]> git.proxmox.com Git - mirror_qemu.git/blob - hw/acpi/nvdimm.c
Merge tag 'pull-block-2022-07-27' of https://gitlab.com/vsementsov/qemu into staging
[mirror_qemu.git] / hw / acpi / nvdimm.c
1 /*
2 * NVDIMM ACPI Implementation
3 *
4 * Copyright(C) 2015 Intel Corporation.
5 *
6 * Author:
7 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
8 *
9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10 * and the DSM specification can be found at:
11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
12 *
13 * Currently, it only supports PMEM Virtualization.
14 *
15 * This library is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU Lesser General Public
17 * License as published by the Free Software Foundation; either
18 * version 2.1 of the License, or (at your option) any later version.
19 *
20 * This library is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * Lesser General Public License for more details.
24 *
25 * You should have received a copy of the GNU Lesser General Public
26 * License along with this library; if not, see <http://www.gnu.org/licenses/>
27 */
28
29 #include "qemu/osdep.h"
30 #include "qemu/uuid.h"
31 #include "qapi/error.h"
32 #include "hw/acpi/acpi.h"
33 #include "hw/acpi/aml-build.h"
34 #include "hw/acpi/bios-linker-loader.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/mem/nvdimm.h"
37 #include "qemu/nvdimm-utils.h"
38 #include "trace.h"
39
40 /*
41 * define Byte Addressable Persistent Memory (PM) Region according to
42 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
43 */
44 static const uint8_t nvdimm_nfit_spa_uuid[] =
45 UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
46 0x18, 0xb7, 0x8c, 0xdb);
47
48 /*
49 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
50 * Interface Table (NFIT).
51 */
52
53 /*
54 * System Physical Address Range Structure
55 *
56 * It describes the system physical address ranges occupied by NVDIMMs and
57 * the types of the regions.
58 */
59 struct NvdimmNfitSpa {
60 uint16_t type;
61 uint16_t length;
62 uint16_t spa_index;
63 uint16_t flags;
64 uint32_t reserved;
65 uint32_t proximity_domain;
66 uint8_t type_guid[16];
67 uint64_t spa_base;
68 uint64_t spa_length;
69 uint64_t mem_attr;
70 } QEMU_PACKED;
71 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
72
73 /*
74 * Memory Device to System Physical Address Range Mapping Structure
75 *
76 * It enables identifying each NVDIMM region and the corresponding SPA
77 * describing the memory interleave
78 */
79 struct NvdimmNfitMemDev {
80 uint16_t type;
81 uint16_t length;
82 uint32_t nfit_handle;
83 uint16_t phys_id;
84 uint16_t region_id;
85 uint16_t spa_index;
86 uint16_t dcr_index;
87 uint64_t region_len;
88 uint64_t region_offset;
89 uint64_t region_dpa;
90 uint16_t interleave_index;
91 uint16_t interleave_ways;
92 uint16_t flags;
93 uint16_t reserved;
94 } QEMU_PACKED;
95 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
96
97 #define ACPI_NFIT_MEM_NOT_ARMED (1 << 3)
98
99 /*
100 * NVDIMM Control Region Structure
101 *
102 * It describes the NVDIMM and if applicable, Block Control Window.
103 */
104 struct NvdimmNfitControlRegion {
105 uint16_t type;
106 uint16_t length;
107 uint16_t dcr_index;
108 uint16_t vendor_id;
109 uint16_t device_id;
110 uint16_t revision_id;
111 uint16_t sub_vendor_id;
112 uint16_t sub_device_id;
113 uint16_t sub_revision_id;
114 uint8_t reserved[6];
115 uint32_t serial_number;
116 uint16_t fic;
117 uint16_t num_bcw;
118 uint64_t bcw_size;
119 uint64_t cmd_offset;
120 uint64_t cmd_size;
121 uint64_t status_offset;
122 uint64_t status_size;
123 uint16_t flags;
124 uint8_t reserved2[6];
125 } QEMU_PACKED;
126 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
127
128 /*
129 * NVDIMM Platform Capabilities Structure
130 *
131 * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017
132 */
133 struct NvdimmNfitPlatformCaps {
134 uint16_t type;
135 uint16_t length;
136 uint8_t highest_cap;
137 uint8_t reserved[3];
138 uint32_t capabilities;
139 uint8_t reserved2[4];
140 } QEMU_PACKED;
141 typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps;
142
143 /*
144 * Module serial number is a unique number for each device. We use the
145 * slot id of NVDIMM device to generate this number so that each device
146 * associates with a different number.
147 *
148 * 0x123456 is a magic number we arbitrarily chose.
149 */
150 static uint32_t nvdimm_slot_to_sn(int slot)
151 {
152 return 0x123456 + slot;
153 }
154
155 /*
156 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
157 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
158 * by ACPI device _ADR method.
159 *
160 * We generate the handle with the slot id of NVDIMM device and reserve
161 * 0 for NVDIMM root device.
162 */
163 static uint32_t nvdimm_slot_to_handle(int slot)
164 {
165 return slot + 1;
166 }
167
168 /*
169 * index uniquely identifies the structure, 0 is reserved which indicates
170 * that the structure is not valid or the associated structure is not
171 * present.
172 *
173 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
174 * nfit_dc which are generated by the slot id of NVDIMM device.
175 */
176 static uint16_t nvdimm_slot_to_spa_index(int slot)
177 {
178 return (slot + 1) << 1;
179 }
180
181 /* See the comments of nvdimm_slot_to_spa_index(). */
182 static uint32_t nvdimm_slot_to_dcr_index(int slot)
183 {
184 return nvdimm_slot_to_spa_index(slot) + 1;
185 }
186
187 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
188 {
189 NVDIMMDevice *nvdimm = NULL;
190 GSList *list, *device_list = nvdimm_get_device_list();
191
192 for (list = device_list; list; list = list->next) {
193 NVDIMMDevice *nvd = list->data;
194 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
195 NULL);
196
197 if (nvdimm_slot_to_handle(slot) == handle) {
198 nvdimm = nvd;
199 break;
200 }
201 }
202
203 g_slist_free(device_list);
204 return nvdimm;
205 }
206
207 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
208 static void
209 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
210 {
211 NvdimmNfitSpa *nfit_spa;
212 uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP,
213 NULL);
214 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
215 NULL);
216 uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
217 NULL);
218 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
219 NULL);
220
221 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
222
223 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
224 Structure */);
225 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
226 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
227
228 /*
229 * Control region is strict as all the device info, such as SN, index,
230 * is associated with slot id.
231 */
232 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
233 management during hot add/online
234 operation */ |
235 2 /* Data in Proximity Domain field is
236 valid*/);
237
238 /* NUMA node. */
239 nfit_spa->proximity_domain = cpu_to_le32(node);
240 /* the region reported as PMEM. */
241 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
242 sizeof(nvdimm_nfit_spa_uuid));
243
244 nfit_spa->spa_base = cpu_to_le64(addr);
245 nfit_spa->spa_length = cpu_to_le64(size);
246
247 /* It is the PMEM and can be cached as writeback. */
248 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
249 0x8000ULL /* EFI_MEMORY_NV */);
250 }
251
252 /*
253 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
254 * Structure
255 */
256 static void
257 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
258 {
259 NvdimmNfitMemDev *nfit_memdev;
260 NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev));
261 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
262 NULL);
263 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
264 NULL);
265 uint32_t handle = nvdimm_slot_to_handle(slot);
266
267 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
268
269 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
270 Range Map Structure*/);
271 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
272 nfit_memdev->nfit_handle = cpu_to_le32(handle);
273
274 /*
275 * associate memory device with System Physical Address Range
276 * Structure.
277 */
278 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
279 /* associate memory device with Control Region Structure. */
280 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
281
282 /* The memory region on the device. */
283 nfit_memdev->region_len = cpu_to_le64(size);
284 /* The device address starts from 0. */
285 nfit_memdev->region_dpa = cpu_to_le64(0);
286
287 /* Only one interleave for PMEM. */
288 nfit_memdev->interleave_ways = cpu_to_le16(1);
289
290 if (nvdimm->unarmed) {
291 nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED);
292 }
293 }
294
295 /*
296 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
297 */
298 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
299 {
300 NvdimmNfitControlRegion *nfit_dcr;
301 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
302 NULL);
303 uint32_t sn = nvdimm_slot_to_sn(slot);
304
305 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
306
307 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
308 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
309 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
310
311 /* vendor: Intel. */
312 nfit_dcr->vendor_id = cpu_to_le16(0x8086);
313 nfit_dcr->device_id = cpu_to_le16(1);
314
315 /* The _DSM method is following Intel's DSM specification. */
316 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
317 in ACPI 6.0 is 1. */);
318 nfit_dcr->serial_number = cpu_to_le32(sn);
319 nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code:
320 Byte addressable, no energy backed.
321 See ACPI 6.2, sect 5.2.25.6 and
322 JEDEC Annex L Release 3. */);
323 }
324
325 /*
326 * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure
327 */
328 static void
329 nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities)
330 {
331 NvdimmNfitPlatformCaps *nfit_caps;
332
333 nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps));
334
335 nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */);
336 nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps));
337 nfit_caps->highest_cap = 31 - clz32(capabilities);
338 nfit_caps->capabilities = cpu_to_le32(capabilities);
339 }
340
341 static GArray *nvdimm_build_device_structure(NVDIMMState *state)
342 {
343 GSList *device_list, *list = nvdimm_get_device_list();
344 GArray *structures = g_array_new(false, true /* clear */, 1);
345
346 for (device_list = list; device_list; device_list = device_list->next) {
347 DeviceState *dev = device_list->data;
348
349 /* build System Physical Address Range Structure. */
350 nvdimm_build_structure_spa(structures, dev);
351
352 /*
353 * build Memory Device to System Physical Address Range Mapping
354 * Structure.
355 */
356 nvdimm_build_structure_memdev(structures, dev);
357
358 /* build NVDIMM Control Region Structure. */
359 nvdimm_build_structure_dcr(structures, dev);
360 }
361 g_slist_free(list);
362
363 if (state->persistence) {
364 nvdimm_build_structure_caps(structures, state->persistence);
365 }
366
367 return structures;
368 }
369
370 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
371 {
372 fit_buf->fit = g_array_new(false, true /* clear */, 1);
373 }
374
375 static void nvdimm_build_fit_buffer(NVDIMMState *state)
376 {
377 NvdimmFitBuffer *fit_buf = &state->fit_buf;
378
379 g_array_free(fit_buf->fit, true);
380 fit_buf->fit = nvdimm_build_device_structure(state);
381 fit_buf->dirty = true;
382 }
383
384 void nvdimm_plug(NVDIMMState *state)
385 {
386 nvdimm_build_fit_buffer(state);
387 }
388
389 /*
390 * NVDIMM Firmware Interface Table
391 * @signature: "NFIT"
392 *
393 * It provides information that allows OSPM to enumerate NVDIMM present in
394 * the platform and associate system physical address ranges created by the
395 * NVDIMMs.
396 *
397 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
398 */
399
400 static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets,
401 GArray *table_data, BIOSLinker *linker,
402 const char *oem_id, const char *oem_table_id)
403 {
404 NvdimmFitBuffer *fit_buf = &state->fit_buf;
405 AcpiTable table = { .sig = "NFIT", .rev = 1,
406 .oem_id = oem_id, .oem_table_id = oem_table_id };
407
408 acpi_add_table(table_offsets, table_data);
409
410 acpi_table_begin(&table, table_data);
411 /* Reserved */
412 build_append_int_noprefix(table_data, 0, 4);
413 /* NVDIMM device structures. */
414 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
415 acpi_table_end(linker, &table);
416 }
417
418 #define NVDIMM_DSM_MEMORY_SIZE 4096
419
420 struct NvdimmDsmIn {
421 uint32_t handle;
422 uint32_t revision;
423 uint32_t function;
424 /* the remaining size in the page is used by arg3. */
425 union {
426 uint8_t arg3[4084];
427 };
428 } QEMU_PACKED;
429 typedef struct NvdimmDsmIn NvdimmDsmIn;
430 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
431
432 struct NvdimmDsmOut {
433 /* the size of buffer filled by QEMU. */
434 uint32_t len;
435 uint8_t data[4092];
436 } QEMU_PACKED;
437 typedef struct NvdimmDsmOut NvdimmDsmOut;
438 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
439
440 struct NvdimmDsmFunc0Out {
441 /* the size of buffer filled by QEMU. */
442 uint32_t len;
443 uint32_t supported_func;
444 } QEMU_PACKED;
445 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
446
447 struct NvdimmDsmFuncNoPayloadOut {
448 /* the size of buffer filled by QEMU. */
449 uint32_t len;
450 uint32_t func_ret_status;
451 } QEMU_PACKED;
452 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
453
454 struct NvdimmFuncGetLabelSizeOut {
455 /* the size of buffer filled by QEMU. */
456 uint32_t len;
457 uint32_t func_ret_status; /* return status code. */
458 uint32_t label_size; /* the size of label data area. */
459 /*
460 * Maximum size of the namespace label data length supported by
461 * the platform in Get/Set Namespace Label Data functions.
462 */
463 uint32_t max_xfer;
464 } QEMU_PACKED;
465 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
466 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
467
468 struct NvdimmFuncGetLabelDataIn {
469 uint32_t offset; /* the offset in the namespace label data area. */
470 uint32_t length; /* the size of data is to be read via the function. */
471 } QEMU_PACKED;
472 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
473 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
474 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
475
476 struct NvdimmFuncGetLabelDataOut {
477 /* the size of buffer filled by QEMU. */
478 uint32_t len;
479 uint32_t func_ret_status; /* return status code. */
480 uint8_t out_buf[]; /* the data got via Get Namespace Label function. */
481 } QEMU_PACKED;
482 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
483 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
484
485 struct NvdimmFuncSetLabelDataIn {
486 uint32_t offset; /* the offset in the namespace label data area. */
487 uint32_t length; /* the size of data is to be written via the function. */
488 uint8_t in_buf[]; /* the data written to label data area. */
489 } QEMU_PACKED;
490 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
491 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
492 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
493
494 struct NvdimmFuncReadFITIn {
495 uint32_t offset; /* the offset into FIT buffer. */
496 } QEMU_PACKED;
497 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
498 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
499 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
500
501 struct NvdimmFuncReadFITOut {
502 /* the size of buffer filled by QEMU. */
503 uint32_t len;
504 uint32_t func_ret_status; /* return status code. */
505 uint8_t fit[]; /* the FIT data. */
506 } QEMU_PACKED;
507 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
508 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
509
510 static void
511 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
512 {
513 NvdimmDsmFunc0Out func0 = {
514 .len = cpu_to_le32(sizeof(func0)),
515 .supported_func = cpu_to_le32(supported_func),
516 };
517 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
518 }
519
520 static void
521 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
522 {
523 NvdimmDsmFuncNoPayloadOut out = {
524 .len = cpu_to_le32(sizeof(out)),
525 .func_ret_status = cpu_to_le32(func_ret_status),
526 };
527 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
528 }
529
530 #define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */
531 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */
532 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */
533 #define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */
534 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */
535
536 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000
537
538 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
539 static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in,
540 hwaddr dsm_mem_addr)
541 {
542 NvdimmFitBuffer *fit_buf = &state->fit_buf;
543 NvdimmFuncReadFITIn *read_fit;
544 NvdimmFuncReadFITOut *read_fit_out;
545 GArray *fit;
546 uint32_t read_len = 0, func_ret_status;
547 int size;
548
549 read_fit = (NvdimmFuncReadFITIn *)in->arg3;
550 read_fit->offset = le32_to_cpu(read_fit->offset);
551
552 fit = fit_buf->fit;
553
554 trace_acpi_nvdimm_read_fit(read_fit->offset, fit->len,
555 fit_buf->dirty ? "Yes" : "No");
556
557 if (read_fit->offset > fit->len) {
558 func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
559 goto exit;
560 }
561
562 /* It is the first time to read FIT. */
563 if (!read_fit->offset) {
564 fit_buf->dirty = false;
565 } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
566 func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
567 goto exit;
568 }
569
570 func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
571 read_len = MIN(fit->len - read_fit->offset,
572 NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
573
574 exit:
575 size = sizeof(NvdimmFuncReadFITOut) + read_len;
576 read_fit_out = g_malloc(size);
577
578 read_fit_out->len = cpu_to_le32(size);
579 read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
580 memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
581
582 cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
583
584 g_free(read_fit_out);
585 }
586
587 static void
588 nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state,
589 NvdimmDsmIn *in, hwaddr dsm_mem_addr)
590 {
591 switch (in->function) {
592 case 0x0:
593 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
594 return;
595 case 0x1 /* Read FIT */:
596 nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
597 return;
598 }
599
600 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
601 }
602
603 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
604 {
605 /*
606 * function 0 is called to inquire which functions are supported by
607 * OSPM
608 */
609 if (!in->function) {
610 nvdimm_dsm_function0(0 /* No function supported other than
611 function 0 */, dsm_mem_addr);
612 return;
613 }
614
615 /* No function except function 0 is supported yet. */
616 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
617 }
618
619 /*
620 * the max transfer size is the max size transferred by both a
621 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
622 * function.
623 */
624 static uint32_t nvdimm_get_max_xfer_label_size(void)
625 {
626 uint32_t max_get_size, max_set_size, dsm_memory_size;
627
628 dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
629
630 /*
631 * the max data ACPI can read one time which is transferred by
632 * the response of 'Get Namespace Label Data' function.
633 */
634 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
635
636 /*
637 * the max data ACPI can write one time which is transferred by
638 * 'Set Namespace Label Data' function.
639 */
640 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
641 sizeof(NvdimmFuncSetLabelDataIn);
642
643 return MIN(max_get_size, max_set_size);
644 }
645
646 /*
647 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
648 *
649 * It gets the size of Namespace Label data area and the max data size
650 * that Get/Set Namespace Label Data functions can transfer.
651 */
652 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
653 {
654 NvdimmFuncGetLabelSizeOut label_size_out = {
655 .len = cpu_to_le32(sizeof(label_size_out)),
656 };
657 uint32_t label_size, mxfer;
658
659 label_size = nvdimm->label_size;
660 mxfer = nvdimm_get_max_xfer_label_size();
661
662 trace_acpi_nvdimm_label_info(label_size, mxfer);
663
664 label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
665 label_size_out.label_size = cpu_to_le32(label_size);
666 label_size_out.max_xfer = cpu_to_le32(mxfer);
667
668 cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
669 sizeof(label_size_out));
670 }
671
672 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
673 uint32_t offset, uint32_t length)
674 {
675 uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
676
677 if (offset + length < offset) {
678 trace_acpi_nvdimm_label_overflow(offset, length);
679 return ret;
680 }
681
682 if (nvdimm->label_size < offset + length) {
683 trace_acpi_nvdimm_label_oversize(offset + length, nvdimm->label_size);
684 return ret;
685 }
686
687 if (length > nvdimm_get_max_xfer_label_size()) {
688 trace_acpi_nvdimm_label_xfer_exceed(length,
689 nvdimm_get_max_xfer_label_size());
690 return ret;
691 }
692
693 return NVDIMM_DSM_RET_STATUS_SUCCESS;
694 }
695
696 /*
697 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
698 */
699 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
700 hwaddr dsm_mem_addr)
701 {
702 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
703 NvdimmFuncGetLabelDataIn *get_label_data;
704 NvdimmFuncGetLabelDataOut *get_label_data_out;
705 uint32_t status;
706 int size;
707
708 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
709 get_label_data->offset = le32_to_cpu(get_label_data->offset);
710 get_label_data->length = le32_to_cpu(get_label_data->length);
711
712 trace_acpi_nvdimm_read_label(get_label_data->offset,
713 get_label_data->length);
714
715 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
716 get_label_data->length);
717 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
718 nvdimm_dsm_no_payload(status, dsm_mem_addr);
719 return;
720 }
721
722 size = sizeof(*get_label_data_out) + get_label_data->length;
723 assert(size <= NVDIMM_DSM_MEMORY_SIZE);
724 get_label_data_out = g_malloc(size);
725
726 get_label_data_out->len = cpu_to_le32(size);
727 get_label_data_out->func_ret_status =
728 cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
729 nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
730 get_label_data->length, get_label_data->offset);
731
732 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
733 g_free(get_label_data_out);
734 }
735
736 /*
737 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
738 */
739 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
740 hwaddr dsm_mem_addr)
741 {
742 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
743 NvdimmFuncSetLabelDataIn *set_label_data;
744 uint32_t status;
745
746 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
747
748 set_label_data->offset = le32_to_cpu(set_label_data->offset);
749 set_label_data->length = le32_to_cpu(set_label_data->length);
750
751 trace_acpi_nvdimm_write_label(set_label_data->offset,
752 set_label_data->length);
753
754 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
755 set_label_data->length);
756 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
757 nvdimm_dsm_no_payload(status, dsm_mem_addr);
758 return;
759 }
760
761 assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
762 set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
763
764 nvc->write_label_data(nvdimm, set_label_data->in_buf,
765 set_label_data->length, set_label_data->offset);
766 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
767 }
768
769 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
770 {
771 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
772
773 /* See the comments in nvdimm_dsm_root(). */
774 if (!in->function) {
775 uint32_t supported_func = 0;
776
777 if (nvdimm && nvdimm->label_size) {
778 supported_func |= 0x1 /* Bit 0 indicates whether there is
779 support for any functions other
780 than function 0. */ |
781 1 << 4 /* Get Namespace Label Size */ |
782 1 << 5 /* Get Namespace Label Data */ |
783 1 << 6 /* Set Namespace Label Data */;
784 }
785 nvdimm_dsm_function0(supported_func, dsm_mem_addr);
786 return;
787 }
788
789 if (!nvdimm) {
790 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
791 dsm_mem_addr);
792 return;
793 }
794
795 /* Encode DSM function according to DSM Spec Rev1. */
796 switch (in->function) {
797 case 4 /* Get Namespace Label Size */:
798 if (nvdimm->label_size) {
799 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
800 return;
801 }
802 break;
803 case 5 /* Get Namespace Label Data */:
804 if (nvdimm->label_size) {
805 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
806 return;
807 }
808 break;
809 case 0x6 /* Set Namespace Label Data */:
810 if (nvdimm->label_size) {
811 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
812 return;
813 }
814 break;
815 }
816
817 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
818 }
819
820 static uint64_t
821 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
822 {
823 trace_acpi_nvdimm_read_io_port();
824 return 0;
825 }
826
827 static void
828 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
829 {
830 NVDIMMState *state = opaque;
831 NvdimmDsmIn *in;
832 hwaddr dsm_mem_addr = val;
833
834 trace_acpi_nvdimm_dsm_mem_addr(dsm_mem_addr);
835
836 /*
837 * The DSM memory is mapped to guest address space so an evil guest
838 * can change its content while we are doing DSM emulation. Avoid
839 * this by copying DSM memory to QEMU local memory.
840 */
841 in = g_new(NvdimmDsmIn, 1);
842 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
843
844 in->revision = le32_to_cpu(in->revision);
845 in->function = le32_to_cpu(in->function);
846 in->handle = le32_to_cpu(in->handle);
847
848 trace_acpi_nvdimm_dsm_info(in->revision, in->handle, in->function);
849
850 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
851 trace_acpi_nvdimm_invalid_revision(in->revision);
852 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
853 goto exit;
854 }
855
856 if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
857 nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
858 goto exit;
859 }
860
861 /* Handle 0 is reserved for NVDIMM Root Device. */
862 if (!in->handle) {
863 nvdimm_dsm_root(in, dsm_mem_addr);
864 goto exit;
865 }
866
867 nvdimm_dsm_device(in, dsm_mem_addr);
868
869 exit:
870 g_free(in);
871 }
872
873 static const MemoryRegionOps nvdimm_dsm_ops = {
874 .read = nvdimm_dsm_read,
875 .write = nvdimm_dsm_write,
876 .endianness = DEVICE_LITTLE_ENDIAN,
877 .valid = {
878 .min_access_size = 4,
879 .max_access_size = 4,
880 },
881 };
882
883 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
884 {
885 if (dev->hotplugged) {
886 acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
887 }
888 }
889
890 void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io,
891 struct AcpiGenericAddress dsm_io,
892 FWCfgState *fw_cfg, Object *owner)
893 {
894 state->dsm_io = dsm_io;
895 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
896 "nvdimm-acpi-io", dsm_io.bit_width >> 3);
897 memory_region_add_subregion(io, dsm_io.address, &state->io_mr);
898
899 state->dsm_mem = g_array_new(false, true /* clear */, 1);
900 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
901 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
902 state->dsm_mem->len);
903
904 nvdimm_init_fit_buffer(&state->fit_buf);
905 }
906
907 #define NVDIMM_COMMON_DSM "NCAL"
908 #define NVDIMM_ACPI_MEM_ADDR "MEMA"
909
910 #define NVDIMM_DSM_MEMORY "NRAM"
911 #define NVDIMM_DSM_IOPORT "NPIO"
912
913 #define NVDIMM_DSM_NOTIFY "NTFI"
914 #define NVDIMM_DSM_HANDLE "HDLE"
915 #define NVDIMM_DSM_REVISION "REVS"
916 #define NVDIMM_DSM_FUNCTION "FUNC"
917 #define NVDIMM_DSM_ARG3 "FARG"
918
919 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
920 #define NVDIMM_DSM_OUT_BUF "ODAT"
921
922 #define NVDIMM_DSM_RFIT_STATUS "RSTA"
923
924 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
925
926 static void nvdimm_build_common_dsm(Aml *dev,
927 NVDIMMState *nvdimm_state)
928 {
929 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
930 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
931 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
932 Aml *whilectx, *offset;
933 uint8_t byte_list[1];
934 AmlRegionSpace rs;
935
936 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
937 uuid = aml_arg(0);
938 function = aml_arg(2);
939 handle = aml_arg(4);
940 dsm_mem = aml_local(6);
941 dsm_out_buf = aml_local(7);
942
943 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
944
945 if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) {
946 rs = AML_SYSTEM_IO;
947 } else {
948 rs = AML_SYSTEM_MEMORY;
949 }
950
951 /* map DSM memory and IO into ACPI namespace. */
952 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs,
953 aml_int(nvdimm_state->dsm_io.address),
954 nvdimm_state->dsm_io.bit_width >> 3));
955 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
956 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
957
958 /*
959 * DSM notifier:
960 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
961 * emulate the access.
962 *
963 * It is the IO port so that accessing them will cause VM-exit, the
964 * control will be transferred to QEMU.
965 */
966 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
967 AML_PRESERVE);
968 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
969 nvdimm_state->dsm_io.bit_width));
970 aml_append(method, field);
971
972 /*
973 * DSM input:
974 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
975 * happens on NVDIMM Root Device.
976 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
977 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
978 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
979 * containing function-specific arguments.
980 *
981 * They are RAM mapping on host so that these accesses never cause
982 * VM-EXIT.
983 */
984 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
985 AML_PRESERVE);
986 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
987 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
988 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
989 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
990 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
991 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
992 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
993 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
994 aml_append(method, field);
995
996 /*
997 * DSM output:
998 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
999 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
1000 *
1001 * Since the page is reused by both input and out, the input data
1002 * will be lost after storing new result into ODAT so we should fetch
1003 * all the input data before writing the result.
1004 */
1005 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
1006 AML_PRESERVE);
1007 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
1008 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
1009 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
1010 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
1011 aml_append(method, field);
1012
1013 /*
1014 * do not support any method if DSM memory address has not been
1015 * patched.
1016 */
1017 unpatched = aml_equal(dsm_mem, aml_int(0x0));
1018
1019 expected_uuid = aml_local(0);
1020
1021 ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1022 aml_append(ifctx, aml_store(
1023 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1024 /* UUID for NVDIMM Root Device */, expected_uuid));
1025 aml_append(method, ifctx);
1026 elsectx = aml_else();
1027 ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1028 aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1029 /* UUID for QEMU internal use */), expected_uuid));
1030 aml_append(elsectx, ifctx);
1031 elsectx2 = aml_else();
1032 aml_append(elsectx2, aml_store(
1033 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1034 /* UUID for NVDIMM Devices */, expected_uuid));
1035 aml_append(elsectx, elsectx2);
1036 aml_append(method, elsectx);
1037
1038 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1039
1040 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1041
1042 /*
1043 * function 0 is called to inquire what functions are supported by
1044 * OSPM
1045 */
1046 ifctx = aml_if(aml_equal(function, aml_int(0)));
1047 byte_list[0] = 0 /* No function Supported */;
1048 aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1049 aml_append(unsupport, ifctx);
1050
1051 /* No function is supported yet. */
1052 byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
1053 aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1054 aml_append(method, unsupport);
1055
1056 /*
1057 * The HDLE indicates the DSM function is issued from which device,
1058 * it reserves 0 for root device and is the handle for NVDIMM devices.
1059 * See the comments in nvdimm_slot_to_handle().
1060 */
1061 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1062 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1063 aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION)));
1064
1065 /*
1066 * The fourth parameter (Arg3) of _DSM is a package which contains
1067 * a buffer, the layout of the buffer is specified by UUID (Arg0),
1068 * Revision ID (Arg1) and Function Index (Arg2) which are documented
1069 * in the DSM Spec.
1070 */
1071 pckg = aml_arg(3);
1072 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1073 aml_int(4 /* Package */)) /* It is a Package? */,
1074 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1075 NULL));
1076
1077 pckg_index = aml_local(2);
1078 pckg_buf = aml_local(3);
1079 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1080 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1081 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1082 aml_append(method, ifctx);
1083
1084 /*
1085 * tell QEMU about the real address of DSM memory, then QEMU
1086 * gets the control and fills the result in DSM memory.
1087 */
1088 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1089
1090 dsm_out_buf_size = aml_local(1);
1091 /* RLEN is not included in the payload returned to guest. */
1092 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1093 aml_int(4), dsm_out_buf_size));
1094
1095 /*
1096 * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if
1097 * the Buffer Field <= to the size of an Integer (in bits), it will
1098 * be treated as an integer. Moreover, the integer size depends on
1099 * DSDT tables revision number. If revision number is < 2, integer
1100 * size is 32 bits, otherwise it is 64 bits.
1101 * Because of this CreateField() canot be used if RLEN < Integer Size.
1102 *
1103 * Also please note that APCI ASL operator SizeOf() doesn't support
1104 * Integer and there isn't any other way to figure out the Integer
1105 * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes,
1106 * build dsm_out_buf byte by byte.
1107 */
1108 ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8)));
1109 offset = aml_local(2);
1110 aml_append(ifctx, aml_store(aml_int(0), offset));
1111 aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL)));
1112 aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf));
1113
1114 whilectx = aml_while(aml_lless(offset, dsm_out_buf_size));
1115 /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */
1116 aml_append(whilectx, aml_store(aml_derefof(aml_index(
1117 aml_name(NVDIMM_DSM_OUT_BUF), offset)),
1118 aml_index(aml_name("TBUF"), aml_int(0))));
1119 aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"),
1120 dsm_out_buf));
1121 aml_append(whilectx, aml_increment(offset));
1122 aml_append(ifctx, whilectx);
1123
1124 aml_append(ifctx, aml_return(dsm_out_buf));
1125 aml_append(method, ifctx);
1126
1127 /* If RLEN >= Integer size, just use CreateField() operator */
1128 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1129 dsm_out_buf_size));
1130 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1131 aml_int(0), dsm_out_buf_size, "OBUF"));
1132 aml_append(method, aml_return(aml_name("OBUF")));
1133
1134 aml_append(dev, method);
1135 }
1136
1137 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1138 {
1139 Aml *method;
1140
1141 method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1142 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1143 aml_arg(1), aml_arg(2), aml_arg(3),
1144 aml_int(handle))));
1145 aml_append(dev, method);
1146 }
1147
1148 static void nvdimm_build_fit(Aml *dev)
1149 {
1150 Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1151 Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1152
1153 buf = aml_local(0);
1154 buf_size = aml_local(1);
1155 fit = aml_local(2);
1156
1157 aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
1158
1159 /* build helper function, RFIT. */
1160 method = aml_method("RFIT", 1, AML_SERIALIZED);
1161 aml_append(method, aml_name_decl("OFST", aml_int(0)));
1162
1163 /* prepare input package. */
1164 pkg = aml_package(1);
1165 aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1166 aml_append(pkg, aml_name("OFST"));
1167
1168 /* call Read_FIT function. */
1169 call_result = aml_call5(NVDIMM_COMMON_DSM,
1170 aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1171 aml_int(1) /* Revision 1 */,
1172 aml_int(0x1) /* Read FIT */,
1173 pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1174 aml_append(method, aml_store(call_result, buf));
1175
1176 /* handle _DSM result. */
1177 aml_append(method, aml_create_dword_field(buf,
1178 aml_int(0) /* offset at byte 0 */, "STAU"));
1179
1180 aml_append(method, aml_store(aml_name("STAU"),
1181 aml_name(NVDIMM_DSM_RFIT_STATUS)));
1182
1183 /* if something is wrong during _DSM. */
1184 ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
1185 aml_name("STAU"));
1186 ifctx = aml_if(aml_lnot(ifcond));
1187 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1188 aml_append(method, ifctx);
1189
1190 aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1191 aml_append(method, aml_subtract(buf_size,
1192 aml_int(4) /* the size of "STAU" */,
1193 buf_size));
1194
1195 /* if we read the end of fit. */
1196 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1197 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1198 aml_append(method, ifctx);
1199
1200 aml_append(method, aml_create_field(buf,
1201 aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1202 aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1203 aml_append(method, aml_return(aml_name("BUFF")));
1204 aml_append(dev, method);
1205
1206 /* build _FIT. */
1207 method = aml_method("_FIT", 0, AML_SERIALIZED);
1208 offset = aml_local(3);
1209
1210 aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1211 aml_append(method, aml_store(aml_int(0), offset));
1212
1213 whilectx = aml_while(aml_int(1));
1214 aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1215 aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1216
1217 /*
1218 * if fit buffer was changed during RFIT, read from the beginning
1219 * again.
1220 */
1221 ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1222 aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
1223 aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1224 aml_append(ifctx, aml_store(aml_int(0), offset));
1225 aml_append(whilectx, ifctx);
1226
1227 elsectx = aml_else();
1228
1229 /* finish fit read if no data is read out. */
1230 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1231 aml_append(ifctx, aml_return(fit));
1232 aml_append(elsectx, ifctx);
1233
1234 /* update the offset. */
1235 aml_append(elsectx, aml_add(offset, buf_size, offset));
1236 /* append the data we read out to the fit buffer. */
1237 aml_append(elsectx, aml_concatenate(fit, buf, fit));
1238 aml_append(whilectx, elsectx);
1239 aml_append(method, whilectx);
1240
1241 aml_append(dev, method);
1242 }
1243
1244 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1245 {
1246 uint32_t slot;
1247
1248 for (slot = 0; slot < ram_slots; slot++) {
1249 uint32_t handle = nvdimm_slot_to_handle(slot);
1250 Aml *nvdimm_dev;
1251
1252 nvdimm_dev = aml_device("NV%02X", slot);
1253
1254 /*
1255 * ACPI 6.0: 9.20 NVDIMM Devices:
1256 *
1257 * _ADR object that is used to supply OSPM with unique address
1258 * of the NVDIMM device. This is done by returning the NFIT Device
1259 * handle that is used to identify the associated entries in ACPI
1260 * table NFIT or _FIT.
1261 */
1262 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1263
1264 nvdimm_build_device_dsm(nvdimm_dev, handle);
1265 aml_append(root_dev, nvdimm_dev);
1266 }
1267 }
1268
1269 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1270 BIOSLinker *linker,
1271 NVDIMMState *nvdimm_state,
1272 uint32_t ram_slots, const char *oem_id)
1273 {
1274 int mem_addr_offset;
1275 Aml *ssdt, *sb_scope, *dev;
1276 AcpiTable table = { .sig = "SSDT", .rev = 1,
1277 .oem_id = oem_id, .oem_table_id = "NVDIMM" };
1278
1279 acpi_add_table(table_offsets, table_data);
1280
1281 acpi_table_begin(&table, table_data);
1282 ssdt = init_aml_allocator();
1283 sb_scope = aml_scope("\\_SB");
1284
1285 dev = aml_device("NVDR");
1286
1287 /*
1288 * ACPI 6.0: 9.20 NVDIMM Devices:
1289 *
1290 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1291 * NVDIMM interface device. Platform firmware is required to contain one
1292 * such device in _SB scope if NVDIMMs support is exposed by platform to
1293 * OSPM.
1294 * For each NVDIMM present or intended to be supported by platform,
1295 * platform firmware also exposes an ACPI Namespace Device under the
1296 * root device.
1297 */
1298 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1299
1300 nvdimm_build_common_dsm(dev, nvdimm_state);
1301
1302 /* 0 is reserved for root device. */
1303 nvdimm_build_device_dsm(dev, 0);
1304 nvdimm_build_fit(dev);
1305
1306 nvdimm_build_nvdimm_devices(dev, ram_slots);
1307
1308 aml_append(sb_scope, dev);
1309 aml_append(ssdt, sb_scope);
1310
1311 /* copy AML table into ACPI tables blob and patch header there */
1312 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1313 mem_addr_offset = build_append_named_dword(table_data,
1314 NVDIMM_ACPI_MEM_ADDR);
1315
1316 bios_linker_loader_alloc(linker,
1317 NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem,
1318 sizeof(NvdimmDsmIn), false /* high memory */);
1319 bios_linker_loader_add_pointer(linker,
1320 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1321 NVDIMM_DSM_MEM_FILE, 0);
1322 free_aml_allocator();
1323 /*
1324 * must be executed as the last so that pointer patching command above
1325 * would be executed by guest before it recalculated checksum which were
1326 * scheduled by acpi_table_end()
1327 */
1328 acpi_table_end(linker, &table);
1329 }
1330
1331 void nvdimm_build_srat(GArray *table_data)
1332 {
1333 GSList *device_list, *list = nvdimm_get_device_list();
1334
1335 for (device_list = list; device_list; device_list = device_list->next) {
1336 DeviceState *dev = device_list->data;
1337 Object *obj = OBJECT(dev);
1338 uint64_t addr, size;
1339 int node;
1340
1341 node = object_property_get_int(obj, PC_DIMM_NODE_PROP, &error_abort);
1342 addr = object_property_get_uint(obj, PC_DIMM_ADDR_PROP, &error_abort);
1343 size = object_property_get_uint(obj, PC_DIMM_SIZE_PROP, &error_abort);
1344
1345 build_srat_memory(table_data, addr, size, node,
1346 MEM_AFFINITY_ENABLED | MEM_AFFINITY_NON_VOLATILE);
1347 }
1348 g_slist_free(list);
1349 }
1350
1351 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1352 BIOSLinker *linker, NVDIMMState *state,
1353 uint32_t ram_slots, const char *oem_id,
1354 const char *oem_table_id)
1355 {
1356 GSList *device_list;
1357
1358 /* no nvdimm device can be plugged. */
1359 if (!ram_slots) {
1360 return;
1361 }
1362
1363 nvdimm_build_ssdt(table_offsets, table_data, linker, state,
1364 ram_slots, oem_id);
1365
1366 device_list = nvdimm_get_device_list();
1367 /* no NVDIMM device is plugged. */
1368 if (!device_list) {
1369 return;
1370 }
1371
1372 nvdimm_build_nfit(state, table_offsets, table_data, linker,
1373 oem_id, oem_table_id);
1374 g_slist_free(device_list);
1375 }