]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_icache.c
afs: Fix server record deletion
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_icache.c
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_sb.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36 #include "xfs_reflink.h"
37
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40
41 /*
42 * Allocate and initialise an xfs_inode.
43 */
44 struct xfs_inode *
45 xfs_inode_alloc(
46 struct xfs_mount *mp,
47 xfs_ino_t ino)
48 {
49 struct xfs_inode *ip;
50
51 /*
52 * if this didn't occur in transactions, we could use
53 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
54 * code up to do this anyway.
55 */
56 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
57 if (!ip)
58 return NULL;
59 if (inode_init_always(mp->m_super, VFS_I(ip))) {
60 kmem_zone_free(xfs_inode_zone, ip);
61 return NULL;
62 }
63
64 /* VFS doesn't initialise i_mode! */
65 VFS_I(ip)->i_mode = 0;
66
67 XFS_STATS_INC(mp, vn_active);
68 ASSERT(atomic_read(&ip->i_pincount) == 0);
69 ASSERT(!xfs_isiflocked(ip));
70 ASSERT(ip->i_ino == 0);
71
72 /* initialise the xfs inode */
73 ip->i_ino = ino;
74 ip->i_mount = mp;
75 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
76 ip->i_afp = NULL;
77 ip->i_cowfp = NULL;
78 ip->i_cnextents = 0;
79 ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
80 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
81 ip->i_flags = 0;
82 ip->i_delayed_blks = 0;
83 memset(&ip->i_d, 0, sizeof(ip->i_d));
84
85 return ip;
86 }
87
88 STATIC void
89 xfs_inode_free_callback(
90 struct rcu_head *head)
91 {
92 struct inode *inode = container_of(head, struct inode, i_rcu);
93 struct xfs_inode *ip = XFS_I(inode);
94
95 switch (VFS_I(ip)->i_mode & S_IFMT) {
96 case S_IFREG:
97 case S_IFDIR:
98 case S_IFLNK:
99 xfs_idestroy_fork(ip, XFS_DATA_FORK);
100 break;
101 }
102
103 if (ip->i_afp)
104 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
105 if (ip->i_cowfp)
106 xfs_idestroy_fork(ip, XFS_COW_FORK);
107
108 if (ip->i_itemp) {
109 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
110 xfs_inode_item_destroy(ip);
111 ip->i_itemp = NULL;
112 }
113
114 kmem_zone_free(xfs_inode_zone, ip);
115 }
116
117 static void
118 __xfs_inode_free(
119 struct xfs_inode *ip)
120 {
121 /* asserts to verify all state is correct here */
122 ASSERT(atomic_read(&ip->i_pincount) == 0);
123 XFS_STATS_DEC(ip->i_mount, vn_active);
124
125 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
126 }
127
128 void
129 xfs_inode_free(
130 struct xfs_inode *ip)
131 {
132 ASSERT(!xfs_isiflocked(ip));
133
134 /*
135 * Because we use RCU freeing we need to ensure the inode always
136 * appears to be reclaimed with an invalid inode number when in the
137 * free state. The ip->i_flags_lock provides the barrier against lookup
138 * races.
139 */
140 spin_lock(&ip->i_flags_lock);
141 ip->i_flags = XFS_IRECLAIM;
142 ip->i_ino = 0;
143 spin_unlock(&ip->i_flags_lock);
144
145 __xfs_inode_free(ip);
146 }
147
148 /*
149 * Queue a new inode reclaim pass if there are reclaimable inodes and there
150 * isn't a reclaim pass already in progress. By default it runs every 5s based
151 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
152 * tunable, but that can be done if this method proves to be ineffective or too
153 * aggressive.
154 */
155 static void
156 xfs_reclaim_work_queue(
157 struct xfs_mount *mp)
158 {
159
160 rcu_read_lock();
161 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
162 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
163 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
164 }
165 rcu_read_unlock();
166 }
167
168 /*
169 * This is a fast pass over the inode cache to try to get reclaim moving on as
170 * many inodes as possible in a short period of time. It kicks itself every few
171 * seconds, as well as being kicked by the inode cache shrinker when memory
172 * goes low. It scans as quickly as possible avoiding locked inodes or those
173 * already being flushed, and once done schedules a future pass.
174 */
175 void
176 xfs_reclaim_worker(
177 struct work_struct *work)
178 {
179 struct xfs_mount *mp = container_of(to_delayed_work(work),
180 struct xfs_mount, m_reclaim_work);
181
182 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
183 xfs_reclaim_work_queue(mp);
184 }
185
186 static void
187 xfs_perag_set_reclaim_tag(
188 struct xfs_perag *pag)
189 {
190 struct xfs_mount *mp = pag->pag_mount;
191
192 lockdep_assert_held(&pag->pag_ici_lock);
193 if (pag->pag_ici_reclaimable++)
194 return;
195
196 /* propagate the reclaim tag up into the perag radix tree */
197 spin_lock(&mp->m_perag_lock);
198 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
199 XFS_ICI_RECLAIM_TAG);
200 spin_unlock(&mp->m_perag_lock);
201
202 /* schedule periodic background inode reclaim */
203 xfs_reclaim_work_queue(mp);
204
205 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
206 }
207
208 static void
209 xfs_perag_clear_reclaim_tag(
210 struct xfs_perag *pag)
211 {
212 struct xfs_mount *mp = pag->pag_mount;
213
214 lockdep_assert_held(&pag->pag_ici_lock);
215 if (--pag->pag_ici_reclaimable)
216 return;
217
218 /* clear the reclaim tag from the perag radix tree */
219 spin_lock(&mp->m_perag_lock);
220 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
221 XFS_ICI_RECLAIM_TAG);
222 spin_unlock(&mp->m_perag_lock);
223 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
224 }
225
226
227 /*
228 * We set the inode flag atomically with the radix tree tag.
229 * Once we get tag lookups on the radix tree, this inode flag
230 * can go away.
231 */
232 void
233 xfs_inode_set_reclaim_tag(
234 struct xfs_inode *ip)
235 {
236 struct xfs_mount *mp = ip->i_mount;
237 struct xfs_perag *pag;
238
239 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
240 spin_lock(&pag->pag_ici_lock);
241 spin_lock(&ip->i_flags_lock);
242
243 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
244 XFS_ICI_RECLAIM_TAG);
245 xfs_perag_set_reclaim_tag(pag);
246 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
247
248 spin_unlock(&ip->i_flags_lock);
249 spin_unlock(&pag->pag_ici_lock);
250 xfs_perag_put(pag);
251 }
252
253 STATIC void
254 xfs_inode_clear_reclaim_tag(
255 struct xfs_perag *pag,
256 xfs_ino_t ino)
257 {
258 radix_tree_tag_clear(&pag->pag_ici_root,
259 XFS_INO_TO_AGINO(pag->pag_mount, ino),
260 XFS_ICI_RECLAIM_TAG);
261 xfs_perag_clear_reclaim_tag(pag);
262 }
263
264 static void
265 xfs_inew_wait(
266 struct xfs_inode *ip)
267 {
268 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
269 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
270
271 do {
272 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
273 if (!xfs_iflags_test(ip, XFS_INEW))
274 break;
275 schedule();
276 } while (true);
277 finish_wait(wq, &wait.wq_entry);
278 }
279
280 /*
281 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
282 * part of the structure. This is made more complex by the fact we store
283 * information about the on-disk values in the VFS inode and so we can't just
284 * overwrite the values unconditionally. Hence we save the parameters we
285 * need to retain across reinitialisation, and rewrite them into the VFS inode
286 * after reinitialisation even if it fails.
287 */
288 static int
289 xfs_reinit_inode(
290 struct xfs_mount *mp,
291 struct inode *inode)
292 {
293 int error;
294 uint32_t nlink = inode->i_nlink;
295 uint32_t generation = inode->i_generation;
296 uint64_t version = inode->i_version;
297 umode_t mode = inode->i_mode;
298 dev_t dev = inode->i_rdev;
299
300 error = inode_init_always(mp->m_super, inode);
301
302 set_nlink(inode, nlink);
303 inode->i_generation = generation;
304 inode->i_version = version;
305 inode->i_mode = mode;
306 inode->i_rdev = dev;
307 return error;
308 }
309
310 /*
311 * Check the validity of the inode we just found it the cache
312 */
313 static int
314 xfs_iget_cache_hit(
315 struct xfs_perag *pag,
316 struct xfs_inode *ip,
317 xfs_ino_t ino,
318 int flags,
319 int lock_flags) __releases(RCU)
320 {
321 struct inode *inode = VFS_I(ip);
322 struct xfs_mount *mp = ip->i_mount;
323 int error;
324
325 /*
326 * check for re-use of an inode within an RCU grace period due to the
327 * radix tree nodes not being updated yet. We monitor for this by
328 * setting the inode number to zero before freeing the inode structure.
329 * If the inode has been reallocated and set up, then the inode number
330 * will not match, so check for that, too.
331 */
332 spin_lock(&ip->i_flags_lock);
333 if (ip->i_ino != ino) {
334 trace_xfs_iget_skip(ip);
335 XFS_STATS_INC(mp, xs_ig_frecycle);
336 error = -EAGAIN;
337 goto out_error;
338 }
339
340
341 /*
342 * If we are racing with another cache hit that is currently
343 * instantiating this inode or currently recycling it out of
344 * reclaimabe state, wait for the initialisation to complete
345 * before continuing.
346 *
347 * XXX(hch): eventually we should do something equivalent to
348 * wait_on_inode to wait for these flags to be cleared
349 * instead of polling for it.
350 */
351 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
352 trace_xfs_iget_skip(ip);
353 XFS_STATS_INC(mp, xs_ig_frecycle);
354 error = -EAGAIN;
355 goto out_error;
356 }
357
358 /*
359 * If lookup is racing with unlink return an error immediately.
360 */
361 if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
362 error = -ENOENT;
363 goto out_error;
364 }
365
366 /*
367 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
368 * Need to carefully get it back into useable state.
369 */
370 if (ip->i_flags & XFS_IRECLAIMABLE) {
371 trace_xfs_iget_reclaim(ip);
372
373 if (flags & XFS_IGET_INCORE) {
374 error = -EAGAIN;
375 goto out_error;
376 }
377
378 /*
379 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
380 * from stomping over us while we recycle the inode. We can't
381 * clear the radix tree reclaimable tag yet as it requires
382 * pag_ici_lock to be held exclusive.
383 */
384 ip->i_flags |= XFS_IRECLAIM;
385
386 spin_unlock(&ip->i_flags_lock);
387 rcu_read_unlock();
388
389 error = xfs_reinit_inode(mp, inode);
390 if (error) {
391 bool wake;
392 /*
393 * Re-initializing the inode failed, and we are in deep
394 * trouble. Try to re-add it to the reclaim list.
395 */
396 rcu_read_lock();
397 spin_lock(&ip->i_flags_lock);
398 wake = !!__xfs_iflags_test(ip, XFS_INEW);
399 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
400 if (wake)
401 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
402 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
403 trace_xfs_iget_reclaim_fail(ip);
404 goto out_error;
405 }
406
407 spin_lock(&pag->pag_ici_lock);
408 spin_lock(&ip->i_flags_lock);
409
410 /*
411 * Clear the per-lifetime state in the inode as we are now
412 * effectively a new inode and need to return to the initial
413 * state before reuse occurs.
414 */
415 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
416 ip->i_flags |= XFS_INEW;
417 xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
418 inode->i_state = I_NEW;
419
420 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
421 init_rwsem(&inode->i_rwsem);
422
423 spin_unlock(&ip->i_flags_lock);
424 spin_unlock(&pag->pag_ici_lock);
425 } else {
426 /* If the VFS inode is being torn down, pause and try again. */
427 if (!igrab(inode)) {
428 trace_xfs_iget_skip(ip);
429 error = -EAGAIN;
430 goto out_error;
431 }
432
433 /* We've got a live one. */
434 spin_unlock(&ip->i_flags_lock);
435 rcu_read_unlock();
436 trace_xfs_iget_hit(ip);
437 }
438
439 if (lock_flags != 0)
440 xfs_ilock(ip, lock_flags);
441
442 if (!(flags & XFS_IGET_INCORE))
443 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
444 XFS_STATS_INC(mp, xs_ig_found);
445
446 return 0;
447
448 out_error:
449 spin_unlock(&ip->i_flags_lock);
450 rcu_read_unlock();
451 return error;
452 }
453
454
455 static int
456 xfs_iget_cache_miss(
457 struct xfs_mount *mp,
458 struct xfs_perag *pag,
459 xfs_trans_t *tp,
460 xfs_ino_t ino,
461 struct xfs_inode **ipp,
462 int flags,
463 int lock_flags)
464 {
465 struct xfs_inode *ip;
466 int error;
467 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
468 int iflags;
469
470 ip = xfs_inode_alloc(mp, ino);
471 if (!ip)
472 return -ENOMEM;
473
474 error = xfs_iread(mp, tp, ip, flags);
475 if (error)
476 goto out_destroy;
477
478 trace_xfs_iget_miss(ip);
479
480 if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
481 error = -ENOENT;
482 goto out_destroy;
483 }
484
485 /*
486 * Preload the radix tree so we can insert safely under the
487 * write spinlock. Note that we cannot sleep inside the preload
488 * region. Since we can be called from transaction context, don't
489 * recurse into the file system.
490 */
491 if (radix_tree_preload(GFP_NOFS)) {
492 error = -EAGAIN;
493 goto out_destroy;
494 }
495
496 /*
497 * Because the inode hasn't been added to the radix-tree yet it can't
498 * be found by another thread, so we can do the non-sleeping lock here.
499 */
500 if (lock_flags) {
501 if (!xfs_ilock_nowait(ip, lock_flags))
502 BUG();
503 }
504
505 /*
506 * These values must be set before inserting the inode into the radix
507 * tree as the moment it is inserted a concurrent lookup (allowed by the
508 * RCU locking mechanism) can find it and that lookup must see that this
509 * is an inode currently under construction (i.e. that XFS_INEW is set).
510 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
511 * memory barrier that ensures this detection works correctly at lookup
512 * time.
513 */
514 iflags = XFS_INEW;
515 if (flags & XFS_IGET_DONTCACHE)
516 iflags |= XFS_IDONTCACHE;
517 ip->i_udquot = NULL;
518 ip->i_gdquot = NULL;
519 ip->i_pdquot = NULL;
520 xfs_iflags_set(ip, iflags);
521
522 /* insert the new inode */
523 spin_lock(&pag->pag_ici_lock);
524 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
525 if (unlikely(error)) {
526 WARN_ON(error != -EEXIST);
527 XFS_STATS_INC(mp, xs_ig_dup);
528 error = -EAGAIN;
529 goto out_preload_end;
530 }
531 spin_unlock(&pag->pag_ici_lock);
532 radix_tree_preload_end();
533
534 *ipp = ip;
535 return 0;
536
537 out_preload_end:
538 spin_unlock(&pag->pag_ici_lock);
539 radix_tree_preload_end();
540 if (lock_flags)
541 xfs_iunlock(ip, lock_flags);
542 out_destroy:
543 __destroy_inode(VFS_I(ip));
544 xfs_inode_free(ip);
545 return error;
546 }
547
548 /*
549 * Look up an inode by number in the given file system.
550 * The inode is looked up in the cache held in each AG.
551 * If the inode is found in the cache, initialise the vfs inode
552 * if necessary.
553 *
554 * If it is not in core, read it in from the file system's device,
555 * add it to the cache and initialise the vfs inode.
556 *
557 * The inode is locked according to the value of the lock_flags parameter.
558 * This flag parameter indicates how and if the inode's IO lock and inode lock
559 * should be taken.
560 *
561 * mp -- the mount point structure for the current file system. It points
562 * to the inode hash table.
563 * tp -- a pointer to the current transaction if there is one. This is
564 * simply passed through to the xfs_iread() call.
565 * ino -- the number of the inode desired. This is the unique identifier
566 * within the file system for the inode being requested.
567 * lock_flags -- flags indicating how to lock the inode. See the comment
568 * for xfs_ilock() for a list of valid values.
569 */
570 int
571 xfs_iget(
572 xfs_mount_t *mp,
573 xfs_trans_t *tp,
574 xfs_ino_t ino,
575 uint flags,
576 uint lock_flags,
577 xfs_inode_t **ipp)
578 {
579 xfs_inode_t *ip;
580 int error;
581 xfs_perag_t *pag;
582 xfs_agino_t agino;
583
584 /*
585 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
586 * doesn't get freed while it's being referenced during a
587 * radix tree traversal here. It assumes this function
588 * aqcuires only the ILOCK (and therefore it has no need to
589 * involve the IOLOCK in this synchronization).
590 */
591 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
592
593 /* reject inode numbers outside existing AGs */
594 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
595 return -EINVAL;
596
597 XFS_STATS_INC(mp, xs_ig_attempts);
598
599 /* get the perag structure and ensure that it's inode capable */
600 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
601 agino = XFS_INO_TO_AGINO(mp, ino);
602
603 again:
604 error = 0;
605 rcu_read_lock();
606 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
607
608 if (ip) {
609 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
610 if (error)
611 goto out_error_or_again;
612 } else {
613 rcu_read_unlock();
614 if (flags & XFS_IGET_INCORE) {
615 error = -ENODATA;
616 goto out_error_or_again;
617 }
618 XFS_STATS_INC(mp, xs_ig_missed);
619
620 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
621 flags, lock_flags);
622 if (error)
623 goto out_error_or_again;
624 }
625 xfs_perag_put(pag);
626
627 *ipp = ip;
628
629 /*
630 * If we have a real type for an on-disk inode, we can setup the inode
631 * now. If it's a new inode being created, xfs_ialloc will handle it.
632 */
633 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
634 xfs_setup_existing_inode(ip);
635 return 0;
636
637 out_error_or_again:
638 if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
639 delay(1);
640 goto again;
641 }
642 xfs_perag_put(pag);
643 return error;
644 }
645
646 /*
647 * "Is this a cached inode that's also allocated?"
648 *
649 * Look up an inode by number in the given file system. If the inode is
650 * in cache and isn't in purgatory, return 1 if the inode is allocated
651 * and 0 if it is not. For all other cases (not in cache, being torn
652 * down, etc.), return a negative error code.
653 *
654 * The caller has to prevent inode allocation and freeing activity,
655 * presumably by locking the AGI buffer. This is to ensure that an
656 * inode cannot transition from allocated to freed until the caller is
657 * ready to allow that. If the inode is in an intermediate state (new,
658 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
659 * inode is not in the cache, -ENOENT will be returned. The caller must
660 * deal with these scenarios appropriately.
661 *
662 * This is a specialized use case for the online scrubber; if you're
663 * reading this, you probably want xfs_iget.
664 */
665 int
666 xfs_icache_inode_is_allocated(
667 struct xfs_mount *mp,
668 struct xfs_trans *tp,
669 xfs_ino_t ino,
670 bool *inuse)
671 {
672 struct xfs_inode *ip;
673 int error;
674
675 error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
676 if (error)
677 return error;
678
679 *inuse = !!(VFS_I(ip)->i_mode);
680 IRELE(ip);
681 return 0;
682 }
683
684 /*
685 * The inode lookup is done in batches to keep the amount of lock traffic and
686 * radix tree lookups to a minimum. The batch size is a trade off between
687 * lookup reduction and stack usage. This is in the reclaim path, so we can't
688 * be too greedy.
689 */
690 #define XFS_LOOKUP_BATCH 32
691
692 STATIC int
693 xfs_inode_ag_walk_grab(
694 struct xfs_inode *ip,
695 int flags)
696 {
697 struct inode *inode = VFS_I(ip);
698 bool newinos = !!(flags & XFS_AGITER_INEW_WAIT);
699
700 ASSERT(rcu_read_lock_held());
701
702 /*
703 * check for stale RCU freed inode
704 *
705 * If the inode has been reallocated, it doesn't matter if it's not in
706 * the AG we are walking - we are walking for writeback, so if it
707 * passes all the "valid inode" checks and is dirty, then we'll write
708 * it back anyway. If it has been reallocated and still being
709 * initialised, the XFS_INEW check below will catch it.
710 */
711 spin_lock(&ip->i_flags_lock);
712 if (!ip->i_ino)
713 goto out_unlock_noent;
714
715 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
716 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
717 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
718 goto out_unlock_noent;
719 spin_unlock(&ip->i_flags_lock);
720
721 /* nothing to sync during shutdown */
722 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
723 return -EFSCORRUPTED;
724
725 /* If we can't grab the inode, it must on it's way to reclaim. */
726 if (!igrab(inode))
727 return -ENOENT;
728
729 /* inode is valid */
730 return 0;
731
732 out_unlock_noent:
733 spin_unlock(&ip->i_flags_lock);
734 return -ENOENT;
735 }
736
737 STATIC int
738 xfs_inode_ag_walk(
739 struct xfs_mount *mp,
740 struct xfs_perag *pag,
741 int (*execute)(struct xfs_inode *ip, int flags,
742 void *args),
743 int flags,
744 void *args,
745 int tag,
746 int iter_flags)
747 {
748 uint32_t first_index;
749 int last_error = 0;
750 int skipped;
751 int done;
752 int nr_found;
753
754 restart:
755 done = 0;
756 skipped = 0;
757 first_index = 0;
758 nr_found = 0;
759 do {
760 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
761 int error = 0;
762 int i;
763
764 rcu_read_lock();
765
766 if (tag == -1)
767 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
768 (void **)batch, first_index,
769 XFS_LOOKUP_BATCH);
770 else
771 nr_found = radix_tree_gang_lookup_tag(
772 &pag->pag_ici_root,
773 (void **) batch, first_index,
774 XFS_LOOKUP_BATCH, tag);
775
776 if (!nr_found) {
777 rcu_read_unlock();
778 break;
779 }
780
781 /*
782 * Grab the inodes before we drop the lock. if we found
783 * nothing, nr == 0 and the loop will be skipped.
784 */
785 for (i = 0; i < nr_found; i++) {
786 struct xfs_inode *ip = batch[i];
787
788 if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
789 batch[i] = NULL;
790
791 /*
792 * Update the index for the next lookup. Catch
793 * overflows into the next AG range which can occur if
794 * we have inodes in the last block of the AG and we
795 * are currently pointing to the last inode.
796 *
797 * Because we may see inodes that are from the wrong AG
798 * due to RCU freeing and reallocation, only update the
799 * index if it lies in this AG. It was a race that lead
800 * us to see this inode, so another lookup from the
801 * same index will not find it again.
802 */
803 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
804 continue;
805 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
806 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
807 done = 1;
808 }
809
810 /* unlock now we've grabbed the inodes. */
811 rcu_read_unlock();
812
813 for (i = 0; i < nr_found; i++) {
814 if (!batch[i])
815 continue;
816 if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
817 xfs_iflags_test(batch[i], XFS_INEW))
818 xfs_inew_wait(batch[i]);
819 error = execute(batch[i], flags, args);
820 IRELE(batch[i]);
821 if (error == -EAGAIN) {
822 skipped++;
823 continue;
824 }
825 if (error && last_error != -EFSCORRUPTED)
826 last_error = error;
827 }
828
829 /* bail out if the filesystem is corrupted. */
830 if (error == -EFSCORRUPTED)
831 break;
832
833 cond_resched();
834
835 } while (nr_found && !done);
836
837 if (skipped) {
838 delay(1);
839 goto restart;
840 }
841 return last_error;
842 }
843
844 /*
845 * Background scanning to trim post-EOF preallocated space. This is queued
846 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
847 */
848 void
849 xfs_queue_eofblocks(
850 struct xfs_mount *mp)
851 {
852 rcu_read_lock();
853 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
854 queue_delayed_work(mp->m_eofblocks_workqueue,
855 &mp->m_eofblocks_work,
856 msecs_to_jiffies(xfs_eofb_secs * 1000));
857 rcu_read_unlock();
858 }
859
860 void
861 xfs_eofblocks_worker(
862 struct work_struct *work)
863 {
864 struct xfs_mount *mp = container_of(to_delayed_work(work),
865 struct xfs_mount, m_eofblocks_work);
866 xfs_icache_free_eofblocks(mp, NULL);
867 xfs_queue_eofblocks(mp);
868 }
869
870 /*
871 * Background scanning to trim preallocated CoW space. This is queued
872 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
873 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
874 */
875 void
876 xfs_queue_cowblocks(
877 struct xfs_mount *mp)
878 {
879 rcu_read_lock();
880 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
881 queue_delayed_work(mp->m_eofblocks_workqueue,
882 &mp->m_cowblocks_work,
883 msecs_to_jiffies(xfs_cowb_secs * 1000));
884 rcu_read_unlock();
885 }
886
887 void
888 xfs_cowblocks_worker(
889 struct work_struct *work)
890 {
891 struct xfs_mount *mp = container_of(to_delayed_work(work),
892 struct xfs_mount, m_cowblocks_work);
893 xfs_icache_free_cowblocks(mp, NULL);
894 xfs_queue_cowblocks(mp);
895 }
896
897 int
898 xfs_inode_ag_iterator_flags(
899 struct xfs_mount *mp,
900 int (*execute)(struct xfs_inode *ip, int flags,
901 void *args),
902 int flags,
903 void *args,
904 int iter_flags)
905 {
906 struct xfs_perag *pag;
907 int error = 0;
908 int last_error = 0;
909 xfs_agnumber_t ag;
910
911 ag = 0;
912 while ((pag = xfs_perag_get(mp, ag))) {
913 ag = pag->pag_agno + 1;
914 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
915 iter_flags);
916 xfs_perag_put(pag);
917 if (error) {
918 last_error = error;
919 if (error == -EFSCORRUPTED)
920 break;
921 }
922 }
923 return last_error;
924 }
925
926 int
927 xfs_inode_ag_iterator(
928 struct xfs_mount *mp,
929 int (*execute)(struct xfs_inode *ip, int flags,
930 void *args),
931 int flags,
932 void *args)
933 {
934 return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
935 }
936
937 int
938 xfs_inode_ag_iterator_tag(
939 struct xfs_mount *mp,
940 int (*execute)(struct xfs_inode *ip, int flags,
941 void *args),
942 int flags,
943 void *args,
944 int tag)
945 {
946 struct xfs_perag *pag;
947 int error = 0;
948 int last_error = 0;
949 xfs_agnumber_t ag;
950
951 ag = 0;
952 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
953 ag = pag->pag_agno + 1;
954 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
955 0);
956 xfs_perag_put(pag);
957 if (error) {
958 last_error = error;
959 if (error == -EFSCORRUPTED)
960 break;
961 }
962 }
963 return last_error;
964 }
965
966 /*
967 * Grab the inode for reclaim exclusively.
968 * Return 0 if we grabbed it, non-zero otherwise.
969 */
970 STATIC int
971 xfs_reclaim_inode_grab(
972 struct xfs_inode *ip,
973 int flags)
974 {
975 ASSERT(rcu_read_lock_held());
976
977 /* quick check for stale RCU freed inode */
978 if (!ip->i_ino)
979 return 1;
980
981 /*
982 * If we are asked for non-blocking operation, do unlocked checks to
983 * see if the inode already is being flushed or in reclaim to avoid
984 * lock traffic.
985 */
986 if ((flags & SYNC_TRYLOCK) &&
987 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
988 return 1;
989
990 /*
991 * The radix tree lock here protects a thread in xfs_iget from racing
992 * with us starting reclaim on the inode. Once we have the
993 * XFS_IRECLAIM flag set it will not touch us.
994 *
995 * Due to RCU lookup, we may find inodes that have been freed and only
996 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
997 * aren't candidates for reclaim at all, so we must check the
998 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
999 */
1000 spin_lock(&ip->i_flags_lock);
1001 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1002 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1003 /* not a reclaim candidate. */
1004 spin_unlock(&ip->i_flags_lock);
1005 return 1;
1006 }
1007 __xfs_iflags_set(ip, XFS_IRECLAIM);
1008 spin_unlock(&ip->i_flags_lock);
1009 return 0;
1010 }
1011
1012 /*
1013 * Inodes in different states need to be treated differently. The following
1014 * table lists the inode states and the reclaim actions necessary:
1015 *
1016 * inode state iflush ret required action
1017 * --------------- ---------- ---------------
1018 * bad - reclaim
1019 * shutdown EIO unpin and reclaim
1020 * clean, unpinned 0 reclaim
1021 * stale, unpinned 0 reclaim
1022 * clean, pinned(*) 0 requeue
1023 * stale, pinned EAGAIN requeue
1024 * dirty, async - requeue
1025 * dirty, sync 0 reclaim
1026 *
1027 * (*) dgc: I don't think the clean, pinned state is possible but it gets
1028 * handled anyway given the order of checks implemented.
1029 *
1030 * Also, because we get the flush lock first, we know that any inode that has
1031 * been flushed delwri has had the flush completed by the time we check that
1032 * the inode is clean.
1033 *
1034 * Note that because the inode is flushed delayed write by AIL pushing, the
1035 * flush lock may already be held here and waiting on it can result in very
1036 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
1037 * the caller should push the AIL first before trying to reclaim inodes to
1038 * minimise the amount of time spent waiting. For background relaim, we only
1039 * bother to reclaim clean inodes anyway.
1040 *
1041 * Hence the order of actions after gaining the locks should be:
1042 * bad => reclaim
1043 * shutdown => unpin and reclaim
1044 * pinned, async => requeue
1045 * pinned, sync => unpin
1046 * stale => reclaim
1047 * clean => reclaim
1048 * dirty, async => requeue
1049 * dirty, sync => flush, wait and reclaim
1050 */
1051 STATIC int
1052 xfs_reclaim_inode(
1053 struct xfs_inode *ip,
1054 struct xfs_perag *pag,
1055 int sync_mode)
1056 {
1057 struct xfs_buf *bp = NULL;
1058 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
1059 int error;
1060
1061 restart:
1062 error = 0;
1063 xfs_ilock(ip, XFS_ILOCK_EXCL);
1064 if (!xfs_iflock_nowait(ip)) {
1065 if (!(sync_mode & SYNC_WAIT))
1066 goto out;
1067 xfs_iflock(ip);
1068 }
1069
1070 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1071 xfs_iunpin_wait(ip);
1072 /* xfs_iflush_abort() drops the flush lock */
1073 xfs_iflush_abort(ip, false);
1074 goto reclaim;
1075 }
1076 if (xfs_ipincount(ip)) {
1077 if (!(sync_mode & SYNC_WAIT))
1078 goto out_ifunlock;
1079 xfs_iunpin_wait(ip);
1080 }
1081 if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1082 xfs_ifunlock(ip);
1083 goto reclaim;
1084 }
1085
1086 /*
1087 * Never flush out dirty data during non-blocking reclaim, as it would
1088 * just contend with AIL pushing trying to do the same job.
1089 */
1090 if (!(sync_mode & SYNC_WAIT))
1091 goto out_ifunlock;
1092
1093 /*
1094 * Now we have an inode that needs flushing.
1095 *
1096 * Note that xfs_iflush will never block on the inode buffer lock, as
1097 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1098 * ip->i_lock, and we are doing the exact opposite here. As a result,
1099 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1100 * result in an ABBA deadlock with xfs_ifree_cluster().
1101 *
1102 * As xfs_ifree_cluser() must gather all inodes that are active in the
1103 * cache to mark them stale, if we hit this case we don't actually want
1104 * to do IO here - we want the inode marked stale so we can simply
1105 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
1106 * inode, back off and try again. Hopefully the next pass through will
1107 * see the stale flag set on the inode.
1108 */
1109 error = xfs_iflush(ip, &bp);
1110 if (error == -EAGAIN) {
1111 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1112 /* backoff longer than in xfs_ifree_cluster */
1113 delay(2);
1114 goto restart;
1115 }
1116
1117 if (!error) {
1118 error = xfs_bwrite(bp);
1119 xfs_buf_relse(bp);
1120 }
1121
1122 reclaim:
1123 ASSERT(!xfs_isiflocked(ip));
1124
1125 /*
1126 * Because we use RCU freeing we need to ensure the inode always appears
1127 * to be reclaimed with an invalid inode number when in the free state.
1128 * We do this as early as possible under the ILOCK so that
1129 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1130 * detect races with us here. By doing this, we guarantee that once
1131 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1132 * it will see either a valid inode that will serialise correctly, or it
1133 * will see an invalid inode that it can skip.
1134 */
1135 spin_lock(&ip->i_flags_lock);
1136 ip->i_flags = XFS_IRECLAIM;
1137 ip->i_ino = 0;
1138 spin_unlock(&ip->i_flags_lock);
1139
1140 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1141
1142 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1143 /*
1144 * Remove the inode from the per-AG radix tree.
1145 *
1146 * Because radix_tree_delete won't complain even if the item was never
1147 * added to the tree assert that it's been there before to catch
1148 * problems with the inode life time early on.
1149 */
1150 spin_lock(&pag->pag_ici_lock);
1151 if (!radix_tree_delete(&pag->pag_ici_root,
1152 XFS_INO_TO_AGINO(ip->i_mount, ino)))
1153 ASSERT(0);
1154 xfs_perag_clear_reclaim_tag(pag);
1155 spin_unlock(&pag->pag_ici_lock);
1156
1157 /*
1158 * Here we do an (almost) spurious inode lock in order to coordinate
1159 * with inode cache radix tree lookups. This is because the lookup
1160 * can reference the inodes in the cache without taking references.
1161 *
1162 * We make that OK here by ensuring that we wait until the inode is
1163 * unlocked after the lookup before we go ahead and free it.
1164 */
1165 xfs_ilock(ip, XFS_ILOCK_EXCL);
1166 xfs_qm_dqdetach(ip);
1167 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1168
1169 __xfs_inode_free(ip);
1170 return error;
1171
1172 out_ifunlock:
1173 xfs_ifunlock(ip);
1174 out:
1175 xfs_iflags_clear(ip, XFS_IRECLAIM);
1176 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1177 /*
1178 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1179 * a short while. However, this just burns CPU time scanning the tree
1180 * waiting for IO to complete and the reclaim work never goes back to
1181 * the idle state. Instead, return 0 to let the next scheduled
1182 * background reclaim attempt to reclaim the inode again.
1183 */
1184 return 0;
1185 }
1186
1187 /*
1188 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1189 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1190 * then a shut down during filesystem unmount reclaim walk leak all the
1191 * unreclaimed inodes.
1192 */
1193 STATIC int
1194 xfs_reclaim_inodes_ag(
1195 struct xfs_mount *mp,
1196 int flags,
1197 int *nr_to_scan)
1198 {
1199 struct xfs_perag *pag;
1200 int error = 0;
1201 int last_error = 0;
1202 xfs_agnumber_t ag;
1203 int trylock = flags & SYNC_TRYLOCK;
1204 int skipped;
1205
1206 restart:
1207 ag = 0;
1208 skipped = 0;
1209 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1210 unsigned long first_index = 0;
1211 int done = 0;
1212 int nr_found = 0;
1213
1214 ag = pag->pag_agno + 1;
1215
1216 if (trylock) {
1217 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1218 skipped++;
1219 xfs_perag_put(pag);
1220 continue;
1221 }
1222 first_index = pag->pag_ici_reclaim_cursor;
1223 } else
1224 mutex_lock(&pag->pag_ici_reclaim_lock);
1225
1226 do {
1227 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1228 int i;
1229
1230 rcu_read_lock();
1231 nr_found = radix_tree_gang_lookup_tag(
1232 &pag->pag_ici_root,
1233 (void **)batch, first_index,
1234 XFS_LOOKUP_BATCH,
1235 XFS_ICI_RECLAIM_TAG);
1236 if (!nr_found) {
1237 done = 1;
1238 rcu_read_unlock();
1239 break;
1240 }
1241
1242 /*
1243 * Grab the inodes before we drop the lock. if we found
1244 * nothing, nr == 0 and the loop will be skipped.
1245 */
1246 for (i = 0; i < nr_found; i++) {
1247 struct xfs_inode *ip = batch[i];
1248
1249 if (done || xfs_reclaim_inode_grab(ip, flags))
1250 batch[i] = NULL;
1251
1252 /*
1253 * Update the index for the next lookup. Catch
1254 * overflows into the next AG range which can
1255 * occur if we have inodes in the last block of
1256 * the AG and we are currently pointing to the
1257 * last inode.
1258 *
1259 * Because we may see inodes that are from the
1260 * wrong AG due to RCU freeing and
1261 * reallocation, only update the index if it
1262 * lies in this AG. It was a race that lead us
1263 * to see this inode, so another lookup from
1264 * the same index will not find it again.
1265 */
1266 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1267 pag->pag_agno)
1268 continue;
1269 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1270 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1271 done = 1;
1272 }
1273
1274 /* unlock now we've grabbed the inodes. */
1275 rcu_read_unlock();
1276
1277 for (i = 0; i < nr_found; i++) {
1278 if (!batch[i])
1279 continue;
1280 error = xfs_reclaim_inode(batch[i], pag, flags);
1281 if (error && last_error != -EFSCORRUPTED)
1282 last_error = error;
1283 }
1284
1285 *nr_to_scan -= XFS_LOOKUP_BATCH;
1286
1287 cond_resched();
1288
1289 } while (nr_found && !done && *nr_to_scan > 0);
1290
1291 if (trylock && !done)
1292 pag->pag_ici_reclaim_cursor = first_index;
1293 else
1294 pag->pag_ici_reclaim_cursor = 0;
1295 mutex_unlock(&pag->pag_ici_reclaim_lock);
1296 xfs_perag_put(pag);
1297 }
1298
1299 /*
1300 * if we skipped any AG, and we still have scan count remaining, do
1301 * another pass this time using blocking reclaim semantics (i.e
1302 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1303 * ensure that when we get more reclaimers than AGs we block rather
1304 * than spin trying to execute reclaim.
1305 */
1306 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1307 trylock = 0;
1308 goto restart;
1309 }
1310 return last_error;
1311 }
1312
1313 int
1314 xfs_reclaim_inodes(
1315 xfs_mount_t *mp,
1316 int mode)
1317 {
1318 int nr_to_scan = INT_MAX;
1319
1320 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1321 }
1322
1323 /*
1324 * Scan a certain number of inodes for reclaim.
1325 *
1326 * When called we make sure that there is a background (fast) inode reclaim in
1327 * progress, while we will throttle the speed of reclaim via doing synchronous
1328 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1329 * them to be cleaned, which we hope will not be very long due to the
1330 * background walker having already kicked the IO off on those dirty inodes.
1331 */
1332 long
1333 xfs_reclaim_inodes_nr(
1334 struct xfs_mount *mp,
1335 int nr_to_scan)
1336 {
1337 /* kick background reclaimer and push the AIL */
1338 xfs_reclaim_work_queue(mp);
1339 xfs_ail_push_all(mp->m_ail);
1340
1341 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1342 }
1343
1344 /*
1345 * Return the number of reclaimable inodes in the filesystem for
1346 * the shrinker to determine how much to reclaim.
1347 */
1348 int
1349 xfs_reclaim_inodes_count(
1350 struct xfs_mount *mp)
1351 {
1352 struct xfs_perag *pag;
1353 xfs_agnumber_t ag = 0;
1354 int reclaimable = 0;
1355
1356 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1357 ag = pag->pag_agno + 1;
1358 reclaimable += pag->pag_ici_reclaimable;
1359 xfs_perag_put(pag);
1360 }
1361 return reclaimable;
1362 }
1363
1364 STATIC int
1365 xfs_inode_match_id(
1366 struct xfs_inode *ip,
1367 struct xfs_eofblocks *eofb)
1368 {
1369 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1370 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1371 return 0;
1372
1373 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1374 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1375 return 0;
1376
1377 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1378 xfs_get_projid(ip) != eofb->eof_prid)
1379 return 0;
1380
1381 return 1;
1382 }
1383
1384 /*
1385 * A union-based inode filtering algorithm. Process the inode if any of the
1386 * criteria match. This is for global/internal scans only.
1387 */
1388 STATIC int
1389 xfs_inode_match_id_union(
1390 struct xfs_inode *ip,
1391 struct xfs_eofblocks *eofb)
1392 {
1393 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1394 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1395 return 1;
1396
1397 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1398 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1399 return 1;
1400
1401 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1402 xfs_get_projid(ip) == eofb->eof_prid)
1403 return 1;
1404
1405 return 0;
1406 }
1407
1408 STATIC int
1409 xfs_inode_free_eofblocks(
1410 struct xfs_inode *ip,
1411 int flags,
1412 void *args)
1413 {
1414 int ret = 0;
1415 struct xfs_eofblocks *eofb = args;
1416 int match;
1417
1418 if (!xfs_can_free_eofblocks(ip, false)) {
1419 /* inode could be preallocated or append-only */
1420 trace_xfs_inode_free_eofblocks_invalid(ip);
1421 xfs_inode_clear_eofblocks_tag(ip);
1422 return 0;
1423 }
1424
1425 /*
1426 * If the mapping is dirty the operation can block and wait for some
1427 * time. Unless we are waiting, skip it.
1428 */
1429 if (!(flags & SYNC_WAIT) &&
1430 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1431 return 0;
1432
1433 if (eofb) {
1434 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1435 match = xfs_inode_match_id_union(ip, eofb);
1436 else
1437 match = xfs_inode_match_id(ip, eofb);
1438 if (!match)
1439 return 0;
1440
1441 /* skip the inode if the file size is too small */
1442 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1443 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1444 return 0;
1445 }
1446
1447 /*
1448 * If the caller is waiting, return -EAGAIN to keep the background
1449 * scanner moving and revisit the inode in a subsequent pass.
1450 */
1451 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1452 if (flags & SYNC_WAIT)
1453 ret = -EAGAIN;
1454 return ret;
1455 }
1456 ret = xfs_free_eofblocks(ip);
1457 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1458
1459 return ret;
1460 }
1461
1462 static int
1463 __xfs_icache_free_eofblocks(
1464 struct xfs_mount *mp,
1465 struct xfs_eofblocks *eofb,
1466 int (*execute)(struct xfs_inode *ip, int flags,
1467 void *args),
1468 int tag)
1469 {
1470 int flags = SYNC_TRYLOCK;
1471
1472 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1473 flags = SYNC_WAIT;
1474
1475 return xfs_inode_ag_iterator_tag(mp, execute, flags,
1476 eofb, tag);
1477 }
1478
1479 int
1480 xfs_icache_free_eofblocks(
1481 struct xfs_mount *mp,
1482 struct xfs_eofblocks *eofb)
1483 {
1484 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1485 XFS_ICI_EOFBLOCKS_TAG);
1486 }
1487
1488 /*
1489 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1490 * multiple quotas, we don't know exactly which quota caused an allocation
1491 * failure. We make a best effort by including each quota under low free space
1492 * conditions (less than 1% free space) in the scan.
1493 */
1494 static int
1495 __xfs_inode_free_quota_eofblocks(
1496 struct xfs_inode *ip,
1497 int (*execute)(struct xfs_mount *mp,
1498 struct xfs_eofblocks *eofb))
1499 {
1500 int scan = 0;
1501 struct xfs_eofblocks eofb = {0};
1502 struct xfs_dquot *dq;
1503
1504 /*
1505 * Run a sync scan to increase effectiveness and use the union filter to
1506 * cover all applicable quotas in a single scan.
1507 */
1508 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1509
1510 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1511 dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1512 if (dq && xfs_dquot_lowsp(dq)) {
1513 eofb.eof_uid = VFS_I(ip)->i_uid;
1514 eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1515 scan = 1;
1516 }
1517 }
1518
1519 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1520 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1521 if (dq && xfs_dquot_lowsp(dq)) {
1522 eofb.eof_gid = VFS_I(ip)->i_gid;
1523 eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1524 scan = 1;
1525 }
1526 }
1527
1528 if (scan)
1529 execute(ip->i_mount, &eofb);
1530
1531 return scan;
1532 }
1533
1534 int
1535 xfs_inode_free_quota_eofblocks(
1536 struct xfs_inode *ip)
1537 {
1538 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1539 }
1540
1541 static inline unsigned long
1542 xfs_iflag_for_tag(
1543 int tag)
1544 {
1545 switch (tag) {
1546 case XFS_ICI_EOFBLOCKS_TAG:
1547 return XFS_IEOFBLOCKS;
1548 case XFS_ICI_COWBLOCKS_TAG:
1549 return XFS_ICOWBLOCKS;
1550 default:
1551 ASSERT(0);
1552 return 0;
1553 }
1554 }
1555
1556 static void
1557 __xfs_inode_set_blocks_tag(
1558 xfs_inode_t *ip,
1559 void (*execute)(struct xfs_mount *mp),
1560 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1561 int error, unsigned long caller_ip),
1562 int tag)
1563 {
1564 struct xfs_mount *mp = ip->i_mount;
1565 struct xfs_perag *pag;
1566 int tagged;
1567
1568 /*
1569 * Don't bother locking the AG and looking up in the radix trees
1570 * if we already know that we have the tag set.
1571 */
1572 if (ip->i_flags & xfs_iflag_for_tag(tag))
1573 return;
1574 spin_lock(&ip->i_flags_lock);
1575 ip->i_flags |= xfs_iflag_for_tag(tag);
1576 spin_unlock(&ip->i_flags_lock);
1577
1578 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1579 spin_lock(&pag->pag_ici_lock);
1580
1581 tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1582 radix_tree_tag_set(&pag->pag_ici_root,
1583 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1584 if (!tagged) {
1585 /* propagate the eofblocks tag up into the perag radix tree */
1586 spin_lock(&ip->i_mount->m_perag_lock);
1587 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1588 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1589 tag);
1590 spin_unlock(&ip->i_mount->m_perag_lock);
1591
1592 /* kick off background trimming */
1593 execute(ip->i_mount);
1594
1595 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1596 }
1597
1598 spin_unlock(&pag->pag_ici_lock);
1599 xfs_perag_put(pag);
1600 }
1601
1602 void
1603 xfs_inode_set_eofblocks_tag(
1604 xfs_inode_t *ip)
1605 {
1606 trace_xfs_inode_set_eofblocks_tag(ip);
1607 return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1608 trace_xfs_perag_set_eofblocks,
1609 XFS_ICI_EOFBLOCKS_TAG);
1610 }
1611
1612 static void
1613 __xfs_inode_clear_blocks_tag(
1614 xfs_inode_t *ip,
1615 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1616 int error, unsigned long caller_ip),
1617 int tag)
1618 {
1619 struct xfs_mount *mp = ip->i_mount;
1620 struct xfs_perag *pag;
1621
1622 spin_lock(&ip->i_flags_lock);
1623 ip->i_flags &= ~xfs_iflag_for_tag(tag);
1624 spin_unlock(&ip->i_flags_lock);
1625
1626 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1627 spin_lock(&pag->pag_ici_lock);
1628
1629 radix_tree_tag_clear(&pag->pag_ici_root,
1630 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1631 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1632 /* clear the eofblocks tag from the perag radix tree */
1633 spin_lock(&ip->i_mount->m_perag_lock);
1634 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1635 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1636 tag);
1637 spin_unlock(&ip->i_mount->m_perag_lock);
1638 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1639 }
1640
1641 spin_unlock(&pag->pag_ici_lock);
1642 xfs_perag_put(pag);
1643 }
1644
1645 void
1646 xfs_inode_clear_eofblocks_tag(
1647 xfs_inode_t *ip)
1648 {
1649 trace_xfs_inode_clear_eofblocks_tag(ip);
1650 return __xfs_inode_clear_blocks_tag(ip,
1651 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1652 }
1653
1654 /*
1655 * Automatic CoW Reservation Freeing
1656 *
1657 * These functions automatically garbage collect leftover CoW reservations
1658 * that were made on behalf of a cowextsize hint when we start to run out
1659 * of quota or when the reservations sit around for too long. If the file
1660 * has dirty pages or is undergoing writeback, its CoW reservations will
1661 * be retained.
1662 *
1663 * The actual garbage collection piggybacks off the same code that runs
1664 * the speculative EOF preallocation garbage collector.
1665 */
1666 STATIC int
1667 xfs_inode_free_cowblocks(
1668 struct xfs_inode *ip,
1669 int flags,
1670 void *args)
1671 {
1672 int ret;
1673 struct xfs_eofblocks *eofb = args;
1674 int match;
1675 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1676
1677 /*
1678 * Just clear the tag if we have an empty cow fork or none at all. It's
1679 * possible the inode was fully unshared since it was originally tagged.
1680 */
1681 if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1682 trace_xfs_inode_free_cowblocks_invalid(ip);
1683 xfs_inode_clear_cowblocks_tag(ip);
1684 return 0;
1685 }
1686
1687 /*
1688 * If the mapping is dirty or under writeback we cannot touch the
1689 * CoW fork. Leave it alone if we're in the midst of a directio.
1690 */
1691 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1692 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1693 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1694 atomic_read(&VFS_I(ip)->i_dio_count))
1695 return 0;
1696
1697 if (eofb) {
1698 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1699 match = xfs_inode_match_id_union(ip, eofb);
1700 else
1701 match = xfs_inode_match_id(ip, eofb);
1702 if (!match)
1703 return 0;
1704
1705 /* skip the inode if the file size is too small */
1706 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1707 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1708 return 0;
1709 }
1710
1711 /* Free the CoW blocks */
1712 xfs_ilock(ip, XFS_IOLOCK_EXCL);
1713 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1714
1715 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1716
1717 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1718 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1719
1720 return ret;
1721 }
1722
1723 int
1724 xfs_icache_free_cowblocks(
1725 struct xfs_mount *mp,
1726 struct xfs_eofblocks *eofb)
1727 {
1728 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1729 XFS_ICI_COWBLOCKS_TAG);
1730 }
1731
1732 int
1733 xfs_inode_free_quota_cowblocks(
1734 struct xfs_inode *ip)
1735 {
1736 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1737 }
1738
1739 void
1740 xfs_inode_set_cowblocks_tag(
1741 xfs_inode_t *ip)
1742 {
1743 trace_xfs_inode_set_cowblocks_tag(ip);
1744 return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1745 trace_xfs_perag_set_cowblocks,
1746 XFS_ICI_COWBLOCKS_TAG);
1747 }
1748
1749 void
1750 xfs_inode_clear_cowblocks_tag(
1751 xfs_inode_t *ip)
1752 {
1753 trace_xfs_inode_clear_cowblocks_tag(ip);
1754 return __xfs_inode_clear_blocks_tag(ip,
1755 trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1756 }