]> git.proxmox.com Git - mirror_qemu.git/blob - hw/i386/pc.c
compat: replace PC_COMPAT_2_10 & HW_COMPAT_2_10 macros
[mirror_qemu.git] / hw / i386 / pc.c
1 /*
2 * QEMU PC System Emulator
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/char/parallel.h"
31 #include "hw/i386/apic.h"
32 #include "hw/i386/topology.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
35 #include "hw/ide.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/firmware/smbios.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "multiboot.h"
44 #include "hw/timer/mc146818rtc.h"
45 #include "hw/dma/i8257.h"
46 #include "hw/timer/i8254.h"
47 #include "hw/input/i8042.h"
48 #include "hw/audio/pcspk.h"
49 #include "hw/pci/msi.h"
50 #include "hw/sysbus.h"
51 #include "sysemu/sysemu.h"
52 #include "sysemu/numa.h"
53 #include "sysemu/kvm.h"
54 #include "sysemu/qtest.h"
55 #include "kvm_i386.h"
56 #include "hw/xen/xen.h"
57 #include "ui/qemu-spice.h"
58 #include "exec/memory.h"
59 #include "exec/address-spaces.h"
60 #include "sysemu/arch_init.h"
61 #include "qemu/bitmap.h"
62 #include "qemu/config-file.h"
63 #include "qemu/error-report.h"
64 #include "qemu/option.h"
65 #include "hw/acpi/acpi.h"
66 #include "hw/acpi/cpu_hotplug.h"
67 #include "hw/boards.h"
68 #include "acpi-build.h"
69 #include "hw/mem/pc-dimm.h"
70 #include "qapi/error.h"
71 #include "qapi/qapi-visit-common.h"
72 #include "qapi/visitor.h"
73 #include "qom/cpu.h"
74 #include "hw/nmi.h"
75 #include "hw/i386/intel_iommu.h"
76 #include "hw/net/ne2000-isa.h"
77
78 /* debug PC/ISA interrupts */
79 //#define DEBUG_IRQ
80
81 #ifdef DEBUG_IRQ
82 #define DPRINTF(fmt, ...) \
83 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
84 #else
85 #define DPRINTF(fmt, ...)
86 #endif
87
88 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
89 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
90 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
91 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
92 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
93
94 #define E820_NR_ENTRIES 16
95
96 struct e820_entry {
97 uint64_t address;
98 uint64_t length;
99 uint32_t type;
100 } QEMU_PACKED __attribute((__aligned__(4)));
101
102 struct e820_table {
103 uint32_t count;
104 struct e820_entry entry[E820_NR_ENTRIES];
105 } QEMU_PACKED __attribute((__aligned__(4)));
106
107 static struct e820_table e820_reserve;
108 static struct e820_entry *e820_table;
109 static unsigned e820_entries;
110 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
111
112 GlobalProperty pc_compat_3_1[] = {
113 {
114 .driver = "intel-iommu",
115 .property = "dma-drain",
116 .value = "off",
117 },
118 };
119 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
120
121 GlobalProperty pc_compat_3_0[] = {
122 {
123 .driver = TYPE_X86_CPU,
124 .property = "x-hv-synic-kvm-only",
125 .value = "on",
126 },{
127 .driver = "Skylake-Server" "-" TYPE_X86_CPU,
128 .property = "pku",
129 .value = "off",
130 },{
131 .driver = "Skylake-Server-IBRS" "-" TYPE_X86_CPU,
132 .property = "pku",
133 .value = "off",
134 },
135 };
136 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
137
138 GlobalProperty pc_compat_2_12[] = {
139 {
140 .driver = TYPE_X86_CPU,
141 .property = "legacy-cache",
142 .value = "on",
143 },{
144 .driver = TYPE_X86_CPU,
145 .property = "topoext",
146 .value = "off",
147 },{
148 .driver = "EPYC-" TYPE_X86_CPU,
149 .property = "xlevel",
150 .value = stringify(0x8000000a),
151 },{
152 .driver = "EPYC-IBPB-" TYPE_X86_CPU,
153 .property = "xlevel",
154 .value = stringify(0x8000000a),
155 },
156 };
157 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
158
159 GlobalProperty pc_compat_2_11[] = {
160 {
161 .driver = TYPE_X86_CPU,
162 .property = "x-migrate-smi-count",
163 .value = "off",
164 },{
165 .driver = "Skylake-Server" "-" TYPE_X86_CPU,
166 .property = "clflushopt",
167 .value = "off",
168 },
169 };
170 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
171
172 GlobalProperty pc_compat_2_10[] = {
173 {
174 .driver = TYPE_X86_CPU,
175 .property = "x-hv-max-vps",
176 .value = "0x40",
177 },{
178 .driver = "i440FX-pcihost",
179 .property = "x-pci-hole64-fix",
180 .value = "off",
181 },{
182 .driver = "q35-pcihost",
183 .property = "x-pci-hole64-fix",
184 .value = "off",
185 },
186 };
187 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
188
189 void gsi_handler(void *opaque, int n, int level)
190 {
191 GSIState *s = opaque;
192
193 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
194 if (n < ISA_NUM_IRQS) {
195 qemu_set_irq(s->i8259_irq[n], level);
196 }
197 qemu_set_irq(s->ioapic_irq[n], level);
198 }
199
200 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
201 unsigned size)
202 {
203 }
204
205 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
206 {
207 return 0xffffffffffffffffULL;
208 }
209
210 /* MSDOS compatibility mode FPU exception support */
211 static qemu_irq ferr_irq;
212
213 void pc_register_ferr_irq(qemu_irq irq)
214 {
215 ferr_irq = irq;
216 }
217
218 /* XXX: add IGNNE support */
219 void cpu_set_ferr(CPUX86State *s)
220 {
221 qemu_irq_raise(ferr_irq);
222 }
223
224 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
225 unsigned size)
226 {
227 qemu_irq_lower(ferr_irq);
228 }
229
230 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
231 {
232 return 0xffffffffffffffffULL;
233 }
234
235 /* TSC handling */
236 uint64_t cpu_get_tsc(CPUX86State *env)
237 {
238 return cpu_get_ticks();
239 }
240
241 /* IRQ handling */
242 int cpu_get_pic_interrupt(CPUX86State *env)
243 {
244 X86CPU *cpu = x86_env_get_cpu(env);
245 int intno;
246
247 if (!kvm_irqchip_in_kernel()) {
248 intno = apic_get_interrupt(cpu->apic_state);
249 if (intno >= 0) {
250 return intno;
251 }
252 /* read the irq from the PIC */
253 if (!apic_accept_pic_intr(cpu->apic_state)) {
254 return -1;
255 }
256 }
257
258 intno = pic_read_irq(isa_pic);
259 return intno;
260 }
261
262 static void pic_irq_request(void *opaque, int irq, int level)
263 {
264 CPUState *cs = first_cpu;
265 X86CPU *cpu = X86_CPU(cs);
266
267 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
268 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
269 CPU_FOREACH(cs) {
270 cpu = X86_CPU(cs);
271 if (apic_accept_pic_intr(cpu->apic_state)) {
272 apic_deliver_pic_intr(cpu->apic_state, level);
273 }
274 }
275 } else {
276 if (level) {
277 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
278 } else {
279 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
280 }
281 }
282 }
283
284 /* PC cmos mappings */
285
286 #define REG_EQUIPMENT_BYTE 0x14
287
288 int cmos_get_fd_drive_type(FloppyDriveType fd0)
289 {
290 int val;
291
292 switch (fd0) {
293 case FLOPPY_DRIVE_TYPE_144:
294 /* 1.44 Mb 3"5 drive */
295 val = 4;
296 break;
297 case FLOPPY_DRIVE_TYPE_288:
298 /* 2.88 Mb 3"5 drive */
299 val = 5;
300 break;
301 case FLOPPY_DRIVE_TYPE_120:
302 /* 1.2 Mb 5"5 drive */
303 val = 2;
304 break;
305 case FLOPPY_DRIVE_TYPE_NONE:
306 default:
307 val = 0;
308 break;
309 }
310 return val;
311 }
312
313 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
314 int16_t cylinders, int8_t heads, int8_t sectors)
315 {
316 rtc_set_memory(s, type_ofs, 47);
317 rtc_set_memory(s, info_ofs, cylinders);
318 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
319 rtc_set_memory(s, info_ofs + 2, heads);
320 rtc_set_memory(s, info_ofs + 3, 0xff);
321 rtc_set_memory(s, info_ofs + 4, 0xff);
322 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
323 rtc_set_memory(s, info_ofs + 6, cylinders);
324 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
325 rtc_set_memory(s, info_ofs + 8, sectors);
326 }
327
328 /* convert boot_device letter to something recognizable by the bios */
329 static int boot_device2nibble(char boot_device)
330 {
331 switch(boot_device) {
332 case 'a':
333 case 'b':
334 return 0x01; /* floppy boot */
335 case 'c':
336 return 0x02; /* hard drive boot */
337 case 'd':
338 return 0x03; /* CD-ROM boot */
339 case 'n':
340 return 0x04; /* Network boot */
341 }
342 return 0;
343 }
344
345 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
346 {
347 #define PC_MAX_BOOT_DEVICES 3
348 int nbds, bds[3] = { 0, };
349 int i;
350
351 nbds = strlen(boot_device);
352 if (nbds > PC_MAX_BOOT_DEVICES) {
353 error_setg(errp, "Too many boot devices for PC");
354 return;
355 }
356 for (i = 0; i < nbds; i++) {
357 bds[i] = boot_device2nibble(boot_device[i]);
358 if (bds[i] == 0) {
359 error_setg(errp, "Invalid boot device for PC: '%c'",
360 boot_device[i]);
361 return;
362 }
363 }
364 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
365 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
366 }
367
368 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
369 {
370 set_boot_dev(opaque, boot_device, errp);
371 }
372
373 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
374 {
375 int val, nb, i;
376 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
377 FLOPPY_DRIVE_TYPE_NONE };
378
379 /* floppy type */
380 if (floppy) {
381 for (i = 0; i < 2; i++) {
382 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
383 }
384 }
385 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
386 cmos_get_fd_drive_type(fd_type[1]);
387 rtc_set_memory(rtc_state, 0x10, val);
388
389 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
390 nb = 0;
391 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
392 nb++;
393 }
394 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
395 nb++;
396 }
397 switch (nb) {
398 case 0:
399 break;
400 case 1:
401 val |= 0x01; /* 1 drive, ready for boot */
402 break;
403 case 2:
404 val |= 0x41; /* 2 drives, ready for boot */
405 break;
406 }
407 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
408 }
409
410 typedef struct pc_cmos_init_late_arg {
411 ISADevice *rtc_state;
412 BusState *idebus[2];
413 } pc_cmos_init_late_arg;
414
415 typedef struct check_fdc_state {
416 ISADevice *floppy;
417 bool multiple;
418 } CheckFdcState;
419
420 static int check_fdc(Object *obj, void *opaque)
421 {
422 CheckFdcState *state = opaque;
423 Object *fdc;
424 uint32_t iobase;
425 Error *local_err = NULL;
426
427 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
428 if (!fdc) {
429 return 0;
430 }
431
432 iobase = object_property_get_uint(obj, "iobase", &local_err);
433 if (local_err || iobase != 0x3f0) {
434 error_free(local_err);
435 return 0;
436 }
437
438 if (state->floppy) {
439 state->multiple = true;
440 } else {
441 state->floppy = ISA_DEVICE(obj);
442 }
443 return 0;
444 }
445
446 static const char * const fdc_container_path[] = {
447 "/unattached", "/peripheral", "/peripheral-anon"
448 };
449
450 /*
451 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
452 * and ACPI objects.
453 */
454 ISADevice *pc_find_fdc0(void)
455 {
456 int i;
457 Object *container;
458 CheckFdcState state = { 0 };
459
460 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
461 container = container_get(qdev_get_machine(), fdc_container_path[i]);
462 object_child_foreach(container, check_fdc, &state);
463 }
464
465 if (state.multiple) {
466 warn_report("multiple floppy disk controllers with "
467 "iobase=0x3f0 have been found");
468 error_printf("the one being picked for CMOS setup might not reflect "
469 "your intent");
470 }
471
472 return state.floppy;
473 }
474
475 static void pc_cmos_init_late(void *opaque)
476 {
477 pc_cmos_init_late_arg *arg = opaque;
478 ISADevice *s = arg->rtc_state;
479 int16_t cylinders;
480 int8_t heads, sectors;
481 int val;
482 int i, trans;
483
484 val = 0;
485 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
486 &cylinders, &heads, &sectors) >= 0) {
487 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
488 val |= 0xf0;
489 }
490 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
491 &cylinders, &heads, &sectors) >= 0) {
492 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
493 val |= 0x0f;
494 }
495 rtc_set_memory(s, 0x12, val);
496
497 val = 0;
498 for (i = 0; i < 4; i++) {
499 /* NOTE: ide_get_geometry() returns the physical
500 geometry. It is always such that: 1 <= sects <= 63, 1
501 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
502 geometry can be different if a translation is done. */
503 if (arg->idebus[i / 2] &&
504 ide_get_geometry(arg->idebus[i / 2], i % 2,
505 &cylinders, &heads, &sectors) >= 0) {
506 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
507 assert((trans & ~3) == 0);
508 val |= trans << (i * 2);
509 }
510 }
511 rtc_set_memory(s, 0x39, val);
512
513 pc_cmos_init_floppy(s, pc_find_fdc0());
514
515 qemu_unregister_reset(pc_cmos_init_late, opaque);
516 }
517
518 void pc_cmos_init(PCMachineState *pcms,
519 BusState *idebus0, BusState *idebus1,
520 ISADevice *s)
521 {
522 int val;
523 static pc_cmos_init_late_arg arg;
524
525 /* various important CMOS locations needed by PC/Bochs bios */
526
527 /* memory size */
528 /* base memory (first MiB) */
529 val = MIN(pcms->below_4g_mem_size / KiB, 640);
530 rtc_set_memory(s, 0x15, val);
531 rtc_set_memory(s, 0x16, val >> 8);
532 /* extended memory (next 64MiB) */
533 if (pcms->below_4g_mem_size > 1 * MiB) {
534 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
535 } else {
536 val = 0;
537 }
538 if (val > 65535)
539 val = 65535;
540 rtc_set_memory(s, 0x17, val);
541 rtc_set_memory(s, 0x18, val >> 8);
542 rtc_set_memory(s, 0x30, val);
543 rtc_set_memory(s, 0x31, val >> 8);
544 /* memory between 16MiB and 4GiB */
545 if (pcms->below_4g_mem_size > 16 * MiB) {
546 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
547 } else {
548 val = 0;
549 }
550 if (val > 65535)
551 val = 65535;
552 rtc_set_memory(s, 0x34, val);
553 rtc_set_memory(s, 0x35, val >> 8);
554 /* memory above 4GiB */
555 val = pcms->above_4g_mem_size / 65536;
556 rtc_set_memory(s, 0x5b, val);
557 rtc_set_memory(s, 0x5c, val >> 8);
558 rtc_set_memory(s, 0x5d, val >> 16);
559
560 object_property_add_link(OBJECT(pcms), "rtc_state",
561 TYPE_ISA_DEVICE,
562 (Object **)&pcms->rtc,
563 object_property_allow_set_link,
564 OBJ_PROP_LINK_STRONG, &error_abort);
565 object_property_set_link(OBJECT(pcms), OBJECT(s),
566 "rtc_state", &error_abort);
567
568 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
569
570 val = 0;
571 val |= 0x02; /* FPU is there */
572 val |= 0x04; /* PS/2 mouse installed */
573 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
574
575 /* hard drives and FDC */
576 arg.rtc_state = s;
577 arg.idebus[0] = idebus0;
578 arg.idebus[1] = idebus1;
579 qemu_register_reset(pc_cmos_init_late, &arg);
580 }
581
582 #define TYPE_PORT92 "port92"
583 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
584
585 /* port 92 stuff: could be split off */
586 typedef struct Port92State {
587 ISADevice parent_obj;
588
589 MemoryRegion io;
590 uint8_t outport;
591 qemu_irq a20_out;
592 } Port92State;
593
594 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
595 unsigned size)
596 {
597 Port92State *s = opaque;
598 int oldval = s->outport;
599
600 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
601 s->outport = val;
602 qemu_set_irq(s->a20_out, (val >> 1) & 1);
603 if ((val & 1) && !(oldval & 1)) {
604 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
605 }
606 }
607
608 static uint64_t port92_read(void *opaque, hwaddr addr,
609 unsigned size)
610 {
611 Port92State *s = opaque;
612 uint32_t ret;
613
614 ret = s->outport;
615 DPRINTF("port92: read 0x%02x\n", ret);
616 return ret;
617 }
618
619 static void port92_init(ISADevice *dev, qemu_irq a20_out)
620 {
621 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
622 }
623
624 static const VMStateDescription vmstate_port92_isa = {
625 .name = "port92",
626 .version_id = 1,
627 .minimum_version_id = 1,
628 .fields = (VMStateField[]) {
629 VMSTATE_UINT8(outport, Port92State),
630 VMSTATE_END_OF_LIST()
631 }
632 };
633
634 static void port92_reset(DeviceState *d)
635 {
636 Port92State *s = PORT92(d);
637
638 s->outport &= ~1;
639 }
640
641 static const MemoryRegionOps port92_ops = {
642 .read = port92_read,
643 .write = port92_write,
644 .impl = {
645 .min_access_size = 1,
646 .max_access_size = 1,
647 },
648 .endianness = DEVICE_LITTLE_ENDIAN,
649 };
650
651 static void port92_initfn(Object *obj)
652 {
653 Port92State *s = PORT92(obj);
654
655 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
656
657 s->outport = 0;
658
659 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
660 }
661
662 static void port92_realizefn(DeviceState *dev, Error **errp)
663 {
664 ISADevice *isadev = ISA_DEVICE(dev);
665 Port92State *s = PORT92(dev);
666
667 isa_register_ioport(isadev, &s->io, 0x92);
668 }
669
670 static void port92_class_initfn(ObjectClass *klass, void *data)
671 {
672 DeviceClass *dc = DEVICE_CLASS(klass);
673
674 dc->realize = port92_realizefn;
675 dc->reset = port92_reset;
676 dc->vmsd = &vmstate_port92_isa;
677 /*
678 * Reason: unlike ordinary ISA devices, this one needs additional
679 * wiring: its A20 output line needs to be wired up by
680 * port92_init().
681 */
682 dc->user_creatable = false;
683 }
684
685 static const TypeInfo port92_info = {
686 .name = TYPE_PORT92,
687 .parent = TYPE_ISA_DEVICE,
688 .instance_size = sizeof(Port92State),
689 .instance_init = port92_initfn,
690 .class_init = port92_class_initfn,
691 };
692
693 static void port92_register_types(void)
694 {
695 type_register_static(&port92_info);
696 }
697
698 type_init(port92_register_types)
699
700 static void handle_a20_line_change(void *opaque, int irq, int level)
701 {
702 X86CPU *cpu = opaque;
703
704 /* XXX: send to all CPUs ? */
705 /* XXX: add logic to handle multiple A20 line sources */
706 x86_cpu_set_a20(cpu, level);
707 }
708
709 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
710 {
711 int index = le32_to_cpu(e820_reserve.count);
712 struct e820_entry *entry;
713
714 if (type != E820_RAM) {
715 /* old FW_CFG_E820_TABLE entry -- reservations only */
716 if (index >= E820_NR_ENTRIES) {
717 return -EBUSY;
718 }
719 entry = &e820_reserve.entry[index++];
720
721 entry->address = cpu_to_le64(address);
722 entry->length = cpu_to_le64(length);
723 entry->type = cpu_to_le32(type);
724
725 e820_reserve.count = cpu_to_le32(index);
726 }
727
728 /* new "etc/e820" file -- include ram too */
729 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
730 e820_table[e820_entries].address = cpu_to_le64(address);
731 e820_table[e820_entries].length = cpu_to_le64(length);
732 e820_table[e820_entries].type = cpu_to_le32(type);
733 e820_entries++;
734
735 return e820_entries;
736 }
737
738 int e820_get_num_entries(void)
739 {
740 return e820_entries;
741 }
742
743 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
744 {
745 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
746 *address = le64_to_cpu(e820_table[idx].address);
747 *length = le64_to_cpu(e820_table[idx].length);
748 return true;
749 }
750 return false;
751 }
752
753 /* Enables contiguous-apic-ID mode, for compatibility */
754 static bool compat_apic_id_mode;
755
756 void enable_compat_apic_id_mode(void)
757 {
758 compat_apic_id_mode = true;
759 }
760
761 /* Calculates initial APIC ID for a specific CPU index
762 *
763 * Currently we need to be able to calculate the APIC ID from the CPU index
764 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
765 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
766 * all CPUs up to max_cpus.
767 */
768 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
769 {
770 uint32_t correct_id;
771 static bool warned;
772
773 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
774 if (compat_apic_id_mode) {
775 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
776 error_report("APIC IDs set in compatibility mode, "
777 "CPU topology won't match the configuration");
778 warned = true;
779 }
780 return cpu_index;
781 } else {
782 return correct_id;
783 }
784 }
785
786 static void pc_build_smbios(PCMachineState *pcms)
787 {
788 uint8_t *smbios_tables, *smbios_anchor;
789 size_t smbios_tables_len, smbios_anchor_len;
790 struct smbios_phys_mem_area *mem_array;
791 unsigned i, array_count;
792 MachineState *ms = MACHINE(pcms);
793 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
794
795 /* tell smbios about cpuid version and features */
796 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
797
798 smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
799 if (smbios_tables) {
800 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
801 smbios_tables, smbios_tables_len);
802 }
803
804 /* build the array of physical mem area from e820 table */
805 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
806 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
807 uint64_t addr, len;
808
809 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
810 mem_array[array_count].address = addr;
811 mem_array[array_count].length = len;
812 array_count++;
813 }
814 }
815 smbios_get_tables(mem_array, array_count,
816 &smbios_tables, &smbios_tables_len,
817 &smbios_anchor, &smbios_anchor_len);
818 g_free(mem_array);
819
820 if (smbios_anchor) {
821 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
822 smbios_tables, smbios_tables_len);
823 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
824 smbios_anchor, smbios_anchor_len);
825 }
826 }
827
828 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
829 {
830 FWCfgState *fw_cfg;
831 uint64_t *numa_fw_cfg;
832 int i;
833 const CPUArchIdList *cpus;
834 MachineClass *mc = MACHINE_GET_CLASS(pcms);
835
836 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
837 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
838
839 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
840 *
841 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
842 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
843 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
844 * for CPU hotplug also uses APIC ID and not "CPU index".
845 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
846 * but the "limit to the APIC ID values SeaBIOS may see".
847 *
848 * So for compatibility reasons with old BIOSes we are stuck with
849 * "etc/max-cpus" actually being apic_id_limit
850 */
851 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
852 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
853 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
854 acpi_tables, acpi_tables_len);
855 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
856
857 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
858 &e820_reserve, sizeof(e820_reserve));
859 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
860 sizeof(struct e820_entry) * e820_entries);
861
862 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
863 /* allocate memory for the NUMA channel: one (64bit) word for the number
864 * of nodes, one word for each VCPU->node and one word for each node to
865 * hold the amount of memory.
866 */
867 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
868 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
869 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
870 for (i = 0; i < cpus->len; i++) {
871 unsigned int apic_id = cpus->cpus[i].arch_id;
872 assert(apic_id < pcms->apic_id_limit);
873 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
874 }
875 for (i = 0; i < nb_numa_nodes; i++) {
876 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
877 cpu_to_le64(numa_info[i].node_mem);
878 }
879 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
880 (1 + pcms->apic_id_limit + nb_numa_nodes) *
881 sizeof(*numa_fw_cfg));
882
883 return fw_cfg;
884 }
885
886 static long get_file_size(FILE *f)
887 {
888 long where, size;
889
890 /* XXX: on Unix systems, using fstat() probably makes more sense */
891
892 where = ftell(f);
893 fseek(f, 0, SEEK_END);
894 size = ftell(f);
895 fseek(f, where, SEEK_SET);
896
897 return size;
898 }
899
900 /* setup_data types */
901 #define SETUP_NONE 0
902 #define SETUP_E820_EXT 1
903 #define SETUP_DTB 2
904 #define SETUP_PCI 3
905 #define SETUP_EFI 4
906
907 struct setup_data {
908 uint64_t next;
909 uint32_t type;
910 uint32_t len;
911 uint8_t data[0];
912 } __attribute__((packed));
913
914 static void load_linux(PCMachineState *pcms,
915 FWCfgState *fw_cfg)
916 {
917 uint16_t protocol;
918 int setup_size, kernel_size, cmdline_size;
919 int dtb_size, setup_data_offset;
920 uint32_t initrd_max;
921 uint8_t header[8192], *setup, *kernel;
922 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
923 FILE *f;
924 char *vmode;
925 MachineState *machine = MACHINE(pcms);
926 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
927 struct setup_data *setup_data;
928 const char *kernel_filename = machine->kernel_filename;
929 const char *initrd_filename = machine->initrd_filename;
930 const char *dtb_filename = machine->dtb;
931 const char *kernel_cmdline = machine->kernel_cmdline;
932
933 /* Align to 16 bytes as a paranoia measure */
934 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
935
936 /* load the kernel header */
937 f = fopen(kernel_filename, "rb");
938 if (!f || !(kernel_size = get_file_size(f)) ||
939 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
940 MIN(ARRAY_SIZE(header), kernel_size)) {
941 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
942 kernel_filename, strerror(errno));
943 exit(1);
944 }
945
946 /* kernel protocol version */
947 #if 0
948 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
949 #endif
950 if (ldl_p(header+0x202) == 0x53726448) {
951 protocol = lduw_p(header+0x206);
952 } else {
953 /* This looks like a multiboot kernel. If it is, let's stop
954 treating it like a Linux kernel. */
955 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
956 kernel_cmdline, kernel_size, header)) {
957 return;
958 }
959 protocol = 0;
960 }
961
962 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
963 /* Low kernel */
964 real_addr = 0x90000;
965 cmdline_addr = 0x9a000 - cmdline_size;
966 prot_addr = 0x10000;
967 } else if (protocol < 0x202) {
968 /* High but ancient kernel */
969 real_addr = 0x90000;
970 cmdline_addr = 0x9a000 - cmdline_size;
971 prot_addr = 0x100000;
972 } else {
973 /* High and recent kernel */
974 real_addr = 0x10000;
975 cmdline_addr = 0x20000;
976 prot_addr = 0x100000;
977 }
978
979 #if 0
980 fprintf(stderr,
981 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
982 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
983 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
984 real_addr,
985 cmdline_addr,
986 prot_addr);
987 #endif
988
989 /* highest address for loading the initrd */
990 if (protocol >= 0x203) {
991 initrd_max = ldl_p(header+0x22c);
992 } else {
993 initrd_max = 0x37ffffff;
994 }
995
996 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
997 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
998 }
999
1000 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1001 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1002 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1003
1004 if (protocol >= 0x202) {
1005 stl_p(header+0x228, cmdline_addr);
1006 } else {
1007 stw_p(header+0x20, 0xA33F);
1008 stw_p(header+0x22, cmdline_addr-real_addr);
1009 }
1010
1011 /* handle vga= parameter */
1012 vmode = strstr(kernel_cmdline, "vga=");
1013 if (vmode) {
1014 unsigned int video_mode;
1015 /* skip "vga=" */
1016 vmode += 4;
1017 if (!strncmp(vmode, "normal", 6)) {
1018 video_mode = 0xffff;
1019 } else if (!strncmp(vmode, "ext", 3)) {
1020 video_mode = 0xfffe;
1021 } else if (!strncmp(vmode, "ask", 3)) {
1022 video_mode = 0xfffd;
1023 } else {
1024 video_mode = strtol(vmode, NULL, 0);
1025 }
1026 stw_p(header+0x1fa, video_mode);
1027 }
1028
1029 /* loader type */
1030 /* High nybble = B reserved for QEMU; low nybble is revision number.
1031 If this code is substantially changed, you may want to consider
1032 incrementing the revision. */
1033 if (protocol >= 0x200) {
1034 header[0x210] = 0xB0;
1035 }
1036 /* heap */
1037 if (protocol >= 0x201) {
1038 header[0x211] |= 0x80; /* CAN_USE_HEAP */
1039 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1040 }
1041
1042 /* load initrd */
1043 if (initrd_filename) {
1044 gsize initrd_size;
1045 gchar *initrd_data;
1046 GError *gerr = NULL;
1047
1048 if (protocol < 0x200) {
1049 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1050 exit(1);
1051 }
1052
1053 if (!g_file_get_contents(initrd_filename, &initrd_data,
1054 &initrd_size, &gerr)) {
1055 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1056 initrd_filename, gerr->message);
1057 exit(1);
1058 }
1059 if (initrd_size >= initrd_max) {
1060 fprintf(stderr, "qemu: initrd is too large, cannot support."
1061 "(max: %"PRIu32", need %"PRId64")\n",
1062 initrd_max, (uint64_t)initrd_size);
1063 exit(1);
1064 }
1065
1066 initrd_addr = (initrd_max-initrd_size) & ~4095;
1067
1068 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1069 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1070 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1071
1072 stl_p(header+0x218, initrd_addr);
1073 stl_p(header+0x21c, initrd_size);
1074 }
1075
1076 /* load kernel and setup */
1077 setup_size = header[0x1f1];
1078 if (setup_size == 0) {
1079 setup_size = 4;
1080 }
1081 setup_size = (setup_size+1)*512;
1082 if (setup_size > kernel_size) {
1083 fprintf(stderr, "qemu: invalid kernel header\n");
1084 exit(1);
1085 }
1086 kernel_size -= setup_size;
1087
1088 setup = g_malloc(setup_size);
1089 kernel = g_malloc(kernel_size);
1090 fseek(f, 0, SEEK_SET);
1091 if (fread(setup, 1, setup_size, f) != setup_size) {
1092 fprintf(stderr, "fread() failed\n");
1093 exit(1);
1094 }
1095 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1096 fprintf(stderr, "fread() failed\n");
1097 exit(1);
1098 }
1099 fclose(f);
1100
1101 /* append dtb to kernel */
1102 if (dtb_filename) {
1103 if (protocol < 0x209) {
1104 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1105 exit(1);
1106 }
1107
1108 dtb_size = get_image_size(dtb_filename);
1109 if (dtb_size <= 0) {
1110 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1111 dtb_filename, strerror(errno));
1112 exit(1);
1113 }
1114
1115 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1116 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1117 kernel = g_realloc(kernel, kernel_size);
1118
1119 stq_p(header+0x250, prot_addr + setup_data_offset);
1120
1121 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1122 setup_data->next = 0;
1123 setup_data->type = cpu_to_le32(SETUP_DTB);
1124 setup_data->len = cpu_to_le32(dtb_size);
1125
1126 load_image_size(dtb_filename, setup_data->data, dtb_size);
1127 }
1128
1129 memcpy(setup, header, MIN(sizeof(header), setup_size));
1130
1131 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1132 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1133 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1134
1135 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1136 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1137 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1138
1139 option_rom[nb_option_roms].bootindex = 0;
1140 option_rom[nb_option_roms].name = "linuxboot.bin";
1141 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1142 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1143 }
1144 nb_option_roms++;
1145 }
1146
1147 #define NE2000_NB_MAX 6
1148
1149 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1150 0x280, 0x380 };
1151 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1152
1153 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1154 {
1155 static int nb_ne2k = 0;
1156
1157 if (nb_ne2k == NE2000_NB_MAX)
1158 return;
1159 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1160 ne2000_irq[nb_ne2k], nd);
1161 nb_ne2k++;
1162 }
1163
1164 DeviceState *cpu_get_current_apic(void)
1165 {
1166 if (current_cpu) {
1167 X86CPU *cpu = X86_CPU(current_cpu);
1168 return cpu->apic_state;
1169 } else {
1170 return NULL;
1171 }
1172 }
1173
1174 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1175 {
1176 X86CPU *cpu = opaque;
1177
1178 if (level) {
1179 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1180 }
1181 }
1182
1183 static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1184 {
1185 Object *cpu = NULL;
1186 Error *local_err = NULL;
1187
1188 cpu = object_new(typename);
1189
1190 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1191 object_property_set_bool(cpu, true, "realized", &local_err);
1192
1193 object_unref(cpu);
1194 error_propagate(errp, local_err);
1195 }
1196
1197 void pc_hot_add_cpu(const int64_t id, Error **errp)
1198 {
1199 MachineState *ms = MACHINE(qdev_get_machine());
1200 int64_t apic_id = x86_cpu_apic_id_from_index(id);
1201 Error *local_err = NULL;
1202
1203 if (id < 0) {
1204 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1205 return;
1206 }
1207
1208 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1209 error_setg(errp, "Unable to add CPU: %" PRIi64
1210 ", resulting APIC ID (%" PRIi64 ") is too large",
1211 id, apic_id);
1212 return;
1213 }
1214
1215 pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1216 if (local_err) {
1217 error_propagate(errp, local_err);
1218 return;
1219 }
1220 }
1221
1222 void pc_cpus_init(PCMachineState *pcms)
1223 {
1224 int i;
1225 const CPUArchIdList *possible_cpus;
1226 MachineState *ms = MACHINE(pcms);
1227 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1228
1229 /* Calculates the limit to CPU APIC ID values
1230 *
1231 * Limit for the APIC ID value, so that all
1232 * CPU APIC IDs are < pcms->apic_id_limit.
1233 *
1234 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1235 */
1236 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1237 possible_cpus = mc->possible_cpu_arch_ids(ms);
1238 for (i = 0; i < smp_cpus; i++) {
1239 pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1240 &error_fatal);
1241 }
1242 }
1243
1244 static void pc_build_feature_control_file(PCMachineState *pcms)
1245 {
1246 MachineState *ms = MACHINE(pcms);
1247 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1248 CPUX86State *env = &cpu->env;
1249 uint32_t unused, ecx, edx;
1250 uint64_t feature_control_bits = 0;
1251 uint64_t *val;
1252
1253 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1254 if (ecx & CPUID_EXT_VMX) {
1255 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1256 }
1257
1258 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1259 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1260 (env->mcg_cap & MCG_LMCE_P)) {
1261 feature_control_bits |= FEATURE_CONTROL_LMCE;
1262 }
1263
1264 if (!feature_control_bits) {
1265 return;
1266 }
1267
1268 val = g_malloc(sizeof(*val));
1269 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1270 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1271 }
1272
1273 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1274 {
1275 if (cpus_count > 0xff) {
1276 /* If the number of CPUs can't be represented in 8 bits, the
1277 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1278 * to make old BIOSes fail more predictably.
1279 */
1280 rtc_set_memory(rtc, 0x5f, 0);
1281 } else {
1282 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1283 }
1284 }
1285
1286 static
1287 void pc_machine_done(Notifier *notifier, void *data)
1288 {
1289 PCMachineState *pcms = container_of(notifier,
1290 PCMachineState, machine_done);
1291 PCIBus *bus = pcms->bus;
1292
1293 /* set the number of CPUs */
1294 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1295
1296 if (bus) {
1297 int extra_hosts = 0;
1298
1299 QLIST_FOREACH(bus, &bus->child, sibling) {
1300 /* look for expander root buses */
1301 if (pci_bus_is_root(bus)) {
1302 extra_hosts++;
1303 }
1304 }
1305 if (extra_hosts && pcms->fw_cfg) {
1306 uint64_t *val = g_malloc(sizeof(*val));
1307 *val = cpu_to_le64(extra_hosts);
1308 fw_cfg_add_file(pcms->fw_cfg,
1309 "etc/extra-pci-roots", val, sizeof(*val));
1310 }
1311 }
1312
1313 acpi_setup();
1314 if (pcms->fw_cfg) {
1315 pc_build_smbios(pcms);
1316 pc_build_feature_control_file(pcms);
1317 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1318 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1319 }
1320
1321 if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1322 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1323
1324 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1325 iommu->intr_eim != ON_OFF_AUTO_ON) {
1326 error_report("current -smp configuration requires "
1327 "Extended Interrupt Mode enabled. "
1328 "You can add an IOMMU using: "
1329 "-device intel-iommu,intremap=on,eim=on");
1330 exit(EXIT_FAILURE);
1331 }
1332 }
1333 }
1334
1335 void pc_guest_info_init(PCMachineState *pcms)
1336 {
1337 int i;
1338
1339 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1340 pcms->numa_nodes = nb_numa_nodes;
1341 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1342 sizeof *pcms->node_mem);
1343 for (i = 0; i < nb_numa_nodes; i++) {
1344 pcms->node_mem[i] = numa_info[i].node_mem;
1345 }
1346
1347 pcms->machine_done.notify = pc_machine_done;
1348 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1349 }
1350
1351 /* setup pci memory address space mapping into system address space */
1352 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1353 MemoryRegion *pci_address_space)
1354 {
1355 /* Set to lower priority than RAM */
1356 memory_region_add_subregion_overlap(system_memory, 0x0,
1357 pci_address_space, -1);
1358 }
1359
1360 void pc_acpi_init(const char *default_dsdt)
1361 {
1362 char *filename;
1363
1364 if (acpi_tables != NULL) {
1365 /* manually set via -acpitable, leave it alone */
1366 return;
1367 }
1368
1369 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1370 if (filename == NULL) {
1371 warn_report("failed to find %s", default_dsdt);
1372 } else {
1373 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1374 &error_abort);
1375 Error *err = NULL;
1376
1377 qemu_opt_set(opts, "file", filename, &error_abort);
1378
1379 acpi_table_add_builtin(opts, &err);
1380 if (err) {
1381 warn_reportf_err(err, "failed to load %s: ", filename);
1382 }
1383 g_free(filename);
1384 }
1385 }
1386
1387 void xen_load_linux(PCMachineState *pcms)
1388 {
1389 int i;
1390 FWCfgState *fw_cfg;
1391
1392 assert(MACHINE(pcms)->kernel_filename != NULL);
1393
1394 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1395 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1396 rom_set_fw(fw_cfg);
1397
1398 load_linux(pcms, fw_cfg);
1399 for (i = 0; i < nb_option_roms; i++) {
1400 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1401 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1402 !strcmp(option_rom[i].name, "multiboot.bin"));
1403 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1404 }
1405 pcms->fw_cfg = fw_cfg;
1406 }
1407
1408 void pc_memory_init(PCMachineState *pcms,
1409 MemoryRegion *system_memory,
1410 MemoryRegion *rom_memory,
1411 MemoryRegion **ram_memory)
1412 {
1413 int linux_boot, i;
1414 MemoryRegion *ram, *option_rom_mr;
1415 MemoryRegion *ram_below_4g, *ram_above_4g;
1416 FWCfgState *fw_cfg;
1417 MachineState *machine = MACHINE(pcms);
1418 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1419
1420 assert(machine->ram_size == pcms->below_4g_mem_size +
1421 pcms->above_4g_mem_size);
1422
1423 linux_boot = (machine->kernel_filename != NULL);
1424
1425 /* Allocate RAM. We allocate it as a single memory region and use
1426 * aliases to address portions of it, mostly for backwards compatibility
1427 * with older qemus that used qemu_ram_alloc().
1428 */
1429 ram = g_malloc(sizeof(*ram));
1430 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1431 machine->ram_size);
1432 *ram_memory = ram;
1433 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1434 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1435 0, pcms->below_4g_mem_size);
1436 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1437 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1438 if (pcms->above_4g_mem_size > 0) {
1439 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1440 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1441 pcms->below_4g_mem_size,
1442 pcms->above_4g_mem_size);
1443 memory_region_add_subregion(system_memory, 0x100000000ULL,
1444 ram_above_4g);
1445 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1446 }
1447
1448 if (!pcmc->has_reserved_memory &&
1449 (machine->ram_slots ||
1450 (machine->maxram_size > machine->ram_size))) {
1451 MachineClass *mc = MACHINE_GET_CLASS(machine);
1452
1453 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1454 mc->name);
1455 exit(EXIT_FAILURE);
1456 }
1457
1458 /* always allocate the device memory information */
1459 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1460
1461 /* initialize device memory address space */
1462 if (pcmc->has_reserved_memory &&
1463 (machine->ram_size < machine->maxram_size)) {
1464 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1465
1466 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1467 error_report("unsupported amount of memory slots: %"PRIu64,
1468 machine->ram_slots);
1469 exit(EXIT_FAILURE);
1470 }
1471
1472 if (QEMU_ALIGN_UP(machine->maxram_size,
1473 TARGET_PAGE_SIZE) != machine->maxram_size) {
1474 error_report("maximum memory size must by aligned to multiple of "
1475 "%d bytes", TARGET_PAGE_SIZE);
1476 exit(EXIT_FAILURE);
1477 }
1478
1479 machine->device_memory->base =
1480 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1481
1482 if (pcmc->enforce_aligned_dimm) {
1483 /* size device region assuming 1G page max alignment per slot */
1484 device_mem_size += (1 * GiB) * machine->ram_slots;
1485 }
1486
1487 if ((machine->device_memory->base + device_mem_size) <
1488 device_mem_size) {
1489 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1490 machine->maxram_size);
1491 exit(EXIT_FAILURE);
1492 }
1493
1494 memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1495 "device-memory", device_mem_size);
1496 memory_region_add_subregion(system_memory, machine->device_memory->base,
1497 &machine->device_memory->mr);
1498 }
1499
1500 /* Initialize PC system firmware */
1501 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1502
1503 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1504 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1505 &error_fatal);
1506 if (pcmc->pci_enabled) {
1507 memory_region_set_readonly(option_rom_mr, true);
1508 }
1509 memory_region_add_subregion_overlap(rom_memory,
1510 PC_ROM_MIN_VGA,
1511 option_rom_mr,
1512 1);
1513
1514 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1515
1516 rom_set_fw(fw_cfg);
1517
1518 if (pcmc->has_reserved_memory && machine->device_memory->base) {
1519 uint64_t *val = g_malloc(sizeof(*val));
1520 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1521 uint64_t res_mem_end = machine->device_memory->base;
1522
1523 if (!pcmc->broken_reserved_end) {
1524 res_mem_end += memory_region_size(&machine->device_memory->mr);
1525 }
1526 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1527 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1528 }
1529
1530 if (linux_boot) {
1531 load_linux(pcms, fw_cfg);
1532 }
1533
1534 for (i = 0; i < nb_option_roms; i++) {
1535 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1536 }
1537 pcms->fw_cfg = fw_cfg;
1538
1539 /* Init default IOAPIC address space */
1540 pcms->ioapic_as = &address_space_memory;
1541 }
1542
1543 /*
1544 * The 64bit pci hole starts after "above 4G RAM" and
1545 * potentially the space reserved for memory hotplug.
1546 */
1547 uint64_t pc_pci_hole64_start(void)
1548 {
1549 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1550 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1551 MachineState *ms = MACHINE(pcms);
1552 uint64_t hole64_start = 0;
1553
1554 if (pcmc->has_reserved_memory && ms->device_memory->base) {
1555 hole64_start = ms->device_memory->base;
1556 if (!pcmc->broken_reserved_end) {
1557 hole64_start += memory_region_size(&ms->device_memory->mr);
1558 }
1559 } else {
1560 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1561 }
1562
1563 return ROUND_UP(hole64_start, 1 * GiB);
1564 }
1565
1566 qemu_irq pc_allocate_cpu_irq(void)
1567 {
1568 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1569 }
1570
1571 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1572 {
1573 DeviceState *dev = NULL;
1574
1575 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1576 if (pci_bus) {
1577 PCIDevice *pcidev = pci_vga_init(pci_bus);
1578 dev = pcidev ? &pcidev->qdev : NULL;
1579 } else if (isa_bus) {
1580 ISADevice *isadev = isa_vga_init(isa_bus);
1581 dev = isadev ? DEVICE(isadev) : NULL;
1582 }
1583 rom_reset_order_override();
1584 return dev;
1585 }
1586
1587 static const MemoryRegionOps ioport80_io_ops = {
1588 .write = ioport80_write,
1589 .read = ioport80_read,
1590 .endianness = DEVICE_NATIVE_ENDIAN,
1591 .impl = {
1592 .min_access_size = 1,
1593 .max_access_size = 1,
1594 },
1595 };
1596
1597 static const MemoryRegionOps ioportF0_io_ops = {
1598 .write = ioportF0_write,
1599 .read = ioportF0_read,
1600 .endianness = DEVICE_NATIVE_ENDIAN,
1601 .impl = {
1602 .min_access_size = 1,
1603 .max_access_size = 1,
1604 },
1605 };
1606
1607 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1608 {
1609 int i;
1610 DriveInfo *fd[MAX_FD];
1611 qemu_irq *a20_line;
1612 ISADevice *i8042, *port92, *vmmouse;
1613
1614 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1615 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1616
1617 for (i = 0; i < MAX_FD; i++) {
1618 fd[i] = drive_get(IF_FLOPPY, 0, i);
1619 create_fdctrl |= !!fd[i];
1620 }
1621 if (create_fdctrl) {
1622 fdctrl_init_isa(isa_bus, fd);
1623 }
1624
1625 i8042 = isa_create_simple(isa_bus, "i8042");
1626 if (!no_vmport) {
1627 vmport_init(isa_bus);
1628 vmmouse = isa_try_create(isa_bus, "vmmouse");
1629 } else {
1630 vmmouse = NULL;
1631 }
1632 if (vmmouse) {
1633 DeviceState *dev = DEVICE(vmmouse);
1634 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1635 qdev_init_nofail(dev);
1636 }
1637 port92 = isa_create_simple(isa_bus, "port92");
1638
1639 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1640 i8042_setup_a20_line(i8042, a20_line[0]);
1641 port92_init(port92, a20_line[1]);
1642 g_free(a20_line);
1643 }
1644
1645 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1646 ISADevice **rtc_state,
1647 bool create_fdctrl,
1648 bool no_vmport,
1649 bool has_pit,
1650 uint32_t hpet_irqs)
1651 {
1652 int i;
1653 DeviceState *hpet = NULL;
1654 int pit_isa_irq = 0;
1655 qemu_irq pit_alt_irq = NULL;
1656 qemu_irq rtc_irq = NULL;
1657 ISADevice *pit = NULL;
1658 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1659 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1660
1661 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1662 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1663
1664 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1665 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1666
1667 /*
1668 * Check if an HPET shall be created.
1669 *
1670 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1671 * when the HPET wants to take over. Thus we have to disable the latter.
1672 */
1673 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1674 /* In order to set property, here not using sysbus_try_create_simple */
1675 hpet = qdev_try_create(NULL, TYPE_HPET);
1676 if (hpet) {
1677 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1678 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1679 * IRQ8 and IRQ2.
1680 */
1681 uint8_t compat = object_property_get_uint(OBJECT(hpet),
1682 HPET_INTCAP, NULL);
1683 if (!compat) {
1684 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1685 }
1686 qdev_init_nofail(hpet);
1687 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1688
1689 for (i = 0; i < GSI_NUM_PINS; i++) {
1690 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1691 }
1692 pit_isa_irq = -1;
1693 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1694 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1695 }
1696 }
1697 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
1698
1699 qemu_register_boot_set(pc_boot_set, *rtc_state);
1700
1701 if (!xen_enabled() && has_pit) {
1702 if (kvm_pit_in_kernel()) {
1703 pit = kvm_pit_init(isa_bus, 0x40);
1704 } else {
1705 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1706 }
1707 if (hpet) {
1708 /* connect PIT to output control line of the HPET */
1709 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1710 }
1711 pcspk_init(isa_bus, pit);
1712 }
1713
1714 i8257_dma_init(isa_bus, 0);
1715
1716 /* Super I/O */
1717 pc_superio_init(isa_bus, create_fdctrl, no_vmport);
1718 }
1719
1720 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
1721 {
1722 int i;
1723
1724 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1725 for (i = 0; i < nb_nics; i++) {
1726 NICInfo *nd = &nd_table[i];
1727 const char *model = nd->model ? nd->model : pcmc->default_nic_model;
1728
1729 if (g_str_equal(model, "ne2k_isa")) {
1730 pc_init_ne2k_isa(isa_bus, nd);
1731 } else {
1732 pci_nic_init_nofail(nd, pci_bus, model, NULL);
1733 }
1734 }
1735 rom_reset_order_override();
1736 }
1737
1738 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1739 {
1740 DeviceState *dev;
1741 SysBusDevice *d;
1742 unsigned int i;
1743
1744 if (kvm_ioapic_in_kernel()) {
1745 dev = qdev_create(NULL, "kvm-ioapic");
1746 } else {
1747 dev = qdev_create(NULL, "ioapic");
1748 }
1749 if (parent_name) {
1750 object_property_add_child(object_resolve_path(parent_name, NULL),
1751 "ioapic", OBJECT(dev), NULL);
1752 }
1753 qdev_init_nofail(dev);
1754 d = SYS_BUS_DEVICE(dev);
1755 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1756
1757 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1758 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1759 }
1760 }
1761
1762 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
1763 Error **errp)
1764 {
1765 const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1766 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1767 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1768 const uint64_t legacy_align = TARGET_PAGE_SIZE;
1769
1770 /*
1771 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1772 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1773 * addition to cover this case.
1774 */
1775 if (!pcms->acpi_dev || !acpi_enabled) {
1776 error_setg(errp,
1777 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1778 return;
1779 }
1780
1781 if (is_nvdimm && !pcms->acpi_nvdimm_state.is_enabled) {
1782 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
1783 return;
1784 }
1785
1786 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
1787 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
1788 }
1789
1790 static void pc_memory_plug(HotplugHandler *hotplug_dev,
1791 DeviceState *dev, Error **errp)
1792 {
1793 HotplugHandlerClass *hhc;
1794 Error *local_err = NULL;
1795 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1796 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1797
1798 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
1799 if (local_err) {
1800 goto out;
1801 }
1802
1803 if (is_nvdimm) {
1804 nvdimm_plug(&pcms->acpi_nvdimm_state);
1805 }
1806
1807 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1808 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1809 out:
1810 error_propagate(errp, local_err);
1811 }
1812
1813 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
1814 DeviceState *dev, Error **errp)
1815 {
1816 HotplugHandlerClass *hhc;
1817 Error *local_err = NULL;
1818 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1819
1820 /*
1821 * When -no-acpi is used with Q35 machine type, no ACPI is built,
1822 * but pcms->acpi_dev is still created. Check !acpi_enabled in
1823 * addition to cover this case.
1824 */
1825 if (!pcms->acpi_dev || !acpi_enabled) {
1826 error_setg(&local_err,
1827 "memory hotplug is not enabled: missing acpi device or acpi disabled");
1828 goto out;
1829 }
1830
1831 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1832 error_setg(&local_err,
1833 "nvdimm device hot unplug is not supported yet.");
1834 goto out;
1835 }
1836
1837 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1838 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1839
1840 out:
1841 error_propagate(errp, local_err);
1842 }
1843
1844 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
1845 DeviceState *dev, Error **errp)
1846 {
1847 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1848 HotplugHandlerClass *hhc;
1849 Error *local_err = NULL;
1850
1851 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1852 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1853
1854 if (local_err) {
1855 goto out;
1856 }
1857
1858 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
1859 object_unparent(OBJECT(dev));
1860
1861 out:
1862 error_propagate(errp, local_err);
1863 }
1864
1865 static int pc_apic_cmp(const void *a, const void *b)
1866 {
1867 CPUArchId *apic_a = (CPUArchId *)a;
1868 CPUArchId *apic_b = (CPUArchId *)b;
1869
1870 return apic_a->arch_id - apic_b->arch_id;
1871 }
1872
1873 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1874 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
1875 * entry corresponding to CPU's apic_id returns NULL.
1876 */
1877 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1878 {
1879 CPUArchId apic_id, *found_cpu;
1880
1881 apic_id.arch_id = id;
1882 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
1883 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
1884 pc_apic_cmp);
1885 if (found_cpu && idx) {
1886 *idx = found_cpu - ms->possible_cpus->cpus;
1887 }
1888 return found_cpu;
1889 }
1890
1891 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1892 DeviceState *dev, Error **errp)
1893 {
1894 CPUArchId *found_cpu;
1895 HotplugHandlerClass *hhc;
1896 Error *local_err = NULL;
1897 X86CPU *cpu = X86_CPU(dev);
1898 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1899
1900 if (pcms->acpi_dev) {
1901 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1902 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1903 if (local_err) {
1904 goto out;
1905 }
1906 }
1907
1908 /* increment the number of CPUs */
1909 pcms->boot_cpus++;
1910 if (pcms->rtc) {
1911 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1912 }
1913 if (pcms->fw_cfg) {
1914 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1915 }
1916
1917 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1918 found_cpu->cpu = OBJECT(dev);
1919 out:
1920 error_propagate(errp, local_err);
1921 }
1922 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1923 DeviceState *dev, Error **errp)
1924 {
1925 int idx = -1;
1926 HotplugHandlerClass *hhc;
1927 Error *local_err = NULL;
1928 X86CPU *cpu = X86_CPU(dev);
1929 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1930
1931 if (!pcms->acpi_dev) {
1932 error_setg(&local_err, "CPU hot unplug not supported without ACPI");
1933 goto out;
1934 }
1935
1936 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
1937 assert(idx != -1);
1938 if (idx == 0) {
1939 error_setg(&local_err, "Boot CPU is unpluggable");
1940 goto out;
1941 }
1942
1943 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1944 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1945
1946 if (local_err) {
1947 goto out;
1948 }
1949
1950 out:
1951 error_propagate(errp, local_err);
1952
1953 }
1954
1955 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1956 DeviceState *dev, Error **errp)
1957 {
1958 CPUArchId *found_cpu;
1959 HotplugHandlerClass *hhc;
1960 Error *local_err = NULL;
1961 X86CPU *cpu = X86_CPU(dev);
1962 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1963
1964 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1965 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1966
1967 if (local_err) {
1968 goto out;
1969 }
1970
1971 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
1972 found_cpu->cpu = NULL;
1973 object_unparent(OBJECT(dev));
1974
1975 /* decrement the number of CPUs */
1976 pcms->boot_cpus--;
1977 /* Update the number of CPUs in CMOS */
1978 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1979 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1980 out:
1981 error_propagate(errp, local_err);
1982 }
1983
1984 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1985 DeviceState *dev, Error **errp)
1986 {
1987 int idx;
1988 CPUState *cs;
1989 CPUArchId *cpu_slot;
1990 X86CPUTopoInfo topo;
1991 X86CPU *cpu = X86_CPU(dev);
1992 MachineState *ms = MACHINE(hotplug_dev);
1993 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1994
1995 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
1996 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
1997 ms->cpu_type);
1998 return;
1999 }
2000
2001 /* if APIC ID is not set, set it based on socket/core/thread properties */
2002 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2003 int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
2004
2005 if (cpu->socket_id < 0) {
2006 error_setg(errp, "CPU socket-id is not set");
2007 return;
2008 } else if (cpu->socket_id > max_socket) {
2009 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2010 cpu->socket_id, max_socket);
2011 return;
2012 }
2013 if (cpu->core_id < 0) {
2014 error_setg(errp, "CPU core-id is not set");
2015 return;
2016 } else if (cpu->core_id > (smp_cores - 1)) {
2017 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2018 cpu->core_id, smp_cores - 1);
2019 return;
2020 }
2021 if (cpu->thread_id < 0) {
2022 error_setg(errp, "CPU thread-id is not set");
2023 return;
2024 } else if (cpu->thread_id > (smp_threads - 1)) {
2025 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2026 cpu->thread_id, smp_threads - 1);
2027 return;
2028 }
2029
2030 topo.pkg_id = cpu->socket_id;
2031 topo.core_id = cpu->core_id;
2032 topo.smt_id = cpu->thread_id;
2033 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2034 }
2035
2036 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2037 if (!cpu_slot) {
2038 MachineState *ms = MACHINE(pcms);
2039
2040 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2041 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2042 " APIC ID %" PRIu32 ", valid index range 0:%d",
2043 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2044 ms->possible_cpus->len - 1);
2045 return;
2046 }
2047
2048 if (cpu_slot->cpu) {
2049 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2050 idx, cpu->apic_id);
2051 return;
2052 }
2053
2054 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2055 * so that machine_query_hotpluggable_cpus would show correct values
2056 */
2057 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2058 * once -smp refactoring is complete and there will be CPU private
2059 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2060 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2061 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2062 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2063 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2064 return;
2065 }
2066 cpu->socket_id = topo.pkg_id;
2067
2068 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2069 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2070 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2071 return;
2072 }
2073 cpu->core_id = topo.core_id;
2074
2075 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2076 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2077 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2078 return;
2079 }
2080 cpu->thread_id = topo.smt_id;
2081
2082 if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2083 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2084 return;
2085 }
2086
2087 cs = CPU(cpu);
2088 cs->cpu_index = idx;
2089
2090 numa_cpu_pre_plug(cpu_slot, dev, errp);
2091 }
2092
2093 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2094 DeviceState *dev, Error **errp)
2095 {
2096 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2097 pc_memory_pre_plug(hotplug_dev, dev, errp);
2098 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2099 pc_cpu_pre_plug(hotplug_dev, dev, errp);
2100 }
2101 }
2102
2103 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2104 DeviceState *dev, Error **errp)
2105 {
2106 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2107 pc_memory_plug(hotplug_dev, dev, errp);
2108 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2109 pc_cpu_plug(hotplug_dev, dev, errp);
2110 }
2111 }
2112
2113 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2114 DeviceState *dev, Error **errp)
2115 {
2116 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2117 pc_memory_unplug_request(hotplug_dev, dev, errp);
2118 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2119 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2120 } else {
2121 error_setg(errp, "acpi: device unplug request for not supported device"
2122 " type: %s", object_get_typename(OBJECT(dev)));
2123 }
2124 }
2125
2126 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2127 DeviceState *dev, Error **errp)
2128 {
2129 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2130 pc_memory_unplug(hotplug_dev, dev, errp);
2131 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2132 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2133 } else {
2134 error_setg(errp, "acpi: device unplug for not supported device"
2135 " type: %s", object_get_typename(OBJECT(dev)));
2136 }
2137 }
2138
2139 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2140 DeviceState *dev)
2141 {
2142 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2143 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2144 return HOTPLUG_HANDLER(machine);
2145 }
2146
2147 return NULL;
2148 }
2149
2150 static void
2151 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2152 const char *name, void *opaque,
2153 Error **errp)
2154 {
2155 MachineState *ms = MACHINE(obj);
2156 int64_t value = memory_region_size(&ms->device_memory->mr);
2157
2158 visit_type_int(v, name, &value, errp);
2159 }
2160
2161 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2162 const char *name, void *opaque,
2163 Error **errp)
2164 {
2165 PCMachineState *pcms = PC_MACHINE(obj);
2166 uint64_t value = pcms->max_ram_below_4g;
2167
2168 visit_type_size(v, name, &value, errp);
2169 }
2170
2171 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2172 const char *name, void *opaque,
2173 Error **errp)
2174 {
2175 PCMachineState *pcms = PC_MACHINE(obj);
2176 Error *error = NULL;
2177 uint64_t value;
2178
2179 visit_type_size(v, name, &value, &error);
2180 if (error) {
2181 error_propagate(errp, error);
2182 return;
2183 }
2184 if (value > 4 * GiB) {
2185 error_setg(&error,
2186 "Machine option 'max-ram-below-4g=%"PRIu64
2187 "' expects size less than or equal to 4G", value);
2188 error_propagate(errp, error);
2189 return;
2190 }
2191
2192 if (value < 1 * MiB) {
2193 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2194 "BIOS may not work with less than 1MiB", value);
2195 }
2196
2197 pcms->max_ram_below_4g = value;
2198 }
2199
2200 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2201 void *opaque, Error **errp)
2202 {
2203 PCMachineState *pcms = PC_MACHINE(obj);
2204 OnOffAuto vmport = pcms->vmport;
2205
2206 visit_type_OnOffAuto(v, name, &vmport, errp);
2207 }
2208
2209 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2210 void *opaque, Error **errp)
2211 {
2212 PCMachineState *pcms = PC_MACHINE(obj);
2213
2214 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2215 }
2216
2217 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2218 {
2219 bool smm_available = false;
2220
2221 if (pcms->smm == ON_OFF_AUTO_OFF) {
2222 return false;
2223 }
2224
2225 if (tcg_enabled() || qtest_enabled()) {
2226 smm_available = true;
2227 } else if (kvm_enabled()) {
2228 smm_available = kvm_has_smm();
2229 }
2230
2231 if (smm_available) {
2232 return true;
2233 }
2234
2235 if (pcms->smm == ON_OFF_AUTO_ON) {
2236 error_report("System Management Mode not supported by this hypervisor.");
2237 exit(1);
2238 }
2239 return false;
2240 }
2241
2242 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2243 void *opaque, Error **errp)
2244 {
2245 PCMachineState *pcms = PC_MACHINE(obj);
2246 OnOffAuto smm = pcms->smm;
2247
2248 visit_type_OnOffAuto(v, name, &smm, errp);
2249 }
2250
2251 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2252 void *opaque, Error **errp)
2253 {
2254 PCMachineState *pcms = PC_MACHINE(obj);
2255
2256 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2257 }
2258
2259 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2260 {
2261 PCMachineState *pcms = PC_MACHINE(obj);
2262
2263 return pcms->acpi_nvdimm_state.is_enabled;
2264 }
2265
2266 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2267 {
2268 PCMachineState *pcms = PC_MACHINE(obj);
2269
2270 pcms->acpi_nvdimm_state.is_enabled = value;
2271 }
2272
2273 static char *pc_machine_get_nvdimm_persistence(Object *obj, Error **errp)
2274 {
2275 PCMachineState *pcms = PC_MACHINE(obj);
2276
2277 return g_strdup(pcms->acpi_nvdimm_state.persistence_string);
2278 }
2279
2280 static void pc_machine_set_nvdimm_persistence(Object *obj, const char *value,
2281 Error **errp)
2282 {
2283 PCMachineState *pcms = PC_MACHINE(obj);
2284 AcpiNVDIMMState *nvdimm_state = &pcms->acpi_nvdimm_state;
2285
2286 if (strcmp(value, "cpu") == 0)
2287 nvdimm_state->persistence = 3;
2288 else if (strcmp(value, "mem-ctrl") == 0)
2289 nvdimm_state->persistence = 2;
2290 else {
2291 error_setg(errp, "-machine nvdimm-persistence=%s: unsupported option",
2292 value);
2293 return;
2294 }
2295
2296 g_free(nvdimm_state->persistence_string);
2297 nvdimm_state->persistence_string = g_strdup(value);
2298 }
2299
2300 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2301 {
2302 PCMachineState *pcms = PC_MACHINE(obj);
2303
2304 return pcms->smbus_enabled;
2305 }
2306
2307 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2308 {
2309 PCMachineState *pcms = PC_MACHINE(obj);
2310
2311 pcms->smbus_enabled = value;
2312 }
2313
2314 static bool pc_machine_get_sata(Object *obj, Error **errp)
2315 {
2316 PCMachineState *pcms = PC_MACHINE(obj);
2317
2318 return pcms->sata_enabled;
2319 }
2320
2321 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2322 {
2323 PCMachineState *pcms = PC_MACHINE(obj);
2324
2325 pcms->sata_enabled = value;
2326 }
2327
2328 static bool pc_machine_get_pit(Object *obj, Error **errp)
2329 {
2330 PCMachineState *pcms = PC_MACHINE(obj);
2331
2332 return pcms->pit_enabled;
2333 }
2334
2335 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2336 {
2337 PCMachineState *pcms = PC_MACHINE(obj);
2338
2339 pcms->pit_enabled = value;
2340 }
2341
2342 static void pc_machine_initfn(Object *obj)
2343 {
2344 PCMachineState *pcms = PC_MACHINE(obj);
2345
2346 pcms->max_ram_below_4g = 0; /* use default */
2347 pcms->smm = ON_OFF_AUTO_AUTO;
2348 pcms->vmport = ON_OFF_AUTO_AUTO;
2349 /* nvdimm is disabled on default. */
2350 pcms->acpi_nvdimm_state.is_enabled = false;
2351 /* acpi build is enabled by default if machine supports it */
2352 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2353 pcms->smbus_enabled = true;
2354 pcms->sata_enabled = true;
2355 pcms->pit_enabled = true;
2356 }
2357
2358 static void pc_machine_reset(void)
2359 {
2360 CPUState *cs;
2361 X86CPU *cpu;
2362
2363 qemu_devices_reset();
2364
2365 /* Reset APIC after devices have been reset to cancel
2366 * any changes that qemu_devices_reset() might have done.
2367 */
2368 CPU_FOREACH(cs) {
2369 cpu = X86_CPU(cs);
2370
2371 if (cpu->apic_state) {
2372 device_reset(cpu->apic_state);
2373 }
2374 }
2375 }
2376
2377 static CpuInstanceProperties
2378 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2379 {
2380 MachineClass *mc = MACHINE_GET_CLASS(ms);
2381 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2382
2383 assert(cpu_index < possible_cpus->len);
2384 return possible_cpus->cpus[cpu_index].props;
2385 }
2386
2387 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2388 {
2389 X86CPUTopoInfo topo;
2390
2391 assert(idx < ms->possible_cpus->len);
2392 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2393 smp_cores, smp_threads, &topo);
2394 return topo.pkg_id % nb_numa_nodes;
2395 }
2396
2397 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2398 {
2399 int i;
2400
2401 if (ms->possible_cpus) {
2402 /*
2403 * make sure that max_cpus hasn't changed since the first use, i.e.
2404 * -smp hasn't been parsed after it
2405 */
2406 assert(ms->possible_cpus->len == max_cpus);
2407 return ms->possible_cpus;
2408 }
2409
2410 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2411 sizeof(CPUArchId) * max_cpus);
2412 ms->possible_cpus->len = max_cpus;
2413 for (i = 0; i < ms->possible_cpus->len; i++) {
2414 X86CPUTopoInfo topo;
2415
2416 ms->possible_cpus->cpus[i].type = ms->cpu_type;
2417 ms->possible_cpus->cpus[i].vcpus_count = 1;
2418 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2419 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2420 smp_cores, smp_threads, &topo);
2421 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2422 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2423 ms->possible_cpus->cpus[i].props.has_core_id = true;
2424 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2425 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2426 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2427 }
2428 return ms->possible_cpus;
2429 }
2430
2431 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2432 {
2433 /* cpu index isn't used */
2434 CPUState *cs;
2435
2436 CPU_FOREACH(cs) {
2437 X86CPU *cpu = X86_CPU(cs);
2438
2439 if (!cpu->apic_state) {
2440 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2441 } else {
2442 apic_deliver_nmi(cpu->apic_state);
2443 }
2444 }
2445 }
2446
2447 static void pc_machine_class_init(ObjectClass *oc, void *data)
2448 {
2449 MachineClass *mc = MACHINE_CLASS(oc);
2450 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2451 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2452 NMIClass *nc = NMI_CLASS(oc);
2453
2454 pcmc->pci_enabled = true;
2455 pcmc->has_acpi_build = true;
2456 pcmc->rsdp_in_ram = true;
2457 pcmc->smbios_defaults = true;
2458 pcmc->smbios_uuid_encoded = true;
2459 pcmc->gigabyte_align = true;
2460 pcmc->has_reserved_memory = true;
2461 pcmc->kvmclock_enabled = true;
2462 pcmc->enforce_aligned_dimm = true;
2463 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2464 * to be used at the moment, 32K should be enough for a while. */
2465 pcmc->acpi_data_size = 0x20000 + 0x8000;
2466 pcmc->save_tsc_khz = true;
2467 pcmc->linuxboot_dma_enabled = true;
2468 assert(!mc->get_hotplug_handler);
2469 mc->get_hotplug_handler = pc_get_hotpug_handler;
2470 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2471 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2472 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2473 mc->auto_enable_numa_with_memhp = true;
2474 mc->has_hotpluggable_cpus = true;
2475 mc->default_boot_order = "cad";
2476 mc->hot_add_cpu = pc_hot_add_cpu;
2477 mc->block_default_type = IF_IDE;
2478 mc->max_cpus = 255;
2479 mc->reset = pc_machine_reset;
2480 hc->pre_plug = pc_machine_device_pre_plug_cb;
2481 hc->plug = pc_machine_device_plug_cb;
2482 hc->unplug_request = pc_machine_device_unplug_request_cb;
2483 hc->unplug = pc_machine_device_unplug_cb;
2484 nc->nmi_monitor_handler = x86_nmi;
2485 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2486
2487 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2488 pc_machine_get_device_memory_region_size, NULL,
2489 NULL, NULL, &error_abort);
2490
2491 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2492 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2493 NULL, NULL, &error_abort);
2494
2495 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2496 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2497
2498 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2499 pc_machine_get_smm, pc_machine_set_smm,
2500 NULL, NULL, &error_abort);
2501 object_class_property_set_description(oc, PC_MACHINE_SMM,
2502 "Enable SMM (pc & q35)", &error_abort);
2503
2504 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2505 pc_machine_get_vmport, pc_machine_set_vmport,
2506 NULL, NULL, &error_abort);
2507 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2508 "Enable vmport (pc & q35)", &error_abort);
2509
2510 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2511 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2512
2513 object_class_property_add_str(oc, PC_MACHINE_NVDIMM_PERSIST,
2514 pc_machine_get_nvdimm_persistence,
2515 pc_machine_set_nvdimm_persistence, &error_abort);
2516
2517 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2518 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2519
2520 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2521 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2522
2523 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2524 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2525 }
2526
2527 static const TypeInfo pc_machine_info = {
2528 .name = TYPE_PC_MACHINE,
2529 .parent = TYPE_MACHINE,
2530 .abstract = true,
2531 .instance_size = sizeof(PCMachineState),
2532 .instance_init = pc_machine_initfn,
2533 .class_size = sizeof(PCMachineClass),
2534 .class_init = pc_machine_class_init,
2535 .interfaces = (InterfaceInfo[]) {
2536 { TYPE_HOTPLUG_HANDLER },
2537 { TYPE_NMI },
2538 { }
2539 },
2540 };
2541
2542 static void pc_machine_register_types(void)
2543 {
2544 type_register_static(&pc_machine_info);
2545 }
2546
2547 type_init(pc_machine_register_types)