]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/zonefs/super.c
Merge tag 'for-5.15-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
[mirror_ubuntu-jammy-kernel.git] / fs / zonefs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Simple file system for zoned block devices exposing zones as files.
4 *
5 * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6 */
7 #include <linux/module.h>
8 #include <linux/pagemap.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24
25 #include "zonefs.h"
26
27 #define CREATE_TRACE_POINTS
28 #include "trace.h"
29
30 static inline int zonefs_zone_mgmt(struct inode *inode,
31 enum req_opf op)
32 {
33 struct zonefs_inode_info *zi = ZONEFS_I(inode);
34 int ret;
35
36 lockdep_assert_held(&zi->i_truncate_mutex);
37
38 trace_zonefs_zone_mgmt(inode, op);
39 ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
40 zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
41 if (ret) {
42 zonefs_err(inode->i_sb,
43 "Zone management operation %s at %llu failed %d\n",
44 blk_op_str(op), zi->i_zsector, ret);
45 return ret;
46 }
47
48 return 0;
49 }
50
51 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
52 {
53 struct zonefs_inode_info *zi = ZONEFS_I(inode);
54
55 i_size_write(inode, isize);
56 /*
57 * A full zone is no longer open/active and does not need
58 * explicit closing.
59 */
60 if (isize >= zi->i_max_size)
61 zi->i_flags &= ~ZONEFS_ZONE_OPEN;
62 }
63
64 static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
65 unsigned int flags, struct iomap *iomap,
66 struct iomap *srcmap)
67 {
68 struct zonefs_inode_info *zi = ZONEFS_I(inode);
69 struct super_block *sb = inode->i_sb;
70 loff_t isize;
71
72 /* All I/Os should always be within the file maximum size */
73 if (WARN_ON_ONCE(offset + length > zi->i_max_size))
74 return -EIO;
75
76 /*
77 * Sequential zones can only accept direct writes. This is already
78 * checked when writes are issued, so warn if we see a page writeback
79 * operation.
80 */
81 if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
82 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)))
83 return -EIO;
84
85 /*
86 * For conventional zones, all blocks are always mapped. For sequential
87 * zones, all blocks after always mapped below the inode size (zone
88 * write pointer) and unwriten beyond.
89 */
90 mutex_lock(&zi->i_truncate_mutex);
91 isize = i_size_read(inode);
92 if (offset >= isize)
93 iomap->type = IOMAP_UNWRITTEN;
94 else
95 iomap->type = IOMAP_MAPPED;
96 if (flags & IOMAP_WRITE)
97 length = zi->i_max_size - offset;
98 else
99 length = min(length, isize - offset);
100 mutex_unlock(&zi->i_truncate_mutex);
101
102 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
103 iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset;
104 iomap->bdev = inode->i_sb->s_bdev;
105 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
106
107 trace_zonefs_iomap_begin(inode, iomap);
108
109 return 0;
110 }
111
112 static const struct iomap_ops zonefs_iomap_ops = {
113 .iomap_begin = zonefs_iomap_begin,
114 };
115
116 static int zonefs_readpage(struct file *unused, struct page *page)
117 {
118 return iomap_readpage(page, &zonefs_iomap_ops);
119 }
120
121 static void zonefs_readahead(struct readahead_control *rac)
122 {
123 iomap_readahead(rac, &zonefs_iomap_ops);
124 }
125
126 /*
127 * Map blocks for page writeback. This is used only on conventional zone files,
128 * which implies that the page range can only be within the fixed inode size.
129 */
130 static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc,
131 struct inode *inode, loff_t offset)
132 {
133 struct zonefs_inode_info *zi = ZONEFS_I(inode);
134
135 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
136 return -EIO;
137 if (WARN_ON_ONCE(offset >= i_size_read(inode)))
138 return -EIO;
139
140 /* If the mapping is already OK, nothing needs to be done */
141 if (offset >= wpc->iomap.offset &&
142 offset < wpc->iomap.offset + wpc->iomap.length)
143 return 0;
144
145 return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset,
146 IOMAP_WRITE, &wpc->iomap, NULL);
147 }
148
149 static const struct iomap_writeback_ops zonefs_writeback_ops = {
150 .map_blocks = zonefs_map_blocks,
151 };
152
153 static int zonefs_writepage(struct page *page, struct writeback_control *wbc)
154 {
155 struct iomap_writepage_ctx wpc = { };
156
157 return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops);
158 }
159
160 static int zonefs_writepages(struct address_space *mapping,
161 struct writeback_control *wbc)
162 {
163 struct iomap_writepage_ctx wpc = { };
164
165 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
166 }
167
168 static int zonefs_swap_activate(struct swap_info_struct *sis,
169 struct file *swap_file, sector_t *span)
170 {
171 struct inode *inode = file_inode(swap_file);
172 struct zonefs_inode_info *zi = ZONEFS_I(inode);
173
174 if (zi->i_ztype != ZONEFS_ZTYPE_CNV) {
175 zonefs_err(inode->i_sb,
176 "swap file: not a conventional zone file\n");
177 return -EINVAL;
178 }
179
180 return iomap_swapfile_activate(sis, swap_file, span, &zonefs_iomap_ops);
181 }
182
183 static const struct address_space_operations zonefs_file_aops = {
184 .readpage = zonefs_readpage,
185 .readahead = zonefs_readahead,
186 .writepage = zonefs_writepage,
187 .writepages = zonefs_writepages,
188 .set_page_dirty = __set_page_dirty_nobuffers,
189 .releasepage = iomap_releasepage,
190 .invalidatepage = iomap_invalidatepage,
191 .migratepage = iomap_migrate_page,
192 .is_partially_uptodate = iomap_is_partially_uptodate,
193 .error_remove_page = generic_error_remove_page,
194 .direct_IO = noop_direct_IO,
195 .swap_activate = zonefs_swap_activate,
196 };
197
198 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
199 {
200 struct super_block *sb = inode->i_sb;
201 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
202 loff_t old_isize = i_size_read(inode);
203 loff_t nr_blocks;
204
205 if (new_isize == old_isize)
206 return;
207
208 spin_lock(&sbi->s_lock);
209
210 /*
211 * This may be called for an update after an IO error.
212 * So beware of the values seen.
213 */
214 if (new_isize < old_isize) {
215 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
216 if (sbi->s_used_blocks > nr_blocks)
217 sbi->s_used_blocks -= nr_blocks;
218 else
219 sbi->s_used_blocks = 0;
220 } else {
221 sbi->s_used_blocks +=
222 (new_isize - old_isize) >> sb->s_blocksize_bits;
223 if (sbi->s_used_blocks > sbi->s_blocks)
224 sbi->s_used_blocks = sbi->s_blocks;
225 }
226
227 spin_unlock(&sbi->s_lock);
228 }
229
230 /*
231 * Check a zone condition and adjust its file inode access permissions for
232 * offline and readonly zones. Return the inode size corresponding to the
233 * amount of readable data in the zone.
234 */
235 static loff_t zonefs_check_zone_condition(struct inode *inode,
236 struct blk_zone *zone, bool warn,
237 bool mount)
238 {
239 struct zonefs_inode_info *zi = ZONEFS_I(inode);
240
241 switch (zone->cond) {
242 case BLK_ZONE_COND_OFFLINE:
243 /*
244 * Dead zone: make the inode immutable, disable all accesses
245 * and set the file size to 0 (zone wp set to zone start).
246 */
247 if (warn)
248 zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
249 inode->i_ino);
250 inode->i_flags |= S_IMMUTABLE;
251 inode->i_mode &= ~0777;
252 zone->wp = zone->start;
253 return 0;
254 case BLK_ZONE_COND_READONLY:
255 /*
256 * The write pointer of read-only zones is invalid. If such a
257 * zone is found during mount, the file size cannot be retrieved
258 * so we treat the zone as offline (mount == true case).
259 * Otherwise, keep the file size as it was when last updated
260 * so that the user can recover data. In both cases, writes are
261 * always disabled for the zone.
262 */
263 if (warn)
264 zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
265 inode->i_ino);
266 inode->i_flags |= S_IMMUTABLE;
267 if (mount) {
268 zone->cond = BLK_ZONE_COND_OFFLINE;
269 inode->i_mode &= ~0777;
270 zone->wp = zone->start;
271 return 0;
272 }
273 inode->i_mode &= ~0222;
274 return i_size_read(inode);
275 case BLK_ZONE_COND_FULL:
276 /* The write pointer of full zones is invalid. */
277 return zi->i_max_size;
278 default:
279 if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
280 return zi->i_max_size;
281 return (zone->wp - zone->start) << SECTOR_SHIFT;
282 }
283 }
284
285 struct zonefs_ioerr_data {
286 struct inode *inode;
287 bool write;
288 };
289
290 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
291 void *data)
292 {
293 struct zonefs_ioerr_data *err = data;
294 struct inode *inode = err->inode;
295 struct zonefs_inode_info *zi = ZONEFS_I(inode);
296 struct super_block *sb = inode->i_sb;
297 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
298 loff_t isize, data_size;
299
300 /*
301 * Check the zone condition: if the zone is not "bad" (offline or
302 * read-only), read errors are simply signaled to the IO issuer as long
303 * as there is no inconsistency between the inode size and the amount of
304 * data writen in the zone (data_size).
305 */
306 data_size = zonefs_check_zone_condition(inode, zone, true, false);
307 isize = i_size_read(inode);
308 if (zone->cond != BLK_ZONE_COND_OFFLINE &&
309 zone->cond != BLK_ZONE_COND_READONLY &&
310 !err->write && isize == data_size)
311 return 0;
312
313 /*
314 * At this point, we detected either a bad zone or an inconsistency
315 * between the inode size and the amount of data written in the zone.
316 * For the latter case, the cause may be a write IO error or an external
317 * action on the device. Two error patterns exist:
318 * 1) The inode size is lower than the amount of data in the zone:
319 * a write operation partially failed and data was writen at the end
320 * of the file. This can happen in the case of a large direct IO
321 * needing several BIOs and/or write requests to be processed.
322 * 2) The inode size is larger than the amount of data in the zone:
323 * this can happen with a deferred write error with the use of the
324 * device side write cache after getting successful write IO
325 * completions. Other possibilities are (a) an external corruption,
326 * e.g. an application reset the zone directly, or (b) the device
327 * has a serious problem (e.g. firmware bug).
328 *
329 * In all cases, warn about inode size inconsistency and handle the
330 * IO error according to the zone condition and to the mount options.
331 */
332 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
333 zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
334 inode->i_ino, isize, data_size);
335
336 /*
337 * First handle bad zones signaled by hardware. The mount options
338 * errors=zone-ro and errors=zone-offline result in changing the
339 * zone condition to read-only and offline respectively, as if the
340 * condition was signaled by the hardware.
341 */
342 if (zone->cond == BLK_ZONE_COND_OFFLINE ||
343 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
344 zonefs_warn(sb, "inode %lu: read/write access disabled\n",
345 inode->i_ino);
346 if (zone->cond != BLK_ZONE_COND_OFFLINE) {
347 zone->cond = BLK_ZONE_COND_OFFLINE;
348 data_size = zonefs_check_zone_condition(inode, zone,
349 false, false);
350 }
351 } else if (zone->cond == BLK_ZONE_COND_READONLY ||
352 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
353 zonefs_warn(sb, "inode %lu: write access disabled\n",
354 inode->i_ino);
355 if (zone->cond != BLK_ZONE_COND_READONLY) {
356 zone->cond = BLK_ZONE_COND_READONLY;
357 data_size = zonefs_check_zone_condition(inode, zone,
358 false, false);
359 }
360 }
361
362 /*
363 * If the filesystem is mounted with the explicit-open mount option, we
364 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
365 * the read-only or offline condition, to avoid attempting an explicit
366 * close of the zone when the inode file is closed.
367 */
368 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
369 (zone->cond == BLK_ZONE_COND_OFFLINE ||
370 zone->cond == BLK_ZONE_COND_READONLY))
371 zi->i_flags &= ~ZONEFS_ZONE_OPEN;
372
373 /*
374 * If error=remount-ro was specified, any error result in remounting
375 * the volume as read-only.
376 */
377 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
378 zonefs_warn(sb, "remounting filesystem read-only\n");
379 sb->s_flags |= SB_RDONLY;
380 }
381
382 /*
383 * Update block usage stats and the inode size to prevent access to
384 * invalid data.
385 */
386 zonefs_update_stats(inode, data_size);
387 zonefs_i_size_write(inode, data_size);
388 zi->i_wpoffset = data_size;
389
390 return 0;
391 }
392
393 /*
394 * When an file IO error occurs, check the file zone to see if there is a change
395 * in the zone condition (e.g. offline or read-only). For a failed write to a
396 * sequential zone, the zone write pointer position must also be checked to
397 * eventually correct the file size and zonefs inode write pointer offset
398 * (which can be out of sync with the drive due to partial write failures).
399 */
400 static void __zonefs_io_error(struct inode *inode, bool write)
401 {
402 struct zonefs_inode_info *zi = ZONEFS_I(inode);
403 struct super_block *sb = inode->i_sb;
404 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
405 unsigned int noio_flag;
406 unsigned int nr_zones =
407 zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT);
408 struct zonefs_ioerr_data err = {
409 .inode = inode,
410 .write = write,
411 };
412 int ret;
413
414 /*
415 * Memory allocations in blkdev_report_zones() can trigger a memory
416 * reclaim which may in turn cause a recursion into zonefs as well as
417 * struct request allocations for the same device. The former case may
418 * end up in a deadlock on the inode truncate mutex, while the latter
419 * may prevent IO forward progress. Executing the report zones under
420 * the GFP_NOIO context avoids both problems.
421 */
422 noio_flag = memalloc_noio_save();
423 ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
424 zonefs_io_error_cb, &err);
425 if (ret != nr_zones)
426 zonefs_err(sb, "Get inode %lu zone information failed %d\n",
427 inode->i_ino, ret);
428 memalloc_noio_restore(noio_flag);
429 }
430
431 static void zonefs_io_error(struct inode *inode, bool write)
432 {
433 struct zonefs_inode_info *zi = ZONEFS_I(inode);
434
435 mutex_lock(&zi->i_truncate_mutex);
436 __zonefs_io_error(inode, write);
437 mutex_unlock(&zi->i_truncate_mutex);
438 }
439
440 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
441 {
442 struct zonefs_inode_info *zi = ZONEFS_I(inode);
443 loff_t old_isize;
444 enum req_opf op;
445 int ret = 0;
446
447 /*
448 * Only sequential zone files can be truncated and truncation is allowed
449 * only down to a 0 size, which is equivalent to a zone reset, and to
450 * the maximum file size, which is equivalent to a zone finish.
451 */
452 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
453 return -EPERM;
454
455 if (!isize)
456 op = REQ_OP_ZONE_RESET;
457 else if (isize == zi->i_max_size)
458 op = REQ_OP_ZONE_FINISH;
459 else
460 return -EPERM;
461
462 inode_dio_wait(inode);
463
464 /* Serialize against page faults */
465 filemap_invalidate_lock(inode->i_mapping);
466
467 /* Serialize against zonefs_iomap_begin() */
468 mutex_lock(&zi->i_truncate_mutex);
469
470 old_isize = i_size_read(inode);
471 if (isize == old_isize)
472 goto unlock;
473
474 ret = zonefs_zone_mgmt(inode, op);
475 if (ret)
476 goto unlock;
477
478 /*
479 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
480 * take care of open zones.
481 */
482 if (zi->i_flags & ZONEFS_ZONE_OPEN) {
483 /*
484 * Truncating a zone to EMPTY or FULL is the equivalent of
485 * closing the zone. For a truncation to 0, we need to
486 * re-open the zone to ensure new writes can be processed.
487 * For a truncation to the maximum file size, the zone is
488 * closed and writes cannot be accepted anymore, so clear
489 * the open flag.
490 */
491 if (!isize)
492 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
493 else
494 zi->i_flags &= ~ZONEFS_ZONE_OPEN;
495 }
496
497 zonefs_update_stats(inode, isize);
498 truncate_setsize(inode, isize);
499 zi->i_wpoffset = isize;
500
501 unlock:
502 mutex_unlock(&zi->i_truncate_mutex);
503 filemap_invalidate_unlock(inode->i_mapping);
504
505 return ret;
506 }
507
508 static int zonefs_inode_setattr(struct user_namespace *mnt_userns,
509 struct dentry *dentry, struct iattr *iattr)
510 {
511 struct inode *inode = d_inode(dentry);
512 int ret;
513
514 if (unlikely(IS_IMMUTABLE(inode)))
515 return -EPERM;
516
517 ret = setattr_prepare(&init_user_ns, dentry, iattr);
518 if (ret)
519 return ret;
520
521 /*
522 * Since files and directories cannot be created nor deleted, do not
523 * allow setting any write attributes on the sub-directories grouping
524 * files by zone type.
525 */
526 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
527 (iattr->ia_mode & 0222))
528 return -EPERM;
529
530 if (((iattr->ia_valid & ATTR_UID) &&
531 !uid_eq(iattr->ia_uid, inode->i_uid)) ||
532 ((iattr->ia_valid & ATTR_GID) &&
533 !gid_eq(iattr->ia_gid, inode->i_gid))) {
534 ret = dquot_transfer(inode, iattr);
535 if (ret)
536 return ret;
537 }
538
539 if (iattr->ia_valid & ATTR_SIZE) {
540 ret = zonefs_file_truncate(inode, iattr->ia_size);
541 if (ret)
542 return ret;
543 }
544
545 setattr_copy(&init_user_ns, inode, iattr);
546
547 return 0;
548 }
549
550 static const struct inode_operations zonefs_file_inode_operations = {
551 .setattr = zonefs_inode_setattr,
552 };
553
554 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
555 int datasync)
556 {
557 struct inode *inode = file_inode(file);
558 int ret = 0;
559
560 if (unlikely(IS_IMMUTABLE(inode)))
561 return -EPERM;
562
563 /*
564 * Since only direct writes are allowed in sequential files, page cache
565 * flush is needed only for conventional zone files.
566 */
567 if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
568 ret = file_write_and_wait_range(file, start, end);
569 if (!ret)
570 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
571
572 if (ret)
573 zonefs_io_error(inode, true);
574
575 return ret;
576 }
577
578 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
579 {
580 struct inode *inode = file_inode(vmf->vma->vm_file);
581 struct zonefs_inode_info *zi = ZONEFS_I(inode);
582 vm_fault_t ret;
583
584 if (unlikely(IS_IMMUTABLE(inode)))
585 return VM_FAULT_SIGBUS;
586
587 /*
588 * Sanity check: only conventional zone files can have shared
589 * writeable mappings.
590 */
591 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
592 return VM_FAULT_NOPAGE;
593
594 sb_start_pagefault(inode->i_sb);
595 file_update_time(vmf->vma->vm_file);
596
597 /* Serialize against truncates */
598 filemap_invalidate_lock_shared(inode->i_mapping);
599 ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops);
600 filemap_invalidate_unlock_shared(inode->i_mapping);
601
602 sb_end_pagefault(inode->i_sb);
603 return ret;
604 }
605
606 static const struct vm_operations_struct zonefs_file_vm_ops = {
607 .fault = filemap_fault,
608 .map_pages = filemap_map_pages,
609 .page_mkwrite = zonefs_filemap_page_mkwrite,
610 };
611
612 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
613 {
614 /*
615 * Conventional zones accept random writes, so their files can support
616 * shared writable mappings. For sequential zone files, only read
617 * mappings are possible since there are no guarantees for write
618 * ordering between msync() and page cache writeback.
619 */
620 if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
621 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
622 return -EINVAL;
623
624 file_accessed(file);
625 vma->vm_ops = &zonefs_file_vm_ops;
626
627 return 0;
628 }
629
630 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
631 {
632 loff_t isize = i_size_read(file_inode(file));
633
634 /*
635 * Seeks are limited to below the zone size for conventional zones
636 * and below the zone write pointer for sequential zones. In both
637 * cases, this limit is the inode size.
638 */
639 return generic_file_llseek_size(file, offset, whence, isize, isize);
640 }
641
642 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
643 int error, unsigned int flags)
644 {
645 struct inode *inode = file_inode(iocb->ki_filp);
646 struct zonefs_inode_info *zi = ZONEFS_I(inode);
647
648 if (error) {
649 zonefs_io_error(inode, true);
650 return error;
651 }
652
653 if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
654 /*
655 * Note that we may be seeing completions out of order,
656 * but that is not a problem since a write completed
657 * successfully necessarily means that all preceding writes
658 * were also successful. So we can safely increase the inode
659 * size to the write end location.
660 */
661 mutex_lock(&zi->i_truncate_mutex);
662 if (i_size_read(inode) < iocb->ki_pos + size) {
663 zonefs_update_stats(inode, iocb->ki_pos + size);
664 zonefs_i_size_write(inode, iocb->ki_pos + size);
665 }
666 mutex_unlock(&zi->i_truncate_mutex);
667 }
668
669 return 0;
670 }
671
672 static const struct iomap_dio_ops zonefs_write_dio_ops = {
673 .end_io = zonefs_file_write_dio_end_io,
674 };
675
676 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
677 {
678 struct inode *inode = file_inode(iocb->ki_filp);
679 struct zonefs_inode_info *zi = ZONEFS_I(inode);
680 struct block_device *bdev = inode->i_sb->s_bdev;
681 unsigned int max;
682 struct bio *bio;
683 ssize_t size;
684 int nr_pages;
685 ssize_t ret;
686
687 max = queue_max_zone_append_sectors(bdev_get_queue(bdev));
688 max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
689 iov_iter_truncate(from, max);
690
691 nr_pages = iov_iter_npages(from, BIO_MAX_VECS);
692 if (!nr_pages)
693 return 0;
694
695 bio = bio_alloc(GFP_NOFS, nr_pages);
696 bio_set_dev(bio, bdev);
697 bio->bi_iter.bi_sector = zi->i_zsector;
698 bio->bi_write_hint = iocb->ki_hint;
699 bio->bi_ioprio = iocb->ki_ioprio;
700 bio->bi_opf = REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE;
701 if (iocb->ki_flags & IOCB_DSYNC)
702 bio->bi_opf |= REQ_FUA;
703
704 ret = bio_iov_iter_get_pages(bio, from);
705 if (unlikely(ret))
706 goto out_release;
707
708 size = bio->bi_iter.bi_size;
709 task_io_account_write(size);
710
711 if (iocb->ki_flags & IOCB_HIPRI)
712 bio_set_polled(bio, iocb);
713
714 ret = submit_bio_wait(bio);
715
716 zonefs_file_write_dio_end_io(iocb, size, ret, 0);
717 trace_zonefs_file_dio_append(inode, size, ret);
718
719 out_release:
720 bio_release_pages(bio, false);
721 bio_put(bio);
722
723 if (ret >= 0) {
724 iocb->ki_pos += size;
725 return size;
726 }
727
728 return ret;
729 }
730
731 /*
732 * Do not exceed the LFS limits nor the file zone size. If pos is under the
733 * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
734 */
735 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
736 loff_t count)
737 {
738 struct inode *inode = file_inode(file);
739 struct zonefs_inode_info *zi = ZONEFS_I(inode);
740 loff_t limit = rlimit(RLIMIT_FSIZE);
741 loff_t max_size = zi->i_max_size;
742
743 if (limit != RLIM_INFINITY) {
744 if (pos >= limit) {
745 send_sig(SIGXFSZ, current, 0);
746 return -EFBIG;
747 }
748 count = min(count, limit - pos);
749 }
750
751 if (!(file->f_flags & O_LARGEFILE))
752 max_size = min_t(loff_t, MAX_NON_LFS, max_size);
753
754 if (unlikely(pos >= max_size))
755 return -EFBIG;
756
757 return min(count, max_size - pos);
758 }
759
760 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
761 {
762 struct file *file = iocb->ki_filp;
763 struct inode *inode = file_inode(file);
764 struct zonefs_inode_info *zi = ZONEFS_I(inode);
765 loff_t count;
766
767 if (IS_SWAPFILE(inode))
768 return -ETXTBSY;
769
770 if (!iov_iter_count(from))
771 return 0;
772
773 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
774 return -EINVAL;
775
776 if (iocb->ki_flags & IOCB_APPEND) {
777 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
778 return -EINVAL;
779 mutex_lock(&zi->i_truncate_mutex);
780 iocb->ki_pos = zi->i_wpoffset;
781 mutex_unlock(&zi->i_truncate_mutex);
782 }
783
784 count = zonefs_write_check_limits(file, iocb->ki_pos,
785 iov_iter_count(from));
786 if (count < 0)
787 return count;
788
789 iov_iter_truncate(from, count);
790 return iov_iter_count(from);
791 }
792
793 /*
794 * Handle direct writes. For sequential zone files, this is the only possible
795 * write path. For these files, check that the user is issuing writes
796 * sequentially from the end of the file. This code assumes that the block layer
797 * delivers write requests to the device in sequential order. This is always the
798 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
799 * elevator feature is being used (e.g. mq-deadline). The block layer always
800 * automatically select such an elevator for zoned block devices during the
801 * device initialization.
802 */
803 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
804 {
805 struct inode *inode = file_inode(iocb->ki_filp);
806 struct zonefs_inode_info *zi = ZONEFS_I(inode);
807 struct super_block *sb = inode->i_sb;
808 bool sync = is_sync_kiocb(iocb);
809 bool append = false;
810 ssize_t ret, count;
811
812 /*
813 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
814 * as this can cause write reordering (e.g. the first aio gets EAGAIN
815 * on the inode lock but the second goes through but is now unaligned).
816 */
817 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
818 (iocb->ki_flags & IOCB_NOWAIT))
819 return -EOPNOTSUPP;
820
821 if (iocb->ki_flags & IOCB_NOWAIT) {
822 if (!inode_trylock(inode))
823 return -EAGAIN;
824 } else {
825 inode_lock(inode);
826 }
827
828 count = zonefs_write_checks(iocb, from);
829 if (count <= 0) {
830 ret = count;
831 goto inode_unlock;
832 }
833
834 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
835 ret = -EINVAL;
836 goto inode_unlock;
837 }
838
839 /* Enforce sequential writes (append only) in sequential zones */
840 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
841 mutex_lock(&zi->i_truncate_mutex);
842 if (iocb->ki_pos != zi->i_wpoffset) {
843 mutex_unlock(&zi->i_truncate_mutex);
844 ret = -EINVAL;
845 goto inode_unlock;
846 }
847 mutex_unlock(&zi->i_truncate_mutex);
848 append = sync;
849 }
850
851 if (append)
852 ret = zonefs_file_dio_append(iocb, from);
853 else
854 ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops,
855 &zonefs_write_dio_ops, 0);
856 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
857 (ret > 0 || ret == -EIOCBQUEUED)) {
858 if (ret > 0)
859 count = ret;
860 mutex_lock(&zi->i_truncate_mutex);
861 zi->i_wpoffset += count;
862 mutex_unlock(&zi->i_truncate_mutex);
863 }
864
865 inode_unlock:
866 inode_unlock(inode);
867
868 return ret;
869 }
870
871 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
872 struct iov_iter *from)
873 {
874 struct inode *inode = file_inode(iocb->ki_filp);
875 struct zonefs_inode_info *zi = ZONEFS_I(inode);
876 ssize_t ret;
877
878 /*
879 * Direct IO writes are mandatory for sequential zone files so that the
880 * write IO issuing order is preserved.
881 */
882 if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
883 return -EIO;
884
885 if (iocb->ki_flags & IOCB_NOWAIT) {
886 if (!inode_trylock(inode))
887 return -EAGAIN;
888 } else {
889 inode_lock(inode);
890 }
891
892 ret = zonefs_write_checks(iocb, from);
893 if (ret <= 0)
894 goto inode_unlock;
895
896 ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops);
897 if (ret > 0)
898 iocb->ki_pos += ret;
899 else if (ret == -EIO)
900 zonefs_io_error(inode, true);
901
902 inode_unlock:
903 inode_unlock(inode);
904 if (ret > 0)
905 ret = generic_write_sync(iocb, ret);
906
907 return ret;
908 }
909
910 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
911 {
912 struct inode *inode = file_inode(iocb->ki_filp);
913
914 if (unlikely(IS_IMMUTABLE(inode)))
915 return -EPERM;
916
917 if (sb_rdonly(inode->i_sb))
918 return -EROFS;
919
920 /* Write operations beyond the zone size are not allowed */
921 if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
922 return -EFBIG;
923
924 if (iocb->ki_flags & IOCB_DIRECT) {
925 ssize_t ret = zonefs_file_dio_write(iocb, from);
926 if (ret != -ENOTBLK)
927 return ret;
928 }
929
930 return zonefs_file_buffered_write(iocb, from);
931 }
932
933 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
934 int error, unsigned int flags)
935 {
936 if (error) {
937 zonefs_io_error(file_inode(iocb->ki_filp), false);
938 return error;
939 }
940
941 return 0;
942 }
943
944 static const struct iomap_dio_ops zonefs_read_dio_ops = {
945 .end_io = zonefs_file_read_dio_end_io,
946 };
947
948 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
949 {
950 struct inode *inode = file_inode(iocb->ki_filp);
951 struct zonefs_inode_info *zi = ZONEFS_I(inode);
952 struct super_block *sb = inode->i_sb;
953 loff_t isize;
954 ssize_t ret;
955
956 /* Offline zones cannot be read */
957 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
958 return -EPERM;
959
960 if (iocb->ki_pos >= zi->i_max_size)
961 return 0;
962
963 if (iocb->ki_flags & IOCB_NOWAIT) {
964 if (!inode_trylock_shared(inode))
965 return -EAGAIN;
966 } else {
967 inode_lock_shared(inode);
968 }
969
970 /* Limit read operations to written data */
971 mutex_lock(&zi->i_truncate_mutex);
972 isize = i_size_read(inode);
973 if (iocb->ki_pos >= isize) {
974 mutex_unlock(&zi->i_truncate_mutex);
975 ret = 0;
976 goto inode_unlock;
977 }
978 iov_iter_truncate(to, isize - iocb->ki_pos);
979 mutex_unlock(&zi->i_truncate_mutex);
980
981 if (iocb->ki_flags & IOCB_DIRECT) {
982 size_t count = iov_iter_count(to);
983
984 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
985 ret = -EINVAL;
986 goto inode_unlock;
987 }
988 file_accessed(iocb->ki_filp);
989 ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops,
990 &zonefs_read_dio_ops, 0);
991 } else {
992 ret = generic_file_read_iter(iocb, to);
993 if (ret == -EIO)
994 zonefs_io_error(inode, false);
995 }
996
997 inode_unlock:
998 inode_unlock_shared(inode);
999
1000 return ret;
1001 }
1002
1003 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file)
1004 {
1005 struct zonefs_inode_info *zi = ZONEFS_I(inode);
1006 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1007
1008 if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN))
1009 return false;
1010
1011 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
1012 return false;
1013
1014 if (!(file->f_mode & FMODE_WRITE))
1015 return false;
1016
1017 return true;
1018 }
1019
1020 static int zonefs_open_zone(struct inode *inode)
1021 {
1022 struct zonefs_inode_info *zi = ZONEFS_I(inode);
1023 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1024 int ret = 0;
1025
1026 mutex_lock(&zi->i_truncate_mutex);
1027
1028 if (!zi->i_wr_refcnt) {
1029 if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) {
1030 atomic_dec(&sbi->s_open_zones);
1031 ret = -EBUSY;
1032 goto unlock;
1033 }
1034
1035 if (i_size_read(inode) < zi->i_max_size) {
1036 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
1037 if (ret) {
1038 atomic_dec(&sbi->s_open_zones);
1039 goto unlock;
1040 }
1041 zi->i_flags |= ZONEFS_ZONE_OPEN;
1042 }
1043 }
1044
1045 zi->i_wr_refcnt++;
1046
1047 unlock:
1048 mutex_unlock(&zi->i_truncate_mutex);
1049
1050 return ret;
1051 }
1052
1053 static int zonefs_file_open(struct inode *inode, struct file *file)
1054 {
1055 int ret;
1056
1057 ret = generic_file_open(inode, file);
1058 if (ret)
1059 return ret;
1060
1061 if (zonefs_file_use_exp_open(inode, file))
1062 return zonefs_open_zone(inode);
1063
1064 return 0;
1065 }
1066
1067 static void zonefs_close_zone(struct inode *inode)
1068 {
1069 struct zonefs_inode_info *zi = ZONEFS_I(inode);
1070 int ret = 0;
1071
1072 mutex_lock(&zi->i_truncate_mutex);
1073 zi->i_wr_refcnt--;
1074 if (!zi->i_wr_refcnt) {
1075 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1076 struct super_block *sb = inode->i_sb;
1077
1078 /*
1079 * If the file zone is full, it is not open anymore and we only
1080 * need to decrement the open count.
1081 */
1082 if (!(zi->i_flags & ZONEFS_ZONE_OPEN))
1083 goto dec;
1084
1085 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1086 if (ret) {
1087 __zonefs_io_error(inode, false);
1088 /*
1089 * Leaving zones explicitly open may lead to a state
1090 * where most zones cannot be written (zone resources
1091 * exhausted). So take preventive action by remounting
1092 * read-only.
1093 */
1094 if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1095 !(sb->s_flags & SB_RDONLY)) {
1096 zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n");
1097 sb->s_flags |= SB_RDONLY;
1098 }
1099 }
1100 zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1101 dec:
1102 atomic_dec(&sbi->s_open_zones);
1103 }
1104 mutex_unlock(&zi->i_truncate_mutex);
1105 }
1106
1107 static int zonefs_file_release(struct inode *inode, struct file *file)
1108 {
1109 /*
1110 * If we explicitly open a zone we must close it again as well, but the
1111 * zone management operation can fail (either due to an IO error or as
1112 * the zone has gone offline or read-only). Make sure we don't fail the
1113 * close(2) for user-space.
1114 */
1115 if (zonefs_file_use_exp_open(inode, file))
1116 zonefs_close_zone(inode);
1117
1118 return 0;
1119 }
1120
1121 static const struct file_operations zonefs_file_operations = {
1122 .open = zonefs_file_open,
1123 .release = zonefs_file_release,
1124 .fsync = zonefs_file_fsync,
1125 .mmap = zonefs_file_mmap,
1126 .llseek = zonefs_file_llseek,
1127 .read_iter = zonefs_file_read_iter,
1128 .write_iter = zonefs_file_write_iter,
1129 .splice_read = generic_file_splice_read,
1130 .splice_write = iter_file_splice_write,
1131 .iopoll = iomap_dio_iopoll,
1132 };
1133
1134 static struct kmem_cache *zonefs_inode_cachep;
1135
1136 static struct inode *zonefs_alloc_inode(struct super_block *sb)
1137 {
1138 struct zonefs_inode_info *zi;
1139
1140 zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL);
1141 if (!zi)
1142 return NULL;
1143
1144 inode_init_once(&zi->i_vnode);
1145 mutex_init(&zi->i_truncate_mutex);
1146 zi->i_wr_refcnt = 0;
1147
1148 return &zi->i_vnode;
1149 }
1150
1151 static void zonefs_free_inode(struct inode *inode)
1152 {
1153 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1154 }
1155
1156 /*
1157 * File system stat.
1158 */
1159 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1160 {
1161 struct super_block *sb = dentry->d_sb;
1162 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1163 enum zonefs_ztype t;
1164
1165 buf->f_type = ZONEFS_MAGIC;
1166 buf->f_bsize = sb->s_blocksize;
1167 buf->f_namelen = ZONEFS_NAME_MAX;
1168
1169 spin_lock(&sbi->s_lock);
1170
1171 buf->f_blocks = sbi->s_blocks;
1172 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1173 buf->f_bfree = 0;
1174 else
1175 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1176 buf->f_bavail = buf->f_bfree;
1177
1178 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1179 if (sbi->s_nr_files[t])
1180 buf->f_files += sbi->s_nr_files[t] + 1;
1181 }
1182 buf->f_ffree = 0;
1183
1184 spin_unlock(&sbi->s_lock);
1185
1186 buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b);
1187
1188 return 0;
1189 }
1190
1191 enum {
1192 Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
1193 Opt_explicit_open, Opt_err,
1194 };
1195
1196 static const match_table_t tokens = {
1197 { Opt_errors_ro, "errors=remount-ro"},
1198 { Opt_errors_zro, "errors=zone-ro"},
1199 { Opt_errors_zol, "errors=zone-offline"},
1200 { Opt_errors_repair, "errors=repair"},
1201 { Opt_explicit_open, "explicit-open" },
1202 { Opt_err, NULL}
1203 };
1204
1205 static int zonefs_parse_options(struct super_block *sb, char *options)
1206 {
1207 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1208 substring_t args[MAX_OPT_ARGS];
1209 char *p;
1210
1211 if (!options)
1212 return 0;
1213
1214 while ((p = strsep(&options, ",")) != NULL) {
1215 int token;
1216
1217 if (!*p)
1218 continue;
1219
1220 token = match_token(p, tokens, args);
1221 switch (token) {
1222 case Opt_errors_ro:
1223 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1224 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1225 break;
1226 case Opt_errors_zro:
1227 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1228 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1229 break;
1230 case Opt_errors_zol:
1231 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1232 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1233 break;
1234 case Opt_errors_repair:
1235 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1236 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1237 break;
1238 case Opt_explicit_open:
1239 sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1240 break;
1241 default:
1242 return -EINVAL;
1243 }
1244 }
1245
1246 return 0;
1247 }
1248
1249 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1250 {
1251 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1252
1253 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1254 seq_puts(seq, ",errors=remount-ro");
1255 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1256 seq_puts(seq, ",errors=zone-ro");
1257 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1258 seq_puts(seq, ",errors=zone-offline");
1259 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1260 seq_puts(seq, ",errors=repair");
1261
1262 return 0;
1263 }
1264
1265 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1266 {
1267 sync_filesystem(sb);
1268
1269 return zonefs_parse_options(sb, data);
1270 }
1271
1272 static const struct super_operations zonefs_sops = {
1273 .alloc_inode = zonefs_alloc_inode,
1274 .free_inode = zonefs_free_inode,
1275 .statfs = zonefs_statfs,
1276 .remount_fs = zonefs_remount,
1277 .show_options = zonefs_show_options,
1278 };
1279
1280 static const struct inode_operations zonefs_dir_inode_operations = {
1281 .lookup = simple_lookup,
1282 .setattr = zonefs_inode_setattr,
1283 };
1284
1285 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1286 enum zonefs_ztype type)
1287 {
1288 struct super_block *sb = parent->i_sb;
1289
1290 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1;
1291 inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555);
1292 inode->i_op = &zonefs_dir_inode_operations;
1293 inode->i_fop = &simple_dir_operations;
1294 set_nlink(inode, 2);
1295 inc_nlink(parent);
1296 }
1297
1298 static void zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1299 enum zonefs_ztype type)
1300 {
1301 struct super_block *sb = inode->i_sb;
1302 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1303 struct zonefs_inode_info *zi = ZONEFS_I(inode);
1304
1305 inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1306 inode->i_mode = S_IFREG | sbi->s_perm;
1307
1308 zi->i_ztype = type;
1309 zi->i_zsector = zone->start;
1310 zi->i_zone_size = zone->len << SECTOR_SHIFT;
1311
1312 zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
1313 zone->capacity << SECTOR_SHIFT);
1314 zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
1315
1316 inode->i_uid = sbi->s_uid;
1317 inode->i_gid = sbi->s_gid;
1318 inode->i_size = zi->i_wpoffset;
1319 inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
1320
1321 inode->i_op = &zonefs_file_inode_operations;
1322 inode->i_fop = &zonefs_file_operations;
1323 inode->i_mapping->a_ops = &zonefs_file_aops;
1324
1325 sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1326 sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1327 sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1328 }
1329
1330 static struct dentry *zonefs_create_inode(struct dentry *parent,
1331 const char *name, struct blk_zone *zone,
1332 enum zonefs_ztype type)
1333 {
1334 struct inode *dir = d_inode(parent);
1335 struct dentry *dentry;
1336 struct inode *inode;
1337
1338 dentry = d_alloc_name(parent, name);
1339 if (!dentry)
1340 return NULL;
1341
1342 inode = new_inode(parent->d_sb);
1343 if (!inode)
1344 goto dput;
1345
1346 inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1347 if (zone)
1348 zonefs_init_file_inode(inode, zone, type);
1349 else
1350 zonefs_init_dir_inode(dir, inode, type);
1351 d_add(dentry, inode);
1352 dir->i_size++;
1353
1354 return dentry;
1355
1356 dput:
1357 dput(dentry);
1358
1359 return NULL;
1360 }
1361
1362 struct zonefs_zone_data {
1363 struct super_block *sb;
1364 unsigned int nr_zones[ZONEFS_ZTYPE_MAX];
1365 struct blk_zone *zones;
1366 };
1367
1368 /*
1369 * Create a zone group and populate it with zone files.
1370 */
1371 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1372 enum zonefs_ztype type)
1373 {
1374 struct super_block *sb = zd->sb;
1375 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1376 struct blk_zone *zone, *next, *end;
1377 const char *zgroup_name;
1378 char *file_name;
1379 struct dentry *dir;
1380 unsigned int n = 0;
1381 int ret;
1382
1383 /* If the group is empty, there is nothing to do */
1384 if (!zd->nr_zones[type])
1385 return 0;
1386
1387 file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1388 if (!file_name)
1389 return -ENOMEM;
1390
1391 if (type == ZONEFS_ZTYPE_CNV)
1392 zgroup_name = "cnv";
1393 else
1394 zgroup_name = "seq";
1395
1396 dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1397 if (!dir) {
1398 ret = -ENOMEM;
1399 goto free;
1400 }
1401
1402 /*
1403 * The first zone contains the super block: skip it.
1404 */
1405 end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk);
1406 for (zone = &zd->zones[1]; zone < end; zone = next) {
1407
1408 next = zone + 1;
1409 if (zonefs_zone_type(zone) != type)
1410 continue;
1411
1412 /*
1413 * For conventional zones, contiguous zones can be aggregated
1414 * together to form larger files. Note that this overwrites the
1415 * length of the first zone of the set of contiguous zones
1416 * aggregated together. If one offline or read-only zone is
1417 * found, assume that all zones aggregated have the same
1418 * condition.
1419 */
1420 if (type == ZONEFS_ZTYPE_CNV &&
1421 (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1422 for (; next < end; next++) {
1423 if (zonefs_zone_type(next) != type)
1424 break;
1425 zone->len += next->len;
1426 zone->capacity += next->capacity;
1427 if (next->cond == BLK_ZONE_COND_READONLY &&
1428 zone->cond != BLK_ZONE_COND_OFFLINE)
1429 zone->cond = BLK_ZONE_COND_READONLY;
1430 else if (next->cond == BLK_ZONE_COND_OFFLINE)
1431 zone->cond = BLK_ZONE_COND_OFFLINE;
1432 }
1433 if (zone->capacity != zone->len) {
1434 zonefs_err(sb, "Invalid conventional zone capacity\n");
1435 ret = -EINVAL;
1436 goto free;
1437 }
1438 }
1439
1440 /*
1441 * Use the file number within its group as file name.
1442 */
1443 snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1444 if (!zonefs_create_inode(dir, file_name, zone, type)) {
1445 ret = -ENOMEM;
1446 goto free;
1447 }
1448
1449 n++;
1450 }
1451
1452 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1453 zgroup_name, n, n > 1 ? "s" : "");
1454
1455 sbi->s_nr_files[type] = n;
1456 ret = 0;
1457
1458 free:
1459 kfree(file_name);
1460
1461 return ret;
1462 }
1463
1464 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1465 void *data)
1466 {
1467 struct zonefs_zone_data *zd = data;
1468
1469 /*
1470 * Count the number of usable zones: the first zone at index 0 contains
1471 * the super block and is ignored.
1472 */
1473 switch (zone->type) {
1474 case BLK_ZONE_TYPE_CONVENTIONAL:
1475 zone->wp = zone->start + zone->len;
1476 if (idx)
1477 zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1478 break;
1479 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1480 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1481 if (idx)
1482 zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1483 break;
1484 default:
1485 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1486 zone->type);
1487 return -EIO;
1488 }
1489
1490 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1491
1492 return 0;
1493 }
1494
1495 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1496 {
1497 struct block_device *bdev = zd->sb->s_bdev;
1498 int ret;
1499
1500 zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk),
1501 sizeof(struct blk_zone), GFP_KERNEL);
1502 if (!zd->zones)
1503 return -ENOMEM;
1504
1505 /* Get zones information from the device */
1506 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1507 zonefs_get_zone_info_cb, zd);
1508 if (ret < 0) {
1509 zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1510 return ret;
1511 }
1512
1513 if (ret != blkdev_nr_zones(bdev->bd_disk)) {
1514 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1515 ret, blkdev_nr_zones(bdev->bd_disk));
1516 return -EIO;
1517 }
1518
1519 return 0;
1520 }
1521
1522 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1523 {
1524 kvfree(zd->zones);
1525 }
1526
1527 /*
1528 * Read super block information from the device.
1529 */
1530 static int zonefs_read_super(struct super_block *sb)
1531 {
1532 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1533 struct zonefs_super *super;
1534 u32 crc, stored_crc;
1535 struct page *page;
1536 struct bio_vec bio_vec;
1537 struct bio bio;
1538 int ret;
1539
1540 page = alloc_page(GFP_KERNEL);
1541 if (!page)
1542 return -ENOMEM;
1543
1544 bio_init(&bio, &bio_vec, 1);
1545 bio.bi_iter.bi_sector = 0;
1546 bio.bi_opf = REQ_OP_READ;
1547 bio_set_dev(&bio, sb->s_bdev);
1548 bio_add_page(&bio, page, PAGE_SIZE, 0);
1549
1550 ret = submit_bio_wait(&bio);
1551 if (ret)
1552 goto free_page;
1553
1554 super = kmap(page);
1555
1556 ret = -EINVAL;
1557 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1558 goto unmap;
1559
1560 stored_crc = le32_to_cpu(super->s_crc);
1561 super->s_crc = 0;
1562 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1563 if (crc != stored_crc) {
1564 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1565 crc, stored_crc);
1566 goto unmap;
1567 }
1568
1569 sbi->s_features = le64_to_cpu(super->s_features);
1570 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1571 zonefs_err(sb, "Unknown features set 0x%llx\n",
1572 sbi->s_features);
1573 goto unmap;
1574 }
1575
1576 if (sbi->s_features & ZONEFS_F_UID) {
1577 sbi->s_uid = make_kuid(current_user_ns(),
1578 le32_to_cpu(super->s_uid));
1579 if (!uid_valid(sbi->s_uid)) {
1580 zonefs_err(sb, "Invalid UID feature\n");
1581 goto unmap;
1582 }
1583 }
1584
1585 if (sbi->s_features & ZONEFS_F_GID) {
1586 sbi->s_gid = make_kgid(current_user_ns(),
1587 le32_to_cpu(super->s_gid));
1588 if (!gid_valid(sbi->s_gid)) {
1589 zonefs_err(sb, "Invalid GID feature\n");
1590 goto unmap;
1591 }
1592 }
1593
1594 if (sbi->s_features & ZONEFS_F_PERM)
1595 sbi->s_perm = le32_to_cpu(super->s_perm);
1596
1597 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1598 zonefs_err(sb, "Reserved area is being used\n");
1599 goto unmap;
1600 }
1601
1602 import_uuid(&sbi->s_uuid, super->s_uuid);
1603 ret = 0;
1604
1605 unmap:
1606 kunmap(page);
1607 free_page:
1608 __free_page(page);
1609
1610 return ret;
1611 }
1612
1613 /*
1614 * Check that the device is zoned. If it is, get the list of zones and create
1615 * sub-directories and files according to the device zone configuration and
1616 * format options.
1617 */
1618 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1619 {
1620 struct zonefs_zone_data zd;
1621 struct zonefs_sb_info *sbi;
1622 struct inode *inode;
1623 enum zonefs_ztype t;
1624 int ret;
1625
1626 if (!bdev_is_zoned(sb->s_bdev)) {
1627 zonefs_err(sb, "Not a zoned block device\n");
1628 return -EINVAL;
1629 }
1630
1631 /*
1632 * Initialize super block information: the maximum file size is updated
1633 * when the zone files are created so that the format option
1634 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1635 * beyond the zone size is taken into account.
1636 */
1637 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1638 if (!sbi)
1639 return -ENOMEM;
1640
1641 spin_lock_init(&sbi->s_lock);
1642 sb->s_fs_info = sbi;
1643 sb->s_magic = ZONEFS_MAGIC;
1644 sb->s_maxbytes = 0;
1645 sb->s_op = &zonefs_sops;
1646 sb->s_time_gran = 1;
1647
1648 /*
1649 * The block size is set to the device zone write granularity to ensure
1650 * that write operations are always aligned according to the device
1651 * interface constraints.
1652 */
1653 sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev));
1654 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1655 sbi->s_uid = GLOBAL_ROOT_UID;
1656 sbi->s_gid = GLOBAL_ROOT_GID;
1657 sbi->s_perm = 0640;
1658 sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1659 sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev);
1660 atomic_set(&sbi->s_open_zones, 0);
1661 if (!sbi->s_max_open_zones &&
1662 sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1663 zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n");
1664 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1665 }
1666
1667 ret = zonefs_read_super(sb);
1668 if (ret)
1669 return ret;
1670
1671 ret = zonefs_parse_options(sb, data);
1672 if (ret)
1673 return ret;
1674
1675 memset(&zd, 0, sizeof(struct zonefs_zone_data));
1676 zd.sb = sb;
1677 ret = zonefs_get_zone_info(&zd);
1678 if (ret)
1679 goto cleanup;
1680
1681 zonefs_info(sb, "Mounting %u zones",
1682 blkdev_nr_zones(sb->s_bdev->bd_disk));
1683
1684 /* Create root directory inode */
1685 ret = -ENOMEM;
1686 inode = new_inode(sb);
1687 if (!inode)
1688 goto cleanup;
1689
1690 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk);
1691 inode->i_mode = S_IFDIR | 0555;
1692 inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1693 inode->i_op = &zonefs_dir_inode_operations;
1694 inode->i_fop = &simple_dir_operations;
1695 set_nlink(inode, 2);
1696
1697 sb->s_root = d_make_root(inode);
1698 if (!sb->s_root)
1699 goto cleanup;
1700
1701 /* Create and populate files in zone groups directories */
1702 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1703 ret = zonefs_create_zgroup(&zd, t);
1704 if (ret)
1705 break;
1706 }
1707
1708 cleanup:
1709 zonefs_cleanup_zone_info(&zd);
1710
1711 return ret;
1712 }
1713
1714 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1715 int flags, const char *dev_name, void *data)
1716 {
1717 return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1718 }
1719
1720 static void zonefs_kill_super(struct super_block *sb)
1721 {
1722 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1723
1724 if (sb->s_root)
1725 d_genocide(sb->s_root);
1726 kill_block_super(sb);
1727 kfree(sbi);
1728 }
1729
1730 /*
1731 * File system definition and registration.
1732 */
1733 static struct file_system_type zonefs_type = {
1734 .owner = THIS_MODULE,
1735 .name = "zonefs",
1736 .mount = zonefs_mount,
1737 .kill_sb = zonefs_kill_super,
1738 .fs_flags = FS_REQUIRES_DEV,
1739 };
1740
1741 static int __init zonefs_init_inodecache(void)
1742 {
1743 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1744 sizeof(struct zonefs_inode_info), 0,
1745 (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1746 NULL);
1747 if (zonefs_inode_cachep == NULL)
1748 return -ENOMEM;
1749 return 0;
1750 }
1751
1752 static void zonefs_destroy_inodecache(void)
1753 {
1754 /*
1755 * Make sure all delayed rcu free inodes are flushed before we
1756 * destroy the inode cache.
1757 */
1758 rcu_barrier();
1759 kmem_cache_destroy(zonefs_inode_cachep);
1760 }
1761
1762 static int __init zonefs_init(void)
1763 {
1764 int ret;
1765
1766 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1767
1768 ret = zonefs_init_inodecache();
1769 if (ret)
1770 return ret;
1771
1772 ret = register_filesystem(&zonefs_type);
1773 if (ret) {
1774 zonefs_destroy_inodecache();
1775 return ret;
1776 }
1777
1778 return 0;
1779 }
1780
1781 static void __exit zonefs_exit(void)
1782 {
1783 zonefs_destroy_inodecache();
1784 unregister_filesystem(&zonefs_type);
1785 }
1786
1787 MODULE_AUTHOR("Damien Le Moal");
1788 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1789 MODULE_LICENSE("GPL");
1790 module_init(zonefs_init);
1791 module_exit(zonefs_exit);