]> git.proxmox.com Git - mirror_qemu.git/blob - hw/block/m25p80.c
Merge remote-tracking branch 'remotes/berrange/tags/pull-qcrypto-2016-07-04-1' into...
[mirror_qemu.git] / hw / block / m25p80.c
1 /*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
5 *
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 */
23
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "sysemu/block-backend.h"
27 #include "sysemu/blockdev.h"
28 #include "hw/ssi/ssi.h"
29 #include "qemu/bitops.h"
30 #include "qemu/log.h"
31 #include "qapi/error.h"
32
33 #ifndef M25P80_ERR_DEBUG
34 #define M25P80_ERR_DEBUG 0
35 #endif
36
37 #define DB_PRINT_L(level, ...) do { \
38 if (M25P80_ERR_DEBUG > (level)) { \
39 fprintf(stderr, ": %s: ", __func__); \
40 fprintf(stderr, ## __VA_ARGS__); \
41 } \
42 } while (0);
43
44 /* Fields for FlashPartInfo->flags */
45
46 /* erase capabilities */
47 #define ER_4K 1
48 #define ER_32K 2
49 /* set to allow the page program command to write 0s back to 1. Useful for
50 * modelling EEPROM with SPI flash command set
51 */
52 #define EEPROM 0x100
53
54 /* 16 MiB max in 3 byte address mode */
55 #define MAX_3BYTES_SIZE 0x1000000
56
57 #define SPI_NOR_MAX_ID_LEN 6
58
59 typedef struct FlashPartInfo {
60 const char *part_name;
61 /*
62 * This array stores the ID bytes.
63 * The first three bytes are the JEDIC ID.
64 * JEDEC ID zero means "no ID" (mostly older chips).
65 */
66 uint8_t id[SPI_NOR_MAX_ID_LEN];
67 uint8_t id_len;
68 /* there is confusion between manufacturers as to what a sector is. In this
69 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
70 * command (opcode 0xd8).
71 */
72 uint32_t sector_size;
73 uint32_t n_sectors;
74 uint32_t page_size;
75 uint16_t flags;
76 } FlashPartInfo;
77
78 /* adapted from linux */
79 /* Used when the "_ext_id" is two bytes at most */
80 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
81 .part_name = _part_name,\
82 .id = {\
83 ((_jedec_id) >> 16) & 0xff,\
84 ((_jedec_id) >> 8) & 0xff,\
85 (_jedec_id) & 0xff,\
86 ((_ext_id) >> 8) & 0xff,\
87 (_ext_id) & 0xff,\
88 },\
89 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
90 .sector_size = (_sector_size),\
91 .n_sectors = (_n_sectors),\
92 .page_size = 256,\
93 .flags = (_flags),
94
95 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
96 .part_name = _part_name,\
97 .id = {\
98 ((_jedec_id) >> 16) & 0xff,\
99 ((_jedec_id) >> 8) & 0xff,\
100 (_jedec_id) & 0xff,\
101 ((_ext_id) >> 16) & 0xff,\
102 ((_ext_id) >> 8) & 0xff,\
103 (_ext_id) & 0xff,\
104 },\
105 .id_len = 6,\
106 .sector_size = (_sector_size),\
107 .n_sectors = (_n_sectors),\
108 .page_size = 256,\
109 .flags = (_flags),\
110
111 #define JEDEC_NUMONYX 0x20
112 #define JEDEC_WINBOND 0xEF
113 #define JEDEC_SPANSION 0x01
114
115 /* Numonyx (Micron) Configuration register macros */
116 #define VCFG_DUMMY 0x1
117 #define VCFG_WRAP_SEQUENTIAL 0x2
118 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
119 #define NVCFG_XIP_MODE_MASK (7 << 9)
120 #define VCFG_XIP_MODE_ENABLED (1 << 3)
121 #define CFG_DUMMY_CLK_LEN 4
122 #define NVCFG_DUMMY_CLK_POS 12
123 #define VCFG_DUMMY_CLK_POS 4
124 #define EVCFG_OUT_DRIVER_STRENGHT_DEF 7
125 #define EVCFG_VPP_ACCELERATOR (1 << 3)
126 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
127 #define NVCFG_DUAL_IO_MASK (1 << 2)
128 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
129 #define NVCFG_QUAD_IO_MASK (1 << 3)
130 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
131 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
132 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
133
134 /* Numonyx (Micron) Flag Status Register macros */
135 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
136 #define FSR_FLASH_READY (1 << 7)
137
138 /* Spansion configuration registers macros. */
139 #define SPANSION_QUAD_CFG_POS 0
140 #define SPANSION_QUAD_CFG_LEN 1
141 #define SPANSION_DUMMY_CLK_POS 0
142 #define SPANSION_DUMMY_CLK_LEN 4
143 #define SPANSION_ADDR_LEN_POS 7
144 #define SPANSION_ADDR_LEN_LEN 1
145
146 /*
147 * Spansion read mode command length in bytes,
148 * the mode is currently not supported.
149 */
150
151 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
152
153 static const FlashPartInfo known_devices[] = {
154 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
155 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
156 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
157
158 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
159 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
160 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
161
162 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
163 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
164 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
165 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
166
167 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
168
169 /* Atmel EEPROMS - it is assumed, that don't care bit in command
170 * is set to 0. Block protection is not supported.
171 */
172 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) },
173 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) },
174
175 /* EON -- en25xxx */
176 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
177 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
178 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
179 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
180 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
181
182 /* GigaDevice */
183 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
184 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
185
186 /* Intel/Numonyx -- xxxs33b */
187 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
188 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
189 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
190 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
191
192 /* Macronix */
193 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
194 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
195 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
196 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
197 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
198 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
199 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
200 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
201 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
202 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
203 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
204 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
205
206 /* Micron */
207 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
208 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
209 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
210 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
211 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
212 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
213 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
214 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
215 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
216 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
217 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
218 { INFO("mt25ql01g", 0x20ba21, 0, 64 << 10, 2048, ER_4K) },
219 { INFO("mt25qu01g", 0x20bb21, 0, 64 << 10, 2048, ER_4K) },
220
221 /* Spansion -- single (large) sector size only, at least
222 * for the chips listed here (without boot sectors).
223 */
224 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
225 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
226 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
227 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
228 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
229 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
230 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
231 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
232 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
233 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
234 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
235 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
236 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
237 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
238 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
239 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
240 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
241
242 /* Spansion -- boot sectors support */
243 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
244 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
245
246 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
247 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
248 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
249 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
250 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
251 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
252 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
253 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
254 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
255 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) },
256
257 /* ST Microelectronics -- newer production may have feature updates */
258 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
259 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
260 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
261 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
262 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
263 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
264 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
265 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
266 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
267 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
268
269 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
270 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
271 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
272
273 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
274 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
275 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
276
277 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
278 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
279 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
280 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
281
282 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
283 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
284 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
285 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
286 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
287 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
288 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
289 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
290 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
291 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
292 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
293 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
294 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
295 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
296 };
297
298 typedef enum {
299 NOP = 0,
300 WRSR = 0x1,
301 WRDI = 0x4,
302 RDSR = 0x5,
303 WREN = 0x6,
304 JEDEC_READ = 0x9f,
305 BULK_ERASE = 0xc7,
306 READ_FSR = 0x70,
307 RDCR = 0x15,
308
309 READ = 0x03,
310 READ4 = 0x13,
311 FAST_READ = 0x0b,
312 FAST_READ4 = 0x0c,
313 DOR = 0x3b,
314 DOR4 = 0x3c,
315 QOR = 0x6b,
316 QOR4 = 0x6c,
317 DIOR = 0xbb,
318 DIOR4 = 0xbc,
319 QIOR = 0xeb,
320 QIOR4 = 0xec,
321
322 PP = 0x02,
323 PP4 = 0x12,
324 PP4_4 = 0x3e,
325 DPP = 0xa2,
326 QPP = 0x32,
327
328 ERASE_4K = 0x20,
329 ERASE4_4K = 0x21,
330 ERASE_32K = 0x52,
331 ERASE4_32K = 0x5c,
332 ERASE_SECTOR = 0xd8,
333 ERASE4_SECTOR = 0xdc,
334
335 EN_4BYTE_ADDR = 0xB7,
336 EX_4BYTE_ADDR = 0xE9,
337
338 EXTEND_ADDR_READ = 0xC8,
339 EXTEND_ADDR_WRITE = 0xC5,
340
341 RESET_ENABLE = 0x66,
342 RESET_MEMORY = 0x99,
343
344 /*
345 * Micron: 0x35 - enable QPI
346 * Spansion: 0x35 - read control register
347 */
348 RDCR_EQIO = 0x35,
349 RSTQIO = 0xf5,
350
351 RNVCR = 0xB5,
352 WNVCR = 0xB1,
353
354 RVCR = 0x85,
355 WVCR = 0x81,
356
357 REVCR = 0x65,
358 WEVCR = 0x61,
359 } FlashCMD;
360
361 typedef enum {
362 STATE_IDLE,
363 STATE_PAGE_PROGRAM,
364 STATE_READ,
365 STATE_COLLECTING_DATA,
366 STATE_COLLECTING_VAR_LEN_DATA,
367 STATE_READING_DATA,
368 } CMDState;
369
370 typedef enum {
371 MAN_SPANSION,
372 MAN_MACRONIX,
373 MAN_NUMONYX,
374 MAN_WINBOND,
375 MAN_GENERIC,
376 } Manufacturer;
377
378 typedef struct Flash {
379 SSISlave parent_obj;
380
381 BlockBackend *blk;
382
383 uint8_t *storage;
384 uint32_t size;
385 int page_size;
386
387 uint8_t state;
388 uint8_t data[16];
389 uint32_t len;
390 uint32_t pos;
391 uint8_t needed_bytes;
392 uint8_t cmd_in_progress;
393 uint32_t cur_addr;
394 uint32_t nonvolatile_cfg;
395 /* Configuration register for Macronix */
396 uint32_t volatile_cfg;
397 uint32_t enh_volatile_cfg;
398 /* Spansion cfg registers. */
399 uint8_t spansion_cr1nv;
400 uint8_t spansion_cr2nv;
401 uint8_t spansion_cr3nv;
402 uint8_t spansion_cr4nv;
403 uint8_t spansion_cr1v;
404 uint8_t spansion_cr2v;
405 uint8_t spansion_cr3v;
406 uint8_t spansion_cr4v;
407 bool write_enable;
408 bool four_bytes_address_mode;
409 bool reset_enable;
410 bool quad_enable;
411 uint8_t ear;
412
413 int64_t dirty_page;
414
415 const FlashPartInfo *pi;
416
417 } Flash;
418
419 typedef struct M25P80Class {
420 SSISlaveClass parent_class;
421 FlashPartInfo *pi;
422 } M25P80Class;
423
424 #define TYPE_M25P80 "m25p80-generic"
425 #define M25P80(obj) \
426 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
427 #define M25P80_CLASS(klass) \
428 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
429 #define M25P80_GET_CLASS(obj) \
430 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
431
432 static inline Manufacturer get_man(Flash *s)
433 {
434 switch (s->pi->id[0]) {
435 case 0x20:
436 return MAN_NUMONYX;
437 case 0xEF:
438 return MAN_WINBOND;
439 case 0x01:
440 return MAN_SPANSION;
441 case 0xC2:
442 return MAN_MACRONIX;
443 default:
444 return MAN_GENERIC;
445 }
446 }
447
448 static void blk_sync_complete(void *opaque, int ret)
449 {
450 QEMUIOVector *iov = opaque;
451
452 qemu_iovec_destroy(iov);
453 g_free(iov);
454
455 /* do nothing. Masters do not directly interact with the backing store,
456 * only the working copy so no mutexing required.
457 */
458 }
459
460 static void flash_sync_page(Flash *s, int page)
461 {
462 QEMUIOVector *iov = g_new(QEMUIOVector, 1);
463
464 if (!s->blk || blk_is_read_only(s->blk)) {
465 return;
466 }
467
468 qemu_iovec_init(iov, 1);
469 qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
470 s->pi->page_size);
471 blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
472 blk_sync_complete, iov);
473 }
474
475 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
476 {
477 QEMUIOVector *iov = g_new(QEMUIOVector, 1);
478
479 if (!s->blk || blk_is_read_only(s->blk)) {
480 return;
481 }
482
483 assert(!(len % BDRV_SECTOR_SIZE));
484 qemu_iovec_init(iov, 1);
485 qemu_iovec_add(iov, s->storage + off, len);
486 blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
487 }
488
489 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
490 {
491 uint32_t len;
492 uint8_t capa_to_assert = 0;
493
494 switch (cmd) {
495 case ERASE_4K:
496 case ERASE4_4K:
497 len = 4 << 10;
498 capa_to_assert = ER_4K;
499 break;
500 case ERASE_32K:
501 case ERASE4_32K:
502 len = 32 << 10;
503 capa_to_assert = ER_32K;
504 break;
505 case ERASE_SECTOR:
506 case ERASE4_SECTOR:
507 len = s->pi->sector_size;
508 break;
509 case BULK_ERASE:
510 len = s->size;
511 break;
512 default:
513 abort();
514 }
515
516 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
517 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
518 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
519 " device\n", len);
520 }
521
522 if (!s->write_enable) {
523 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
524 return;
525 }
526 memset(s->storage + offset, 0xff, len);
527 flash_sync_area(s, offset, len);
528 }
529
530 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
531 {
532 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
533 flash_sync_page(s, s->dirty_page);
534 s->dirty_page = newpage;
535 }
536 }
537
538 static inline
539 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
540 {
541 uint32_t page = addr / s->pi->page_size;
542 uint8_t prev = s->storage[s->cur_addr];
543
544 if (!s->write_enable) {
545 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
546 }
547
548 if ((prev ^ data) & data) {
549 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 " %" PRIx8
550 " -> %" PRIx8 "\n", addr, prev, data);
551 }
552
553 if (s->pi->flags & EEPROM) {
554 s->storage[s->cur_addr] = data;
555 } else {
556 s->storage[s->cur_addr] &= data;
557 }
558
559 flash_sync_dirty(s, page);
560 s->dirty_page = page;
561 }
562
563 static inline int get_addr_length(Flash *s)
564 {
565 /* check if eeprom is in use */
566 if (s->pi->flags == EEPROM) {
567 return 2;
568 }
569
570 switch (s->cmd_in_progress) {
571 case PP4:
572 case PP4_4:
573 case READ4:
574 case QIOR4:
575 case ERASE4_4K:
576 case ERASE4_32K:
577 case ERASE4_SECTOR:
578 case FAST_READ4:
579 case DOR4:
580 case QOR4:
581 case DIOR4:
582 return 4;
583 default:
584 return s->four_bytes_address_mode ? 4 : 3;
585 }
586 }
587
588 static void complete_collecting_data(Flash *s)
589 {
590 int i, n;
591
592 n = get_addr_length(s);
593 s->cur_addr = (n == 3 ? s->ear : 0);
594 for (i = 0; i < n; ++i) {
595 s->cur_addr <<= 8;
596 s->cur_addr |= s->data[i];
597 }
598
599 s->cur_addr &= s->size - 1;
600
601 s->state = STATE_IDLE;
602
603 switch (s->cmd_in_progress) {
604 case DPP:
605 case QPP:
606 case PP:
607 case PP4:
608 case PP4_4:
609 s->state = STATE_PAGE_PROGRAM;
610 break;
611 case READ:
612 case READ4:
613 case FAST_READ:
614 case FAST_READ4:
615 case DOR:
616 case DOR4:
617 case QOR:
618 case QOR4:
619 case DIOR:
620 case DIOR4:
621 case QIOR:
622 case QIOR4:
623 s->state = STATE_READ;
624 break;
625 case ERASE_4K:
626 case ERASE4_4K:
627 case ERASE_32K:
628 case ERASE4_32K:
629 case ERASE_SECTOR:
630 case ERASE4_SECTOR:
631 flash_erase(s, s->cur_addr, s->cmd_in_progress);
632 break;
633 case WRSR:
634 switch (get_man(s)) {
635 case MAN_SPANSION:
636 s->quad_enable = !!(s->data[1] & 0x02);
637 break;
638 case MAN_MACRONIX:
639 s->quad_enable = extract32(s->data[0], 6, 1);
640 if (s->len > 1) {
641 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
642 }
643 break;
644 default:
645 break;
646 }
647 if (s->write_enable) {
648 s->write_enable = false;
649 }
650 break;
651 case EXTEND_ADDR_WRITE:
652 s->ear = s->data[0];
653 break;
654 case WNVCR:
655 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
656 break;
657 case WVCR:
658 s->volatile_cfg = s->data[0];
659 break;
660 case WEVCR:
661 s->enh_volatile_cfg = s->data[0];
662 break;
663 default:
664 break;
665 }
666 }
667
668 static void reset_memory(Flash *s)
669 {
670 s->cmd_in_progress = NOP;
671 s->cur_addr = 0;
672 s->ear = 0;
673 s->four_bytes_address_mode = false;
674 s->len = 0;
675 s->needed_bytes = 0;
676 s->pos = 0;
677 s->state = STATE_IDLE;
678 s->write_enable = false;
679 s->reset_enable = false;
680 s->quad_enable = false;
681
682 switch (get_man(s)) {
683 case MAN_NUMONYX:
684 s->volatile_cfg = 0;
685 s->volatile_cfg |= VCFG_DUMMY;
686 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
687 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
688 != NVCFG_XIP_MODE_DISABLED) {
689 s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
690 }
691 s->volatile_cfg |= deposit32(s->volatile_cfg,
692 VCFG_DUMMY_CLK_POS,
693 CFG_DUMMY_CLK_LEN,
694 extract32(s->nonvolatile_cfg,
695 NVCFG_DUMMY_CLK_POS,
696 CFG_DUMMY_CLK_LEN)
697 );
698
699 s->enh_volatile_cfg = 0;
700 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGHT_DEF;
701 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
702 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
703 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
704 s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
705 }
706 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
707 s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
708 }
709 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
710 s->four_bytes_address_mode = true;
711 }
712 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
713 s->ear = s->size / MAX_3BYTES_SIZE - 1;
714 }
715 break;
716 case MAN_MACRONIX:
717 s->volatile_cfg = 0x7;
718 break;
719 case MAN_SPANSION:
720 s->spansion_cr1v = s->spansion_cr1nv;
721 s->spansion_cr2v = s->spansion_cr2nv;
722 s->spansion_cr3v = s->spansion_cr3nv;
723 s->spansion_cr4v = s->spansion_cr4nv;
724 s->quad_enable = extract32(s->spansion_cr1v,
725 SPANSION_QUAD_CFG_POS,
726 SPANSION_QUAD_CFG_LEN
727 );
728 s->four_bytes_address_mode = extract32(s->spansion_cr2v,
729 SPANSION_ADDR_LEN_POS,
730 SPANSION_ADDR_LEN_LEN
731 );
732 break;
733 default:
734 break;
735 }
736
737 DB_PRINT_L(0, "Reset done.\n");
738 }
739
740 static void decode_fast_read_cmd(Flash *s)
741 {
742 s->needed_bytes = get_addr_length(s);
743 switch (get_man(s)) {
744 /* Dummy cycles - modeled with bytes writes instead of bits */
745 case MAN_WINBOND:
746 s->needed_bytes += 8;
747 break;
748 case MAN_NUMONYX:
749 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
750 break;
751 case MAN_MACRONIX:
752 if (extract32(s->volatile_cfg, 6, 2) == 1) {
753 s->needed_bytes += 6;
754 } else {
755 s->needed_bytes += 8;
756 }
757 break;
758 case MAN_SPANSION:
759 s->needed_bytes += extract32(s->spansion_cr2v,
760 SPANSION_DUMMY_CLK_POS,
761 SPANSION_DUMMY_CLK_LEN
762 );
763 break;
764 default:
765 break;
766 }
767 s->pos = 0;
768 s->len = 0;
769 s->state = STATE_COLLECTING_DATA;
770 }
771
772 static void decode_dio_read_cmd(Flash *s)
773 {
774 s->needed_bytes = get_addr_length(s);
775 /* Dummy cycles modeled with bytes writes instead of bits */
776 switch (get_man(s)) {
777 case MAN_WINBOND:
778 s->needed_bytes += 8;
779 break;
780 case MAN_SPANSION:
781 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
782 s->needed_bytes += extract32(s->spansion_cr2v,
783 SPANSION_DUMMY_CLK_POS,
784 SPANSION_DUMMY_CLK_LEN
785 );
786 break;
787 case MAN_NUMONYX:
788 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
789 break;
790 case MAN_MACRONIX:
791 switch (extract32(s->volatile_cfg, 6, 2)) {
792 case 1:
793 s->needed_bytes += 6;
794 break;
795 case 2:
796 s->needed_bytes += 8;
797 break;
798 default:
799 s->needed_bytes += 4;
800 break;
801 }
802 break;
803 default:
804 break;
805 }
806 s->pos = 0;
807 s->len = 0;
808 s->state = STATE_COLLECTING_DATA;
809 }
810
811 static void decode_qio_read_cmd(Flash *s)
812 {
813 s->needed_bytes = get_addr_length(s);
814 /* Dummy cycles modeled with bytes writes instead of bits */
815 switch (get_man(s)) {
816 case MAN_WINBOND:
817 s->needed_bytes += 8;
818 break;
819 case MAN_SPANSION:
820 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
821 s->needed_bytes += extract32(s->spansion_cr2v,
822 SPANSION_DUMMY_CLK_POS,
823 SPANSION_DUMMY_CLK_LEN
824 );
825 break;
826 case MAN_NUMONYX:
827 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
828 break;
829 case MAN_MACRONIX:
830 switch (extract32(s->volatile_cfg, 6, 2)) {
831 case 1:
832 s->needed_bytes += 4;
833 break;
834 case 2:
835 s->needed_bytes += 8;
836 break;
837 default:
838 s->needed_bytes += 6;
839 break;
840 }
841 break;
842 default:
843 break;
844 }
845 s->pos = 0;
846 s->len = 0;
847 s->state = STATE_COLLECTING_DATA;
848 }
849
850 static void decode_new_cmd(Flash *s, uint32_t value)
851 {
852 s->cmd_in_progress = value;
853 int i;
854 DB_PRINT_L(0, "decoded new command:%x\n", value);
855
856 if (value != RESET_MEMORY) {
857 s->reset_enable = false;
858 }
859
860 switch (value) {
861
862 case ERASE_4K:
863 case ERASE4_4K:
864 case ERASE_32K:
865 case ERASE4_32K:
866 case ERASE_SECTOR:
867 case ERASE4_SECTOR:
868 case READ:
869 case READ4:
870 case DPP:
871 case QPP:
872 case PP:
873 case PP4:
874 case PP4_4:
875 s->needed_bytes = get_addr_length(s);
876 s->pos = 0;
877 s->len = 0;
878 s->state = STATE_COLLECTING_DATA;
879 break;
880
881 case FAST_READ:
882 case FAST_READ4:
883 case DOR:
884 case DOR4:
885 case QOR:
886 case QOR4:
887 decode_fast_read_cmd(s);
888 break;
889
890 case DIOR:
891 case DIOR4:
892 decode_dio_read_cmd(s);
893 break;
894
895 case QIOR:
896 case QIOR4:
897 decode_qio_read_cmd(s);
898 break;
899
900 case WRSR:
901 if (s->write_enable) {
902 switch (get_man(s)) {
903 case MAN_SPANSION:
904 s->needed_bytes = 2;
905 s->state = STATE_COLLECTING_DATA;
906 break;
907 case MAN_MACRONIX:
908 s->needed_bytes = 2;
909 s->state = STATE_COLLECTING_VAR_LEN_DATA;
910 break;
911 default:
912 s->needed_bytes = 1;
913 s->state = STATE_COLLECTING_DATA;
914 }
915 s->pos = 0;
916 }
917 break;
918
919 case WRDI:
920 s->write_enable = false;
921 break;
922 case WREN:
923 s->write_enable = true;
924 break;
925
926 case RDSR:
927 s->data[0] = (!!s->write_enable) << 1;
928 if (get_man(s) == MAN_MACRONIX) {
929 s->data[0] |= (!!s->quad_enable) << 6;
930 }
931 s->pos = 0;
932 s->len = 1;
933 s->state = STATE_READING_DATA;
934 break;
935
936 case READ_FSR:
937 s->data[0] = FSR_FLASH_READY;
938 if (s->four_bytes_address_mode) {
939 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
940 }
941 s->pos = 0;
942 s->len = 1;
943 s->state = STATE_READING_DATA;
944 break;
945
946 case JEDEC_READ:
947 DB_PRINT_L(0, "populated jedec code\n");
948 for (i = 0; i < s->pi->id_len; i++) {
949 s->data[i] = s->pi->id[i];
950 }
951
952 s->len = s->pi->id_len;
953 s->pos = 0;
954 s->state = STATE_READING_DATA;
955 break;
956
957 case RDCR:
958 s->data[0] = s->volatile_cfg & 0xFF;
959 s->data[0] |= (!!s->four_bytes_address_mode) << 5;
960 s->pos = 0;
961 s->len = 1;
962 s->state = STATE_READING_DATA;
963 break;
964
965 case BULK_ERASE:
966 if (s->write_enable) {
967 DB_PRINT_L(0, "chip erase\n");
968 flash_erase(s, 0, BULK_ERASE);
969 } else {
970 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
971 "protect!\n");
972 }
973 break;
974 case NOP:
975 break;
976 case EN_4BYTE_ADDR:
977 s->four_bytes_address_mode = true;
978 break;
979 case EX_4BYTE_ADDR:
980 s->four_bytes_address_mode = false;
981 break;
982 case EXTEND_ADDR_READ:
983 s->data[0] = s->ear;
984 s->pos = 0;
985 s->len = 1;
986 s->state = STATE_READING_DATA;
987 break;
988 case EXTEND_ADDR_WRITE:
989 if (s->write_enable) {
990 s->needed_bytes = 1;
991 s->pos = 0;
992 s->len = 0;
993 s->state = STATE_COLLECTING_DATA;
994 }
995 break;
996 case RNVCR:
997 s->data[0] = s->nonvolatile_cfg & 0xFF;
998 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
999 s->pos = 0;
1000 s->len = 2;
1001 s->state = STATE_READING_DATA;
1002 break;
1003 case WNVCR:
1004 if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1005 s->needed_bytes = 2;
1006 s->pos = 0;
1007 s->len = 0;
1008 s->state = STATE_COLLECTING_DATA;
1009 }
1010 break;
1011 case RVCR:
1012 s->data[0] = s->volatile_cfg & 0xFF;
1013 s->pos = 0;
1014 s->len = 1;
1015 s->state = STATE_READING_DATA;
1016 break;
1017 case WVCR:
1018 if (s->write_enable) {
1019 s->needed_bytes = 1;
1020 s->pos = 0;
1021 s->len = 0;
1022 s->state = STATE_COLLECTING_DATA;
1023 }
1024 break;
1025 case REVCR:
1026 s->data[0] = s->enh_volatile_cfg & 0xFF;
1027 s->pos = 0;
1028 s->len = 1;
1029 s->state = STATE_READING_DATA;
1030 break;
1031 case WEVCR:
1032 if (s->write_enable) {
1033 s->needed_bytes = 1;
1034 s->pos = 0;
1035 s->len = 0;
1036 s->state = STATE_COLLECTING_DATA;
1037 }
1038 break;
1039 case RESET_ENABLE:
1040 s->reset_enable = true;
1041 break;
1042 case RESET_MEMORY:
1043 if (s->reset_enable) {
1044 reset_memory(s);
1045 }
1046 break;
1047 case RDCR_EQIO:
1048 switch (get_man(s)) {
1049 case MAN_SPANSION:
1050 s->data[0] = (!!s->quad_enable) << 1;
1051 s->pos = 0;
1052 s->len = 1;
1053 s->state = STATE_READING_DATA;
1054 break;
1055 case MAN_MACRONIX:
1056 s->quad_enable = true;
1057 break;
1058 default:
1059 break;
1060 }
1061 break;
1062 case RSTQIO:
1063 s->quad_enable = false;
1064 break;
1065 default:
1066 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1067 break;
1068 }
1069 }
1070
1071 static int m25p80_cs(SSISlave *ss, bool select)
1072 {
1073 Flash *s = M25P80(ss);
1074
1075 if (select) {
1076 if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1077 complete_collecting_data(s);
1078 }
1079 s->len = 0;
1080 s->pos = 0;
1081 s->state = STATE_IDLE;
1082 flash_sync_dirty(s, -1);
1083 }
1084
1085 DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
1086
1087 return 0;
1088 }
1089
1090 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1091 {
1092 Flash *s = M25P80(ss);
1093 uint32_t r = 0;
1094
1095 switch (s->state) {
1096
1097 case STATE_PAGE_PROGRAM:
1098 DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n",
1099 s->cur_addr, (uint8_t)tx);
1100 flash_write8(s, s->cur_addr, (uint8_t)tx);
1101 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1102 break;
1103
1104 case STATE_READ:
1105 r = s->storage[s->cur_addr];
1106 DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr,
1107 (uint8_t)r);
1108 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1109 break;
1110
1111 case STATE_COLLECTING_DATA:
1112 case STATE_COLLECTING_VAR_LEN_DATA:
1113 s->data[s->len] = (uint8_t)tx;
1114 s->len++;
1115
1116 if (s->len == s->needed_bytes) {
1117 complete_collecting_data(s);
1118 }
1119 break;
1120
1121 case STATE_READING_DATA:
1122 r = s->data[s->pos];
1123 s->pos++;
1124 if (s->pos == s->len) {
1125 s->pos = 0;
1126 s->state = STATE_IDLE;
1127 }
1128 break;
1129
1130 default:
1131 case STATE_IDLE:
1132 decode_new_cmd(s, (uint8_t)tx);
1133 break;
1134 }
1135
1136 return r;
1137 }
1138
1139 static void m25p80_realize(SSISlave *ss, Error **errp)
1140 {
1141 Flash *s = M25P80(ss);
1142 M25P80Class *mc = M25P80_GET_CLASS(s);
1143
1144 s->pi = mc->pi;
1145
1146 s->size = s->pi->sector_size * s->pi->n_sectors;
1147 s->dirty_page = -1;
1148
1149 if (s->blk) {
1150 DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1151 s->storage = blk_blockalign(s->blk, s->size);
1152
1153 if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1154 error_setg(errp, "failed to read the initial flash content");
1155 return;
1156 }
1157 } else {
1158 DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1159 s->storage = blk_blockalign(NULL, s->size);
1160 memset(s->storage, 0xFF, s->size);
1161 }
1162 }
1163
1164 static void m25p80_reset(DeviceState *d)
1165 {
1166 Flash *s = M25P80(d);
1167
1168 reset_memory(s);
1169 }
1170
1171 static void m25p80_pre_save(void *opaque)
1172 {
1173 flash_sync_dirty((Flash *)opaque, -1);
1174 }
1175
1176 static Property m25p80_properties[] = {
1177 /* This is default value for Micron flash */
1178 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1179 DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1180 DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1181 DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1182 DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1183 DEFINE_PROP_DRIVE("drive", Flash, blk),
1184 DEFINE_PROP_END_OF_LIST(),
1185 };
1186
1187 static const VMStateDescription vmstate_m25p80 = {
1188 .name = "xilinx_spi",
1189 .version_id = 3,
1190 .minimum_version_id = 1,
1191 .pre_save = m25p80_pre_save,
1192 .fields = (VMStateField[]) {
1193 VMSTATE_UINT8(state, Flash),
1194 VMSTATE_UINT8_ARRAY(data, Flash, 16),
1195 VMSTATE_UINT32(len, Flash),
1196 VMSTATE_UINT32(pos, Flash),
1197 VMSTATE_UINT8(needed_bytes, Flash),
1198 VMSTATE_UINT8(cmd_in_progress, Flash),
1199 VMSTATE_UNUSED(4),
1200 VMSTATE_UINT32(cur_addr, Flash),
1201 VMSTATE_BOOL(write_enable, Flash),
1202 VMSTATE_BOOL_V(reset_enable, Flash, 2),
1203 VMSTATE_UINT8_V(ear, Flash, 2),
1204 VMSTATE_BOOL_V(four_bytes_address_mode, Flash, 2),
1205 VMSTATE_UINT32_V(nonvolatile_cfg, Flash, 2),
1206 VMSTATE_UINT32_V(volatile_cfg, Flash, 2),
1207 VMSTATE_UINT32_V(enh_volatile_cfg, Flash, 2),
1208 VMSTATE_BOOL_V(quad_enable, Flash, 3),
1209 VMSTATE_UINT8_V(spansion_cr1nv, Flash, 3),
1210 VMSTATE_UINT8_V(spansion_cr2nv, Flash, 3),
1211 VMSTATE_UINT8_V(spansion_cr3nv, Flash, 3),
1212 VMSTATE_UINT8_V(spansion_cr4nv, Flash, 3),
1213 VMSTATE_END_OF_LIST()
1214 }
1215 };
1216
1217 static void m25p80_class_init(ObjectClass *klass, void *data)
1218 {
1219 DeviceClass *dc = DEVICE_CLASS(klass);
1220 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1221 M25P80Class *mc = M25P80_CLASS(klass);
1222
1223 k->realize = m25p80_realize;
1224 k->transfer = m25p80_transfer8;
1225 k->set_cs = m25p80_cs;
1226 k->cs_polarity = SSI_CS_LOW;
1227 dc->vmsd = &vmstate_m25p80;
1228 dc->props = m25p80_properties;
1229 dc->reset = m25p80_reset;
1230 mc->pi = data;
1231 }
1232
1233 static const TypeInfo m25p80_info = {
1234 .name = TYPE_M25P80,
1235 .parent = TYPE_SSI_SLAVE,
1236 .instance_size = sizeof(Flash),
1237 .class_size = sizeof(M25P80Class),
1238 .abstract = true,
1239 };
1240
1241 static void m25p80_register_types(void)
1242 {
1243 int i;
1244
1245 type_register_static(&m25p80_info);
1246 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1247 TypeInfo ti = {
1248 .name = known_devices[i].part_name,
1249 .parent = TYPE_M25P80,
1250 .class_init = m25p80_class_init,
1251 .class_data = (void *)&known_devices[i],
1252 };
1253 type_register(&ti);
1254 }
1255 }
1256
1257 type_init(m25p80_register_types)