]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/arm_gicv3.c
hw/intc/arm_gicv3: Wire up distributor and redistributor MMIO regions
[mirror_qemu.git] / hw / intc / arm_gicv3.c
1 /*
2 * ARM Generic Interrupt Controller v3
3 *
4 * Copyright (c) 2015 Huawei.
5 * Copyright (c) 2016 Linaro Limited
6 * Written by Shlomo Pongratz, Peter Maydell
7 *
8 * This code is licensed under the GPL, version 2 or (at your option)
9 * any later version.
10 */
11
12 /* This file contains implementation code for an interrupt controller
13 * which implements the GICv3 architecture. Specifically this is where
14 * the device class itself and the functions for handling interrupts
15 * coming in and going out live.
16 */
17
18 #include "qemu/osdep.h"
19 #include "qapi/error.h"
20 #include "hw/sysbus.h"
21 #include "hw/intc/arm_gicv3.h"
22 #include "gicv3_internal.h"
23
24 static bool irqbetter(GICv3CPUState *cs, int irq, uint8_t prio)
25 {
26 /* Return true if this IRQ at this priority should take
27 * precedence over the current recorded highest priority
28 * pending interrupt for this CPU. We also return true if
29 * the current recorded highest priority pending interrupt
30 * is the same as this one (a property which the calling code
31 * relies on).
32 */
33 if (prio < cs->hppi.prio) {
34 return true;
35 }
36 /* If multiple pending interrupts have the same priority then it is an
37 * IMPDEF choice which of them to signal to the CPU. We choose to
38 * signal the one with the lowest interrupt number.
39 */
40 if (prio == cs->hppi.prio && irq <= cs->hppi.irq) {
41 return true;
42 }
43 return false;
44 }
45
46 static uint32_t gicd_int_pending(GICv3State *s, int irq)
47 {
48 /* Recalculate which distributor interrupts are actually pending
49 * in the group of 32 interrupts starting at irq (which should be a multiple
50 * of 32), and return a 32-bit integer which has a bit set for each
51 * interrupt that is eligible to be signaled to the CPU interface.
52 *
53 * An interrupt is pending if:
54 * + the PENDING latch is set OR it is level triggered and the input is 1
55 * + its ENABLE bit is set
56 * + the GICD enable bit for its group is set
57 * Conveniently we can bulk-calculate this with bitwise operations.
58 */
59 uint32_t pend, grpmask;
60 uint32_t pending = *gic_bmp_ptr32(s->pending, irq);
61 uint32_t edge_trigger = *gic_bmp_ptr32(s->edge_trigger, irq);
62 uint32_t level = *gic_bmp_ptr32(s->level, irq);
63 uint32_t group = *gic_bmp_ptr32(s->group, irq);
64 uint32_t grpmod = *gic_bmp_ptr32(s->grpmod, irq);
65 uint32_t enable = *gic_bmp_ptr32(s->enabled, irq);
66
67 pend = pending | (~edge_trigger & level);
68 pend &= enable;
69
70 if (s->gicd_ctlr & GICD_CTLR_DS) {
71 grpmod = 0;
72 }
73
74 grpmask = 0;
75 if (s->gicd_ctlr & GICD_CTLR_EN_GRP1NS) {
76 grpmask |= group;
77 }
78 if (s->gicd_ctlr & GICD_CTLR_EN_GRP1S) {
79 grpmask |= (~group & grpmod);
80 }
81 if (s->gicd_ctlr & GICD_CTLR_EN_GRP0) {
82 grpmask |= (~group & ~grpmod);
83 }
84 pend &= grpmask;
85
86 return pend;
87 }
88
89 static uint32_t gicr_int_pending(GICv3CPUState *cs)
90 {
91 /* Recalculate which redistributor interrupts are actually pending,
92 * and return a 32-bit integer which has a bit set for each interrupt
93 * that is eligible to be signaled to the CPU interface.
94 *
95 * An interrupt is pending if:
96 * + the PENDING latch is set OR it is level triggered and the input is 1
97 * + its ENABLE bit is set
98 * + the GICD enable bit for its group is set
99 * Conveniently we can bulk-calculate this with bitwise operations.
100 */
101 uint32_t pend, grpmask, grpmod;
102
103 pend = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
104 pend &= cs->gicr_ienabler0;
105
106 if (cs->gic->gicd_ctlr & GICD_CTLR_DS) {
107 grpmod = 0;
108 } else {
109 grpmod = cs->gicr_igrpmodr0;
110 }
111
112 grpmask = 0;
113 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1NS) {
114 grpmask |= cs->gicr_igroupr0;
115 }
116 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1S) {
117 grpmask |= (~cs->gicr_igroupr0 & grpmod);
118 }
119 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP0) {
120 grpmask |= (~cs->gicr_igroupr0 & ~grpmod);
121 }
122 pend &= grpmask;
123
124 return pend;
125 }
126
127 /* Update the interrupt status after state in a redistributor
128 * or CPU interface has changed, but don't tell the CPU i/f.
129 */
130 static void gicv3_redist_update_noirqset(GICv3CPUState *cs)
131 {
132 /* Find the highest priority pending interrupt among the
133 * redistributor interrupts (SGIs and PPIs).
134 */
135 bool seenbetter = false;
136 uint8_t prio;
137 int i;
138 uint32_t pend;
139
140 /* Find out which redistributor interrupts are eligible to be
141 * signaled to the CPU interface.
142 */
143 pend = gicr_int_pending(cs);
144
145 if (pend) {
146 for (i = 0; i < GIC_INTERNAL; i++) {
147 if (!(pend & (1 << i))) {
148 continue;
149 }
150 prio = cs->gicr_ipriorityr[i];
151 if (irqbetter(cs, i, prio)) {
152 cs->hppi.irq = i;
153 cs->hppi.prio = prio;
154 seenbetter = true;
155 }
156 }
157 }
158
159 if (seenbetter) {
160 cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq);
161 }
162
163 /* If the best interrupt we just found would preempt whatever
164 * was the previous best interrupt before this update, then
165 * we know it's definitely the best one now.
166 * If we didn't find an interrupt that would preempt the previous
167 * best, and the previous best is outside our range (or there was no
168 * previous pending interrupt at all), then that is still valid, and
169 * we leave it as the best.
170 * Otherwise, we need to do a full update (because the previous best
171 * interrupt has reduced in priority and any other interrupt could
172 * now be the new best one).
173 */
174 if (!seenbetter && cs->hppi.prio != 0xff && cs->hppi.irq < GIC_INTERNAL) {
175 gicv3_full_update_noirqset(cs->gic);
176 }
177 }
178
179 /* Update the GIC status after state in a redistributor or
180 * CPU interface has changed, and inform the CPU i/f of
181 * its new highest priority pending interrupt.
182 */
183 void gicv3_redist_update(GICv3CPUState *cs)
184 {
185 gicv3_redist_update_noirqset(cs);
186 gicv3_cpuif_update(cs);
187 }
188
189 /* Update the GIC status after state in the distributor has
190 * changed affecting @len interrupts starting at @start,
191 * but don't tell the CPU i/f.
192 */
193 static void gicv3_update_noirqset(GICv3State *s, int start, int len)
194 {
195 int i;
196 uint8_t prio;
197 uint32_t pend = 0;
198
199 assert(start >= GIC_INTERNAL);
200 assert(len > 0);
201
202 for (i = 0; i < s->num_cpu; i++) {
203 s->cpu[i].seenbetter = false;
204 }
205
206 /* Find the highest priority pending interrupt in this range. */
207 for (i = start; i < start + len; i++) {
208 GICv3CPUState *cs;
209
210 if (i == start || (i & 0x1f) == 0) {
211 /* Calculate the next 32 bits worth of pending status */
212 pend = gicd_int_pending(s, i & ~0x1f);
213 }
214
215 if (!(pend & (1 << (i & 0x1f)))) {
216 continue;
217 }
218 cs = s->gicd_irouter_target[i];
219 if (!cs) {
220 /* Interrupts targeting no implemented CPU should remain pending
221 * and not be forwarded to any CPU.
222 */
223 continue;
224 }
225 prio = s->gicd_ipriority[i];
226 if (irqbetter(cs, i, prio)) {
227 cs->hppi.irq = i;
228 cs->hppi.prio = prio;
229 cs->seenbetter = true;
230 }
231 }
232
233 /* If the best interrupt we just found would preempt whatever
234 * was the previous best interrupt before this update, then
235 * we know it's definitely the best one now.
236 * If we didn't find an interrupt that would preempt the previous
237 * best, and the previous best is outside our range (or there was
238 * no previous pending interrupt at all), then that
239 * is still valid, and we leave it as the best.
240 * Otherwise, we need to do a full update (because the previous best
241 * interrupt has reduced in priority and any other interrupt could
242 * now be the new best one).
243 */
244 for (i = 0; i < s->num_cpu; i++) {
245 GICv3CPUState *cs = &s->cpu[i];
246
247 if (cs->seenbetter) {
248 cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq);
249 }
250
251 if (!cs->seenbetter && cs->hppi.prio != 0xff &&
252 cs->hppi.irq >= start && cs->hppi.irq < start + len) {
253 gicv3_full_update_noirqset(s);
254 break;
255 }
256 }
257 }
258
259 void gicv3_update(GICv3State *s, int start, int len)
260 {
261 int i;
262
263 gicv3_update_noirqset(s, start, len);
264 for (i = 0; i < s->num_cpu; i++) {
265 gicv3_cpuif_update(&s->cpu[i]);
266 }
267 }
268
269 void gicv3_full_update_noirqset(GICv3State *s)
270 {
271 /* Completely recalculate the GIC status from scratch, but
272 * don't update any outbound IRQ lines.
273 */
274 int i;
275
276 for (i = 0; i < s->num_cpu; i++) {
277 s->cpu[i].hppi.prio = 0xff;
278 }
279
280 /* Note that we can guarantee that these functions will not
281 * recursively call back into gicv3_full_update(), because
282 * at each point the "previous best" is always outside the
283 * range we ask them to update.
284 */
285 gicv3_update_noirqset(s, GIC_INTERNAL, s->num_irq - GIC_INTERNAL);
286
287 for (i = 0; i < s->num_cpu; i++) {
288 gicv3_redist_update_noirqset(&s->cpu[i]);
289 }
290 }
291
292 void gicv3_full_update(GICv3State *s)
293 {
294 /* Completely recalculate the GIC status from scratch, including
295 * updating outbound IRQ lines.
296 */
297 int i;
298
299 gicv3_full_update_noirqset(s);
300 for (i = 0; i < s->num_cpu; i++) {
301 gicv3_cpuif_update(&s->cpu[i]);
302 }
303 }
304
305 /* Process a change in an external IRQ input. */
306 static void gicv3_set_irq(void *opaque, int irq, int level)
307 {
308 /* Meaning of the 'irq' parameter:
309 * [0..N-1] : external interrupts
310 * [N..N+31] : PPI (internal) interrupts for CPU 0
311 * [N+32..N+63] : PPI (internal interrupts for CPU 1
312 * ...
313 */
314 /* Do nothing for now */
315 }
316
317 static void arm_gicv3_post_load(GICv3State *s)
318 {
319 /* Recalculate our cached idea of the current highest priority
320 * pending interrupt, but don't set IRQ or FIQ lines.
321 */
322 gicv3_full_update_noirqset(s);
323 /* Repopulate the cache of GICv3CPUState pointers for target CPUs */
324 gicv3_cache_all_target_cpustates(s);
325 }
326
327 static const MemoryRegionOps gic_ops[] = {
328 {
329 .read_with_attrs = gicv3_dist_read,
330 .write_with_attrs = gicv3_dist_write,
331 .endianness = DEVICE_NATIVE_ENDIAN,
332 },
333 {
334 .read_with_attrs = gicv3_redist_read,
335 .write_with_attrs = gicv3_redist_write,
336 .endianness = DEVICE_NATIVE_ENDIAN,
337 }
338 };
339
340 static void arm_gic_realize(DeviceState *dev, Error **errp)
341 {
342 /* Device instance realize function for the GIC sysbus device */
343 GICv3State *s = ARM_GICV3(dev);
344 ARMGICv3Class *agc = ARM_GICV3_GET_CLASS(s);
345 Error *local_err = NULL;
346
347 agc->parent_realize(dev, &local_err);
348 if (local_err) {
349 error_propagate(errp, local_err);
350 return;
351 }
352
353 gicv3_init_irqs_and_mmio(s, gicv3_set_irq, gic_ops);
354 }
355
356 static void arm_gicv3_class_init(ObjectClass *klass, void *data)
357 {
358 DeviceClass *dc = DEVICE_CLASS(klass);
359 ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
360 ARMGICv3Class *agc = ARM_GICV3_CLASS(klass);
361
362 agcc->post_load = arm_gicv3_post_load;
363 agc->parent_realize = dc->realize;
364 dc->realize = arm_gic_realize;
365 }
366
367 static const TypeInfo arm_gicv3_info = {
368 .name = TYPE_ARM_GICV3,
369 .parent = TYPE_ARM_GICV3_COMMON,
370 .instance_size = sizeof(GICv3State),
371 .class_init = arm_gicv3_class_init,
372 .class_size = sizeof(ARMGICv3Class),
373 };
374
375 static void arm_gicv3_register_types(void)
376 {
377 type_register_static(&arm_gicv3_info);
378 }
379
380 type_init(arm_gicv3_register_types)