]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/xfs/xfs_trans_buf.c
UBUNTU: [Config] arm64: snapdragon: SND*=m
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_trans_buf.c
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_trans.h"
27 #include "xfs_buf_item.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31
32 /*
33 * Check to see if a buffer matching the given parameters is already
34 * a part of the given transaction.
35 */
36 STATIC struct xfs_buf *
37 xfs_trans_buf_item_match(
38 struct xfs_trans *tp,
39 struct xfs_buftarg *target,
40 struct xfs_buf_map *map,
41 int nmaps)
42 {
43 struct xfs_log_item_desc *lidp;
44 struct xfs_buf_log_item *blip;
45 int len = 0;
46 int i;
47
48 for (i = 0; i < nmaps; i++)
49 len += map[i].bm_len;
50
51 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
52 blip = (struct xfs_buf_log_item *)lidp->lid_item;
53 if (blip->bli_item.li_type == XFS_LI_BUF &&
54 blip->bli_buf->b_target == target &&
55 XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
56 blip->bli_buf->b_length == len) {
57 ASSERT(blip->bli_buf->b_map_count == nmaps);
58 return blip->bli_buf;
59 }
60 }
61
62 return NULL;
63 }
64
65 /*
66 * Add the locked buffer to the transaction.
67 *
68 * The buffer must be locked, and it cannot be associated with any
69 * transaction.
70 *
71 * If the buffer does not yet have a buf log item associated with it,
72 * then allocate one for it. Then add the buf item to the transaction.
73 */
74 STATIC void
75 _xfs_trans_bjoin(
76 struct xfs_trans *tp,
77 struct xfs_buf *bp,
78 int reset_recur)
79 {
80 struct xfs_buf_log_item *bip;
81
82 ASSERT(bp->b_transp == NULL);
83
84 /*
85 * The xfs_buf_log_item pointer is stored in b_fsprivate. If
86 * it doesn't have one yet, then allocate one and initialize it.
87 * The checks to see if one is there are in xfs_buf_item_init().
88 */
89 xfs_buf_item_init(bp, tp->t_mountp);
90 bip = bp->b_fspriv;
91 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
92 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
93 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
94 if (reset_recur)
95 bip->bli_recur = 0;
96
97 /*
98 * Take a reference for this transaction on the buf item.
99 */
100 atomic_inc(&bip->bli_refcount);
101
102 /*
103 * Get a log_item_desc to point at the new item.
104 */
105 xfs_trans_add_item(tp, &bip->bli_item);
106
107 /*
108 * Initialize b_fsprivate2 so we can find it with incore_match()
109 * in xfs_trans_get_buf() and friends above.
110 */
111 bp->b_transp = tp;
112
113 }
114
115 void
116 xfs_trans_bjoin(
117 struct xfs_trans *tp,
118 struct xfs_buf *bp)
119 {
120 _xfs_trans_bjoin(tp, bp, 0);
121 trace_xfs_trans_bjoin(bp->b_fspriv);
122 }
123
124 /*
125 * Get and lock the buffer for the caller if it is not already
126 * locked within the given transaction. If it is already locked
127 * within the transaction, just increment its lock recursion count
128 * and return a pointer to it.
129 *
130 * If the transaction pointer is NULL, make this just a normal
131 * get_buf() call.
132 */
133 struct xfs_buf *
134 xfs_trans_get_buf_map(
135 struct xfs_trans *tp,
136 struct xfs_buftarg *target,
137 struct xfs_buf_map *map,
138 int nmaps,
139 xfs_buf_flags_t flags)
140 {
141 xfs_buf_t *bp;
142 xfs_buf_log_item_t *bip;
143
144 if (!tp)
145 return xfs_buf_get_map(target, map, nmaps, flags);
146
147 /*
148 * If we find the buffer in the cache with this transaction
149 * pointer in its b_fsprivate2 field, then we know we already
150 * have it locked. In this case we just increment the lock
151 * recursion count and return the buffer to the caller.
152 */
153 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
154 if (bp != NULL) {
155 ASSERT(xfs_buf_islocked(bp));
156 if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
157 xfs_buf_stale(bp);
158 bp->b_flags |= XBF_DONE;
159 }
160
161 ASSERT(bp->b_transp == tp);
162 bip = bp->b_fspriv;
163 ASSERT(bip != NULL);
164 ASSERT(atomic_read(&bip->bli_refcount) > 0);
165 bip->bli_recur++;
166 trace_xfs_trans_get_buf_recur(bip);
167 return bp;
168 }
169
170 bp = xfs_buf_get_map(target, map, nmaps, flags);
171 if (bp == NULL) {
172 return NULL;
173 }
174
175 ASSERT(!bp->b_error);
176
177 _xfs_trans_bjoin(tp, bp, 1);
178 trace_xfs_trans_get_buf(bp->b_fspriv);
179 return bp;
180 }
181
182 /*
183 * Get and lock the superblock buffer of this file system for the
184 * given transaction.
185 *
186 * We don't need to use incore_match() here, because the superblock
187 * buffer is a private buffer which we keep a pointer to in the
188 * mount structure.
189 */
190 xfs_buf_t *
191 xfs_trans_getsb(xfs_trans_t *tp,
192 struct xfs_mount *mp,
193 int flags)
194 {
195 xfs_buf_t *bp;
196 xfs_buf_log_item_t *bip;
197
198 /*
199 * Default to just trying to lock the superblock buffer
200 * if tp is NULL.
201 */
202 if (tp == NULL)
203 return xfs_getsb(mp, flags);
204
205 /*
206 * If the superblock buffer already has this transaction
207 * pointer in its b_fsprivate2 field, then we know we already
208 * have it locked. In this case we just increment the lock
209 * recursion count and return the buffer to the caller.
210 */
211 bp = mp->m_sb_bp;
212 if (bp->b_transp == tp) {
213 bip = bp->b_fspriv;
214 ASSERT(bip != NULL);
215 ASSERT(atomic_read(&bip->bli_refcount) > 0);
216 bip->bli_recur++;
217 trace_xfs_trans_getsb_recur(bip);
218 return bp;
219 }
220
221 bp = xfs_getsb(mp, flags);
222 if (bp == NULL)
223 return NULL;
224
225 _xfs_trans_bjoin(tp, bp, 1);
226 trace_xfs_trans_getsb(bp->b_fspriv);
227 return bp;
228 }
229
230 /*
231 * Get and lock the buffer for the caller if it is not already
232 * locked within the given transaction. If it has not yet been
233 * read in, read it from disk. If it is already locked
234 * within the transaction and already read in, just increment its
235 * lock recursion count and return a pointer to it.
236 *
237 * If the transaction pointer is NULL, make this just a normal
238 * read_buf() call.
239 */
240 int
241 xfs_trans_read_buf_map(
242 struct xfs_mount *mp,
243 struct xfs_trans *tp,
244 struct xfs_buftarg *target,
245 struct xfs_buf_map *map,
246 int nmaps,
247 xfs_buf_flags_t flags,
248 struct xfs_buf **bpp,
249 const struct xfs_buf_ops *ops)
250 {
251 struct xfs_buf *bp = NULL;
252 struct xfs_buf_log_item *bip;
253 int error;
254
255 *bpp = NULL;
256 /*
257 * If we find the buffer in the cache with this transaction
258 * pointer in its b_fsprivate2 field, then we know we already
259 * have it locked. If it is already read in we just increment
260 * the lock recursion count and return the buffer to the caller.
261 * If the buffer is not yet read in, then we read it in, increment
262 * the lock recursion count, and return it to the caller.
263 */
264 if (tp)
265 bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
266 if (bp) {
267 ASSERT(xfs_buf_islocked(bp));
268 ASSERT(bp->b_transp == tp);
269 ASSERT(bp->b_fspriv != NULL);
270 ASSERT(!bp->b_error);
271 ASSERT(bp->b_flags & XBF_DONE);
272
273 /*
274 * We never locked this buf ourselves, so we shouldn't
275 * brelse it either. Just get out.
276 */
277 if (XFS_FORCED_SHUTDOWN(mp)) {
278 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
279 return -EIO;
280 }
281
282 bip = bp->b_fspriv;
283 bip->bli_recur++;
284
285 ASSERT(atomic_read(&bip->bli_refcount) > 0);
286 trace_xfs_trans_read_buf_recur(bip);
287 *bpp = bp;
288 return 0;
289 }
290
291 bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
292 if (!bp) {
293 if (!(flags & XBF_TRYLOCK))
294 return -ENOMEM;
295 return tp ? 0 : -EAGAIN;
296 }
297
298 /*
299 * If we've had a read error, then the contents of the buffer are
300 * invalid and should not be used. To ensure that a followup read tries
301 * to pull the buffer from disk again, we clear the XBF_DONE flag and
302 * mark the buffer stale. This ensures that anyone who has a current
303 * reference to the buffer will interpret it's contents correctly and
304 * future cache lookups will also treat it as an empty, uninitialised
305 * buffer.
306 */
307 if (bp->b_error) {
308 error = bp->b_error;
309 if (!XFS_FORCED_SHUTDOWN(mp))
310 xfs_buf_ioerror_alert(bp, __func__);
311 bp->b_flags &= ~XBF_DONE;
312 xfs_buf_stale(bp);
313
314 if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
315 xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
316 xfs_buf_relse(bp);
317
318 /* bad CRC means corrupted metadata */
319 if (error == -EFSBADCRC)
320 error = -EFSCORRUPTED;
321 return error;
322 }
323
324 if (XFS_FORCED_SHUTDOWN(mp)) {
325 xfs_buf_relse(bp);
326 trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
327 return -EIO;
328 }
329
330 if (tp) {
331 _xfs_trans_bjoin(tp, bp, 1);
332 trace_xfs_trans_read_buf(bp->b_fspriv);
333 }
334 *bpp = bp;
335 return 0;
336
337 }
338
339 /*
340 * Release the buffer bp which was previously acquired with one of the
341 * xfs_trans_... buffer allocation routines if the buffer has not
342 * been modified within this transaction. If the buffer is modified
343 * within this transaction, do decrement the recursion count but do
344 * not release the buffer even if the count goes to 0. If the buffer is not
345 * modified within the transaction, decrement the recursion count and
346 * release the buffer if the recursion count goes to 0.
347 *
348 * If the buffer is to be released and it was not modified before
349 * this transaction began, then free the buf_log_item associated with it.
350 *
351 * If the transaction pointer is NULL, make this just a normal
352 * brelse() call.
353 */
354 void
355 xfs_trans_brelse(xfs_trans_t *tp,
356 xfs_buf_t *bp)
357 {
358 xfs_buf_log_item_t *bip;
359 int freed;
360
361 /*
362 * Default to a normal brelse() call if the tp is NULL.
363 */
364 if (tp == NULL) {
365 ASSERT(bp->b_transp == NULL);
366 xfs_buf_relse(bp);
367 return;
368 }
369
370 ASSERT(bp->b_transp == tp);
371 bip = bp->b_fspriv;
372 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
373 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
374 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
375 ASSERT(atomic_read(&bip->bli_refcount) > 0);
376
377 trace_xfs_trans_brelse(bip);
378
379 /*
380 * If the release is just for a recursive lock,
381 * then decrement the count and return.
382 */
383 if (bip->bli_recur > 0) {
384 bip->bli_recur--;
385 return;
386 }
387
388 /*
389 * If the buffer is dirty within this transaction, we can't
390 * release it until we commit.
391 */
392 if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
393 return;
394
395 /*
396 * If the buffer has been invalidated, then we can't release
397 * it until the transaction commits to disk unless it is re-dirtied
398 * as part of this transaction. This prevents us from pulling
399 * the item from the AIL before we should.
400 */
401 if (bip->bli_flags & XFS_BLI_STALE)
402 return;
403
404 ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
405
406 /*
407 * Free up the log item descriptor tracking the released item.
408 */
409 xfs_trans_del_item(&bip->bli_item);
410
411 /*
412 * Clear the hold flag in the buf log item if it is set.
413 * We wouldn't want the next user of the buffer to
414 * get confused.
415 */
416 if (bip->bli_flags & XFS_BLI_HOLD) {
417 bip->bli_flags &= ~XFS_BLI_HOLD;
418 }
419
420 /*
421 * Drop our reference to the buf log item.
422 */
423 freed = atomic_dec_and_test(&bip->bli_refcount);
424
425 /*
426 * If the buf item is not tracking data in the log, then we must free it
427 * before releasing the buffer back to the free pool.
428 *
429 * If the fs has shutdown and we dropped the last reference, it may fall
430 * on us to release a (possibly dirty) bli if it never made it to the
431 * AIL (e.g., the aborted unpin already happened and didn't release it
432 * due to our reference). Since we're already shutdown and need xa_lock,
433 * just force remove from the AIL and release the bli here.
434 */
435 if (XFS_FORCED_SHUTDOWN(tp->t_mountp) && freed) {
436 xfs_trans_ail_remove(&bip->bli_item, SHUTDOWN_LOG_IO_ERROR);
437 xfs_buf_item_relse(bp);
438 } else if (!(bip->bli_flags & XFS_BLI_DIRTY)) {
439 /***
440 ASSERT(bp->b_pincount == 0);
441 ***/
442 ASSERT(atomic_read(&bip->bli_refcount) == 0);
443 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
444 ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
445 xfs_buf_item_relse(bp);
446 }
447
448 bp->b_transp = NULL;
449 xfs_buf_relse(bp);
450 }
451
452 /*
453 * Mark the buffer as not needing to be unlocked when the buf item's
454 * iop_unlock() routine is called. The buffer must already be locked
455 * and associated with the given transaction.
456 */
457 /* ARGSUSED */
458 void
459 xfs_trans_bhold(xfs_trans_t *tp,
460 xfs_buf_t *bp)
461 {
462 xfs_buf_log_item_t *bip = bp->b_fspriv;
463
464 ASSERT(bp->b_transp == tp);
465 ASSERT(bip != NULL);
466 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
467 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
468 ASSERT(atomic_read(&bip->bli_refcount) > 0);
469
470 bip->bli_flags |= XFS_BLI_HOLD;
471 trace_xfs_trans_bhold(bip);
472 }
473
474 /*
475 * Cancel the previous buffer hold request made on this buffer
476 * for this transaction.
477 */
478 void
479 xfs_trans_bhold_release(xfs_trans_t *tp,
480 xfs_buf_t *bp)
481 {
482 xfs_buf_log_item_t *bip = bp->b_fspriv;
483
484 ASSERT(bp->b_transp == tp);
485 ASSERT(bip != NULL);
486 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
487 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
488 ASSERT(atomic_read(&bip->bli_refcount) > 0);
489 ASSERT(bip->bli_flags & XFS_BLI_HOLD);
490
491 bip->bli_flags &= ~XFS_BLI_HOLD;
492 trace_xfs_trans_bhold_release(bip);
493 }
494
495 /*
496 * Mark a buffer dirty in the transaction.
497 */
498 void
499 xfs_trans_dirty_buf(
500 struct xfs_trans *tp,
501 struct xfs_buf *bp)
502 {
503 struct xfs_buf_log_item *bip = bp->b_fspriv;
504
505 ASSERT(bp->b_transp == tp);
506 ASSERT(bip != NULL);
507 ASSERT(bp->b_iodone == NULL ||
508 bp->b_iodone == xfs_buf_iodone_callbacks);
509
510 /*
511 * Mark the buffer as needing to be written out eventually,
512 * and set its iodone function to remove the buffer's buf log
513 * item from the AIL and free it when the buffer is flushed
514 * to disk. See xfs_buf_attach_iodone() for more details
515 * on li_cb and xfs_buf_iodone_callbacks().
516 * If we end up aborting this transaction, we trap this buffer
517 * inside the b_bdstrat callback so that this won't get written to
518 * disk.
519 */
520 bp->b_flags |= XBF_DONE;
521
522 ASSERT(atomic_read(&bip->bli_refcount) > 0);
523 bp->b_iodone = xfs_buf_iodone_callbacks;
524 bip->bli_item.li_cb = xfs_buf_iodone;
525
526 /*
527 * If we invalidated the buffer within this transaction, then
528 * cancel the invalidation now that we're dirtying the buffer
529 * again. There are no races with the code in xfs_buf_item_unpin(),
530 * because we have a reference to the buffer this entire time.
531 */
532 if (bip->bli_flags & XFS_BLI_STALE) {
533 bip->bli_flags &= ~XFS_BLI_STALE;
534 ASSERT(bp->b_flags & XBF_STALE);
535 bp->b_flags &= ~XBF_STALE;
536 bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
537 }
538 bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
539
540 tp->t_flags |= XFS_TRANS_DIRTY;
541 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
542 }
543
544 /*
545 * This is called to mark bytes first through last inclusive of the given
546 * buffer as needing to be logged when the transaction is committed.
547 * The buffer must already be associated with the given transaction.
548 *
549 * First and last are numbers relative to the beginning of this buffer,
550 * so the first byte in the buffer is numbered 0 regardless of the
551 * value of b_blkno.
552 */
553 void
554 xfs_trans_log_buf(
555 struct xfs_trans *tp,
556 struct xfs_buf *bp,
557 uint first,
558 uint last)
559 {
560 struct xfs_buf_log_item *bip = bp->b_fspriv;
561
562 ASSERT(first <= last && last < BBTOB(bp->b_length));
563 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
564
565 xfs_trans_dirty_buf(tp, bp);
566
567 trace_xfs_trans_log_buf(bip);
568 xfs_buf_item_log(bip, first, last);
569 }
570
571
572 /*
573 * Invalidate a buffer that is being used within a transaction.
574 *
575 * Typically this is because the blocks in the buffer are being freed, so we
576 * need to prevent it from being written out when we're done. Allowing it
577 * to be written again might overwrite data in the free blocks if they are
578 * reallocated to a file.
579 *
580 * We prevent the buffer from being written out by marking it stale. We can't
581 * get rid of the buf log item at this point because the buffer may still be
582 * pinned by another transaction. If that is the case, then we'll wait until
583 * the buffer is committed to disk for the last time (we can tell by the ref
584 * count) and free it in xfs_buf_item_unpin(). Until that happens we will
585 * keep the buffer locked so that the buffer and buf log item are not reused.
586 *
587 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
588 * the buf item. This will be used at recovery time to determine that copies
589 * of the buffer in the log before this should not be replayed.
590 *
591 * We mark the item descriptor and the transaction dirty so that we'll hold
592 * the buffer until after the commit.
593 *
594 * Since we're invalidating the buffer, we also clear the state about which
595 * parts of the buffer have been logged. We also clear the flag indicating
596 * that this is an inode buffer since the data in the buffer will no longer
597 * be valid.
598 *
599 * We set the stale bit in the buffer as well since we're getting rid of it.
600 */
601 void
602 xfs_trans_binval(
603 xfs_trans_t *tp,
604 xfs_buf_t *bp)
605 {
606 xfs_buf_log_item_t *bip = bp->b_fspriv;
607 int i;
608
609 ASSERT(bp->b_transp == tp);
610 ASSERT(bip != NULL);
611 ASSERT(atomic_read(&bip->bli_refcount) > 0);
612
613 trace_xfs_trans_binval(bip);
614
615 if (bip->bli_flags & XFS_BLI_STALE) {
616 /*
617 * If the buffer is already invalidated, then
618 * just return.
619 */
620 ASSERT(bp->b_flags & XBF_STALE);
621 ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
622 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
623 ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
624 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
625 ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
626 ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
627 return;
628 }
629
630 xfs_buf_stale(bp);
631
632 bip->bli_flags |= XFS_BLI_STALE;
633 bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
634 bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
635 bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
636 bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
637 for (i = 0; i < bip->bli_format_count; i++) {
638 memset(bip->bli_formats[i].blf_data_map, 0,
639 (bip->bli_formats[i].blf_map_size * sizeof(uint)));
640 }
641 bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
642 tp->t_flags |= XFS_TRANS_DIRTY;
643 }
644
645 /*
646 * This call is used to indicate that the buffer contains on-disk inodes which
647 * must be handled specially during recovery. They require special handling
648 * because only the di_next_unlinked from the inodes in the buffer should be
649 * recovered. The rest of the data in the buffer is logged via the inodes
650 * themselves.
651 *
652 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
653 * transferred to the buffer's log format structure so that we'll know what to
654 * do at recovery time.
655 */
656 void
657 xfs_trans_inode_buf(
658 xfs_trans_t *tp,
659 xfs_buf_t *bp)
660 {
661 xfs_buf_log_item_t *bip = bp->b_fspriv;
662
663 ASSERT(bp->b_transp == tp);
664 ASSERT(bip != NULL);
665 ASSERT(atomic_read(&bip->bli_refcount) > 0);
666
667 bip->bli_flags |= XFS_BLI_INODE_BUF;
668 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
669 }
670
671 /*
672 * This call is used to indicate that the buffer is going to
673 * be staled and was an inode buffer. This means it gets
674 * special processing during unpin - where any inodes
675 * associated with the buffer should be removed from ail.
676 * There is also special processing during recovery,
677 * any replay of the inodes in the buffer needs to be
678 * prevented as the buffer may have been reused.
679 */
680 void
681 xfs_trans_stale_inode_buf(
682 xfs_trans_t *tp,
683 xfs_buf_t *bp)
684 {
685 xfs_buf_log_item_t *bip = bp->b_fspriv;
686
687 ASSERT(bp->b_transp == tp);
688 ASSERT(bip != NULL);
689 ASSERT(atomic_read(&bip->bli_refcount) > 0);
690
691 bip->bli_flags |= XFS_BLI_STALE_INODE;
692 bip->bli_item.li_cb = xfs_buf_iodone;
693 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
694 }
695
696 /*
697 * Mark the buffer as being one which contains newly allocated
698 * inodes. We need to make sure that even if this buffer is
699 * relogged as an 'inode buf' we still recover all of the inode
700 * images in the face of a crash. This works in coordination with
701 * xfs_buf_item_committed() to ensure that the buffer remains in the
702 * AIL at its original location even after it has been relogged.
703 */
704 /* ARGSUSED */
705 void
706 xfs_trans_inode_alloc_buf(
707 xfs_trans_t *tp,
708 xfs_buf_t *bp)
709 {
710 xfs_buf_log_item_t *bip = bp->b_fspriv;
711
712 ASSERT(bp->b_transp == tp);
713 ASSERT(bip != NULL);
714 ASSERT(atomic_read(&bip->bli_refcount) > 0);
715
716 bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
717 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
718 }
719
720 /*
721 * Mark the buffer as ordered for this transaction. This means that the contents
722 * of the buffer are not recorded in the transaction but it is tracked in the
723 * AIL as though it was. This allows us to record logical changes in
724 * transactions rather than the physical changes we make to the buffer without
725 * changing writeback ordering constraints of metadata buffers.
726 */
727 bool
728 xfs_trans_ordered_buf(
729 struct xfs_trans *tp,
730 struct xfs_buf *bp)
731 {
732 struct xfs_buf_log_item *bip = bp->b_fspriv;
733
734 ASSERT(bp->b_transp == tp);
735 ASSERT(bip != NULL);
736 ASSERT(atomic_read(&bip->bli_refcount) > 0);
737
738 if (xfs_buf_item_dirty_format(bip))
739 return false;
740
741 bip->bli_flags |= XFS_BLI_ORDERED;
742 trace_xfs_buf_item_ordered(bip);
743
744 /*
745 * We don't log a dirty range of an ordered buffer but it still needs
746 * to be marked dirty and that it has been logged.
747 */
748 xfs_trans_dirty_buf(tp, bp);
749 return true;
750 }
751
752 /*
753 * Set the type of the buffer for log recovery so that it can correctly identify
754 * and hence attach the correct buffer ops to the buffer after replay.
755 */
756 void
757 xfs_trans_buf_set_type(
758 struct xfs_trans *tp,
759 struct xfs_buf *bp,
760 enum xfs_blft type)
761 {
762 struct xfs_buf_log_item *bip = bp->b_fspriv;
763
764 if (!tp)
765 return;
766
767 ASSERT(bp->b_transp == tp);
768 ASSERT(bip != NULL);
769 ASSERT(atomic_read(&bip->bli_refcount) > 0);
770
771 xfs_blft_to_flags(&bip->__bli_format, type);
772 }
773
774 void
775 xfs_trans_buf_copy_type(
776 struct xfs_buf *dst_bp,
777 struct xfs_buf *src_bp)
778 {
779 struct xfs_buf_log_item *sbip = src_bp->b_fspriv;
780 struct xfs_buf_log_item *dbip = dst_bp->b_fspriv;
781 enum xfs_blft type;
782
783 type = xfs_blft_from_flags(&sbip->__bli_format);
784 xfs_blft_to_flags(&dbip->__bli_format, type);
785 }
786
787 /*
788 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
789 * dquots. However, unlike in inode buffer recovery, dquot buffers get
790 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
791 * The only thing that makes dquot buffers different from regular
792 * buffers is that we must not replay dquot bufs when recovering
793 * if a _corresponding_ quotaoff has happened. We also have to distinguish
794 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
795 * can be turned off independently.
796 */
797 /* ARGSUSED */
798 void
799 xfs_trans_dquot_buf(
800 xfs_trans_t *tp,
801 xfs_buf_t *bp,
802 uint type)
803 {
804 struct xfs_buf_log_item *bip = bp->b_fspriv;
805
806 ASSERT(type == XFS_BLF_UDQUOT_BUF ||
807 type == XFS_BLF_PDQUOT_BUF ||
808 type == XFS_BLF_GDQUOT_BUF);
809
810 bip->__bli_format.blf_flags |= type;
811
812 switch (type) {
813 case XFS_BLF_UDQUOT_BUF:
814 type = XFS_BLFT_UDQUOT_BUF;
815 break;
816 case XFS_BLF_PDQUOT_BUF:
817 type = XFS_BLFT_PDQUOT_BUF;
818 break;
819 case XFS_BLF_GDQUOT_BUF:
820 type = XFS_BLFT_GDQUOT_BUF;
821 break;
822 default:
823 type = XFS_BLFT_UNKNOWN_BUF;
824 break;
825 }
826
827 xfs_trans_buf_set_type(tp, bp, type);
828 }