 * This can only happen for fdatasync/O_DSYNC if we were overwriting
230 * an already allocated file and thus do not have any metadata to
231 * commit.
232 */
233 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
234 mp->m_logdev_targp == mp->m_ddev_targp &&
235 !XFS_IS_REALTIME_INODE(ip) &&
236 !log_flushed)
237 xfs_blkdev_issue_flush(mp->m_ddev_targp);
238
239 return error;
240 }
241
242 STATIC ssize_t
243 xfs_file_dio_aio_read(
244 struct kiocb *iocb,
245 struct iov_iter *to)
246 {
247 struct address_space *mapping = iocb->ki_filp->f_mapping;
248 struct inode *inode = mapping->host;
249 struct xfs_inode *ip = XFS_I(inode);
250 loff_t isize = i_size_read(inode);
251 size_t count = iov_iter_count(to);
252 loff_t end = iocb->ki_pos + count - 1;
253 struct iov_iter data;
254 struct xfs_buftarg *target;
255 ssize_t ret = 0;
256
257 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
258
259 if (!count)
260 return 0; /* skip atime */
261
262 if (XFS_IS_REALTIME_INODE(ip))
263 target = ip->i_mount->m_rtdev_targp;
264 else
265 target = ip->i_mount->m_ddev_targp;
266
267 /* DIO must be aligned to device logical sector size */
268 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
269 if (iocb->ki_pos == isize)
270 return 0;
271 return -EINVAL;
272 }
273
274 file_accessed(iocb->ki_filp);
275
276 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
277 if (mapping->nrpages) {
278 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, end);
279 if (ret)
280 goto out_unlock;
281
282 /*
283 * Invalidate whole pages. This can return an error if we fail
284 * to invalidate a page, but this should never happen on XFS.
285 * Warn if it does fail.
286 */
287 ret = invalidate_inode_pages2_range(mapping,
288 iocb->ki_pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
289 WARN_ON_ONCE(ret);
290 ret = 0;
291 }
292
293 data = *to;
294 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
295 xfs_get_blocks_direct, NULL, NULL, 0);
296 if (ret >= 0) {
297 iocb->ki_pos += ret;
298 iov_iter_advance(to, ret);
299 }
300
301 out_unlock:
302 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
303 return ret;
304 }
305
306 static noinline ssize_t
307 xfs_file_dax_read(
308 struct kiocb *iocb,
309 struct iov_iter *to)
310 {
311 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
312 size_t count = iov_iter_count(to);
313 ssize_t ret = 0;
314
315 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
316
317 if (!count)
318 return 0; /* skip atime */
319
320 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
321 ret = iomap_dax_rw(iocb, to, &xfs_iomap_ops);
322 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
323
324 file_accessed(iocb->ki_filp);
325 return ret;
326 }
327
328 STATIC ssize_t
329 xfs_file_buffered_aio_read(
330 struct kiocb *iocb,
331 struct iov_iter *to)
332 {
333 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
334 ssize_t ret;
335
336 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
337
338 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
339 ret = generic_file_read_iter(iocb, to);
340 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
341
342 return ret;
343 }
344
345 STATIC ssize_t
346 xfs_file_read_iter(
347 struct kiocb *iocb,
348 struct iov_iter *to)
349 {
350 struct inode *inode = file_inode(iocb->ki_filp);
351 struct xfs_mount *mp = XFS_I(inode)->i_mount;
352 ssize_t ret = 0;
353
354 XFS_STATS_INC(mp, xs_read_calls);
355
356 if (XFS_FORCED_SHUTDOWN(mp))
357 return -EIO;
358
359 if (IS_DAX(inode))
360 ret = xfs_file_dax_read(iocb, to);
361 else if (iocb->ki_flags & IOCB_DIRECT)
362 ret = xfs_file_dio_aio_read(iocb, to);
363 else
364 ret = xfs_file_buffered_aio_read(iocb, to);
365
366 if (ret > 0)
367 XFS_STATS_ADD(mp, xs_read_bytes, ret);
368 return ret;
369 }
370
371 /*
372 * Zero any on disk space between the current EOF and the new, larger EOF.
373 *
374 * This handles the normal case of zeroing the remainder of the last block in
375 * the file and the unusual case of zeroing blocks out beyond the size of the
376 * file. This second case only happens with fixed size extents and when the
377 * system crashes before the inode size was updated but after blocks were
378 * allocated.
379 *
380 * Expects the iolock to be held exclusive, and will take the ilock internally.
381 */
382 int /* error (positive) */
383 xfs_zero_eof(
384 struct xfs_inode *ip,
385 xfs_off_t offset, /* starting I/O offset */
386 xfs_fsize_t isize, /* current inode size */
387 bool *did_zeroing)
388 {
389 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
390 ASSERT(offset > isize);
391
392 trace_xfs_zero_eof(ip, isize, offset - isize);
393 return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
394 }
395
396 /*
397 * Common pre-write limit and setup checks.
398 *
399 * Called with the iolocked held either shared and exclusive according to
400 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
401 * if called for a direct write beyond i_size.
402 */
403 STATIC ssize_t
404 xfs_file_aio_write_checks(
405 struct kiocb *iocb,
406 struct iov_iter *from,
407 int *iolock)
408 {
409 struct file *file = iocb->ki_filp;
410 struct inode *inode = file->f_mapping->host;
411 struct xfs_inode *ip = XFS_I(inode);
412 ssize_t error = 0;
413 size_t count = iov_iter_count(from);
414 bool drained_dio = false;
415
416 restart:
417 error = generic_write_checks(iocb, from);
418 if (error <= 0)
419 return error;
420
421 error = xfs_break_layouts(inode, iolock, true);
422 if (error)
423 return error;
424
425 /* For changing security info in file_remove_privs() we need i_mutex */
426 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
427 xfs_rw_iunlock(ip, *iolock);
428 *iolock = XFS_IOLOCK_EXCL;
429 xfs_rw_ilock(ip, *iolock);
430 goto restart;
431 }
432 /*
433 * If the offset is beyond the size of the file, we need to zero any
434 * blocks that fall between the existing EOF and the start of this
435 * write. If zeroing is needed and we are currently holding the
436 * iolock shared, we need to update it to exclusive which implies
437 * having to redo all checks before.
438 *
439 * We need to serialise against EOF updates that occur in IO
440 * completions here. We want to make sure that nobody is changing the
441 * size while we do this check until we have placed an IO barrier (i.e.
442 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
443 * The spinlock effectively forms a memory barrier once we have the
444 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
445 * and hence be able to correctly determine if we need to run zeroing.
446 */
447 spin_lock(&ip->i_flags_lock);
448 if (iocb->ki_pos > i_size_read(inode)) {
449 bool zero = false;
450
451 spin_unlock(&ip->i_flags_lock);
452 if (!drained_dio) {
453 if (*iolock == XFS_IOLOCK_SHARED) {
454 xfs_rw_iunlock(ip, *iolock);
455 *iolock = XFS_IOLOCK_EXCL;
456 xfs_rw_ilock(ip, *iolock);
457 iov_iter_reexpand(from, count);
458 }
459 /*
460 * We now have an IO submission barrier in place, but
461 * AIO can do EOF updates during IO completion and hence
462 * we now need to wait for all of them to drain. Non-AIO
463 * DIO will have drained before we are given the
464 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
465 * no-op.
466 */
467 inode_dio_wait(inode);
468 drained_dio = true;
469 goto restart;
470 }
471 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
472 if (error)
473 return error;
474 } else
475 spin_unlock(&ip->i_flags_lock);
476
477 /*
478 * Updating the timestamps will grab the ilock again from
479 * xfs_fs_dirty_inode, so we have to call it after dropping the
480 * lock above. Eventually we should look into a way to avoid
481 * the pointless lock roundtrip.
482 */
483 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
484 error = file_update_time(file);
485 if (error)
486 return error;
487 }
488
489 /*
490 * If we're writing the file then make sure to clear the setuid and
491 * setgid bits if the process is not being run by root. This keeps
492 * people from modifying setuid and setgid binaries.
493 */
494 if (!IS_NOSEC(inode))
495 return file_remove_privs(file);
496 return 0;
497 }
498
499 /*
500 * xfs_file_dio_aio_write - handle direct IO writes
501 *
502 * Lock the inode appropriately to prepare for and issue a direct IO write.
503 * By separating it from the buffered write path we remove all the tricky to
504 * follow locking changes and looping.
505 *
506 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
507 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
508 * pages are flushed out.
509 *
510 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
511 * allowing them to be done in parallel with reads and other direct IO writes.
512 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
513 * needs to do sub-block zeroing and that requires serialisation against other
514 * direct IOs to the same block. In this case we need to serialise the
515 * submission of the unaligned IOs so that we don't get racing block zeroing in
516 * the dio layer. To avoid the problem with aio, we also need to wait for
517 * outstanding IOs to complete so that unwritten extent conversion is completed
518 * before we try to map the overlapping block. This is currently implemented by
519 * hitting it with a big hammer (i.e. inode_dio_wait()).
520 *
521 * Returns with locks held indicated by @iolock and errors indicated by
522 * negative return values.
523 */
524 STATIC ssize_t
525 xfs_file_dio_aio_write(
526 struct kiocb *iocb,
527 struct iov_iter *from)
528 {
529 struct file *file = iocb->ki_filp;
530 struct address_space *mapping = file->f_mapping;
531 struct inode *inode = mapping->host;
532 struct xfs_inode *ip = XFS_I(inode);
533 struct xfs_mount *mp = ip->i_mount;
534 ssize_t ret = 0;
535 int unaligned_io = 0;
536 int iolock;
537 size_t count = iov_iter_count(from);
538 loff_t end;
539 struct iov_iter data;
540 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
541 mp->m_rtdev_targp : mp->m_ddev_targp;
542
543 /* DIO must be aligned to device logical sector size */
544 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
545 return -EINVAL;
546
547 /*
548 * Don't take the exclusive iolock here unless the I/O is unaligned to
549 * the file system block size. We don't need to consider the EOF
550 * extension case here because xfs_file_aio_write_checks() will relock
551 * the inode as necessary for EOF zeroing cases and fill out the new
552 * inode size as appropriate.
553 */
554 if ((iocb->ki_pos & mp->m_blockmask) ||
555 ((iocb->ki_pos + count) & mp->m_blockmask)) {
556 unaligned_io = 1;
557 iolock = XFS_IOLOCK_EXCL;
558 } else {
559 iolock = XFS_IOLOCK_SHARED;
560 }
561
562 xfs_rw_ilock(ip, iolock);
563
564 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
565 if (ret)
566 goto out;
567 count = iov_iter_count(from);
568 end = iocb->ki_pos + count - 1;
569
570 if (mapping->nrpages) {
571 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, end);
572 if (ret)
573 goto out;
574
575 /*
576 * Invalidate whole pages. This can return an error if we fail
577 * to invalidate a page, but this should never happen on XFS.
578 * Warn if it does fail.
579 */
580 ret = invalidate_inode_pages2_range(mapping,
581 iocb->ki_pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
582 WARN_ON_ONCE(ret);
583 ret = 0;
584 }
585
586 /*
587 * If we are doing unaligned IO, wait for all other IO to drain,
588 * otherwise demote the lock if we had to take the exclusive lock
589 * for other reasons in xfs_file_aio_write_checks.
590 */
591 if (unaligned_io)
592 inode_dio_wait(inode);
593 else if (iolock == XFS_IOLOCK_EXCL) {
594 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
595 iolock = XFS_IOLOCK_SHARED;
596 }
597
598 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
599
600 /* If this is a block-aligned directio CoW, remap immediately. */
601 if (xfs_is_reflink_inode(ip) && !unaligned_io) {
602 ret = xfs_reflink_allocate_cow_range(ip, iocb->ki_pos, count);
603 if (ret)
604 goto out;
605 }
606
607 data = *from;
608 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
609 xfs_get_blocks_direct, xfs_end_io_direct_write,
610 NULL, DIO_ASYNC_EXTEND);
611
612 /* see generic_file_direct_write() for why this is necessary */
613 if (mapping->nrpages) {
614 invalidate_inode_pages2_range(mapping,
615 iocb->ki_pos >> PAGE_SHIFT,
616 end >> PAGE_SHIFT);
617 }
618
619 if (ret > 0) {
620 iocb->ki_pos += ret;
621 iov_iter_advance(from, ret);
622 }
623 out:
624 xfs_rw_iunlock(ip, iolock);
625
626 /*
627 * No fallback to buffered IO on errors for XFS, direct IO will either
628 * complete fully or fail.
629 */
630 ASSERT(ret < 0 || ret == count);
631 return ret;
632 }
633
634 static noinline ssize_t
635 xfs_file_dax_write(
636 struct kiocb *iocb,
637 struct iov_iter *from)
638 {
639 struct inode *inode = iocb->ki_filp->f_mapping->host;
640 struct xfs_inode *ip = XFS_I(inode);
641 int iolock = XFS_IOLOCK_EXCL;
642 ssize_t ret, error = 0;
643 size_t count;
644 loff_t pos;
645
646 xfs_rw_ilock(ip, iolock);
647 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
648 if (ret)
649 goto out;
650
651 pos = iocb->ki_pos;
652 count = iov_iter_count(from);
653
654 trace_xfs_file_dax_write(ip, count, pos);
655
656 ret = iomap_dax_rw(iocb, from, &xfs_iomap_ops);
657 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
658 i_size_write(inode, iocb->ki_pos);
659 error = xfs_setfilesize(ip, pos, ret);
660 }
661
662 out:
663 xfs_rw_iunlock(ip, iolock);
664 return error ? error : ret;
665 }
666
667 STATIC ssize_t
668 xfs_file_buffered_aio_write(
669 struct kiocb *iocb,
670 struct iov_iter *from)
671 {
672 struct file *file = iocb->ki_filp;
673 struct address_space *mapping = file->f_mapping;
674 struct inode *inode = mapping->host;
675 struct xfs_inode *ip = XFS_I(inode);
676 ssize_t ret;
677 int enospc = 0;
678 int iolock = XFS_IOLOCK_EXCL;
679
680 xfs_rw_ilock(ip, iolock);
681
682 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
683 if (ret)
684 goto out;
685
686 /* We can write back this queue in page reclaim */
687 current->backing_dev_info = inode_to_bdi(inode);
688
689 write_retry:
690 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
691 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
692 if (likely(ret >= 0))
693 iocb->ki_pos += ret;
694
695 /*
696 * If we hit a space limit, try to free up some lingering preallocated
697 * space before returning an error. In the case of ENOSPC, first try to
698 * write back all dirty inodes to free up some of the excess reserved
699 * metadata space. This reduces the chances that the eofblocks scan
700 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
701 * also behaves as a filter to prevent too many eofblocks scans from
702 * running at the same time.
703 */
704 if (ret == -EDQUOT && !enospc) {
705 enospc = xfs_inode_free_quota_eofblocks(ip);
706 if (enospc)
707 goto write_retry;
708 enospc = xfs_inode_free_quota_cowblocks(ip);
709 if (enospc)
710 goto write_retry;
711 } else if (ret == -ENOSPC && !enospc) {
712 struct xfs_eofblocks eofb = {0};
713
714 enospc = 1;
715 xfs_flush_inodes(ip->i_mount);
716 eofb.eof_scan_owner = ip->i_ino; /* for locking */
717 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
718 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
719 goto write_retry;
720 }
721
722 current->backing_dev_info = NULL;
723 out:
724 xfs_rw_iunlock(ip, iolock);
725 return ret;
726 }
727
728 STATIC ssize_t
729 xfs_file_write_iter(
730 struct kiocb *iocb,
731 struct iov_iter *from)
732 {
733 struct file *file = iocb->ki_filp;
734 struct address_space *mapping = file->f_mapping;
735 struct inode *inode = mapping->host;
736 struct xfs_inode *ip = XFS_I(inode);
737 ssize_t ret;
738 size_t ocount = iov_iter_count(from);
739
740 XFS_STATS_INC(ip->i_mount, xs_write_calls);
741
742 if (ocount == 0)
743 return 0;
744
745 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
746 return -EIO;
747
748 if (IS_DAX(inode))
749 ret = xfs_file_dax_write(iocb, from);
750 else if (iocb->ki_flags & IOCB_DIRECT) {
751 /*
752 * Allow a directio write to fall back to a buffered
753 * write *only* in the case that we're doing a reflink
754 * CoW. In all other directio scenarios we do not
755 * allow an operation to fall back to buffered mode.
756 */
757 ret = xfs_file_dio_aio_write(iocb, from);
758 if (ret == -EREMCHG)
759 goto buffered;
760 } else {
761 buffered:
762 ret = xfs_file_buffered_aio_write(iocb, from);
763 }
764
765 if (ret > 0) {
766 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
767
768 /* Handle various SYNC-type writes */
769 ret = generic_write_sync(iocb, ret);
770 }
771 return ret;
772 }
773
774 #define XFS_FALLOC_FL_SUPPORTED \
775 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
776 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
777 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
778
779 STATIC long
780 xfs_file_fallocate(
781 struct file *file,
782 int mode,
783 loff_t offset,
784 loff_t len)
785 {
786 struct inode *inode = file_inode(file);
787 struct xfs_inode *ip = XFS_I(inode);
788 long error;
789 enum xfs_prealloc_flags flags = 0;
790 uint iolock = XFS_IOLOCK_EXCL;
791 loff_t new_size = 0;
792 bool do_file_insert = 0;
793
794 if (!S_ISREG(inode->i_mode))
795 return -EINVAL;
796 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
797 return -EOPNOTSUPP;
798
799 xfs_ilock(ip, iolock);
800 error = xfs_break_layouts(inode, &iolock, false);
801 if (error)
802 goto out_unlock;
803
804 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
805 iolock |= XFS_MMAPLOCK_EXCL;
806
807 if (mode & FALLOC_FL_PUNCH_HOLE) {
808 error = xfs_free_file_space(ip, offset, len);
809 if (error)
810 goto out_unlock;
811 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
812 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
813
814 if (offset & blksize_mask || len & blksize_mask) {
815 error = -EINVAL;
816 goto out_unlock;
817 }
818
819 /*
820 * There is no need to overlap collapse range with EOF,
821 * in which case it is effectively a truncate operation
822 */
823 if (offset + len >= i_size_read(inode)) {
824 error = -EINVAL;
825 goto out_unlock;
826 }
827
828 new_size = i_size_read(inode) - len;
829
830 error = xfs_collapse_file_space(ip, offset, len);
831 if (error)
832 goto out_unlock;
833 } else if (mode & FALLOC_FL_INSERT_RANGE) {
834 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
835
836 new_size = i_size_read(inode) + len;
837 if (offset & blksize_mask || len & blksize_mask) {
838 error = -EINVAL;
839 goto out_unlock;
840 }
841
842 /* check the new inode size does not wrap through zero */
843 if (new_size > inode->i_sb->s_maxbytes) {
844 error = -EFBIG;
845 goto out_unlock;
846 }
847
848 /* Offset should be less than i_size */
849 if (offset >= i_size_read(inode)) {
850 error = -EINVAL;
851 goto out_unlock;
852 }
853 do_file_insert = 1;
854 } else {
855 flags |= XFS_PREALLOC_SET;
856
857 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
858 offset + len > i_size_read(inode)) {
859 new_size = offset + len;
860 error = inode_newsize_ok(inode, new_size);
861 if (error)
862 goto out_unlock;
863 }
864
865 if (mode & FALLOC_FL_ZERO_RANGE)
866 error = xfs_zero_file_space(ip, offset, len);
867 else {
868 if (mode & FALLOC_FL_UNSHARE_RANGE) {
869 error = xfs_reflink_unshare(ip, offset, len);
870 if (error)
871 goto out_unlock;
872 }
873 error = xfs_alloc_file_space(ip, offset, len,
874 XFS_BMAPI_PREALLOC);
875 }
876 if (error)
877 goto out_unlock;
878 }
879
880 if (file->f_flags & O_DSYNC)
881 flags |= XFS_PREALLOC_SYNC;
882
883 error = xfs_update_prealloc_flags(ip, flags);
884 if (error)
885 goto out_unlock;
886
887 /* Change file size if needed */
888 if (new_size) {
889 struct iattr iattr;
890
891 iattr.ia_valid = ATTR_SIZE;
892 iattr.ia_size = new_size;
893 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
894 if (error)
895 goto out_unlock;
896 }
897
898 /*
899 * Perform hole insertion now that the file size has been
900 * updated so that if we crash during the operation we don't
901 * leave shifted extents past EOF and hence losing access to
902 * the data that is contained within them.
903 */
904 if (do_file_insert)
905 error = xfs_insert_file_space(ip, offset, len);
906
907 out_unlock:
908 xfs_iunlock(ip, iolock);
909 return error;
910 }
911
912 STATIC int
913 xfs_file_clone_range(
914 struct file *file_in,
915 loff_t pos_in,
916 struct file *file_out,
917 loff_t pos_out,
918 u64 len)
919 {
920 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
921 len, false);
922 }
923
924 #define XFS_MAX_DEDUPE_LEN (16 * 1024 * 1024)
925 STATIC ssize_t
926 xfs_file_dedupe_range(
927 struct file *src_file,
928 u64 loff,
929 u64 len,
930 struct file *dst_file,
931 u64 dst_loff)
932 {
933 int error;
934
935 /*
936 * Limit the total length we will dedupe for each operation.
937 * This is intended to bound the total time spent in this
938 * ioctl to something sane.
939 */
940 if (len > XFS_MAX_DEDUPE_LEN)
941 len = XFS_MAX_DEDUPE_LEN;
942
943 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
944 len, true);
945 if (error)
946 return error;
947 return len;
948 }
949
950 STATIC int
951 xfs_file_open(
952 struct inode *inode,
953 struct file *file)
954 {
955 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
956 return -EFBIG;
957 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
958 return -EIO;
959 return 0;
960 }
961
962 STATIC int
963 xfs_dir_open(
964 struct inode *inode,
965 struct file *file)
966 {
967 struct xfs_inode *ip = XFS_I(inode);
968 int mode;
969 int error;
970
971 error = xfs_file_open(inode, file);
972 if (error)
973 return error;
974
975 /*
976 * If there are any blocks, read-ahead block 0 as we're almost
977 * certain to have the next operation be a read there.
978 */
979 mode = xfs_ilock_data_map_shared(ip);
980 if (ip->i_d.di_nextents > 0)
981 xfs_dir3_data_readahead(ip, 0, -1);
982 xfs_iunlock(ip, mode);
983 return 0;
984 }
985
986 STATIC int
987 xfs_file_release(
988 struct inode *inode,
989 struct file *filp)
990 {
991 return xfs_release(XFS_I(inode));
992 }
993
994 STATIC int
995 xfs_file_readdir(
996 struct file *file,
997 struct dir_context *ctx)
998 {
999 struct inode *inode = file_inode(file);
1000 xfs_inode_t *ip = XFS_I(inode);
1001 size_t bufsize;
1002
1003 /*
1004 * The Linux API doesn't pass down the total size of the buffer
1005 * we read into down to the filesystem. With the filldir concept
1006 * it's not needed for correct information, but the XFS dir2 leaf
1007 * code wants an estimate of the buffer size to calculate it's
1008 * readahead window and size the buffers used for mapping to
1009 * physical blocks.
1010 *
1011 * Try to give it an estimate that's good enough, maybe at some
1012 * point we can change the ->readdir prototype to include the
1013 * buffer size. For now we use the current glibc buffer size.
1014 */
1015 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1016
1017 return xfs_readdir(ip, ctx, bufsize);
1018 }
1019
1020 /*
1021 * This type is designed to indicate the type of offset we would like
1022 * to search from page cache for xfs_seek_hole_data().
1023 */
1024 enum {
1025 HOLE_OFF = 0,
1026 DATA_OFF,
1027 };
1028
1029 /*
1030 * Lookup the desired type of offset from the given page.
1031 *
1032 * On success, return true and the offset argument will point to the
1033 * start of the region that was found. Otherwise this function will
1034 * return false and keep the offset argument unchanged.
1035 */
1036 STATIC bool
1037 xfs_lookup_buffer_offset(
1038 struct page *page,
1039 loff_t *offset,
1040 unsigned int type)
1041 {
1042 loff_t lastoff = page_offset(page);
1043 bool found = false;
1044 struct buffer_head *bh, *head;
1045
1046 bh = head = page_buffers(page);
1047 do {
1048 /*
1049 * Unwritten extents that have data in the page
1050 * cache covering them can be identified by the
1051 * BH_Unwritten state flag. Pages with multiple
1052 * buffers might have a mix of holes, data and
1053 * unwritten extents - any buffer with valid
1054 * data in it should have BH_Uptodate flag set
1055 * on it.
1056 */
1057 if (buffer_unwritten(bh) ||
1058 buffer_uptodate(bh)) {
1059 if (type == DATA_OFF)
1060 found = true;
1061 } else {
1062 if (type == HOLE_OFF)
1063 found = true;
1064 }
1065
1066 if (found) {
1067 *offset = lastoff;
1068 break;
1069 }
1070 lastoff += bh->b_size;
1071 } while ((bh = bh->b_this_page) != head);
1072
1073 return found;
1074 }
1075
1076 /*
1077 * This routine is called to find out and return a data or hole offset
1078 * from the page cache for unwritten extents according to the desired
1079 * type for xfs_seek_hole_data().
1080 *
1081 * The argument offset is used to tell where we start to search from the
1082 * page cache. Map is used to figure out the end points of the range to
1083 * lookup pages.
1084 *
1085 * Return true if the desired type of offset was found, and the argument
1086 * offset is filled with that address. Otherwise, return false and keep
1087 * offset unchanged.
1088 */
1089 STATIC bool
1090 xfs_find_get_desired_pgoff(
1091 struct inode *inode,
1092 struct xfs_bmbt_irec *map,
1093 unsigned int type,
1094 loff_t *offset)
1095 {
1096 struct xfs_inode *ip = XFS_I(inode);
1097 struct xfs_mount *mp = ip->i_mount;
1098 struct pagevec pvec;
1099 pgoff_t index;
1100 pgoff_t end;
1101 loff_t endoff;
1102 loff_t startoff = *offset;
1103 loff_t lastoff = startoff;
1104 bool found = false;
1105
1106 pagevec_init(&pvec, 0);
1107
1108 index = startoff >> PAGE_SHIFT;
1109 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1110 end = endoff >> PAGE_SHIFT;
1111 do {
1112 int want;
1113 unsigned nr_pages;
1114 unsigned int i;
1115
1116 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1117 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1118 want);
1119 /*
1120 * No page mapped into given range. If we are searching holes
1121 * and if this is the first time we got into the loop, it means
1122 * that the given offset is landed in a hole, return it.
1123 *
1124 * If we have already stepped through some block buffers to find
1125 * holes but they all contains data. In this case, the last
1126 * offset is already updated and pointed to the end of the last
1127 * mapped page, if it does not reach the endpoint to search,
1128 * that means there should be a hole between them.
1129 */
1130 if (nr_pages == 0) {
1131 /* Data search found nothing */
1132 if (type == DATA_OFF)
1133 break;
1134
1135 ASSERT(type == HOLE_OFF);
1136 if (lastoff == startoff || lastoff < endoff) {
1137 found = true;
1138 *offset = lastoff;
1139 }
1140 break;
1141 }
1142
1143 /*
1144 * At lease we found one page. If this is the first time we
1145 * step into the loop, and if the first page index offset is
1146 * greater than the given search offset, a hole was found.
1147 */
1148 if (type == HOLE_OFF && lastoff == startoff &&
1149 lastoff < page_offset(pvec.pages[0])) {
1150 found = true;
1151 break;
1152 }
1153
1154 for (i = 0; i < nr_pages; i++) {
1155 struct page *page = pvec.pages[i];
1156 loff_t b_offset;
1157
1158 /*
1159 * At this point, the page may be truncated or
1160 * invalidated (changing page->mapping to NULL),
1161 * or even swizzled back from swapper_space to tmpfs
1162 * file mapping. However, page->index will not change
1163 * because we have a reference on the page.
1164 *
1165 * Searching done if the page index is out of range.
1166 * If the current offset is not reaches the end of
1167 * the specified search range, there should be a hole
1168 * between them.
1169 */
1170 if (page->index > end) {
1171 if (type == HOLE_OFF && lastoff < endoff) {
1172 *offset = lastoff;
1173 found = true;
1174 }
1175 goto out;
1176 }
1177
1178 lock_page(page);
1179 /*
1180 * Page truncated or invalidated(page->mapping == NULL).
1181 * We can freely skip it and proceed to check the next
1182 * page.
1183 */
1184 if (unlikely(page->mapping != inode->i_mapping)) {
1185 unlock_page(page);
1186 continue;
1187 }
1188
1189 if (!page_has_buffers(page)) {
1190 unlock_page(page);
1191 continue;
1192 }
1193
1194 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1195 if (found) {
1196 /*
1197 * The found offset may be less than the start
1198 * point to search if this is the first time to
1199 * come here.
1200 */
1201 *offset = max_t(loff_t, startoff, b_offset);
1202 unlock_page(page);
1203 goto out;
1204 }
1205
1206 /*
1207 * We either searching data but nothing was found, or
1208 * searching hole but found a data buffer. In either
1209 * case, probably the next page contains the desired
1210 * things, update the last offset to it so.
1211 */
1212 lastoff = page_offset(page) + PAGE_SIZE;
1213 unlock_page(page);
1214 }
1215
1216 /*
1217 * The number of returned pages less than our desired, search
1218 * done. In this case, nothing was found for searching data,
1219 * but we found a hole behind the last offset.
1220 */
1221 if (nr_pages < want) {
1222 if (type == HOLE_OFF) {
1223 *offset = lastoff;
1224 found = true;
1225 }
1226 break;
1227 }
1228
1229 index = pvec.pages[i - 1]->index + 1;
1230 pagevec_release(&pvec);
1231 } while (index <= end);
1232
1233 out:
1234 pagevec_release(&pvec);
1235 return found;
1236 }
1237
1238 /*
1239 * caller must lock inode with xfs_ilock_data_map_shared,
1240 * can we craft an appropriate ASSERT?
1241 *
1242 * end is because the VFS-level lseek interface is defined such that any
1243 * offset past i_size shall return -ENXIO, but we use this for quota code
1244 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1245 */
1246 loff_t
1247 __xfs_seek_hole_data(
1248 struct inode *inode,
1249 loff_t start,
1250 loff_t end,
1251 int whence)
1252 {
1253 struct xfs_inode *ip = XFS_I(inode);
1254 struct xfs_mount *mp = ip->i_mount;
1255 loff_t uninitialized_var(offset);
1256 xfs_fileoff_t fsbno;
1257 xfs_filblks_t lastbno;
1258 int error;
1259
1260 if (start >= end) {
1261 error = -ENXIO;
1262 goto out_error;
1263 }
1264
1265 /*
1266 * Try to read extents from the first block indicated
1267 * by fsbno to the end block of the file.
1268 */
1269 fsbno = XFS_B_TO_FSBT(mp, start);
1270 lastbno = XFS_B_TO_FSB(mp, end);
1271
1272 for (;;) {
1273 struct xfs_bmbt_irec map[2];
1274 int nmap = 2;
1275 unsigned int i;
1276
1277 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1278 XFS_BMAPI_ENTIRE);
1279 if (error)
1280 goto out_error;
1281
1282 /* No extents at given offset, must be beyond EOF */
1283 if (nmap == 0) {
1284 error = -ENXIO;
1285 goto out_error;
1286 }
1287
1288 for (i = 0; i < nmap; i++) {
1289 offset = max_t(loff_t, start,
1290 XFS_FSB_TO_B(mp, map[i].br_startoff));
1291
1292 /* Landed in the hole we wanted? */
1293 if (whence == SEEK_HOLE &&
1294 map[i].br_startblock == HOLESTARTBLOCK)
1295 goto out;
1296
1297 /* Landed in the data extent we wanted? */
1298 if (whence == SEEK_DATA &&
1299 (map[i].br_startblock == DELAYSTARTBLOCK ||
1300 (map[i].br_state == XFS_EXT_NORM &&
1301 !isnullstartblock(map[i].br_startblock))))
1302 goto out;
1303
1304 /*
1305 * Landed in an unwritten extent, try to search
1306 * for hole or data from page cache.
1307 */
1308 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1309 if (xfs_find_get_desired_pgoff(inode, &map[i],
1310 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1311 &offset))
1312 goto out;
1313 }
1314 }
1315
1316 /*
1317 * We only received one extent out of the two requested. This
1318 * means we've hit EOF and didn't find what we are looking for.
1319 */
1320 if (nmap == 1) {
1321 /*
1322 * If we were looking for a hole, set offset to
1323 * the end of the file (i.e., there is an implicit
1324 * hole at the end of any file).
1325 */
1326 if (whence == SEEK_HOLE) {
1327 offset = end;
1328 break;
1329 }
1330 /*
1331 * If we were looking for data, it's nowhere to be found
1332 */
1333 ASSERT(whence == SEEK_DATA);
1334 error = -ENXIO;
1335 goto out_error;
1336 }
1337
1338 ASSERT(i > 1);
1339
1340 /*
1341 * Nothing was found, proceed to the next round of search
1342 * if the next reading offset is not at or beyond EOF.
1343 */
1344 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1345 start = XFS_FSB_TO_B(mp, fsbno);
1346 if (start >= end) {
1347 if (whence == SEEK_HOLE) {
1348 offset = end;
1349 break;
1350 }
1351 ASSERT(whence == SEEK_DATA);
1352 error = -ENXIO;
1353 goto out_error;
1354 }
1355 }
1356
1357 out:
1358 /*
1359 * If at this point we have found the hole we wanted, the returned
1360 * offset may be bigger than the file size as it may be aligned to
1361 * page boundary for unwritten extents. We need to deal with this
1362 * situation in particular.
1363 */
1364 if (whence == SEEK_HOLE)
1365 offset = min_t(loff_t, offset, end);
1366
1367 return offset;
1368
1369 out_error:
1370 return error;
1371 }
1372
1373 STATIC loff_t
1374 xfs_seek_hole_data(
1375 struct file *file,
1376 loff_t start,
1377 int whence)
1378 {
1379 struct inode *inode = file->f_mapping->host;
1380 struct xfs_inode *ip = XFS_I(inode);
1381 struct xfs_mount *mp = ip->i_mount;
1382 uint lock;
1383 loff_t offset, end;
1384 int error = 0;
1385
1386 if (XFS_FORCED_SHUTDOWN(mp))
1387 return -EIO;
1388
1389 lock = xfs_ilock_data_map_shared(ip);
1390
1391 end = i_size_read(inode);
1392 offset = __xfs_seek_hole_data(inode, start, end, whence);
1393 if (offset < 0) {
1394 error = offset;
1395 goto out_unlock;
1396 }
1397
1398 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1399
1400 out_unlock:
1401 xfs_iunlock(ip, lock);
1402
1403 if (error)
1404 return error;
1405 return offset;
1406 }
1407
1408 STATIC loff_t
1409 xfs_file_llseek(
1410 struct file *file,
1411 loff_t offset,
1412 int whence)
1413 {
1414 switch (whence) {
1415 case SEEK_END:
1416 case SEEK_CUR:
1417 case SEEK_SET:
1418 return generic_file_llseek(file, offset, whence);
1419 case SEEK_HOLE:
1420 case SEEK_DATA:
1421 return xfs_seek_hole_data(file, offset, whence);
1422 default:
1423 return -EINVAL;
1424 }
1425 }
1426
1427 /*
1428 * Locking for serialisation of IO during page faults. This results in a lock
1429 * ordering of:
1430 *
1431 * mmap_sem (MM)
1432 * sb_start_pagefault(vfs, freeze)
1433 * i_mmaplock (XFS - truncate serialisation)
1434 * page_lock (MM)
1435 * i_lock (XFS - extent map serialisation)
1436 */
1437
1438 /*
1439 * mmap()d file has taken write protection fault and is being made writable. We
1440 * can set the page state up correctly for a writable page, which means we can
1441 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1442 * mapping.
1443 */
1444 STATIC int
1445 xfs_filemap_page_mkwrite(
1446 struct vm_area_struct *vma,
1447 struct vm_fault *vmf)
1448 {
1449 struct inode *inode = file_inode(vma->vm_file);
1450 int ret;
1451
1452 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1453
1454 sb_start_pagefault(inode->i_sb);
1455 file_update_time(vma->vm_file);
1456 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1457
1458 if (IS_DAX(inode)) {
1459 ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1460 } else {
1461 ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
1462 ret = block_page_mkwrite_return(ret);
1463 }
1464
1465 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1466 sb_end_pagefault(inode->i_sb);
1467
1468 return ret;
1469 }
1470
1471 STATIC int
1472 xfs_filemap_fault(
1473 struct vm_area_struct *vma,
1474 struct vm_fault *vmf)
1475 {
1476 struct inode *inode = file_inode(vma->vm_file);
1477 int ret;
1478
1479 trace_xfs_filemap_fault(XFS_I(inode));
1480
1481 /* DAX can shortcut the normal fault path on write faults! */
1482 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1483 return xfs_filemap_page_mkwrite(vma, vmf);
1484
1485 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1486 if (IS_DAX(inode)) {
1487 /*
1488 * we do not want to trigger unwritten extent conversion on read
1489 * faults - that is unnecessary overhead and would also require
1490 * changes to xfs_get_blocks_direct() to map unwritten extent
1491 * ioend for conversion on read-only mappings.
1492 */
1493 ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1494 } else
1495 ret = filemap_fault(vma, vmf);
1496 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1497
1498 return ret;
1499 }
1500
1501 /*
1502 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1503 * both read and write faults. Hence we need to handle both cases. There is no
1504 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1505 * handle both cases here. @flags carries the information on the type of fault
1506 * occuring.
1507 */
1508 STATIC int
1509 xfs_filemap_pmd_fault(
1510 struct vm_area_struct *vma,
1511 unsigned long addr,
1512 pmd_t *pmd,
1513 unsigned int flags)
1514 {
1515 struct inode *inode = file_inode(vma->vm_file);
1516 struct xfs_inode *ip = XFS_I(inode);
1517 int ret;
1518
1519 if (!IS_DAX(inode))
1520 return VM_FAULT_FALLBACK;
1521
1522 trace_xfs_filemap_pmd_fault(ip);
1523
1524 if (flags & FAULT_FLAG_WRITE) {
1525 sb_start_pagefault(inode->i_sb);
1526 file_update_time(vma->vm_file);
1527 }
1528
1529 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1530 ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
1531 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1532
1533 if (flags & FAULT_FLAG_WRITE)
1534 sb_end_pagefault(inode->i_sb);
1535
1536 return ret;
1537 }
1538
1539 /*
1540 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1541 * updates on write faults. In reality, it's need to serialise against
1542 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1543 * to ensure we serialise the fault barrier in place.
1544 */
1545 static int
1546 xfs_filemap_pfn_mkwrite(
1547 struct vm_area_struct *vma,
1548 struct vm_fault *vmf)
1549 {
1550
1551 struct inode *inode = file_inode(vma->vm_file);
1552 struct xfs_inode *ip = XFS_I(inode);
1553 int ret = VM_FAULT_NOPAGE;
1554 loff_t size;
1555
1556 trace_xfs_filemap_pfn_mkwrite(ip);
1557
1558 sb_start_pagefault(inode->i_sb);
1559 file_update_time(vma->vm_file);
1560
1561 /* check if the faulting page hasn't raced with truncate */
1562 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1563 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1564 if (vmf->pgoff >= size)
1565 ret = VM_FAULT_SIGBUS;
1566 else if (IS_DAX(inode))
1567 ret = dax_pfn_mkwrite(vma, vmf);
1568 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1569 sb_end_pagefault(inode->i_sb);
1570 return ret;
1571
1572 }
1573
1574 static const struct vm_operations_struct xfs_file_vm_ops = {
1575 .fault = xfs_filemap_fault,
1576 .pmd_fault = xfs_filemap_pmd_fault,
1577 .map_pages = filemap_map_pages,
1578 .page_mkwrite = xfs_filemap_page_mkwrite,
1579 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1580 };
1581
1582 STATIC int
1583 xfs_file_mmap(
1584 struct file *filp,
1585 struct vm_area_struct *vma)
1586 {
1587 file_accessed(filp);
1588 vma->vm_ops = &xfs_file_vm_ops;
1589 if (IS_DAX(file_inode(filp)))
1590 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1591 return 0;
1592 }
1593
1594 const struct file_operations xfs_file_operations = {
1595 .llseek = xfs_file_llseek,
1596 .read_iter = xfs_file_read_iter,
1597 .write_iter = xfs_file_write_iter,
1598 .splice_read = generic_file_splice_read,
1599 .splice_write = iter_file_splice_write,
1600 .unlocked_ioctl = xfs_file_ioctl,
1601 #ifdef CONFIG_COMPAT
1602 .compat_ioctl = xfs_file_compat_ioctl,
1603 #endif
1604 .mmap = xfs_file_mmap,
1605 .open = xfs_file_open,
1606 .release = xfs_file_release,
1607 .fsync = xfs_file_fsync,
1608 .get_unmapped_area = thp_get_unmapped_area,
1609 .fallocate = xfs_file_fallocate,
1610 .clone_file_range = xfs_file_clone_range,
1611 .dedupe_file_range = xfs_file_dedupe_range,
1612 };
1613
1614 const struct file_operations xfs_dir_file_operations = {
1615 .open = xfs_dir_open,
1616 .read = generic_read_dir,
1617 .iterate_shared = xfs_file_readdir,
1618 .llseek = generic_file_llseek,
1619 .unlocked_ioctl = xfs_file_ioctl,
1620 #ifdef CONFIG_COMPAT
1621 .compat_ioctl = xfs_file_compat_ioctl,
1622 #endif
1623 .fsync = xfs_dir_fsync,
1624 };