]> git.proxmox.com Git - mirror_qemu.git/blob - hw/arm/allwinner-r40.c
hw: allwinner-r40: Complete uart devices
[mirror_qemu.git] / hw / arm / allwinner-r40.c
1 /*
2 * Allwinner R40/A40i/T3 System on Chip emulation
3 *
4 * Copyright (C) 2023 qianfan Zhao <qianfanguijin@163.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "qemu/error-report.h"
23 #include "qemu/bswap.h"
24 #include "qemu/module.h"
25 #include "qemu/units.h"
26 #include "hw/qdev-core.h"
27 #include "hw/sysbus.h"
28 #include "hw/char/serial.h"
29 #include "hw/misc/unimp.h"
30 #include "hw/usb/hcd-ehci.h"
31 #include "hw/loader.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/arm/allwinner-r40.h"
34
35 /* Memory map */
36 const hwaddr allwinner_r40_memmap[] = {
37 [AW_R40_DEV_SRAM_A1] = 0x00000000,
38 [AW_R40_DEV_SRAM_A2] = 0x00004000,
39 [AW_R40_DEV_SRAM_A3] = 0x00008000,
40 [AW_R40_DEV_SRAM_A4] = 0x0000b400,
41 [AW_R40_DEV_MMC0] = 0x01c0f000,
42 [AW_R40_DEV_MMC1] = 0x01c10000,
43 [AW_R40_DEV_MMC2] = 0x01c11000,
44 [AW_R40_DEV_MMC3] = 0x01c12000,
45 [AW_R40_DEV_CCU] = 0x01c20000,
46 [AW_R40_DEV_PIT] = 0x01c20c00,
47 [AW_R40_DEV_UART0] = 0x01c28000,
48 [AW_R40_DEV_UART1] = 0x01c28400,
49 [AW_R40_DEV_UART2] = 0x01c28800,
50 [AW_R40_DEV_UART3] = 0x01c28c00,
51 [AW_R40_DEV_UART4] = 0x01c29000,
52 [AW_R40_DEV_UART5] = 0x01c29400,
53 [AW_R40_DEV_UART6] = 0x01c29800,
54 [AW_R40_DEV_UART7] = 0x01c29c00,
55 [AW_R40_DEV_GIC_DIST] = 0x01c81000,
56 [AW_R40_DEV_GIC_CPU] = 0x01c82000,
57 [AW_R40_DEV_GIC_HYP] = 0x01c84000,
58 [AW_R40_DEV_GIC_VCPU] = 0x01c86000,
59 [AW_R40_DEV_SDRAM] = 0x40000000
60 };
61
62 /* List of unimplemented devices */
63 struct AwR40Unimplemented {
64 const char *device_name;
65 hwaddr base;
66 hwaddr size;
67 };
68
69 static struct AwR40Unimplemented r40_unimplemented[] = {
70 { "d-engine", 0x01000000, 4 * MiB },
71 { "d-inter", 0x01400000, 128 * KiB },
72 { "sram-c", 0x01c00000, 4 * KiB },
73 { "dma", 0x01c02000, 4 * KiB },
74 { "nfdc", 0x01c03000, 4 * KiB },
75 { "ts", 0x01c04000, 4 * KiB },
76 { "spi0", 0x01c05000, 4 * KiB },
77 { "spi1", 0x01c06000, 4 * KiB },
78 { "cs0", 0x01c09000, 4 * KiB },
79 { "keymem", 0x01c0a000, 4 * KiB },
80 { "emac", 0x01c0b000, 4 * KiB },
81 { "usb0-otg", 0x01c13000, 4 * KiB },
82 { "usb0-host", 0x01c14000, 4 * KiB },
83 { "crypto", 0x01c15000, 4 * KiB },
84 { "spi2", 0x01c17000, 4 * KiB },
85 { "sata", 0x01c18000, 4 * KiB },
86 { "usb1-host", 0x01c19000, 4 * KiB },
87 { "sid", 0x01c1b000, 4 * KiB },
88 { "usb2-host", 0x01c1c000, 4 * KiB },
89 { "cs1", 0x01c1d000, 4 * KiB },
90 { "spi3", 0x01c1f000, 4 * KiB },
91 { "rtc", 0x01c20400, 1 * KiB },
92 { "pio", 0x01c20800, 1 * KiB },
93 { "owa", 0x01c21000, 1 * KiB },
94 { "ac97", 0x01c21400, 1 * KiB },
95 { "cir0", 0x01c21800, 1 * KiB },
96 { "cir1", 0x01c21c00, 1 * KiB },
97 { "pcm0", 0x01c22000, 1 * KiB },
98 { "pcm1", 0x01c22400, 1 * KiB },
99 { "pcm2", 0x01c22800, 1 * KiB },
100 { "audio", 0x01c22c00, 1 * KiB },
101 { "keypad", 0x01c23000, 1 * KiB },
102 { "pwm", 0x01c23400, 1 * KiB },
103 { "keyadc", 0x01c24400, 1 * KiB },
104 { "ths", 0x01c24c00, 1 * KiB },
105 { "rtp", 0x01c25000, 1 * KiB },
106 { "pmu", 0x01c25400, 1 * KiB },
107 { "cpu-cfg", 0x01c25c00, 1 * KiB },
108 { "uart0", 0x01c28000, 1 * KiB },
109 { "uart1", 0x01c28400, 1 * KiB },
110 { "uart2", 0x01c28800, 1 * KiB },
111 { "uart3", 0x01c28c00, 1 * KiB },
112 { "uart4", 0x01c29000, 1 * KiB },
113 { "uart5", 0x01c29400, 1 * KiB },
114 { "uart6", 0x01c29800, 1 * KiB },
115 { "uart7", 0x01c29c00, 1 * KiB },
116 { "ps20", 0x01c2a000, 1 * KiB },
117 { "ps21", 0x01c2a400, 1 * KiB },
118 { "twi0", 0x01c2ac00, 1 * KiB },
119 { "twi1", 0x01c2b000, 1 * KiB },
120 { "twi2", 0x01c2b400, 1 * KiB },
121 { "twi3", 0x01c2b800, 1 * KiB },
122 { "twi4", 0x01c2c000, 1 * KiB },
123 { "scr", 0x01c2c400, 1 * KiB },
124 { "tvd-top", 0x01c30000, 4 * KiB },
125 { "tvd0", 0x01c31000, 4 * KiB },
126 { "tvd1", 0x01c32000, 4 * KiB },
127 { "tvd2", 0x01c33000, 4 * KiB },
128 { "tvd3", 0x01c34000, 4 * KiB },
129 { "gpu", 0x01c40000, 64 * KiB },
130 { "gmac", 0x01c50000, 64 * KiB },
131 { "hstmr", 0x01c60000, 4 * KiB },
132 { "dram-com", 0x01c62000, 4 * KiB },
133 { "dram-ctl", 0x01c63000, 4 * KiB },
134 { "tcon-top", 0x01c70000, 4 * KiB },
135 { "lcd0", 0x01c71000, 4 * KiB },
136 { "lcd1", 0x01c72000, 4 * KiB },
137 { "tv0", 0x01c73000, 4 * KiB },
138 { "tv1", 0x01c74000, 4 * KiB },
139 { "tve-top", 0x01c90000, 16 * KiB },
140 { "tve0", 0x01c94000, 16 * KiB },
141 { "tve1", 0x01c98000, 16 * KiB },
142 { "mipi_dsi", 0x01ca0000, 4 * KiB },
143 { "mipi_dphy", 0x01ca1000, 4 * KiB },
144 { "ve", 0x01d00000, 1024 * KiB },
145 { "mp", 0x01e80000, 128 * KiB },
146 { "hdmi", 0x01ee0000, 128 * KiB },
147 { "prcm", 0x01f01400, 1 * KiB },
148 { "debug", 0x3f500000, 64 * KiB },
149 { "cpubist", 0x3f501000, 4 * KiB },
150 { "dcu", 0x3fff0000, 64 * KiB },
151 { "hstmr", 0x01c60000, 4 * KiB },
152 { "brom", 0xffff0000, 36 * KiB }
153 };
154
155 /* Per Processor Interrupts */
156 enum {
157 AW_R40_GIC_PPI_MAINT = 9,
158 AW_R40_GIC_PPI_HYPTIMER = 10,
159 AW_R40_GIC_PPI_VIRTTIMER = 11,
160 AW_R40_GIC_PPI_SECTIMER = 13,
161 AW_R40_GIC_PPI_PHYSTIMER = 14
162 };
163
164 /* Shared Processor Interrupts */
165 enum {
166 AW_R40_GIC_SPI_UART0 = 1,
167 AW_R40_GIC_SPI_UART1 = 2,
168 AW_R40_GIC_SPI_UART2 = 3,
169 AW_R40_GIC_SPI_UART3 = 4,
170 AW_R40_GIC_SPI_UART4 = 17,
171 AW_R40_GIC_SPI_UART5 = 18,
172 AW_R40_GIC_SPI_UART6 = 19,
173 AW_R40_GIC_SPI_UART7 = 20,
174 AW_R40_GIC_SPI_TIMER0 = 22,
175 AW_R40_GIC_SPI_TIMER1 = 23,
176 AW_R40_GIC_SPI_MMC0 = 32,
177 AW_R40_GIC_SPI_MMC1 = 33,
178 AW_R40_GIC_SPI_MMC2 = 34,
179 AW_R40_GIC_SPI_MMC3 = 35,
180 };
181
182 /* Allwinner R40 general constants */
183 enum {
184 AW_R40_GIC_NUM_SPI = 128
185 };
186
187 #define BOOT0_MAGIC "eGON.BT0"
188
189 /* The low 8-bits of the 'boot_media' field in the SPL header */
190 #define SUNXI_BOOTED_FROM_MMC0 0
191 #define SUNXI_BOOTED_FROM_NAND 1
192 #define SUNXI_BOOTED_FROM_MMC2 2
193 #define SUNXI_BOOTED_FROM_SPI 3
194
195 struct boot_file_head {
196 uint32_t b_instruction;
197 uint8_t magic[8];
198 uint32_t check_sum;
199 uint32_t length;
200 uint32_t pub_head_size;
201 uint32_t fel_script_address;
202 uint32_t fel_uEnv_length;
203 uint32_t dt_name_offset;
204 uint32_t dram_size;
205 uint32_t boot_media;
206 uint32_t string_pool[13];
207 };
208
209 bool allwinner_r40_bootrom_setup(AwR40State *s, BlockBackend *blk, int unit)
210 {
211 const int64_t rom_size = 32 * KiB;
212 g_autofree uint8_t *buffer = g_new0(uint8_t, rom_size);
213 struct boot_file_head *head = (struct boot_file_head *)buffer;
214
215 if (blk_pread(blk, 8 * KiB, rom_size, buffer, 0) < 0) {
216 error_setg(&error_fatal, "%s: failed to read BlockBackend data",
217 __func__);
218 return false;
219 }
220
221 /* we only check the magic string here. */
222 if (memcmp(head->magic, BOOT0_MAGIC, sizeof(head->magic))) {
223 return false;
224 }
225
226 /*
227 * Simulate the behavior of the bootROM, it will change the boot_media
228 * flag to indicate where the chip is booting from. R40 can boot from
229 * mmc0 or mmc2, the default value of boot_media is zero
230 * (SUNXI_BOOTED_FROM_MMC0), let's fix this flag when it is booting from
231 * the others.
232 */
233 if (unit == 2) {
234 head->boot_media = cpu_to_le32(SUNXI_BOOTED_FROM_MMC2);
235 } else {
236 head->boot_media = cpu_to_le32(SUNXI_BOOTED_FROM_MMC0);
237 }
238
239 rom_add_blob("allwinner-r40.bootrom", buffer, rom_size,
240 rom_size, s->memmap[AW_R40_DEV_SRAM_A1],
241 NULL, NULL, NULL, NULL, false);
242 return true;
243 }
244
245 static void allwinner_r40_init(Object *obj)
246 {
247 static const char *mmc_names[AW_R40_NUM_MMCS] = {
248 "mmc0", "mmc1", "mmc2", "mmc3"
249 };
250 AwR40State *s = AW_R40(obj);
251
252 s->memmap = allwinner_r40_memmap;
253
254 for (int i = 0; i < AW_R40_NUM_CPUS; i++) {
255 object_initialize_child(obj, "cpu[*]", &s->cpus[i],
256 ARM_CPU_TYPE_NAME("cortex-a7"));
257 }
258
259 object_initialize_child(obj, "gic", &s->gic, TYPE_ARM_GIC);
260
261 object_initialize_child(obj, "timer", &s->timer, TYPE_AW_A10_PIT);
262 object_property_add_alias(obj, "clk0-freq", OBJECT(&s->timer),
263 "clk0-freq");
264 object_property_add_alias(obj, "clk1-freq", OBJECT(&s->timer),
265 "clk1-freq");
266
267 object_initialize_child(obj, "ccu", &s->ccu, TYPE_AW_R40_CCU);
268
269 for (int i = 0; i < AW_R40_NUM_MMCS; i++) {
270 object_initialize_child(obj, mmc_names[i], &s->mmc[i],
271 TYPE_AW_SDHOST_SUN5I);
272 }
273 }
274
275 static void allwinner_r40_realize(DeviceState *dev, Error **errp)
276 {
277 AwR40State *s = AW_R40(dev);
278 unsigned i;
279
280 /* CPUs */
281 for (i = 0; i < AW_R40_NUM_CPUS; i++) {
282
283 /*
284 * Disable secondary CPUs. Guest EL3 firmware will start
285 * them via CPU reset control registers.
286 */
287 qdev_prop_set_bit(DEVICE(&s->cpus[i]), "start-powered-off",
288 i > 0);
289
290 /* All exception levels required */
291 qdev_prop_set_bit(DEVICE(&s->cpus[i]), "has_el3", true);
292 qdev_prop_set_bit(DEVICE(&s->cpus[i]), "has_el2", true);
293
294 /* Mark realized */
295 qdev_realize(DEVICE(&s->cpus[i]), NULL, &error_fatal);
296 }
297
298 /* Generic Interrupt Controller */
299 qdev_prop_set_uint32(DEVICE(&s->gic), "num-irq", AW_R40_GIC_NUM_SPI +
300 GIC_INTERNAL);
301 qdev_prop_set_uint32(DEVICE(&s->gic), "revision", 2);
302 qdev_prop_set_uint32(DEVICE(&s->gic), "num-cpu", AW_R40_NUM_CPUS);
303 qdev_prop_set_bit(DEVICE(&s->gic), "has-security-extensions", false);
304 qdev_prop_set_bit(DEVICE(&s->gic), "has-virtualization-extensions", true);
305 sysbus_realize(SYS_BUS_DEVICE(&s->gic), &error_fatal);
306
307 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gic), 0, s->memmap[AW_R40_DEV_GIC_DIST]);
308 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gic), 1, s->memmap[AW_R40_DEV_GIC_CPU]);
309 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gic), 2, s->memmap[AW_R40_DEV_GIC_HYP]);
310 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gic), 3, s->memmap[AW_R40_DEV_GIC_VCPU]);
311
312 /*
313 * Wire the outputs from each CPU's generic timer and the GICv2
314 * maintenance interrupt signal to the appropriate GIC PPI inputs,
315 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
316 */
317 for (i = 0; i < AW_R40_NUM_CPUS; i++) {
318 DeviceState *cpudev = DEVICE(&s->cpus[i]);
319 int ppibase = AW_R40_GIC_NUM_SPI + i * GIC_INTERNAL + GIC_NR_SGIS;
320 int irq;
321 /*
322 * Mapping from the output timer irq lines from the CPU to the
323 * GIC PPI inputs used for this board.
324 */
325 const int timer_irq[] = {
326 [GTIMER_PHYS] = AW_R40_GIC_PPI_PHYSTIMER,
327 [GTIMER_VIRT] = AW_R40_GIC_PPI_VIRTTIMER,
328 [GTIMER_HYP] = AW_R40_GIC_PPI_HYPTIMER,
329 [GTIMER_SEC] = AW_R40_GIC_PPI_SECTIMER,
330 };
331
332 /* Connect CPU timer outputs to GIC PPI inputs */
333 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
334 qdev_connect_gpio_out(cpudev, irq,
335 qdev_get_gpio_in(DEVICE(&s->gic),
336 ppibase + timer_irq[irq]));
337 }
338
339 /* Connect GIC outputs to CPU interrupt inputs */
340 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i,
341 qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
342 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + AW_R40_NUM_CPUS,
343 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
344 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + (2 * AW_R40_NUM_CPUS),
345 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
346 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + (3 * AW_R40_NUM_CPUS),
347 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
348
349 /* GIC maintenance signal */
350 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + (4 * AW_R40_NUM_CPUS),
351 qdev_get_gpio_in(DEVICE(&s->gic),
352 ppibase + AW_R40_GIC_PPI_MAINT));
353 }
354
355 /* Timer */
356 sysbus_realize(SYS_BUS_DEVICE(&s->timer), &error_fatal);
357 sysbus_mmio_map(SYS_BUS_DEVICE(&s->timer), 0, s->memmap[AW_R40_DEV_PIT]);
358 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer), 0,
359 qdev_get_gpio_in(DEVICE(&s->gic),
360 AW_R40_GIC_SPI_TIMER0));
361 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer), 1,
362 qdev_get_gpio_in(DEVICE(&s->gic),
363 AW_R40_GIC_SPI_TIMER1));
364
365 /* SRAM */
366 memory_region_init_ram(&s->sram_a1, OBJECT(dev), "sram A1",
367 16 * KiB, &error_abort);
368 memory_region_init_ram(&s->sram_a2, OBJECT(dev), "sram A2",
369 16 * KiB, &error_abort);
370 memory_region_init_ram(&s->sram_a3, OBJECT(dev), "sram A3",
371 13 * KiB, &error_abort);
372 memory_region_init_ram(&s->sram_a4, OBJECT(dev), "sram A4",
373 3 * KiB, &error_abort);
374 memory_region_add_subregion(get_system_memory(),
375 s->memmap[AW_R40_DEV_SRAM_A1], &s->sram_a1);
376 memory_region_add_subregion(get_system_memory(),
377 s->memmap[AW_R40_DEV_SRAM_A2], &s->sram_a2);
378 memory_region_add_subregion(get_system_memory(),
379 s->memmap[AW_R40_DEV_SRAM_A3], &s->sram_a3);
380 memory_region_add_subregion(get_system_memory(),
381 s->memmap[AW_R40_DEV_SRAM_A4], &s->sram_a4);
382
383 /* Clock Control Unit */
384 sysbus_realize(SYS_BUS_DEVICE(&s->ccu), &error_fatal);
385 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ccu), 0, s->memmap[AW_R40_DEV_CCU]);
386
387 /* SD/MMC */
388 for (int i = 0; i < AW_R40_NUM_MMCS; i++) {
389 qemu_irq irq = qdev_get_gpio_in(DEVICE(&s->gic),
390 AW_R40_GIC_SPI_MMC0 + i);
391 const hwaddr addr = s->memmap[AW_R40_DEV_MMC0 + i];
392
393 object_property_set_link(OBJECT(&s->mmc[i]), "dma-memory",
394 OBJECT(get_system_memory()), &error_fatal);
395 sysbus_realize(SYS_BUS_DEVICE(&s->mmc[i]), &error_fatal);
396 sysbus_mmio_map(SYS_BUS_DEVICE(&s->mmc[i]), 0, addr);
397 sysbus_connect_irq(SYS_BUS_DEVICE(&s->mmc[i]), 0, irq);
398 }
399
400 /* UART0. For future clocktree API: All UARTS are connected to APB2_CLK. */
401 for (int i = 0; i < AW_R40_NUM_UARTS; i++) {
402 static const int uart_irqs[AW_R40_NUM_UARTS] = {
403 AW_R40_GIC_SPI_UART0,
404 AW_R40_GIC_SPI_UART1,
405 AW_R40_GIC_SPI_UART2,
406 AW_R40_GIC_SPI_UART3,
407 AW_R40_GIC_SPI_UART4,
408 AW_R40_GIC_SPI_UART5,
409 AW_R40_GIC_SPI_UART6,
410 AW_R40_GIC_SPI_UART7,
411 };
412 const hwaddr addr = s->memmap[AW_R40_DEV_UART0 + i];
413
414 serial_mm_init(get_system_memory(), addr, 2,
415 qdev_get_gpio_in(DEVICE(&s->gic), uart_irqs[i]),
416 115200, serial_hd(i), DEVICE_NATIVE_ENDIAN);
417 }
418
419 /* Unimplemented devices */
420 for (i = 0; i < ARRAY_SIZE(r40_unimplemented); i++) {
421 create_unimplemented_device(r40_unimplemented[i].device_name,
422 r40_unimplemented[i].base,
423 r40_unimplemented[i].size);
424 }
425 }
426
427 static void allwinner_r40_class_init(ObjectClass *oc, void *data)
428 {
429 DeviceClass *dc = DEVICE_CLASS(oc);
430
431 dc->realize = allwinner_r40_realize;
432 /* Reason: uses serial_hd() in realize function */
433 dc->user_creatable = false;
434 }
435
436 static const TypeInfo allwinner_r40_type_info = {
437 .name = TYPE_AW_R40,
438 .parent = TYPE_DEVICE,
439 .instance_size = sizeof(AwR40State),
440 .instance_init = allwinner_r40_init,
441 .class_init = allwinner_r40_class_init,
442 };
443
444 static void allwinner_r40_register_types(void)
445 {
446 type_register_static(&allwinner_r40_type_info);
447 }
448
449 type_init(allwinner_r40_register_types)