]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
compat: replace PC_COMPAT_2_12 & HW_COMPAT_2_12 macros
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
35 #include "hw/ide.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/firmware/smbios.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "multiboot.h"
44 #include "hw/timer/mc146818rtc.h"
45 #include "hw/dma/i8257.h"
46 #include "hw/timer/i8254.h"
47 #include "hw/input/i8042.h"
48 #include "hw/audio/pcspk.h"
49 #include "hw/pci/msi.h"
50 #include "hw/sysbus.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/numa.h"
53 #include "sysemu/kvm.h"
54 #include "sysemu/qtest.h"
55 #include "kvm_i386.h"
56 #include "hw/xen/xen.h"
57 #include "ui/qemu-spice.h"
58 #include "exec/memory.h"
59 #include "exec/address-spaces.h"
60 #include "sysemu/arch_init.h"
61 #include "qemu/bitmap.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "qemu/option.h"
65 #include "hw/acpi/acpi.h"
66 #include "hw/acpi/cpu_hotplug.h"
67 #include "hw/boards.h"
68 #include "acpi-build.h"
69 #include "hw/mem/pc-dimm.h"
70 #include "qapi/error.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/visitor.h"
73 #include "qom/cpu.h"
74 #include "hw/nmi.h"
75 #include "hw/i386/intel_iommu.h"
76 #include "hw/net/ne2000-isa.h"
77
78 /* debug PC/ISA interrupts */
79 //#define DEBUG_IRQ
80
81 #ifdef DEBUG_IRQ
82 #define DPRINTF(fmt, ...) \
83 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
84 #else
85 #define DPRINTF(fmt, ...)
86 #endif
87
88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
93
94 #define E820_NR_ENTRIES 16
95
96 struct e820_entry {
97 uint64_t address;
98 uint64_t length;
99 uint32_t type;
100 } QEMU_PACKED __attribute((__aligned__(4)));
101
102 struct e820_table {
103 uint32_t count;
104 struct e820_entry entry[E820_NR_ENTRIES];
105 } QEMU_PACKED __attribute((__aligned__(4)));
106
107 static struct e820_table e820_reserve;
108 static struct e820_entry *e820_table;
109 static unsigned e820_entries;
110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
111
112 GlobalProperty pc_compat_3_1[] = {
113 {
114 .driver = "intel-iommu",
115 .property = "dma-drain",
116 .value = "off",
117 },
118 };
119 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
120
121 GlobalProperty pc_compat_3_0[] = {
122 {
123 .driver = TYPE_X86_CPU,
124 .property = "x-hv-synic-kvm-only",
125 .value = "on",
126 },{
127 .driver = "Skylake-Server" "-" TYPE_X86_CPU,
128 .property = "pku",
129 .value = "off",
130 },{
131 .driver = "Skylake-Server-IBRS" "-" TYPE_X86_CPU,
132 .property = "pku",
133 .value = "off",
134 },
135 };
136 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
137
138 GlobalProperty pc_compat_2_12[] = {
139 {
140 .driver = TYPE_X86_CPU,
141 .property = "legacy-cache",
142 .value = "on",
143 },{
144 .driver = TYPE_X86_CPU,
145 .property = "topoext",
146 .value = "off",
147 },{
148 .driver = "EPYC-" TYPE_X86_CPU,
149 .property = "xlevel",
150 .value = stringify(0x8000000a),
151 },{
152 .driver = "EPYC-IBPB-" TYPE_X86_CPU,
153 .property = "xlevel",
154 .value = stringify(0x8000000a),
155 },
156 };
157 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
158
159 void gsi_handler(void *opaque, int n, int level)
160 {
161 GSIState *s = opaque;
162
163 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
164 if (n < ISA_NUM_IRQS) {
165 qemu_set_irq(s->i8259_irq[n], level);
166 }
167 qemu_set_irq(s->ioapic_irq[n], level);
168 }
169
170 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
171 unsigned size)
172 {
173 }
174
175 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
176 {
177 return 0xffffffffffffffffULL;
178 }
179
180 /* MSDOS compatibility mode FPU exception support */
181 static qemu_irq ferr_irq;
182
183 void pc_register_ferr_irq(qemu_irq irq)
184 {
185 ferr_irq = irq;
186 }
187
188 /* XXX: add IGNNE support */
189 void cpu_set_ferr(CPUX86State *s)
190 {
191 qemu_irq_raise(ferr_irq);
192 }
193
194 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
195 unsigned size)
196 {
197 qemu_irq_lower(ferr_irq);
198 }
199
200 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
201 {
202 return 0xffffffffffffffffULL;
203 }
204
205 /* TSC handling */
206 uint64_t cpu_get_tsc(CPUX86State *env)
207 {
208 return cpu_get_ticks();
209 }
210
211 /* IRQ handling */
212 int cpu_get_pic_interrupt(CPUX86State *env)
213 {
214 X86CPU *cpu = x86_env_get_cpu(env);
215 int intno;
216
217 if (!kvm_irqchip_in_kernel()) {
218 intno = apic_get_interrupt(cpu->apic_state);
219 if (intno >= 0) {
220 return intno;
221 }
222 /* read the irq from the PIC */
223 if (!apic_accept_pic_intr(cpu->apic_state)) {
224 return -1;
225 }
226 }
227
228 intno = pic_read_irq(isa_pic);
229 return intno;
230 }
231
232 static void pic_irq_request(void *opaque, int irq, int level)
233 {
234 CPUState *cs = first_cpu;
235 X86CPU *cpu = X86_CPU(cs);
236
237 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
238 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
239 CPU_FOREACH(cs) {
240 cpu = X86_CPU(cs);
241 if (apic_accept_pic_intr(cpu->apic_state)) {
242 apic_deliver_pic_intr(cpu->apic_state, level);
243 }
244 }
245 } else {
246 if (level) {
247 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
248 } else {
249 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
250 }
251 }
252 }
253
254 /* PC cmos mappings */
255
256 #define REG_EQUIPMENT_BYTE 0x14
257
258 int cmos_get_fd_drive_type(FloppyDriveType fd0)
259 {
260 int val;
261
262 switch (fd0) {
263 case FLOPPY_DRIVE_TYPE_144:
264 /* 1.44 Mb 3"5 drive */
265 val = 4;
266 break;
267 case FLOPPY_DRIVE_TYPE_288:
268 /* 2.88 Mb 3"5 drive */
269 val = 5;
270 break;
271 case FLOPPY_DRIVE_TYPE_120:
272 /* 1.2 Mb 5"5 drive */
273 val = 2;
274 break;
275 case FLOPPY_DRIVE_TYPE_NONE:
276 default:
277 val = 0;
278 break;
279 }
280 return val;
281 }
282
283 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
284 int16_t cylinders, int8_t heads, int8_t sectors)
285 {
286 rtc_set_memory(s, type_ofs, 47);
287 rtc_set_memory(s, info_ofs, cylinders);
288 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
289 rtc_set_memory(s, info_ofs + 2, heads);
290 rtc_set_memory(s, info_ofs + 3, 0xff);
291 rtc_set_memory(s, info_ofs + 4, 0xff);
292 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
293 rtc_set_memory(s, info_ofs + 6, cylinders);
294 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
295 rtc_set_memory(s, info_ofs + 8, sectors);
296 }
297
298 /* convert boot_device letter to something recognizable by the bios */
299 static int boot_device2nibble(char boot_device)
300 {
301 switch(boot_device) {
302 case 'a':
303 case 'b':
304 return 0x01; /* floppy boot */
305 case 'c':
306 return 0x02; /* hard drive boot */
307 case 'd':
308 return 0x03; /* CD-ROM boot */
309 case 'n':
310 return 0x04; /* Network boot */
311 }
312 return 0;
313 }
314
315 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
316 {
317 #define PC_MAX_BOOT_DEVICES 3
318 int nbds, bds[3] = { 0, };
319 int i;
320
321 nbds = strlen(boot_device);
322 if (nbds > PC_MAX_BOOT_DEVICES) {
323 error_setg(errp, "Too many boot devices for PC");
324 return;
325 }
326 for (i = 0; i < nbds; i++) {
327 bds[i] = boot_device2nibble(boot_device[i]);
328 if (bds[i] == 0) {
329 error_setg(errp, "Invalid boot device for PC: '%c'",
330 boot_device[i]);
331 return;
332 }
333 }
334 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
335 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
336 }
337
338 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
339 {
340 set_boot_dev(opaque, boot_device, errp);
341 }
342
343 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
344 {
345 int val, nb, i;
346 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
347 FLOPPY_DRIVE_TYPE_NONE };
348
349 /* floppy type */
350 if (floppy) {
351 for (i = 0; i < 2; i++) {
352 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
353 }
354 }
355 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
356 cmos_get_fd_drive_type(fd_type[1]);
357 rtc_set_memory(rtc_state, 0x10, val);
358
359 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
360 nb = 0;
361 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
362 nb++;
363 }
364 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
365 nb++;
366 }
367 switch (nb) {
368 case 0:
369 break;
370 case 1:
371 val |= 0x01; /* 1 drive, ready for boot */
372 break;
373 case 2:
374 val |= 0x41; /* 2 drives, ready for boot */
375 break;
376 }
377 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
378 }
379
380 typedef struct pc_cmos_init_late_arg {
381 ISADevice *rtc_state;
382 BusState *idebus[2];
383 } pc_cmos_init_late_arg;
384
385 typedef struct check_fdc_state {
386 ISADevice *floppy;
387 bool multiple;
388 } CheckFdcState;
389
390 static int check_fdc(Object *obj, void *opaque)
391 {
392 CheckFdcState *state = opaque;
393 Object *fdc;
394 uint32_t iobase;
395 Error *local_err = NULL;
396
397 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
398 if (!fdc) {
399 return 0;
400 }
401
402 iobase = object_property_get_uint(obj, "iobase", &local_err);
403 if (local_err || iobase != 0x3f0) {
404 error_free(local_err);
405 return 0;
406 }
407
408 if (state->floppy) {
409 state->multiple = true;
410 } else {
411 state->floppy = ISA_DEVICE(obj);
412 }
413 return 0;
414 }
415
416 static const char * const fdc_container_path[] = {
417 "/unattached", "/peripheral", "/peripheral-anon"
418 };
419
420 /*
421 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
422 * and ACPI objects.
423 */
424 ISADevice *pc_find_fdc0(void)
425 {
426 int i;
427 Object *container;
428 CheckFdcState state = { 0 };
429
430 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
431 container = container_get(qdev_get_machine(), fdc_container_path[i]);
432 object_child_foreach(container, check_fdc, &state);
433 }
434
435 if (state.multiple) {
436 warn_report("multiple floppy disk controllers with "
437 "iobase=0x3f0 have been found");
438 error_printf("the one being picked for CMOS setup might not reflect "
439 "your intent");
440 }
441
442 return state.floppy;
443 }
444
445 static void pc_cmos_init_late(void *opaque)
446 {
447 pc_cmos_init_late_arg *arg = opaque;
448 ISADevice *s = arg->rtc_state;
449 int16_t cylinders;
450 int8_t heads, sectors;
451 int val;
452 int i, trans;
453
454 val = 0;
455 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
456 &cylinders, &heads, &sectors) >= 0) {
457 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
458 val |= 0xf0;
459 }
460 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
461 &cylinders, &heads, &sectors) >= 0) {
462 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
463 val |= 0x0f;
464 }
465 rtc_set_memory(s, 0x12, val);
466
467 val = 0;
468 for (i = 0; i < 4; i++) {
469 /* NOTE: ide_get_geometry() returns the physical
470 geometry. It is always such that: 1 <= sects <= 63, 1
471 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
472 geometry can be different if a translation is done. */
473 if (arg->idebus[i / 2] &&
474 ide_get_geometry(arg->idebus[i / 2], i % 2,
475 &cylinders, &heads, &sectors) >= 0) {
476 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
477 assert((trans & ~3) == 0);
478 val |= trans << (i * 2);
479 }
480 }
481 rtc_set_memory(s, 0x39, val);
482
483 pc_cmos_init_floppy(s, pc_find_fdc0());
484
485 qemu_unregister_reset(pc_cmos_init_late, opaque);
486 }
487
488 void pc_cmos_init(PCMachineState *pcms,
489 BusState *idebus0, BusState *idebus1,
490 ISADevice *s)
491 {
492 int val;
493 static pc_cmos_init_late_arg arg;
494
495 /* various important CMOS locations needed by PC/Bochs bios */
496
497 /* memory size */
498 /* base memory (first MiB) */
499 val = MIN(pcms->below_4g_mem_size / KiB, 640);
500 rtc_set_memory(s, 0x15, val);
501 rtc_set_memory(s, 0x16, val >> 8);
502 /* extended memory (next 64MiB) */
503 if (pcms->below_4g_mem_size > 1 * MiB) {
504 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
505 } else {
506 val = 0;
507 }
508 if (val > 65535)
509 val = 65535;
510 rtc_set_memory(s, 0x17, val);
511 rtc_set_memory(s, 0x18, val >> 8);
512 rtc_set_memory(s, 0x30, val);
513 rtc_set_memory(s, 0x31, val >> 8);
514 /* memory between 16MiB and 4GiB */
515 if (pcms->below_4g_mem_size > 16 * MiB) {
516 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
517 } else {
518 val = 0;
519 }
520 if (val > 65535)
521 val = 65535;
522 rtc_set_memory(s, 0x34, val);
523 rtc_set_memory(s, 0x35, val >> 8);
524 /* memory above 4GiB */
525 val = pcms->above_4g_mem_size / 65536;
526 rtc_set_memory(s, 0x5b, val);
527 rtc_set_memory(s, 0x5c, val >> 8);
528 rtc_set_memory(s, 0x5d, val >> 16);
529
530 object_property_add_link(OBJECT(pcms), "rtc_state",
531 TYPE_ISA_DEVICE,
532 (Object **)&pcms->rtc,
533 object_property_allow_set_link,
534 OBJ_PROP_LINK_STRONG, &error_abort);
535 object_property_set_link(OBJECT(pcms), OBJECT(s),
536 "rtc_state", &error_abort);
537
538 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
539
540 val = 0;
541 val |= 0x02; /* FPU is there */
542 val |= 0x04; /* PS/2 mouse installed */
543 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
544
545 /* hard drives and FDC */
546 arg.rtc_state = s;
547 arg.idebus[0] = idebus0;
548 arg.idebus[1] = idebus1;
549 qemu_register_reset(pc_cmos_init_late, &arg);
550 }
551
552 #define TYPE_PORT92 "port92"
553 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
554
555 /* port 92 stuff: could be split off */
556 typedef struct Port92State {
557 ISADevice parent_obj;
558
559 MemoryRegion io;
560 uint8_t outport;
561 qemu_irq a20_out;
562 } Port92State;
563
564 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
565 unsigned size)
566 {
567 Port92State *s = opaque;
568 int oldval = s->outport;
569
570 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
571 s->outport = val;
572 qemu_set_irq(s->a20_out, (val >> 1) & 1);
573 if ((val & 1) && !(oldval & 1)) {
574 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
575 }
576 }
577
578 static uint64_t port92_read(void *opaque, hwaddr addr,
579 unsigned size)
580 {
581 Port92State *s = opaque;
582 uint32_t ret;
583
584 ret = s->outport;
585 DPRINTF("port92: read 0x%02x\n", ret);
586 return ret;
587 }
588
589 static void port92_init(ISADevice *dev, qemu_irq a20_out)
590 {
591 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
592 }
593
594 static const VMStateDescription vmstate_port92_isa = {
595 .name = "port92",
596 .version_id = 1,
597 .minimum_version_id = 1,
598 .fields = (VMStateField[]) {
599 VMSTATE_UINT8(outport, Port92State),
600 VMSTATE_END_OF_LIST()
601 }
602 };
603
604 static void port92_reset(DeviceState *d)
605 {
606 Port92State *s = PORT92(d);
607
608 s->outport &= ~1;
609 }
610
611 static const MemoryRegionOps port92_ops = {
612 .read = port92_read,
613 .write = port92_write,
614 .impl = {
615 .min_access_size = 1,
616 .max_access_size = 1,
617 },
618 .endianness = DEVICE_LITTLE_ENDIAN,
619 };
620
621 static void port92_initfn(Object *obj)
622 {
623 Port92State *s = PORT92(obj);
624
625 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
626
627 s->outport = 0;
628
629 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
630 }
631
632 static void port92_realizefn(DeviceState *dev, Error **errp)
633 {
634 ISADevice *isadev = ISA_DEVICE(dev);
635 Port92State *s = PORT92(dev);
636
637 isa_register_ioport(isadev, &s->io, 0x92);
638 }
639
640 static void port92_class_initfn(ObjectClass *klass, void *data)
641 {
642 DeviceClass *dc = DEVICE_CLASS(klass);
643
644 dc->realize = port92_realizefn;
645 dc->reset = port92_reset;
646 dc->vmsd = &vmstate_port92_isa;
647 /*
648 * Reason: unlike ordinary ISA devices, this one needs additional
649 * wiring: its A20 output line needs to be wired up by
650 * port92_init().
651 */
652 dc->user_creatable = false;
653 }
654
655 static const TypeInfo port92_info = {
656 .name = TYPE_PORT92,
657 .parent = TYPE_ISA_DEVICE,
658 .instance_size = sizeof(Port92State),
659 .instance_init = port92_initfn,
660 .class_init = port92_class_initfn,
661 };
662
663 static void port92_register_types(void)
664 {
665 type_register_static(&port92_info);
666 }
667
668 type_init(port92_register_types)
669
670 static void handle_a20_line_change(void *opaque, int irq, int level)
671 {
672 X86CPU *cpu = opaque;
673
674 /* XXX: send to all CPUs ? */
675 /* XXX: add logic to handle multiple A20 line sources */
676 x86_cpu_set_a20(cpu, level);
677 }
678
679 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
680 {
681 int index = le32_to_cpu(e820_reserve.count);
682 struct e820_entry *entry;
683
684 if (type != E820_RAM) {
685 /* old FW_CFG_E820_TABLE entry -- reservations only */
686 if (index >= E820_NR_ENTRIES) {
687 return -EBUSY;
688 }
689 entry = &e820_reserve.entry[index++];
690
691 entry->address = cpu_to_le64(address);
692 entry->length = cpu_to_le64(length);
693 entry->type = cpu_to_le32(type);
694
695 e820_reserve.count = cpu_to_le32(index);
696 }
697
698 /* new "etc/e820" file -- include ram too */
699 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
700 e820_table[e820_entries].address = cpu_to_le64(address);
701 e820_table[e820_entries].length = cpu_to_le64(length);
702 e820_table[e820_entries].type = cpu_to_le32(type);
703 e820_entries++;
704
705 return e820_entries;
706 }
707
708 int e820_get_num_entries(void)
709 {
710 return e820_entries;
711 }
712
713 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
714 {
715 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
716 *address = le64_to_cpu(e820_table[idx].address);
717 *length = le64_to_cpu(e820_table[idx].length);
718 return true;
719 }
720 return false;
721 }
722
723 /* Enables contiguous-apic-ID mode, for compatibility */
724 static bool compat_apic_id_mode;
725
726 void enable_compat_apic_id_mode(void)
727 {
728 compat_apic_id_mode = true;
729 }
730
731 /* Calculates initial APIC ID for a specific CPU index
732 *
733 * Currently we need to be able to calculate the APIC ID from the CPU index
734 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
735 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
736 * all CPUs up to max_cpus.
737 */
738 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
739 {
740 uint32_t correct_id;
741 static bool warned;
742
743 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
744 if (compat_apic_id_mode) {
745 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
746 error_report("APIC IDs set in compatibility mode, "
747 "CPU topology won't match the configuration");
748 warned = true;
749 }
750 return cpu_index;
751 } else {
752 return correct_id;
753 }
754 }
755
756 static void pc_build_smbios(PCMachineState *pcms)
757 {
758 uint8_t *smbios_tables, *smbios_anchor;
759 size_t smbios_tables_len, smbios_anchor_len;
760 struct smbios_phys_mem_area *mem_array;
761 unsigned i, array_count;
762 MachineState *ms = MACHINE(pcms);
763 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
764
765 /* tell smbios about cpuid version and features */
766 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
767
768 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
769 if (smbios_tables) {
770 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
771 smbios_tables, smbios_tables_len);
772 }
773
774 /* build the array of physical mem area from e820 table */
775 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
776 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
777 uint64_t addr, len;
778
779 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
780 mem_array[array_count].address = addr;
781 mem_array[array_count].length = len;
782 array_count++;
783 }
784 }
785 smbios_get_tables(mem_array, array_count,
786 &smbios_tables, &smbios_tables_len,
787 &smbios_anchor, &smbios_anchor_len);
788 g_free(mem_array);
789
790 if (smbios_anchor) {
791 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
792 smbios_tables, smbios_tables_len);
793 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
794 smbios_anchor, smbios_anchor_len);
795 }
796 }
797
798 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
799 {
800 FWCfgState *fw_cfg;
801 uint64_t *numa_fw_cfg;
802 int i;
803 const CPUArchIdList *cpus;
804 MachineClass *mc = MACHINE_GET_CLASS(pcms);
805
806 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
807 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
808
809 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
810 *
811 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
812 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
813 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
814 * for CPU hotplug also uses APIC ID and not "CPU index".
815 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
816 * but the "limit to the APIC ID values SeaBIOS may see".
817 *
818 * So for compatibility reasons with old BIOSes we are stuck with
819 * "etc/max-cpus" actually being apic_id_limit
820 */
821 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
822 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
823 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
824 acpi_tables, acpi_tables_len);
825 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
826
827 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
828 &e820_reserve, sizeof(e820_reserve));
829 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
830 sizeof(struct e820_entry) * e820_entries);
831
832 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
833 /* allocate memory for the NUMA channel: one (64bit) word for the number
834 * of nodes, one word for each VCPU->node and one word for each node to
835 * hold the amount of memory.
836 */
837 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
838 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
839 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
840 for (i = 0; i < cpus->len; i++) {
841 unsigned int apic_id = cpus->cpus[i].arch_id;
842 assert(apic_id < pcms->apic_id_limit);
843 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
844 }
845 for (i = 0; i < nb_numa_nodes; i++) {
846 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
847 cpu_to_le64(numa_info[i].node_mem);
848 }
849 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
850 (1 + pcms->apic_id_limit + nb_numa_nodes) *
851 sizeof(*numa_fw_cfg));
852
853 return fw_cfg;
854 }
855
856 static long get_file_size(FILE *f)
857 {
858 long where, size;
859
860 /* XXX: on Unix systems, using fstat() probably makes more sense */
861
862 where = ftell(f);
863 fseek(f, 0, SEEK_END);
864 size = ftell(f);
865 fseek(f, where, SEEK_SET);
866
867 return size;
868 }
869
870 /* setup_data types */
871 #define SETUP_NONE 0
872 #define SETUP_E820_EXT 1
873 #define SETUP_DTB 2
874 #define SETUP_PCI 3
875 #define SETUP_EFI 4
876
877 struct setup_data {
878 uint64_t next;
879 uint32_t type;
880 uint32_t len;
881 uint8_t data[0];
882 } __attribute__((packed));
883
884 static void load_linux(PCMachineState *pcms,
885 FWCfgState *fw_cfg)
886 {
887 uint16_t protocol;
888 int setup_size, kernel_size, cmdline_size;
889 int dtb_size, setup_data_offset;
890 uint32_t initrd_max;
891 uint8_t header[8192], *setup, *kernel;
892 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
893 FILE *f;
894 char *vmode;
895 MachineState *machine = MACHINE(pcms);
896 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
897 struct setup_data *setup_data;
898 const char *kernel_filename = machine->kernel_filename;
899 const char *initrd_filename = machine->initrd_filename;
900 const char *dtb_filename = machine->dtb;
901 const char *kernel_cmdline = machine->kernel_cmdline;
902
903 /* Align to 16 bytes as a paranoia measure */
904 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
905
906 /* load the kernel header */
907 f = fopen(kernel_filename, "rb");
908 if (!f || !(kernel_size = get_file_size(f)) ||
909 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
910 MIN(ARRAY_SIZE(header), kernel_size)) {
911 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
912 kernel_filename, strerror(errno));
913 exit(1);
914 }
915
916 /* kernel protocol version */
917 #if 0
918 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
919 #endif
920 if (ldl_p(header+0x202) == 0x53726448) {
921 protocol = lduw_p(header+0x206);
922 } else {
923 /* This looks like a multiboot kernel. If it is, let's stop
924 treating it like a Linux kernel. */
925 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
926 kernel_cmdline, kernel_size, header)) {
927 return;
928 }
929 protocol = 0;
930 }
931
932 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
933 /* Low kernel */
934 real_addr = 0x90000;
935 cmdline_addr = 0x9a000 - cmdline_size;
936 prot_addr = 0x10000;
937 } else if (protocol < 0x202) {
938 /* High but ancient kernel */
939 real_addr = 0x90000;
940 cmdline_addr = 0x9a000 - cmdline_size;
941 prot_addr = 0x100000;
942 } else {
943 /* High and recent kernel */
944 real_addr = 0x10000;
945 cmdline_addr = 0x20000;
946 prot_addr = 0x100000;
947 }
948
949 #if 0
950 fprintf(stderr,
951 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
952 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
953 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
954 real_addr,
955 cmdline_addr,
956 prot_addr);
957 #endif
958
959 /* highest address for loading the initrd */
960 if (protocol >= 0x203) {
961 initrd_max = ldl_p(header+0x22c);
962 } else {
963 initrd_max = 0x37ffffff;
964 }
965
966 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
967 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
968 }
969
970 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
971 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
972 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
973
974 if (protocol >= 0x202) {
975 stl_p(header+0x228, cmdline_addr);
976 } else {
977 stw_p(header+0x20, 0xA33F);
978 stw_p(header+0x22, cmdline_addr-real_addr);
979 }
980
981 /* handle vga= parameter */
982 vmode = strstr(kernel_cmdline, "vga=");
983 if (vmode) {
984 unsigned int video_mode;
985 /* skip "vga=" */
986 vmode += 4;
987 if (!strncmp(vmode, "normal", 6)) {
988 video_mode = 0xffff;
989 } else if (!strncmp(vmode, "ext", 3)) {
990 video_mode = 0xfffe;
991 } else if (!strncmp(vmode, "ask", 3)) {
992 video_mode = 0xfffd;
993 } else {
994 video_mode = strtol(vmode, NULL, 0);
995 }
996 stw_p(header+0x1fa, video_mode);
997 }
998
999 /* loader type */
1000 /* High nybble = B reserved for QEMU; low nybble is revision number.
1001 If this code is substantially changed, you may want to consider
1002 incrementing the revision. */
1003 if (protocol >= 0x200) {
1004 header[0x210] = 0xB0;
1005 }
1006 /* heap */
1007 if (protocol >= 0x201) {
1008 header[0x211] |= 0x80; /* CAN_USE_HEAP */
1009 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1010 }
1011
1012 /* load initrd */
1013 if (initrd_filename) {
1014 gsize initrd_size;
1015 gchar *initrd_data;
1016 GError *gerr = NULL;
1017
1018 if (protocol < 0x200) {
1019 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1020 exit(1);
1021 }
1022
1023 if (!g_file_get_contents(initrd_filename, &initrd_data,
1024 &initrd_size, &gerr)) {
1025 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1026 initrd_filename, gerr->message);
1027 exit(1);
1028 }
1029 if (initrd_size >= initrd_max) {
1030 fprintf(stderr, "qemu: initrd is too large, cannot support."
1031 "(max: %"PRIu32", need %"PRId64")\n",
1032 initrd_max, (uint64_t)initrd_size);
1033 exit(1);
1034 }
1035
1036 initrd_addr = (initrd_max-initrd_size) & ~4095;
1037
1038 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1039 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1040 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1041
1042 stl_p(header+0x218, initrd_addr);
1043 stl_p(header+0x21c, initrd_size);
1044 }
1045
1046 /* load kernel and setup */
1047 setup_size = header[0x1f1];
1048 if (setup_size == 0) {
1049 setup_size = 4;
1050 }
1051 setup_size = (setup_size+1)*512;
1052 if (setup_size > kernel_size) {
1053 fprintf(stderr, "qemu: invalid kernel header\n");
1054 exit(1);
1055 }
1056 kernel_size -= setup_size;
1057
1058 setup = g_malloc(setup_size);
1059 kernel = g_malloc(kernel_size);
1060 fseek(f, 0, SEEK_SET);
1061 if (fread(setup, 1, setup_size, f) != setup_size) {
1062 fprintf(stderr, "fread() failed\n");
1063 exit(1);
1064 }
1065 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1066 fprintf(stderr, "fread() failed\n");
1067 exit(1);
1068 }
1069 fclose(f);
1070
1071 /* append dtb to kernel */
1072 if (dtb_filename) {
1073 if (protocol < 0x209) {
1074 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1075 exit(1);
1076 }
1077
1078 dtb_size = get_image_size(dtb_filename);
1079 if (dtb_size <= 0) {
1080 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1081 dtb_filename, strerror(errno));
1082 exit(1);
1083 }
1084
1085 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1086 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1087 kernel = g_realloc(kernel, kernel_size);
1088
1089 stq_p(header+0x250, prot_addr + setup_data_offset);
1090
1091 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1092 setup_data->next = 0;
1093 setup_data->type = cpu_to_le32(SETUP_DTB);
1094 setup_data->len = cpu_to_le32(dtb_size);
1095
1096 load_image_size(dtb_filename, setup_data->data, dtb_size);
1097 }
1098
1099 memcpy(setup, header, MIN(sizeof(header), setup_size));
1100
1101 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1102 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1103 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1104
1105 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1106 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1107 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1108
1109 option_rom[nb_option_roms].bootindex = 0;
1110 option_rom[nb_option_roms].name = "linuxboot.bin";
1111 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1112 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1113 }
1114 nb_option_roms++;
1115 }
1116
1117 #define NE2000_NB_MAX 6
1118
1119 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1120 0x280, 0x380 };
1121 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1122
1123 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1124 {
1125 static int nb_ne2k = 0;
1126
1127 if (nb_ne2k == NE2000_NB_MAX)
1128 return;
1129 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1130 ne2000_irq[nb_ne2k], nd);
1131 nb_ne2k++;
1132 }
1133
1134 DeviceState *cpu_get_current_apic(void)
1135 {
1136 if (current_cpu) {
1137 X86CPU *cpu = X86_CPU(current_cpu);
1138 return cpu->apic_state;
1139 } else {
1140 return NULL;
1141 }
1142 }
1143
1144 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1145 {
1146 X86CPU *cpu = opaque;
1147
1148 if (level) {
1149 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1150 }
1151 }
1152
1153 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1154 {
1155 Object *cpu = NULL;
1156 Error *local_err = NULL;
1157
1158 cpu = object_new(typename);
1159
1160 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1161 object_property_set_bool(cpu, true, "realized", &local_err);
1162
1163 object_unref(cpu);
1164 error_propagate(errp, local_err);
1165 }
1166
1167 void pc_hot_add_cpu(const int64_t id, Error **errp)
1168 {
1169 MachineState *ms = MACHINE(qdev_get_machine());
1170 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1171 Error *local_err = NULL;
1172
1173 if (id < 0) {
1174 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1175 return;
1176 }
1177
1178 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1179 error_setg(errp, "Unable to add CPU: %" PRIi64
1180 ", resulting APIC ID (%" PRIi64 ") is too large",
1181 id, apic_id);
1182 return;
1183 }
1184
1185 pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1186 if (local_err) {
1187 error_propagate(errp, local_err);
1188 return;
1189 }
1190 }
1191
1192 void pc_cpus_init(PCMachineState *pcms)
1193 {
1194 int i;
1195 const CPUArchIdList *possible_cpus;
1196 MachineState *ms = MACHINE(pcms);
1197 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1198
1199 /* Calculates the limit to CPU APIC ID values
1200 *
1201 * Limit for the APIC ID value, so that all
1202 * CPU APIC IDs are < pcms->apic_id_limit.
1203 *
1204 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1205 */
1206 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1207 possible_cpus = mc->possible_cpu_arch_ids(ms);
1208 for (i = 0; i < smp_cpus; i++) {
1209 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1210 &error_fatal);
1211 }
1212 }
1213
1214 static void pc_build_feature_control_file(PCMachineState *pcms)
1215 {
1216 MachineState *ms = MACHINE(pcms);
1217 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1218 CPUX86State *env = &cpu->env;
1219 uint32_t unused, ecx, edx;
1220 uint64_t feature_control_bits = 0;
1221 uint64_t *val;
1222
1223 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1224 if (ecx & CPUID_EXT_VMX) {
1225 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1226 }
1227
1228 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1229 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1230 (env->mcg_cap & MCG_LMCE_P)) {
1231 feature_control_bits |= FEATURE_CONTROL_LMCE;
1232 }
1233
1234 if (!feature_control_bits) {
1235 return;
1236 }
1237
1238 val = g_malloc(sizeof(*val));
1239 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1240 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1241 }
1242
1243 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1244 {
1245 if (cpus_count > 0xff) {
1246 /* If the number of CPUs can't be represented in 8 bits, the
1247 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1248 * to make old BIOSes fail more predictably.
1249 */
1250 rtc_set_memory(rtc, 0x5f, 0);
1251 } else {
1252 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1253 }
1254 }
1255
1256 static
1257 void pc_machine_done(Notifier *notifier, void *data)
1258 {
1259 PCMachineState *pcms = container_of(notifier,
1260 PCMachineState, machine_done);
1261 PCIBus *bus = pcms->bus;
1262
1263 /* set the number of CPUs */
1264 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1265
1266 if (bus) {
1267 int extra_hosts = 0;
1268
1269 QLIST_FOREACH(bus, &bus->child, sibling) {
1270 /* look for expander root buses */
1271 if (pci_bus_is_root(bus)) {
1272 extra_hosts++;
1273 }
1274 }
1275 if (extra_hosts && pcms->fw_cfg) {
1276 uint64_t *val = g_malloc(sizeof(*val));
1277 *val = cpu_to_le64(extra_hosts);
1278 fw_cfg_add_file(pcms->fw_cfg,
1279 "etc/extra-pci-roots", val, sizeof(*val));
1280 }
1281 }
1282
1283 acpi_setup();
1284 if (pcms->fw_cfg) {
1285 pc_build_smbios(pcms);
1286 pc_build_feature_control_file(pcms);
1287 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1288 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1289 }
1290
1291 if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1292 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1293
1294 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1295 iommu->intr_eim != ON_OFF_AUTO_ON) {
1296 error_report("current -smp configuration requires "
1297 "Extended Interrupt Mode enabled. "
1298 "You can add an IOMMU using: "
1299 "-device intel-iommu,intremap=on,eim=on");
1300 exit(EXIT_FAILURE);
1301 }
1302 }
1303 }
1304
1305 void pc_guest_info_init(PCMachineState *pcms)
1306 {
1307 int i;
1308
1309 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1310 pcms->numa_nodes = nb_numa_nodes;
1311 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1312 sizeof *pcms->node_mem);
1313 for (i = 0; i < nb_numa_nodes; i++) {
1314 pcms->node_mem[i] = numa_info[i].node_mem;
1315 }
1316
1317 pcms->machine_done.notify = pc_machine_done;
1318 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1319 }
1320
1321 /* setup pci memory address space mapping into system address space */
1322 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1323 MemoryRegion *pci_address_space)
1324 {
1325 /* Set to lower priority than RAM */
1326 memory_region_add_subregion_overlap(system_memory, 0x0,
1327 pci_address_space, -1);
1328 }
1329
1330 void pc_acpi_init(const char *default_dsdt)
1331 {
1332 char *filename;
1333
1334 if (acpi_tables != NULL) {
1335 /* manually set via -acpitable, leave it alone */
1336 return;
1337 }
1338
1339 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1340 if (filename == NULL) {
1341 warn_report("failed to find %s", default_dsdt);
1342 } else {
1343 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1344 &error_abort);
1345 Error *err = NULL;
1346
1347 qemu_opt_set(opts, "file", filename, &error_abort);
1348
1349 acpi_table_add_builtin(opts, &err);
1350 if (err) {
1351 warn_reportf_err(err, "failed to load %s: ", filename);
1352 }
1353 g_free(filename);
1354 }
1355 }
1356
1357 void xen_load_linux(PCMachineState *pcms)
1358 {
1359 int i;
1360 FWCfgState *fw_cfg;
1361
1362 assert(MACHINE(pcms)->kernel_filename != NULL);
1363
1364 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1365 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1366 rom_set_fw(fw_cfg);
1367
1368 load_linux(pcms, fw_cfg);
1369 for (i = 0; i < nb_option_roms; i++) {
1370 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1371 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1372 !strcmp(option_rom[i].name, "multiboot.bin"));
1373 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1374 }
1375 pcms->fw_cfg = fw_cfg;
1376 }
1377
1378 void pc_memory_init(PCMachineState *pcms,
1379 MemoryRegion *system_memory,
1380 MemoryRegion *rom_memory,
1381 MemoryRegion **ram_memory)
1382 {
1383 int linux_boot, i;
1384 MemoryRegion *ram, *option_rom_mr;
1385 MemoryRegion *ram_below_4g, *ram_above_4g;
1386 FWCfgState *fw_cfg;
1387 MachineState *machine = MACHINE(pcms);
1388 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1389
1390 assert(machine->ram_size == pcms->below_4g_mem_size +
1391 pcms->above_4g_mem_size);
1392
1393 linux_boot = (machine->kernel_filename != NULL);
1394
1395 /* Allocate RAM. We allocate it as a single memory region and use
1396 * aliases to address portions of it, mostly for backwards compatibility
1397 * with older qemus that used qemu_ram_alloc().
1398 */
1399 ram = g_malloc(sizeof(*ram));
1400 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1401 machine->ram_size);
1402 *ram_memory = ram;
1403 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1404 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1405 0, pcms->below_4g_mem_size);
1406 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1407 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1408 if (pcms->above_4g_mem_size > 0) {
1409 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1410 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1411 pcms->below_4g_mem_size,
1412 pcms->above_4g_mem_size);
1413 memory_region_add_subregion(system_memory, 0x100000000ULL,
1414 ram_above_4g);
1415 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1416 }
1417
1418 if (!pcmc->has_reserved_memory &&
1419 (machine->ram_slots ||
1420 (machine->maxram_size > machine->ram_size))) {
1421 MachineClass *mc = MACHINE_GET_CLASS(machine);
1422
1423 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1424 mc->name);
1425 exit(EXIT_FAILURE);
1426 }
1427
1428 /* always allocate the device memory information */
1429 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1430
1431 /* initialize device memory address space */
1432 if (pcmc->has_reserved_memory &&
1433 (machine->ram_size < machine->maxram_size)) {
1434 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1435
1436 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1437 error_report("unsupported amount of memory slots: %"PRIu64,
1438 machine->ram_slots);
1439 exit(EXIT_FAILURE);
1440 }
1441
1442 if (QEMU_ALIGN_UP(machine->maxram_size,
1443 TARGET_PAGE_SIZE) != machine->maxram_size) {
1444 error_report("maximum memory size must by aligned to multiple of "
1445 "%d bytes", TARGET_PAGE_SIZE);
1446 exit(EXIT_FAILURE);
1447 }
1448
1449 machine->device_memory->base =
1450 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1451
1452 if (pcmc->enforce_aligned_dimm) {
1453 /* size device region assuming 1G page max alignment per slot */
1454 device_mem_size += (1 * GiB) * machine->ram_slots;
1455 }
1456
1457 if ((machine->device_memory->base + device_mem_size) <
1458 device_mem_size) {
1459 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1460 machine->maxram_size);
1461 exit(EXIT_FAILURE);
1462 }
1463
1464 memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1465 "device-memory", device_mem_size);
1466 memory_region_add_subregion(system_memory, machine->device_memory->base,
1467 &machine->device_memory->mr);
1468 }
1469
1470 /* Initialize PC system firmware */
1471 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1472
1473 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1474 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1475 &error_fatal);
1476 if (pcmc->pci_enabled) {
1477 memory_region_set_readonly(option_rom_mr, true);
1478 }
1479 memory_region_add_subregion_overlap(rom_memory,
1480 PC_ROM_MIN_VGA,
1481 option_rom_mr,
1482 1);
1483
1484 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1485
1486 rom_set_fw(fw_cfg);
1487
1488 if (pcmc->has_reserved_memory && machine->device_memory->base) {
1489 uint64_t *val = g_malloc(sizeof(*val));
1490 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1491 uint64_t res_mem_end = machine->device_memory->base;
1492
1493 if (!pcmc->broken_reserved_end) {
1494 res_mem_end += memory_region_size(&machine->device_memory->mr);
1495 }
1496 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1497 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1498 }
1499
1500 if (linux_boot) {
1501 load_linux(pcms, fw_cfg);
1502 }
1503
1504 for (i = 0; i < nb_option_roms; i++) {
1505 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1506 }
1507 pcms->fw_cfg = fw_cfg;
1508
1509 /* Init default IOAPIC address space */
1510 pcms->ioapic_as = &address_space_memory;
1511 }
1512
1513 /*
1514 * The 64bit pci hole starts after "above 4G RAM" and
1515 * potentially the space reserved for memory hotplug.
1516 */
1517 uint64_t pc_pci_hole64_start(void)
1518 {
1519 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1520 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1521 MachineState *ms = MACHINE(pcms);
1522 uint64_t hole64_start = 0;
1523
1524 if (pcmc->has_reserved_memory && ms->device_memory->base) {
1525 hole64_start = ms->device_memory->base;
1526 if (!pcmc->broken_reserved_end) {
1527 hole64_start += memory_region_size(&ms->device_memory->mr);
1528 }
1529 } else {
1530 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1531 }
1532
1533 return ROUND_UP(hole64_start, 1 * GiB);
1534 }
1535
1536 qemu_irq pc_allocate_cpu_irq(void)
1537 {
1538 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1539 }
1540
1541 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1542 {
1543 DeviceState *dev = NULL;
1544
1545 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1546 if (pci_bus) {
1547 PCIDevice *pcidev = pci_vga_init(pci_bus);
1548 dev = pcidev ? &pcidev->qdev : NULL;
1549 } else if (isa_bus) {
1550 ISADevice *isadev = isa_vga_init(isa_bus);
1551 dev = isadev ? DEVICE(isadev) : NULL;
1552 }
1553 rom_reset_order_override();
1554 return dev;
1555 }
1556
1557 static const MemoryRegionOps ioport80_io_ops = {
1558 .write = ioport80_write,
1559 .read = ioport80_read,
1560 .endianness = DEVICE_NATIVE_ENDIAN,
1561 .impl = {
1562 .min_access_size = 1,
1563 .max_access_size = 1,
1564 },
1565 };
1566
1567 static const MemoryRegionOps ioportF0_io_ops = {
1568 .write = ioportF0_write,
1569 .read = ioportF0_read,
1570 .endianness = DEVICE_NATIVE_ENDIAN,
1571 .impl = {
1572 .min_access_size = 1,
1573 .max_access_size = 1,
1574 },
1575 };
1576
1577 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1578 {
1579 int i;
1580 DriveInfo *fd[MAX_FD];
1581 qemu_irq *a20_line;
1582 ISADevice *i8042, *port92, *vmmouse;
1583
1584 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1585 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1586
1587 for (i = 0; i < MAX_FD; i++) {
1588 fd[i] = drive_get(IF_FLOPPY, 0, i);
1589 create_fdctrl |= !!fd[i];
1590 }
1591 if (create_fdctrl) {
1592 fdctrl_init_isa(isa_bus, fd);
1593 }
1594
1595 i8042 = isa_create_simple(isa_bus, "i8042");
1596 if (!no_vmport) {
1597 vmport_init(isa_bus);
1598 vmmouse = isa_try_create(isa_bus, "vmmouse");
1599 } else {
1600 vmmouse = NULL;
1601 }
1602 if (vmmouse) {
1603 DeviceState *dev = DEVICE(vmmouse);
1604 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1605 qdev_init_nofail(dev);
1606 }
1607 port92 = isa_create_simple(isa_bus, "port92");
1608
1609 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1610 i8042_setup_a20_line(i8042, a20_line[0]);
1611 port92_init(port92, a20_line[1]);
1612 g_free(a20_line);
1613 }
1614
1615 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1616 ISADevice **rtc_state,
1617 bool create_fdctrl,
1618 bool no_vmport,
1619 bool has_pit,
1620 uint32_t hpet_irqs)
1621 {
1622 int i;
1623 DeviceState *hpet = NULL;
1624 int pit_isa_irq = 0;
1625 qemu_irq pit_alt_irq = NULL;
1626 qemu_irq rtc_irq = NULL;
1627 ISADevice *pit = NULL;
1628 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1629 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1630
1631 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1632 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1633
1634 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1635 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1636
1637 /*
1638 * Check if an HPET shall be created.
1639 *
1640 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1641 * when the HPET wants to take over. Thus we have to disable the latter.
1642 */
1643 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1644 /* In order to set property, here not using sysbus_try_create_simple */
1645 hpet = qdev_try_create(NULL, TYPE_HPET);
1646 if (hpet) {
1647 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1648 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1649 * IRQ8 and IRQ2.
1650 */
1651 uint8_t compat = object_property_get_uint(OBJECT(hpet),
1652 HPET_INTCAP, NULL);
1653 if (!compat) {
1654 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1655 }
1656 qdev_init_nofail(hpet);
1657 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1658
1659 for (i = 0; i < GSI_NUM_PINS; i++) {
1660 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1661 }
1662 pit_isa_irq = -1;
1663 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1664 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1665 }
1666 }
1667 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1668
1669 qemu_register_boot_set(pc_boot_set, *rtc_state);
1670
1671 if (!xen_enabled() && has_pit) {
1672 if (kvm_pit_in_kernel()) {
1673 pit = kvm_pit_init(isa_bus, 0x40);
1674 } else {
1675 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1676 }
1677 if (hpet) {
1678 /* connect PIT to output control line of the HPET */
1679 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1680 }
1681 pcspk_init(isa_bus, pit);
1682 }
1683
1684 i8257_dma_init(isa_bus, 0);
1685
1686 /* Super I/O */
1687 pc_superio_init(isa_bus, create_fdctrl, no_vmport);
1688 }
1689
1690 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
1691 {
1692 int i;
1693
1694 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1695 for (i = 0; i < nb_nics; i++) {
1696 NICInfo *nd = &nd_table[i];
1697 const char *model = nd->model ? nd->model : pcmc->default_nic_model;
1698
1699 if (g_str_equal(model, "ne2k_isa")) {
1700 pc_init_ne2k_isa(isa_bus, nd);
1701 } else {
1702 pci_nic_init_nofail(nd, pci_bus, model, NULL);
1703 }
1704 }
1705 rom_reset_order_override();
1706 }
1707
1708 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1709 {
1710 DeviceState *dev;
1711 SysBusDevice *d;
1712 unsigned int i;
1713
1714 if (kvm_ioapic_in_kernel()) {
1715 dev = qdev_create(NULL, "kvm-ioapic");
1716 } else {
1717 dev = qdev_create(NULL, "ioapic");
1718 }
1719 if (parent_name) {
1720 object_property_add_child(object_resolve_path(parent_name, NULL),
1721 "ioapic", OBJECT(dev), NULL);
1722 }
1723 qdev_init_nofail(dev);
1724 d = SYS_BUS_DEVICE(dev);
1725 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1726
1727 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1728 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1729 }
1730 }
1731
1732 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
1733 Error **errp)
1734 {
1735 const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1736 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1737 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1738 const uint64_t legacy_align = TARGET_PAGE_SIZE;
1739
1740 /*
1741 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1742 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1743 * addition to cover this case.
1744 */
1745 if (!pcms->acpi_dev || !acpi_enabled) {
1746 error_setg(errp,
1747 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1748 return;
1749 }
1750
1751 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1752 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1753 return;
1754 }
1755
1756 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
1757 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
1758 }
1759
1760 static void pc_memory_plug(HotplugHandler *hotplug_dev,
1761 DeviceState *dev, Error **errp)
1762 {
1763 HotplugHandlerClass *hhc;
1764 Error *local_err = NULL;
1765 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1766 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1767
1768 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
1769 if (local_err) {
1770 goto out;
1771 }
1772
1773 if (is_nvdimm) {
1774 nvdimm_plug(&pcms->acpi_nvdimm_state);
1775 }
1776
1777 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1778 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1779 out:
1780 error_propagate(errp, local_err);
1781 }
1782
1783 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
1784 DeviceState *dev, Error **errp)
1785 {
1786 HotplugHandlerClass *hhc;
1787 Error *local_err = NULL;
1788 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1789
1790 /*
1791 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1792 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1793 * addition to cover this case.
1794 */
1795 if (!pcms->acpi_dev || !acpi_enabled) {
1796 error_setg(&local_err,
1797 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1798 goto out;
1799 }
1800
1801 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1802 error_setg(&local_err,
1803 "nvdimm device hot unplug is not supported yet.");
1804 goto out;
1805 }
1806
1807 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1808 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1809
1810 out:
1811 error_propagate(errp, local_err);
1812 }
1813
1814 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
1815 DeviceState *dev, Error **errp)
1816 {
1817 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1818 HotplugHandlerClass *hhc;
1819 Error *local_err = NULL;
1820
1821 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1822 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1823
1824 if (local_err) {
1825 goto out;
1826 }
1827
1828 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
1829 object_unparent(OBJECT(dev));
1830
1831 out:
1832 error_propagate(errp, local_err);
1833 }
1834
1835 static int pc_apic_cmp(const void *a, const void *b)
1836 {
1837 CPUArchId *apic_a = (CPUArchId *)a;
1838 CPUArchId *apic_b = (CPUArchId *)b;
1839
1840 return apic_a->arch_id - apic_b->arch_id;
1841 }
1842
1843 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1844 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
1845 * entry corresponding to CPU's apic_id returns NULL.
1846 */
1847 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1848 {
1849 CPUArchId apic_id, *found_cpu;
1850
1851 apic_id.arch_id = id;
1852 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
1853 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
1854 pc_apic_cmp);
1855 if (found_cpu && idx) {
1856 *idx = found_cpu - ms->possible_cpus->cpus;
1857 }
1858 return found_cpu;
1859 }
1860
1861 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1862 DeviceState *dev, Error **errp)
1863 {
1864 CPUArchId *found_cpu;
1865 HotplugHandlerClass *hhc;
1866 Error *local_err = NULL;
1867 X86CPU *cpu = X86_CPU(dev);
1868 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1869
1870 if (pcms->acpi_dev) {
1871 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1872 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1873 if (local_err) {
1874 goto out;
1875 }
1876 }
1877
1878 /* increment the number of CPUs */
1879 pcms->boot_cpus++;
1880 if (pcms->rtc) {
1881 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1882 }
1883 if (pcms->fw_cfg) {
1884 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1885 }
1886
1887 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1888 found_cpu->cpu = OBJECT(dev);
1889 out:
1890 error_propagate(errp, local_err);
1891 }
1892 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1893 DeviceState *dev, Error **errp)
1894 {
1895 int idx = -1;
1896 HotplugHandlerClass *hhc;
1897 Error *local_err = NULL;
1898 X86CPU *cpu = X86_CPU(dev);
1899 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1900
1901 if (!pcms->acpi_dev) {
1902 error_setg(&local_err, "CPU hot unplug not supported without ACPI");
1903 goto out;
1904 }
1905
1906 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1907 assert(idx != -1);
1908 if (idx == 0) {
1909 error_setg(&local_err, "Boot CPU is unpluggable");
1910 goto out;
1911 }
1912
1913 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1914 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1915
1916 if (local_err) {
1917 goto out;
1918 }
1919
1920 out:
1921 error_propagate(errp, local_err);
1922
1923 }
1924
1925 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1926 DeviceState *dev, Error **errp)
1927 {
1928 CPUArchId *found_cpu;
1929 HotplugHandlerClass *hhc;
1930 Error *local_err = NULL;
1931 X86CPU *cpu = X86_CPU(dev);
1932 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1933
1934 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1935 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1936
1937 if (local_err) {
1938 goto out;
1939 }
1940
1941 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1942 found_cpu->cpu = NULL;
1943 object_unparent(OBJECT(dev));
1944
1945 /* decrement the number of CPUs */
1946 pcms->boot_cpus--;
1947 /* Update the number of CPUs in CMOS */
1948 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1949 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1950 out:
1951 error_propagate(errp, local_err);
1952 }
1953
1954 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1955 DeviceState *dev, Error **errp)
1956 {
1957 int idx;
1958 CPUState *cs;
1959 CPUArchId *cpu_slot;
1960 X86CPUTopoInfo topo;
1961 X86CPU *cpu = X86_CPU(dev);
1962 MachineState *ms = MACHINE(hotplug_dev);
1963 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1964
1965 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
1966 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
1967 ms->cpu_type);
1968 return;
1969 }
1970
1971 /* if APIC ID is not set, set it based on socket/core/thread properties */
1972 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1973 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1974
1975 if (cpu->socket_id < 0) {
1976 error_setg(errp, "CPU socket-id is not set");
1977 return;
1978 } else if (cpu->socket_id > max_socket) {
1979 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1980 cpu->socket_id, max_socket);
1981 return;
1982 }
1983 if (cpu->core_id < 0) {
1984 error_setg(errp, "CPU core-id is not set");
1985 return;
1986 } else if (cpu->core_id > (smp_cores - 1)) {
1987 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1988 cpu->core_id, smp_cores - 1);
1989 return;
1990 }
1991 if (cpu->thread_id < 0) {
1992 error_setg(errp, "CPU thread-id is not set");
1993 return;
1994 } else if (cpu->thread_id > (smp_threads - 1)) {
1995 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1996 cpu->thread_id, smp_threads - 1);
1997 return;
1998 }
1999
2000 topo.pkg_id = cpu->socket_id;
2001 topo.core_id = cpu->core_id;
2002 topo.smt_id = cpu->thread_id;
2003 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2004 }
2005
2006 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2007 if (!cpu_slot) {
2008 MachineState *ms = MACHINE(pcms);
2009
2010 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2011 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2012 " APIC ID %" PRIu32 ", valid index range 0:%d",
2013 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2014 ms->possible_cpus->len - 1);
2015 return;
2016 }
2017
2018 if (cpu_slot->cpu) {
2019 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2020 idx, cpu->apic_id);
2021 return;
2022 }
2023
2024 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2025 * so that machine_query_hotpluggable_cpus would show correct values
2026 */
2027 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2028 * once -smp refactoring is complete and there will be CPU private
2029 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2030 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2031 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2032 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2033 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2034 return;
2035 }
2036 cpu->socket_id = topo.pkg_id;
2037
2038 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2039 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2040 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2041 return;
2042 }
2043 cpu->core_id = topo.core_id;
2044
2045 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2046 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2047 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2048 return;
2049 }
2050 cpu->thread_id = topo.smt_id;
2051
2052 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2053 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2054 return;
2055 }
2056
2057 cs = CPU(cpu);
2058 cs->cpu_index = idx;
2059
2060 numa_cpu_pre_plug(cpu_slot, dev, errp);
2061 }
2062
2063 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2064 DeviceState *dev, Error **errp)
2065 {
2066 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2067 pc_memory_pre_plug(hotplug_dev, dev, errp);
2068 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2069 pc_cpu_pre_plug(hotplug_dev, dev, errp);
2070 }
2071 }
2072
2073 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2074 DeviceState *dev, Error **errp)
2075 {
2076 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2077 pc_memory_plug(hotplug_dev, dev, errp);
2078 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2079 pc_cpu_plug(hotplug_dev, dev, errp);
2080 }
2081 }
2082
2083 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2084 DeviceState *dev, Error **errp)
2085 {
2086 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2087 pc_memory_unplug_request(hotplug_dev, dev, errp);
2088 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2089 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2090 } else {
2091 error_setg(errp, "acpi: device unplug request for not supported device"
2092 " type: %s", object_get_typename(OBJECT(dev)));
2093 }
2094 }
2095
2096 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2097 DeviceState *dev, Error **errp)
2098 {
2099 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2100 pc_memory_unplug(hotplug_dev, dev, errp);
2101 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2102 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2103 } else {
2104 error_setg(errp, "acpi: device unplug for not supported device"
2105 " type: %s", object_get_typename(OBJECT(dev)));
2106 }
2107 }
2108
2109 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2110 DeviceState *dev)
2111 {
2112 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2113 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2114 return HOTPLUG_HANDLER(machine);
2115 }
2116
2117 return NULL;
2118 }
2119
2120 static void
2121 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2122 const char *name, void *opaque,
2123 Error **errp)
2124 {
2125 MachineState *ms = MACHINE(obj);
2126 int64_t value = memory_region_size(&ms->device_memory->mr);
2127
2128 visit_type_int(v, name, &value, errp);
2129 }
2130
2131 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2132 const char *name, void *opaque,
2133 Error **errp)
2134 {
2135 PCMachineState *pcms = PC_MACHINE(obj);
2136 uint64_t value = pcms->max_ram_below_4g;
2137
2138 visit_type_size(v, name, &value, errp);
2139 }
2140
2141 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2142 const char *name, void *opaque,
2143 Error **errp)
2144 {
2145 PCMachineState *pcms = PC_MACHINE(obj);
2146 Error *error = NULL;
2147 uint64_t value;
2148
2149 visit_type_size(v, name, &value, &error);
2150 if (error) {
2151 error_propagate(errp, error);
2152 return;
2153 }
2154 if (value > 4 * GiB) {
2155 error_setg(&error,
2156 "Machine option 'max-ram-below-4g=%"PRIu64
2157 "' expects size less than or equal to 4G", value);
2158 error_propagate(errp, error);
2159 return;
2160 }
2161
2162 if (value < 1 * MiB) {
2163 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2164 "BIOS may not work with less than 1MiB", value);
2165 }
2166
2167 pcms->max_ram_below_4g = value;
2168 }
2169
2170 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2171 void *opaque, Error **errp)
2172 {
2173 PCMachineState *pcms = PC_MACHINE(obj);
2174 OnOffAuto vmport = pcms->vmport;
2175
2176 visit_type_OnOffAuto(v, name, &vmport, errp);
2177 }
2178
2179 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2180 void *opaque, Error **errp)
2181 {
2182 PCMachineState *pcms = PC_MACHINE(obj);
2183
2184 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2185 }
2186
2187 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2188 {
2189 bool smm_available = false;
2190
2191 if (pcms->smm == ON_OFF_AUTO_OFF) {
2192 return false;
2193 }
2194
2195 if (tcg_enabled() || qtest_enabled()) {
2196 smm_available = true;
2197 } else if (kvm_enabled()) {
2198 smm_available = kvm_has_smm();
2199 }
2200
2201 if (smm_available) {
2202 return true;
2203 }
2204
2205 if (pcms->smm == ON_OFF_AUTO_ON) {
2206 error_report("System Management Mode not supported by this hypervisor.");
2207 exit(1);
2208 }
2209 return false;
2210 }
2211
2212 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2213 void *opaque, Error **errp)
2214 {
2215 PCMachineState *pcms = PC_MACHINE(obj);
2216 OnOffAuto smm = pcms->smm;
2217
2218 visit_type_OnOffAuto(v, name, &smm, errp);
2219 }
2220
2221 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2222 void *opaque, Error **errp)
2223 {
2224 PCMachineState *pcms = PC_MACHINE(obj);
2225
2226 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2227 }
2228
2229 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2230 {
2231 PCMachineState *pcms = PC_MACHINE(obj);
2232
2233 return pcms->acpi_nvdimm_state.is_enabled;
2234 }
2235
2236 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2237 {
2238 PCMachineState *pcms = PC_MACHINE(obj);
2239
2240 pcms->acpi_nvdimm_state.is_enabled = value;
2241 }
2242
2243 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp)
2244 {
2245 PCMachineState *pcms = PC_MACHINE(obj);
2246
2247 return g_strdup(pcms->acpi_nvdimm_state.persistence_string);
2248 }
2249
2250 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value,
2251 Error **errp)
2252 {
2253 PCMachineState *pcms = PC_MACHINE(obj);
2254 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state;
2255
2256 if (strcmp(value, "cpu") == 0)
2257 nvdimm_state->persistence = 3;
2258 else if (strcmp(value, "mem-ctrl") == 0)
2259 nvdimm_state->persistence = 2;
2260 else {
2261 error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option",
2262 value);
2263 return;
2264 }
2265
2266 g_free(nvdimm_state->persistence_string);
2267 nvdimm_state->persistence_string = g_strdup(value);
2268 }
2269
2270 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2271 {
2272 PCMachineState *pcms = PC_MACHINE(obj);
2273
2274 return pcms->smbus_enabled;
2275 }
2276
2277 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2278 {
2279 PCMachineState *pcms = PC_MACHINE(obj);
2280
2281 pcms->smbus_enabled = value;
2282 }
2283
2284 static bool pc_machine_get_sata(Object *obj, Error **errp)
2285 {
2286 PCMachineState *pcms = PC_MACHINE(obj);
2287
2288 return pcms->sata_enabled;
2289 }
2290
2291 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2292 {
2293 PCMachineState *pcms = PC_MACHINE(obj);
2294
2295 pcms->sata_enabled = value;
2296 }
2297
2298 static bool pc_machine_get_pit(Object *obj, Error **errp)
2299 {
2300 PCMachineState *pcms = PC_MACHINE(obj);
2301
2302 return pcms->pit_enabled;
2303 }
2304
2305 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2306 {
2307 PCMachineState *pcms = PC_MACHINE(obj);
2308
2309 pcms->pit_enabled = value;
2310 }
2311
2312 static void pc_machine_initfn(Object *obj)
2313 {
2314 PCMachineState *pcms = PC_MACHINE(obj);
2315
2316 pcms->max_ram_below_4g = 0; /* use default */
2317 pcms->smm = ON_OFF_AUTO_AUTO;
2318 pcms->vmport = ON_OFF_AUTO_AUTO;
2319 /* nvdimm is disabled on default. */
2320 pcms->acpi_nvdimm_state.is_enabled = false;
2321 /* acpi build is enabled by default if machine supports it */
2322 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2323 pcms->smbus_enabled = true;
2324 pcms->sata_enabled = true;
2325 pcms->pit_enabled = true;
2326 }
2327
2328 static void pc_machine_reset(void)
2329 {
2330 CPUState *cs;
2331 X86CPU *cpu;
2332
2333 qemu_devices_reset();
2334
2335 /* Reset APIC after devices have been reset to cancel
2336 * any changes that qemu_devices_reset() might have done.
2337 */
2338 CPU_FOREACH(cs) {
2339 cpu = X86_CPU(cs);
2340
2341 if (cpu->apic_state) {
2342 device_reset(cpu->apic_state);
2343 }
2344 }
2345 }
2346
2347 static CpuInstanceProperties
2348 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2349 {
2350 MachineClass *mc = MACHINE_GET_CLASS(ms);
2351 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2352
2353 assert(cpu_index < possible_cpus->len);
2354 return possible_cpus->cpus[cpu_index].props;
2355 }
2356
2357 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2358 {
2359 X86CPUTopoInfo topo;
2360
2361 assert(idx < ms->possible_cpus->len);
2362 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2363 smp_cores, smp_threads, &topo);
2364 return topo.pkg_id % nb_numa_nodes;
2365 }
2366
2367 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2368 {
2369 int i;
2370
2371 if (ms->possible_cpus) {
2372 /*
2373 * make sure that max_cpus hasn't changed since the first use, i.e.
2374 * -smp hasn't been parsed after it
2375 */
2376 assert(ms->possible_cpus->len == max_cpus);
2377 return ms->possible_cpus;
2378 }
2379
2380 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2381 sizeof(CPUArchId) * max_cpus);
2382 ms->possible_cpus->len = max_cpus;
2383 for (i = 0; i < ms->possible_cpus->len; i++) {
2384 X86CPUTopoInfo topo;
2385
2386 ms->possible_cpus->cpus[i].type = ms->cpu_type;
2387 ms->possible_cpus->cpus[i].vcpus_count = 1;
2388 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2389 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2390 smp_cores, smp_threads, &topo);
2391 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2392 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2393 ms->possible_cpus->cpus[i].props.has_core_id = true;
2394 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2395 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2396 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2397 }
2398 return ms->possible_cpus;
2399 }
2400
2401 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2402 {
2403 /* cpu index isn't used */
2404 CPUState *cs;
2405
2406 CPU_FOREACH(cs) {
2407 X86CPU *cpu = X86_CPU(cs);
2408
2409 if (!cpu->apic_state) {
2410 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2411 } else {
2412 apic_deliver_nmi(cpu->apic_state);
2413 }
2414 }
2415 }
2416
2417 static void pc_machine_class_init(ObjectClass *oc, void *data)
2418 {
2419 MachineClass *mc = MACHINE_CLASS(oc);
2420 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2421 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2422 NMIClass *nc = NMI_CLASS(oc);
2423
2424 pcmc->pci_enabled = true;
2425 pcmc->has_acpi_build = true;
2426 pcmc->rsdp_in_ram = true;
2427 pcmc->smbios_defaults = true;
2428 pcmc->smbios_uuid_encoded = true;
2429 pcmc->gigabyte_align = true;
2430 pcmc->has_reserved_memory = true;
2431 pcmc->kvmclock_enabled = true;
2432 pcmc->enforce_aligned_dimm = true;
2433 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2434 * to be used at the moment, 32K should be enough for a while. */
2435 pcmc->acpi_data_size = 0x20000 + 0x8000;
2436 pcmc->save_tsc_khz = true;
2437 pcmc->linuxboot_dma_enabled = true;
2438 assert(!mc->get_hotplug_handler);
2439 mc->get_hotplug_handler = pc_get_hotpug_handler;
2440 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2441 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2442 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2443 mc->auto_enable_numa_with_memhp = true;
2444 mc->has_hotpluggable_cpus = true;
2445 mc->default_boot_order = "cad";
2446 mc->hot_add_cpu = pc_hot_add_cpu;
2447 mc->block_default_type = IF_IDE;
2448 mc->max_cpus = 255;
2449 mc->reset = pc_machine_reset;
2450 hc->pre_plug = pc_machine_device_pre_plug_cb;
2451 hc->plug = pc_machine_device_plug_cb;
2452 hc->unplug_request = pc_machine_device_unplug_request_cb;
2453 hc->unplug = pc_machine_device_unplug_cb;
2454 nc->nmi_monitor_handler = x86_nmi;
2455 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2456
2457 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2458 pc_machine_get_device_memory_region_size, NULL,
2459 NULL, NULL, &error_abort);
2460
2461 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2462 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2463 NULL, NULL, &error_abort);
2464
2465 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2466 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2467
2468 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2469 pc_machine_get_smm, pc_machine_set_smm,
2470 NULL, NULL, &error_abort);
2471 object_class_property_set_description(oc, PC_MACHINE_SMM,
2472 "Enable SMM (pc & q35)", &error_abort);
2473
2474 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2475 pc_machine_get_vmport, pc_machine_set_vmport,
2476 NULL, NULL, &error_abort);
2477 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2478 "Enable vmport (pc & q35)", &error_abort);
2479
2480 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2481 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2482
2483 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST,
2484 pc_machine_get_nvdimm_persistence,
2485 pc_machine_set_nvdimm_persistence, &error_abort);
2486
2487 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2488 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2489
2490 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2491 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2492
2493 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2494 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2495 }
2496
2497 static const TypeInfo pc_machine_info = {
2498 .name = TYPE_PC_MACHINE,
2499 .parent = TYPE_MACHINE,
2500 .abstract = true,
2501 .instance_size = sizeof(PCMachineState),
2502 .instance_init = pc_machine_initfn,
2503 .class_size = sizeof(PCMachineClass),
2504 .class_init = pc_machine_class_init,
2505 .interfaces = (InterfaceInfo[]) {
2506 { TYPE_HOTPLUG_HANDLER },
2507 { TYPE_NMI },
2508 { }
2509 },
2510 };
2511
2512 static void pc_machine_register_types(void)
2513 {
2514 type_register_static(&pc_machine_info);
2515 }
2516
2517 type_init(pc_machine_register_types)