]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/arm_gicv3_cpuif.c
hw/intc/arm_gicv3_cpuif: Don't let BPR be set below its minimum
[mirror_qemu.git] / hw / intc / arm_gicv3_cpuif.c
1 /*
2 * ARM Generic Interrupt Controller v3
3 *
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
6 *
7 * This code is licensed under the GPL, version 2 or (at your option)
8 * any later version.
9 */
10
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
13 */
14
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/main-loop.h"
18 #include "trace.h"
19 #include "gicv3_internal.h"
20 #include "cpu.h"
21
22 void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s)
23 {
24 ARMCPU *arm_cpu = ARM_CPU(cpu);
25 CPUARMState *env = &arm_cpu->env;
26
27 env->gicv3state = (void *)s;
28 };
29
30 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
31 {
32 /* Given the CPU, find the right GICv3CPUState struct.
33 * Since we registered the CPU interface with the EL change hook as
34 * the opaque pointer, we can just directly get from the CPU to it.
35 */
36 return arm_get_el_change_hook_opaque(arm_env_get_cpu(env));
37 }
38
39 static bool gicv3_use_ns_bank(CPUARMState *env)
40 {
41 /* Return true if we should use the NonSecure bank for a banked GIC
42 * CPU interface register. Note that this differs from the
43 * access_secure_reg() function because GICv3 banked registers are
44 * banked even for AArch64, unlike the other CPU system registers.
45 */
46 return !arm_is_secure_below_el3(env);
47 }
48
49 /* The minimum BPR for the virtual interface is a configurable property */
50 static inline int icv_min_vbpr(GICv3CPUState *cs)
51 {
52 return 7 - cs->vprebits;
53 }
54
55 /* Simple accessor functions for LR fields */
56 static uint32_t ich_lr_vintid(uint64_t lr)
57 {
58 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
59 }
60
61 static uint32_t ich_lr_pintid(uint64_t lr)
62 {
63 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
64 }
65
66 static uint32_t ich_lr_prio(uint64_t lr)
67 {
68 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
69 }
70
71 static int ich_lr_state(uint64_t lr)
72 {
73 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
74 }
75
76 static bool icv_access(CPUARMState *env, int hcr_flags)
77 {
78 /* Return true if this ICC_ register access should really be
79 * directed to an ICV_ access. hcr_flags is a mask of
80 * HCR_EL2 bits to check: we treat this as an ICV_ access
81 * if we are in NS EL1 and at least one of the specified
82 * HCR_EL2 bits is set.
83 *
84 * ICV registers fall into four categories:
85 * * access if NS EL1 and HCR_EL2.FMO == 1:
86 * all ICV regs with '0' in their name
87 * * access if NS EL1 and HCR_EL2.IMO == 1:
88 * all ICV regs with '1' in their name
89 * * access if NS EL1 and either IMO or FMO == 1:
90 * CTLR, DIR, PMR, RPR
91 */
92 return (env->cp15.hcr_el2 & hcr_flags) && arm_current_el(env) == 1
93 && !arm_is_secure_below_el3(env);
94 }
95
96 static int read_vbpr(GICv3CPUState *cs, int grp)
97 {
98 /* Read VBPR value out of the VMCR field (caller must handle
99 * VCBPR effects if required)
100 */
101 if (grp == GICV3_G0) {
102 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
103 ICH_VMCR_EL2_VBPR0_LENGTH);
104 } else {
105 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
106 ICH_VMCR_EL2_VBPR1_LENGTH);
107 }
108 }
109
110 static void write_vbpr(GICv3CPUState *cs, int grp, int value)
111 {
112 /* Write new VBPR1 value, handling the "writing a value less than
113 * the minimum sets it to the minimum" semantics.
114 */
115 int min = icv_min_vbpr(cs);
116
117 if (grp != GICV3_G0) {
118 min++;
119 }
120
121 value = MAX(value, min);
122
123 if (grp == GICV3_G0) {
124 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
125 ICH_VMCR_EL2_VBPR0_LENGTH, value);
126 } else {
127 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
128 ICH_VMCR_EL2_VBPR1_LENGTH, value);
129 }
130 }
131
132 static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
133 {
134 /* Return a mask word which clears the unimplemented priority bits
135 * from a priority value for a virtual interrupt. (Not to be confused
136 * with the group priority, whose mask depends on the value of VBPR
137 * for the interrupt group.)
138 */
139 return ~0U << (8 - cs->vpribits);
140 }
141
142 static int ich_highest_active_virt_prio(GICv3CPUState *cs)
143 {
144 /* Calculate the current running priority based on the set bits
145 * in the ICH Active Priority Registers.
146 */
147 int i;
148 int aprmax = 1 << (cs->vprebits - 5);
149
150 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
151
152 for (i = 0; i < aprmax; i++) {
153 uint32_t apr = cs->ich_apr[GICV3_G0][i] |
154 cs->ich_apr[GICV3_G1NS][i];
155
156 if (!apr) {
157 continue;
158 }
159 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
160 }
161 /* No current active interrupts: return idle priority */
162 return 0xff;
163 }
164
165 static int hppvi_index(GICv3CPUState *cs)
166 {
167 /* Return the list register index of the highest priority pending
168 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
169 * pseudocode. If no pending virtual interrupts, return -1.
170 */
171 int idx = -1;
172 int i;
173 /* Note that a list register entry with a priority of 0xff will
174 * never be reported by this function; this is the architecturally
175 * correct behaviour.
176 */
177 int prio = 0xff;
178
179 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
180 /* Both groups disabled, definitely nothing to do */
181 return idx;
182 }
183
184 for (i = 0; i < cs->num_list_regs; i++) {
185 uint64_t lr = cs->ich_lr_el2[i];
186 int thisprio;
187
188 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
189 /* Not Pending */
190 continue;
191 }
192
193 /* Ignore interrupts if relevant group enable not set */
194 if (lr & ICH_LR_EL2_GROUP) {
195 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
196 continue;
197 }
198 } else {
199 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
200 continue;
201 }
202 }
203
204 thisprio = ich_lr_prio(lr);
205
206 if (thisprio < prio) {
207 prio = thisprio;
208 idx = i;
209 }
210 }
211
212 return idx;
213 }
214
215 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
216 {
217 /* Return a mask word which clears the subpriority bits from
218 * a priority value for a virtual interrupt in the specified group.
219 * This depends on the VBPR value:
220 * a BPR of 0 means the group priority bits are [7:1];
221 * a BPR of 1 means they are [7:2], and so on down to
222 * a BPR of 7 meaning no group priority bits at all.
223 * Which BPR to use depends on the group of the interrupt and
224 * the current ICH_VMCR_EL2.VCBPR settings.
225 */
226 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
227 group = GICV3_G0;
228 }
229
230 return ~0U << (read_vbpr(cs, group) + 1);
231 }
232
233 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
234 {
235 /* Return true if we can signal this virtual interrupt defined by
236 * the given list register value; see the pseudocode functions
237 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
238 * Compare also icc_hppi_can_preempt() which is the non-virtual
239 * equivalent of these checks.
240 */
241 int grp;
242 uint32_t mask, prio, rprio, vpmr;
243
244 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
245 /* Virtual interface disabled */
246 return false;
247 }
248
249 /* We don't need to check that this LR is in Pending state because
250 * that has already been done in hppvi_index().
251 */
252
253 prio = ich_lr_prio(lr);
254 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
255 ICH_VMCR_EL2_VPMR_LENGTH);
256
257 if (prio >= vpmr) {
258 /* Priority mask masks this interrupt */
259 return false;
260 }
261
262 rprio = ich_highest_active_virt_prio(cs);
263 if (rprio == 0xff) {
264 /* No running interrupt so we can preempt */
265 return true;
266 }
267
268 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
269
270 mask = icv_gprio_mask(cs, grp);
271
272 /* We only preempt a running interrupt if the pending interrupt's
273 * group priority is sufficient (the subpriorities are not considered).
274 */
275 if ((prio & mask) < (rprio & mask)) {
276 return true;
277 }
278
279 return false;
280 }
281
282 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
283 uint32_t *misr)
284 {
285 /* Return a set of bits indicating the EOI maintenance interrupt status
286 * for each list register. The EOI maintenance interrupt status is
287 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
288 * (see the GICv3 spec for the ICH_EISR_EL2 register).
289 * If misr is not NULL then we should also collect the information
290 * about the MISR.EOI, MISR.NP and MISR.U bits.
291 */
292 uint32_t value = 0;
293 int validcount = 0;
294 bool seenpending = false;
295 int i;
296
297 for (i = 0; i < cs->num_list_regs; i++) {
298 uint64_t lr = cs->ich_lr_el2[i];
299
300 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
301 == ICH_LR_EL2_EOI) {
302 value |= (1 << i);
303 }
304 if ((lr & ICH_LR_EL2_STATE_MASK)) {
305 validcount++;
306 }
307 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
308 seenpending = true;
309 }
310 }
311
312 if (misr) {
313 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
314 *misr |= ICH_MISR_EL2_U;
315 }
316 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
317 *misr |= ICH_MISR_EL2_NP;
318 }
319 if (value) {
320 *misr |= ICH_MISR_EL2_EOI;
321 }
322 }
323 return value;
324 }
325
326 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
327 {
328 /* Return a set of bits indicating the maintenance interrupt status
329 * (as seen in the ICH_MISR_EL2 register).
330 */
331 uint32_t value = 0;
332
333 /* Scan list registers and fill in the U, NP and EOI bits */
334 eoi_maintenance_interrupt_state(cs, &value);
335
336 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) {
337 value |= ICH_MISR_EL2_LRENP;
338 }
339
340 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
341 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
342 value |= ICH_MISR_EL2_VGRP0E;
343 }
344
345 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
346 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
347 value |= ICH_MISR_EL2_VGRP0D;
348 }
349 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
350 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
351 value |= ICH_MISR_EL2_VGRP1E;
352 }
353
354 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
355 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
356 value |= ICH_MISR_EL2_VGRP1D;
357 }
358
359 return value;
360 }
361
362 static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
363 {
364 /* Tell the CPU about any pending virtual interrupts or
365 * maintenance interrupts, following a change to the state
366 * of the CPU interface relevant to virtual interrupts.
367 *
368 * CAUTION: this function will call qemu_set_irq() on the
369 * CPU maintenance IRQ line, which is typically wired up
370 * to the GIC as a per-CPU interrupt. This means that it
371 * will recursively call back into the GIC code via
372 * gicv3_redist_set_irq() and thus into the CPU interface code's
373 * gicv3_cpuif_update(). It is therefore important that this
374 * function is only called as the final action of a CPU interface
375 * register write implementation, after all the GIC state
376 * fields have been updated. gicv3_cpuif_update() also must
377 * not cause this function to be called, but that happens
378 * naturally as a result of there being no architectural
379 * linkage between the physical and virtual GIC logic.
380 */
381 int idx;
382 int irqlevel = 0;
383 int fiqlevel = 0;
384 int maintlevel = 0;
385
386 idx = hppvi_index(cs);
387 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
388 if (idx >= 0) {
389 uint64_t lr = cs->ich_lr_el2[idx];
390
391 if (icv_hppi_can_preempt(cs, lr)) {
392 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
393 if (lr & ICH_LR_EL2_GROUP) {
394 irqlevel = 1;
395 } else {
396 fiqlevel = 1;
397 }
398 }
399 }
400
401 if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) {
402 maintlevel = maintenance_interrupt_state(cs);
403 }
404
405 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel,
406 irqlevel, maintlevel);
407
408 qemu_set_irq(cs->parent_vfiq, fiqlevel);
409 qemu_set_irq(cs->parent_virq, irqlevel);
410 qemu_set_irq(cs->maintenance_irq, maintlevel);
411 }
412
413 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
414 {
415 GICv3CPUState *cs = icc_cs_from_env(env);
416 int regno = ri->opc2 & 3;
417 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
418 uint64_t value = cs->ich_apr[grp][regno];
419
420 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
421 return value;
422 }
423
424 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
425 uint64_t value)
426 {
427 GICv3CPUState *cs = icc_cs_from_env(env);
428 int regno = ri->opc2 & 3;
429 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
430
431 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
432
433 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
434
435 gicv3_cpuif_virt_update(cs);
436 return;
437 }
438
439 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
440 {
441 GICv3CPUState *cs = icc_cs_from_env(env);
442 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
443 uint64_t bpr;
444 bool satinc = false;
445
446 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
447 /* reads return bpr0 + 1 saturated to 7, writes ignored */
448 grp = GICV3_G0;
449 satinc = true;
450 }
451
452 bpr = read_vbpr(cs, grp);
453
454 if (satinc) {
455 bpr++;
456 bpr = MIN(bpr, 7);
457 }
458
459 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
460
461 return bpr;
462 }
463
464 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
465 uint64_t value)
466 {
467 GICv3CPUState *cs = icc_cs_from_env(env);
468 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
469
470 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
471 gicv3_redist_affid(cs), value);
472
473 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
474 /* reads return bpr0 + 1 saturated to 7, writes ignored */
475 return;
476 }
477
478 write_vbpr(cs, grp, value);
479
480 gicv3_cpuif_virt_update(cs);
481 }
482
483 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
484 {
485 GICv3CPUState *cs = icc_cs_from_env(env);
486 uint64_t value;
487
488 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
489 ICH_VMCR_EL2_VPMR_LENGTH);
490
491 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
492 return value;
493 }
494
495 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
496 uint64_t value)
497 {
498 GICv3CPUState *cs = icc_cs_from_env(env);
499
500 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
501
502 value &= icv_fullprio_mask(cs);
503
504 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
505 ICH_VMCR_EL2_VPMR_LENGTH, value);
506
507 gicv3_cpuif_virt_update(cs);
508 }
509
510 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
511 {
512 GICv3CPUState *cs = icc_cs_from_env(env);
513 int enbit;
514 uint64_t value;
515
516 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
517 value = extract64(cs->ich_vmcr_el2, enbit, 1);
518
519 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
520 gicv3_redist_affid(cs), value);
521 return value;
522 }
523
524 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
525 uint64_t value)
526 {
527 GICv3CPUState *cs = icc_cs_from_env(env);
528 int enbit;
529
530 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
531 gicv3_redist_affid(cs), value);
532
533 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
534
535 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
536 gicv3_cpuif_virt_update(cs);
537 }
538
539 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
540 {
541 GICv3CPUState *cs = icc_cs_from_env(env);
542 uint64_t value;
543
544 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
545 * should match the ones reported in ich_vtr_read().
546 */
547 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
548 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
549
550 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
551 value |= ICC_CTLR_EL1_EOIMODE;
552 }
553
554 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
555 value |= ICC_CTLR_EL1_CBPR;
556 }
557
558 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
559 return value;
560 }
561
562 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
563 uint64_t value)
564 {
565 GICv3CPUState *cs = icc_cs_from_env(env);
566
567 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
568
569 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
570 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
571 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
572 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
573
574 gicv3_cpuif_virt_update(cs);
575 }
576
577 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
578 {
579 GICv3CPUState *cs = icc_cs_from_env(env);
580 int prio = ich_highest_active_virt_prio(cs);
581
582 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
583 return prio;
584 }
585
586 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
587 {
588 GICv3CPUState *cs = icc_cs_from_env(env);
589 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
590 int idx = hppvi_index(cs);
591 uint64_t value = INTID_SPURIOUS;
592
593 if (idx >= 0) {
594 uint64_t lr = cs->ich_lr_el2[idx];
595 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
596
597 if (grp == thisgrp) {
598 value = ich_lr_vintid(lr);
599 }
600 }
601
602 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
603 return value;
604 }
605
606 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
607 {
608 /* Activate the interrupt in the specified list register
609 * by moving it from Pending to Active state, and update the
610 * Active Priority Registers.
611 */
612 uint32_t mask = icv_gprio_mask(cs, grp);
613 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
614 int aprbit = prio >> (8 - cs->vprebits);
615 int regno = aprbit / 32;
616 int regbit = aprbit % 32;
617
618 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
619 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
620 cs->ich_apr[grp][regno] |= (1 << regbit);
621 }
622
623 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
624 {
625 GICv3CPUState *cs = icc_cs_from_env(env);
626 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
627 int idx = hppvi_index(cs);
628 uint64_t intid = INTID_SPURIOUS;
629
630 if (idx >= 0) {
631 uint64_t lr = cs->ich_lr_el2[idx];
632 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
633
634 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
635 intid = ich_lr_vintid(lr);
636 if (intid < INTID_SECURE) {
637 icv_activate_irq(cs, idx, grp);
638 } else {
639 /* Interrupt goes from Pending to Invalid */
640 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
641 /* We will now return the (bogus) ID from the list register,
642 * as per the pseudocode.
643 */
644 }
645 }
646 }
647
648 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
649 gicv3_redist_affid(cs), intid);
650 return intid;
651 }
652
653 static int icc_highest_active_prio(GICv3CPUState *cs)
654 {
655 /* Calculate the current running priority based on the set bits
656 * in the Active Priority Registers.
657 */
658 int i;
659
660 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
661 uint32_t apr = cs->icc_apr[GICV3_G0][i] |
662 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
663
664 if (!apr) {
665 continue;
666 }
667 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
668 }
669 /* No current active interrupts: return idle priority */
670 return 0xff;
671 }
672
673 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
674 {
675 /* Return a mask word which clears the subpriority bits from
676 * a priority value for an interrupt in the specified group.
677 * This depends on the BPR value:
678 * a BPR of 0 means the group priority bits are [7:1];
679 * a BPR of 1 means they are [7:2], and so on down to
680 * a BPR of 7 meaning no group priority bits at all.
681 * Which BPR to use depends on the group of the interrupt and
682 * the current ICC_CTLR.CBPR settings.
683 */
684 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
685 (group == GICV3_G1NS &&
686 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
687 group = GICV3_G0;
688 }
689
690 return ~0U << ((cs->icc_bpr[group] & 7) + 1);
691 }
692
693 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
694 {
695 /* Return true if there is no pending interrupt, or the
696 * highest priority pending interrupt is in a group which has been
697 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
698 */
699 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
700 }
701
702 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
703 {
704 /* Return true if we have a pending interrupt of sufficient
705 * priority to preempt.
706 */
707 int rprio;
708 uint32_t mask;
709
710 if (icc_no_enabled_hppi(cs)) {
711 return false;
712 }
713
714 if (cs->hppi.prio >= cs->icc_pmr_el1) {
715 /* Priority mask masks this interrupt */
716 return false;
717 }
718
719 rprio = icc_highest_active_prio(cs);
720 if (rprio == 0xff) {
721 /* No currently running interrupt so we can preempt */
722 return true;
723 }
724
725 mask = icc_gprio_mask(cs, cs->hppi.grp);
726
727 /* We only preempt a running interrupt if the pending interrupt's
728 * group priority is sufficient (the subpriorities are not considered).
729 */
730 if ((cs->hppi.prio & mask) < (rprio & mask)) {
731 return true;
732 }
733
734 return false;
735 }
736
737 void gicv3_cpuif_update(GICv3CPUState *cs)
738 {
739 /* Tell the CPU about its highest priority pending interrupt */
740 int irqlevel = 0;
741 int fiqlevel = 0;
742 ARMCPU *cpu = ARM_CPU(cs->cpu);
743 CPUARMState *env = &cpu->env;
744
745 g_assert(qemu_mutex_iothread_locked());
746
747 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
748 cs->hppi.grp, cs->hppi.prio);
749
750 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
751 /* If a Security-enabled GIC sends a G1S interrupt to a
752 * Security-disabled CPU, we must treat it as if it were G0.
753 */
754 cs->hppi.grp = GICV3_G0;
755 }
756
757 if (icc_hppi_can_preempt(cs)) {
758 /* We have an interrupt: should we signal it as IRQ or FIQ?
759 * This is described in the GICv3 spec section 4.6.2.
760 */
761 bool isfiq;
762
763 switch (cs->hppi.grp) {
764 case GICV3_G0:
765 isfiq = true;
766 break;
767 case GICV3_G1:
768 isfiq = (!arm_is_secure(env) ||
769 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
770 break;
771 case GICV3_G1NS:
772 isfiq = arm_is_secure(env);
773 break;
774 default:
775 g_assert_not_reached();
776 }
777
778 if (isfiq) {
779 fiqlevel = 1;
780 } else {
781 irqlevel = 1;
782 }
783 }
784
785 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
786
787 qemu_set_irq(cs->parent_fiq, fiqlevel);
788 qemu_set_irq(cs->parent_irq, irqlevel);
789 }
790
791 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
792 {
793 GICv3CPUState *cs = icc_cs_from_env(env);
794 uint32_t value = cs->icc_pmr_el1;
795
796 if (icv_access(env, HCR_FMO | HCR_IMO)) {
797 return icv_pmr_read(env, ri);
798 }
799
800 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
801 (env->cp15.scr_el3 & SCR_FIQ)) {
802 /* NS access and Group 0 is inaccessible to NS: return the
803 * NS view of the current priority
804 */
805 if (value & 0x80) {
806 /* Secure priorities not visible to NS */
807 value = 0;
808 } else if (value != 0xff) {
809 value = (value << 1) & 0xff;
810 }
811 }
812
813 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
814
815 return value;
816 }
817
818 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
819 uint64_t value)
820 {
821 GICv3CPUState *cs = icc_cs_from_env(env);
822
823 if (icv_access(env, HCR_FMO | HCR_IMO)) {
824 return icv_pmr_write(env, ri, value);
825 }
826
827 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
828
829 value &= 0xff;
830
831 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
832 (env->cp15.scr_el3 & SCR_FIQ)) {
833 /* NS access and Group 0 is inaccessible to NS: return the
834 * NS view of the current priority
835 */
836 if (!(cs->icc_pmr_el1 & 0x80)) {
837 /* Current PMR in the secure range, don't allow NS to change it */
838 return;
839 }
840 value = (value >> 1) & 0x80;
841 }
842 cs->icc_pmr_el1 = value;
843 gicv3_cpuif_update(cs);
844 }
845
846 static void icc_activate_irq(GICv3CPUState *cs, int irq)
847 {
848 /* Move the interrupt from the Pending state to Active, and update
849 * the Active Priority Registers
850 */
851 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
852 int prio = cs->hppi.prio & mask;
853 int aprbit = prio >> 1;
854 int regno = aprbit / 32;
855 int regbit = aprbit % 32;
856
857 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
858
859 if (irq < GIC_INTERNAL) {
860 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
861 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
862 gicv3_redist_update(cs);
863 } else {
864 gicv3_gicd_active_set(cs->gic, irq);
865 gicv3_gicd_pending_clear(cs->gic, irq);
866 gicv3_update(cs->gic, irq, 1);
867 }
868 }
869
870 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
871 {
872 /* Return the highest priority pending interrupt register value
873 * for group 0.
874 */
875 bool irq_is_secure;
876
877 if (cs->hppi.prio == 0xff) {
878 return INTID_SPURIOUS;
879 }
880
881 /* Check whether we can return the interrupt or if we should return
882 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
883 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
884 * is always zero.)
885 */
886 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
887 (cs->hppi.grp != GICV3_G1NS));
888
889 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
890 return INTID_SPURIOUS;
891 }
892 if (irq_is_secure && !arm_is_secure(env)) {
893 /* Secure interrupts not visible to Nonsecure */
894 return INTID_SPURIOUS;
895 }
896
897 if (cs->hppi.grp != GICV3_G0) {
898 /* Indicate to EL3 that there's a Group 1 interrupt for the other
899 * state pending.
900 */
901 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
902 }
903
904 return cs->hppi.irq;
905 }
906
907 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
908 {
909 /* Return the highest priority pending interrupt register value
910 * for group 1.
911 */
912 bool irq_is_secure;
913
914 if (cs->hppi.prio == 0xff) {
915 return INTID_SPURIOUS;
916 }
917
918 /* Check whether we can return the interrupt or if we should return
919 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
920 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
921 * is always zero.)
922 */
923 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
924 (cs->hppi.grp != GICV3_G1NS));
925
926 if (cs->hppi.grp == GICV3_G0) {
927 /* Group 0 interrupts not visible via HPPIR1 */
928 return INTID_SPURIOUS;
929 }
930 if (irq_is_secure) {
931 if (!arm_is_secure(env)) {
932 /* Secure interrupts not visible in Non-secure */
933 return INTID_SPURIOUS;
934 }
935 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
936 /* Group 1 non-secure interrupts not visible in Secure EL1 */
937 return INTID_SPURIOUS;
938 }
939
940 return cs->hppi.irq;
941 }
942
943 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
944 {
945 GICv3CPUState *cs = icc_cs_from_env(env);
946 uint64_t intid;
947
948 if (icv_access(env, HCR_FMO)) {
949 return icv_iar_read(env, ri);
950 }
951
952 if (!icc_hppi_can_preempt(cs)) {
953 intid = INTID_SPURIOUS;
954 } else {
955 intid = icc_hppir0_value(cs, env);
956 }
957
958 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
959 icc_activate_irq(cs, intid);
960 }
961
962 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
963 return intid;
964 }
965
966 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
967 {
968 GICv3CPUState *cs = icc_cs_from_env(env);
969 uint64_t intid;
970
971 if (icv_access(env, HCR_IMO)) {
972 return icv_iar_read(env, ri);
973 }
974
975 if (!icc_hppi_can_preempt(cs)) {
976 intid = INTID_SPURIOUS;
977 } else {
978 intid = icc_hppir1_value(cs, env);
979 }
980
981 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
982 icc_activate_irq(cs, intid);
983 }
984
985 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
986 return intid;
987 }
988
989 static void icc_drop_prio(GICv3CPUState *cs, int grp)
990 {
991 /* Drop the priority of the currently active interrupt in
992 * the specified group.
993 *
994 * Note that we can guarantee (because of the requirement to nest
995 * ICC_IAR reads [which activate an interrupt and raise priority]
996 * with ICC_EOIR writes [which drop the priority for the interrupt])
997 * that the interrupt we're being called for is the highest priority
998 * active interrupt, meaning that it has the lowest set bit in the
999 * APR registers.
1000 *
1001 * If the guest does not honour the ordering constraints then the
1002 * behaviour of the GIC is UNPREDICTABLE, which for us means that
1003 * the values of the APR registers might become incorrect and the
1004 * running priority will be wrong, so interrupts that should preempt
1005 * might not do so, and interrupts that should not preempt might do so.
1006 */
1007 int i;
1008
1009 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
1010 uint64_t *papr = &cs->icc_apr[grp][i];
1011
1012 if (!*papr) {
1013 continue;
1014 }
1015 /* Clear the lowest set bit */
1016 *papr &= *papr - 1;
1017 break;
1018 }
1019
1020 /* running priority change means we need an update for this cpu i/f */
1021 gicv3_cpuif_update(cs);
1022 }
1023
1024 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1025 {
1026 /* Return true if we should split priority drop and interrupt
1027 * deactivation, ie whether the relevant EOIMode bit is set.
1028 */
1029 if (arm_is_el3_or_mon(env)) {
1030 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1031 }
1032 if (arm_is_secure_below_el3(env)) {
1033 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1034 } else {
1035 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1036 }
1037 }
1038
1039 static int icc_highest_active_group(GICv3CPUState *cs)
1040 {
1041 /* Return the group with the highest priority active interrupt.
1042 * We can do this by just comparing the APRs to see which one
1043 * has the lowest set bit.
1044 * (If more than one group is active at the same priority then
1045 * we're in UNPREDICTABLE territory.)
1046 */
1047 int i;
1048
1049 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1050 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1051 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1052 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1053
1054 if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1055 return GICV3_G1NS;
1056 }
1057 if (g1ctz < g0ctz) {
1058 return GICV3_G1;
1059 }
1060 if (g0ctz < 32) {
1061 return GICV3_G0;
1062 }
1063 }
1064 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1065 * ignores the spurious EOI attempt.
1066 */
1067 return -1;
1068 }
1069
1070 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1071 {
1072 if (irq < GIC_INTERNAL) {
1073 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1074 gicv3_redist_update(cs);
1075 } else {
1076 gicv3_gicd_active_clear(cs->gic, irq);
1077 gicv3_update(cs->gic, irq, 1);
1078 }
1079 }
1080
1081 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1082 {
1083 /* Return true if we should split priority drop and interrupt
1084 * deactivation, ie whether the virtual EOIMode bit is set.
1085 */
1086 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1087 }
1088
1089 static int icv_find_active(GICv3CPUState *cs, int irq)
1090 {
1091 /* Given an interrupt number for an active interrupt, return the index
1092 * of the corresponding list register, or -1 if there is no match.
1093 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1094 */
1095 int i;
1096
1097 for (i = 0; i < cs->num_list_regs; i++) {
1098 uint64_t lr = cs->ich_lr_el2[i];
1099
1100 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1101 return i;
1102 }
1103 }
1104
1105 return -1;
1106 }
1107
1108 static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1109 {
1110 /* Deactivate the interrupt in the specified list register index */
1111 uint64_t lr = cs->ich_lr_el2[idx];
1112
1113 if (lr & ICH_LR_EL2_HW) {
1114 /* Deactivate the associated physical interrupt */
1115 int pirq = ich_lr_pintid(lr);
1116
1117 if (pirq < INTID_SECURE) {
1118 icc_deactivate_irq(cs, pirq);
1119 }
1120 }
1121
1122 /* Clear the 'active' part of the state, so ActivePending->Pending
1123 * and Active->Invalid.
1124 */
1125 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1126 cs->ich_lr_el2[idx] = lr;
1127 }
1128
1129 static void icv_increment_eoicount(GICv3CPUState *cs)
1130 {
1131 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1132 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1133 ICH_HCR_EL2_EOICOUNT_LENGTH);
1134
1135 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1136 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1137 }
1138
1139 static int icv_drop_prio(GICv3CPUState *cs)
1140 {
1141 /* Drop the priority of the currently active virtual interrupt
1142 * (favouring group 0 if there is a set active bit at
1143 * the same priority for both group 0 and group 1).
1144 * Return the priority value for the bit we just cleared,
1145 * or 0xff if no bits were set in the AP registers at all.
1146 * Note that though the ich_apr[] are uint64_t only the low
1147 * 32 bits are actually relevant.
1148 */
1149 int i;
1150 int aprmax = 1 << (cs->vprebits - 5);
1151
1152 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
1153
1154 for (i = 0; i < aprmax; i++) {
1155 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1156 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1157 int apr0count, apr1count;
1158
1159 if (!*papr0 && !*papr1) {
1160 continue;
1161 }
1162
1163 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1164 * because we need to return the bit number we cleared so
1165 * it can be compared against the list register's priority field.
1166 */
1167 apr0count = ctz32(*papr0);
1168 apr1count = ctz32(*papr1);
1169
1170 if (apr0count <= apr1count) {
1171 *papr0 &= *papr0 - 1;
1172 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1173 } else {
1174 *papr1 &= *papr1 - 1;
1175 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1176 }
1177 }
1178 return 0xff;
1179 }
1180
1181 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1182 uint64_t value)
1183 {
1184 /* Deactivate interrupt */
1185 GICv3CPUState *cs = icc_cs_from_env(env);
1186 int idx;
1187 int irq = value & 0xffffff;
1188
1189 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1190
1191 if (irq >= cs->gic->num_irq) {
1192 /* Also catches special interrupt numbers and LPIs */
1193 return;
1194 }
1195
1196 if (!icv_eoi_split(env, cs)) {
1197 return;
1198 }
1199
1200 idx = icv_find_active(cs, irq);
1201
1202 if (idx < 0) {
1203 /* No list register matching this, so increment the EOI count
1204 * (might trigger a maintenance interrupt)
1205 */
1206 icv_increment_eoicount(cs);
1207 } else {
1208 icv_deactivate_irq(cs, idx);
1209 }
1210
1211 gicv3_cpuif_virt_update(cs);
1212 }
1213
1214 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1215 uint64_t value)
1216 {
1217 /* End of Interrupt */
1218 GICv3CPUState *cs = icc_cs_from_env(env);
1219 int irq = value & 0xffffff;
1220 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1221 int idx, dropprio;
1222
1223 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1224 gicv3_redist_affid(cs), value);
1225
1226 if (irq >= cs->gic->num_irq) {
1227 /* Also catches special interrupt numbers and LPIs */
1228 return;
1229 }
1230
1231 /* We implement the IMPDEF choice of "drop priority before doing
1232 * error checks" (because that lets us avoid scanning the AP
1233 * registers twice).
1234 */
1235 dropprio = icv_drop_prio(cs);
1236 if (dropprio == 0xff) {
1237 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1238 * whether the list registers are checked in this
1239 * situation; we choose not to.
1240 */
1241 return;
1242 }
1243
1244 idx = icv_find_active(cs, irq);
1245
1246 if (idx < 0) {
1247 /* No valid list register corresponding to EOI ID */
1248 icv_increment_eoicount(cs);
1249 } else {
1250 uint64_t lr = cs->ich_lr_el2[idx];
1251 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1252 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1253
1254 if (thisgrp == grp && lr_gprio == dropprio) {
1255 if (!icv_eoi_split(env, cs)) {
1256 /* Priority drop and deactivate not split: deactivate irq now */
1257 icv_deactivate_irq(cs, idx);
1258 }
1259 }
1260 }
1261
1262 gicv3_cpuif_virt_update(cs);
1263 }
1264
1265 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1266 uint64_t value)
1267 {
1268 /* End of Interrupt */
1269 GICv3CPUState *cs = icc_cs_from_env(env);
1270 int irq = value & 0xffffff;
1271 int grp;
1272
1273 if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) {
1274 icv_eoir_write(env, ri, value);
1275 return;
1276 }
1277
1278 trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1,
1279 gicv3_redist_affid(cs), value);
1280
1281 if (ri->crm == 8) {
1282 /* EOIR0 */
1283 grp = GICV3_G0;
1284 } else {
1285 /* EOIR1 */
1286 if (arm_is_secure(env)) {
1287 grp = GICV3_G1;
1288 } else {
1289 grp = GICV3_G1NS;
1290 }
1291 }
1292
1293 if (irq >= cs->gic->num_irq) {
1294 /* This handles two cases:
1295 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1296 * to the GICC_EOIR, the GIC ignores that write.
1297 * 2. If software writes the number of a non-existent interrupt
1298 * this must be a subcase of "value written does not match the last
1299 * valid interrupt value read from the Interrupt Acknowledge
1300 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1301 */
1302 return;
1303 }
1304
1305 if (icc_highest_active_group(cs) != grp) {
1306 return;
1307 }
1308
1309 icc_drop_prio(cs, grp);
1310
1311 if (!icc_eoi_split(env, cs)) {
1312 /* Priority drop and deactivate not split: deactivate irq now */
1313 icc_deactivate_irq(cs, irq);
1314 }
1315 }
1316
1317 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1318 {
1319 GICv3CPUState *cs = icc_cs_from_env(env);
1320 uint64_t value;
1321
1322 if (icv_access(env, HCR_FMO)) {
1323 return icv_hppir_read(env, ri);
1324 }
1325
1326 value = icc_hppir0_value(cs, env);
1327 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1328 return value;
1329 }
1330
1331 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1332 {
1333 GICv3CPUState *cs = icc_cs_from_env(env);
1334 uint64_t value;
1335
1336 if (icv_access(env, HCR_IMO)) {
1337 return icv_hppir_read(env, ri);
1338 }
1339
1340 value = icc_hppir1_value(cs, env);
1341 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1342 return value;
1343 }
1344
1345 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1346 {
1347 GICv3CPUState *cs = icc_cs_from_env(env);
1348 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1349 bool satinc = false;
1350 uint64_t bpr;
1351
1352 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1353 return icv_bpr_read(env, ri);
1354 }
1355
1356 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1357 grp = GICV3_G1NS;
1358 }
1359
1360 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1361 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1362 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1363 * modify BPR0
1364 */
1365 grp = GICV3_G0;
1366 }
1367
1368 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1369 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1370 /* reads return bpr0 + 1 sat to 7, writes ignored */
1371 grp = GICV3_G0;
1372 satinc = true;
1373 }
1374
1375 bpr = cs->icc_bpr[grp];
1376 if (satinc) {
1377 bpr++;
1378 bpr = MIN(bpr, 7);
1379 }
1380
1381 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1382
1383 return bpr;
1384 }
1385
1386 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1387 uint64_t value)
1388 {
1389 GICv3CPUState *cs = icc_cs_from_env(env);
1390 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1391 uint64_t minval;
1392
1393 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1394 icv_bpr_write(env, ri, value);
1395 return;
1396 }
1397
1398 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1399 gicv3_redist_affid(cs), value);
1400
1401 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1402 grp = GICV3_G1NS;
1403 }
1404
1405 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1406 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1407 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1408 * modify BPR0
1409 */
1410 grp = GICV3_G0;
1411 }
1412
1413 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1414 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1415 /* reads return bpr0 + 1 sat to 7, writes ignored */
1416 return;
1417 }
1418
1419 minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR;
1420 if (value < minval) {
1421 value = minval;
1422 }
1423
1424 cs->icc_bpr[grp] = value & 7;
1425 gicv3_cpuif_update(cs);
1426 }
1427
1428 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1429 {
1430 GICv3CPUState *cs = icc_cs_from_env(env);
1431 uint64_t value;
1432
1433 int regno = ri->opc2 & 3;
1434 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
1435
1436 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1437 return icv_ap_read(env, ri);
1438 }
1439
1440 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1441 grp = GICV3_G1NS;
1442 }
1443
1444 value = cs->icc_apr[grp][regno];
1445
1446 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1447 return value;
1448 }
1449
1450 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1451 uint64_t value)
1452 {
1453 GICv3CPUState *cs = icc_cs_from_env(env);
1454
1455 int regno = ri->opc2 & 3;
1456 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;
1457
1458 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1459 icv_ap_write(env, ri, value);
1460 return;
1461 }
1462
1463 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1464
1465 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1466 grp = GICV3_G1NS;
1467 }
1468
1469 /* It's not possible to claim that a Non-secure interrupt is active
1470 * at a priority outside the Non-secure range (128..255), since this
1471 * would otherwise allow malicious NS code to block delivery of S interrupts
1472 * by writing a bad value to these registers.
1473 */
1474 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1475 return;
1476 }
1477
1478 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1479 gicv3_cpuif_update(cs);
1480 }
1481
1482 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1483 uint64_t value)
1484 {
1485 /* Deactivate interrupt */
1486 GICv3CPUState *cs = icc_cs_from_env(env);
1487 int irq = value & 0xffffff;
1488 bool irq_is_secure, single_sec_state, irq_is_grp0;
1489 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1490
1491 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1492 icv_dir_write(env, ri, value);
1493 return;
1494 }
1495
1496 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1497
1498 if (irq >= cs->gic->num_irq) {
1499 /* Also catches special interrupt numbers and LPIs */
1500 return;
1501 }
1502
1503 if (!icc_eoi_split(env, cs)) {
1504 return;
1505 }
1506
1507 int grp = gicv3_irq_group(cs->gic, cs, irq);
1508
1509 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1510 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1511 irq_is_grp0 = grp == GICV3_G0;
1512
1513 /* Check whether we're allowed to deactivate this interrupt based
1514 * on its group and the current CPU state.
1515 * These checks are laid out to correspond to the spec's pseudocode.
1516 */
1517 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1518 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1519 /* No need to include !IsSecure in route_*_to_el2 as it's only
1520 * tested in cases where we know !IsSecure is true.
1521 */
1522 route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
1523 route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
1524
1525 switch (arm_current_el(env)) {
1526 case 3:
1527 break;
1528 case 2:
1529 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1530 break;
1531 }
1532 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1533 break;
1534 }
1535 return;
1536 case 1:
1537 if (!arm_is_secure_below_el3(env)) {
1538 if (single_sec_state && irq_is_grp0 &&
1539 !route_fiq_to_el3 && !route_fiq_to_el2) {
1540 break;
1541 }
1542 if (!irq_is_secure && !irq_is_grp0 &&
1543 !route_irq_to_el3 && !route_irq_to_el2) {
1544 break;
1545 }
1546 } else {
1547 if (irq_is_grp0 && !route_fiq_to_el3) {
1548 break;
1549 }
1550 if (!irq_is_grp0 &&
1551 (!irq_is_secure || !single_sec_state) &&
1552 !route_irq_to_el3) {
1553 break;
1554 }
1555 }
1556 return;
1557 default:
1558 g_assert_not_reached();
1559 }
1560
1561 icc_deactivate_irq(cs, irq);
1562 }
1563
1564 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1565 {
1566 GICv3CPUState *cs = icc_cs_from_env(env);
1567 int prio;
1568
1569 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1570 return icv_rpr_read(env, ri);
1571 }
1572
1573 prio = icc_highest_active_prio(cs);
1574
1575 if (arm_feature(env, ARM_FEATURE_EL3) &&
1576 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1577 /* NS GIC access and Group 0 is inaccessible to NS */
1578 if (prio & 0x80) {
1579 /* NS mustn't see priorities in the Secure half of the range */
1580 prio = 0;
1581 } else if (prio != 0xff) {
1582 /* Non-idle priority: show the Non-secure view of it */
1583 prio = (prio << 1) & 0xff;
1584 }
1585 }
1586
1587 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1588 return prio;
1589 }
1590
1591 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1592 uint64_t value, int grp, bool ns)
1593 {
1594 GICv3State *s = cs->gic;
1595
1596 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1597 uint64_t aff = extract64(value, 48, 8) << 16 |
1598 extract64(value, 32, 8) << 8 |
1599 extract64(value, 16, 8);
1600 uint32_t targetlist = extract64(value, 0, 16);
1601 uint32_t irq = extract64(value, 24, 4);
1602 bool irm = extract64(value, 40, 1);
1603 int i;
1604
1605 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1606 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1607 * interrupts as Group 0 interrupts and must send Secure Group 0
1608 * interrupts to the target CPUs.
1609 */
1610 grp = GICV3_G0;
1611 }
1612
1613 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1614 aff, targetlist);
1615
1616 for (i = 0; i < s->num_cpu; i++) {
1617 GICv3CPUState *ocs = &s->cpu[i];
1618
1619 if (irm) {
1620 /* IRM == 1 : route to all CPUs except self */
1621 if (cs == ocs) {
1622 continue;
1623 }
1624 } else {
1625 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1626 * where the corresponding bit is set in targetlist
1627 */
1628 int aff0;
1629
1630 if (ocs->gicr_typer >> 40 != aff) {
1631 continue;
1632 }
1633 aff0 = extract64(ocs->gicr_typer, 32, 8);
1634 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1635 continue;
1636 }
1637 }
1638
1639 /* The redistributor will check against its own GICR_NSACR as needed */
1640 gicv3_redist_send_sgi(ocs, grp, irq, ns);
1641 }
1642 }
1643
1644 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1645 uint64_t value)
1646 {
1647 /* Generate Secure Group 0 SGI. */
1648 GICv3CPUState *cs = icc_cs_from_env(env);
1649 bool ns = !arm_is_secure(env);
1650
1651 icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1652 }
1653
1654 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1655 uint64_t value)
1656 {
1657 /* Generate Group 1 SGI for the current Security state */
1658 GICv3CPUState *cs = icc_cs_from_env(env);
1659 int grp;
1660 bool ns = !arm_is_secure(env);
1661
1662 grp = ns ? GICV3_G1NS : GICV3_G1;
1663 icc_generate_sgi(env, cs, value, grp, ns);
1664 }
1665
1666 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1667 uint64_t value)
1668 {
1669 /* Generate Group 1 SGI for the Security state that is not
1670 * the current state
1671 */
1672 GICv3CPUState *cs = icc_cs_from_env(env);
1673 int grp;
1674 bool ns = !arm_is_secure(env);
1675
1676 grp = ns ? GICV3_G1 : GICV3_G1NS;
1677 icc_generate_sgi(env, cs, value, grp, ns);
1678 }
1679
1680 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1681 {
1682 GICv3CPUState *cs = icc_cs_from_env(env);
1683 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1684 uint64_t value;
1685
1686 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1687 return icv_igrpen_read(env, ri);
1688 }
1689
1690 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1691 grp = GICV3_G1NS;
1692 }
1693
1694 value = cs->icc_igrpen[grp];
1695 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1696 gicv3_redist_affid(cs), value);
1697 return value;
1698 }
1699
1700 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1701 uint64_t value)
1702 {
1703 GICv3CPUState *cs = icc_cs_from_env(env);
1704 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1705
1706 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1707 icv_igrpen_write(env, ri, value);
1708 return;
1709 }
1710
1711 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1712 gicv3_redist_affid(cs), value);
1713
1714 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1715 grp = GICV3_G1NS;
1716 }
1717
1718 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1719 gicv3_cpuif_update(cs);
1720 }
1721
1722 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1723 {
1724 GICv3CPUState *cs = icc_cs_from_env(env);
1725 uint64_t value;
1726
1727 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1728 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1729 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1730 return value;
1731 }
1732
1733 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734 uint64_t value)
1735 {
1736 GICv3CPUState *cs = icc_cs_from_env(env);
1737
1738 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1739
1740 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1741 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1742 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1743 gicv3_cpuif_update(cs);
1744 }
1745
1746 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1747 {
1748 GICv3CPUState *cs = icc_cs_from_env(env);
1749 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1750 uint64_t value;
1751
1752 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1753 return icv_ctlr_read(env, ri);
1754 }
1755
1756 value = cs->icc_ctlr_el1[bank];
1757 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1758 return value;
1759 }
1760
1761 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1762 uint64_t value)
1763 {
1764 GICv3CPUState *cs = icc_cs_from_env(env);
1765 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1766 uint64_t mask;
1767
1768 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1769 icv_ctlr_write(env, ri, value);
1770 return;
1771 }
1772
1773 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1774
1775 /* Only CBPR and EOIMODE can be RW;
1776 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1777 * the asseciated priority-based routing of them);
1778 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1779 */
1780 if (arm_feature(env, ARM_FEATURE_EL3) &&
1781 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1782 mask = ICC_CTLR_EL1_EOIMODE;
1783 } else {
1784 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1785 }
1786
1787 cs->icc_ctlr_el1[bank] &= ~mask;
1788 cs->icc_ctlr_el1[bank] |= (value & mask);
1789 gicv3_cpuif_update(cs);
1790 }
1791
1792
1793 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1794 {
1795 GICv3CPUState *cs = icc_cs_from_env(env);
1796 uint64_t value;
1797
1798 value = cs->icc_ctlr_el3;
1799 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1800 value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
1801 }
1802 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1803 value |= ICC_CTLR_EL3_CBPR_EL1NS;
1804 }
1805 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1806 value |= ICC_CTLR_EL3_EOIMODE_EL1S;
1807 }
1808 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1809 value |= ICC_CTLR_EL3_CBPR_EL1S;
1810 }
1811
1812 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
1813 return value;
1814 }
1815
1816 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1817 uint64_t value)
1818 {
1819 GICv3CPUState *cs = icc_cs_from_env(env);
1820 uint64_t mask;
1821
1822 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
1823
1824 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1825 cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1826 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
1827 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
1828 }
1829 if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
1830 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
1831 }
1832
1833 cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1834 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
1835 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
1836 }
1837 if (value & ICC_CTLR_EL3_CBPR_EL1S) {
1838 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
1839 }
1840
1841 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1842 mask = ICC_CTLR_EL3_EOIMODE_EL3;
1843
1844 cs->icc_ctlr_el3 &= ~mask;
1845 cs->icc_ctlr_el3 |= (value & mask);
1846 gicv3_cpuif_update(cs);
1847 }
1848
1849 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
1850 const ARMCPRegInfo *ri, bool isread)
1851 {
1852 CPAccessResult r = CP_ACCESS_OK;
1853 GICv3CPUState *cs = icc_cs_from_env(env);
1854 int el = arm_current_el(env);
1855
1856 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
1857 el == 1 && !arm_is_secure_below_el3(env)) {
1858 /* Takes priority over a possible EL3 trap */
1859 return CP_ACCESS_TRAP_EL2;
1860 }
1861
1862 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
1863 switch (el) {
1864 case 1:
1865 if (arm_is_secure_below_el3(env) ||
1866 ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) {
1867 r = CP_ACCESS_TRAP_EL3;
1868 }
1869 break;
1870 case 2:
1871 r = CP_ACCESS_TRAP_EL3;
1872 break;
1873 case 3:
1874 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1875 r = CP_ACCESS_TRAP_EL3;
1876 }
1877 break;
1878 default:
1879 g_assert_not_reached();
1880 }
1881 }
1882
1883 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1884 r = CP_ACCESS_TRAP;
1885 }
1886 return r;
1887 }
1888
1889 static CPAccessResult gicv3_dir_access(CPUARMState *env,
1890 const ARMCPRegInfo *ri, bool isread)
1891 {
1892 GICv3CPUState *cs = icc_cs_from_env(env);
1893
1894 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
1895 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1896 /* Takes priority over a possible EL3 trap */
1897 return CP_ACCESS_TRAP_EL2;
1898 }
1899
1900 return gicv3_irqfiq_access(env, ri, isread);
1901 }
1902
1903 static CPAccessResult gicv3_sgi_access(CPUARMState *env,
1904 const ARMCPRegInfo *ri, bool isread)
1905 {
1906 if ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) &&
1907 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1908 /* Takes priority over a possible EL3 trap */
1909 return CP_ACCESS_TRAP_EL2;
1910 }
1911
1912 return gicv3_irqfiq_access(env, ri, isread);
1913 }
1914
1915 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
1916 const ARMCPRegInfo *ri, bool isread)
1917 {
1918 CPAccessResult r = CP_ACCESS_OK;
1919 GICv3CPUState *cs = icc_cs_from_env(env);
1920 int el = arm_current_el(env);
1921
1922 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
1923 el == 1 && !arm_is_secure_below_el3(env)) {
1924 /* Takes priority over a possible EL3 trap */
1925 return CP_ACCESS_TRAP_EL2;
1926 }
1927
1928 if (env->cp15.scr_el3 & SCR_FIQ) {
1929 switch (el) {
1930 case 1:
1931 if (arm_is_secure_below_el3(env) ||
1932 ((env->cp15.hcr_el2 & HCR_FMO) == 0)) {
1933 r = CP_ACCESS_TRAP_EL3;
1934 }
1935 break;
1936 case 2:
1937 r = CP_ACCESS_TRAP_EL3;
1938 break;
1939 case 3:
1940 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1941 r = CP_ACCESS_TRAP_EL3;
1942 }
1943 break;
1944 default:
1945 g_assert_not_reached();
1946 }
1947 }
1948
1949 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1950 r = CP_ACCESS_TRAP;
1951 }
1952 return r;
1953 }
1954
1955 static CPAccessResult gicv3_irq_access(CPUARMState *env,
1956 const ARMCPRegInfo *ri, bool isread)
1957 {
1958 CPAccessResult r = CP_ACCESS_OK;
1959 GICv3CPUState *cs = icc_cs_from_env(env);
1960 int el = arm_current_el(env);
1961
1962 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
1963 el == 1 && !arm_is_secure_below_el3(env)) {
1964 /* Takes priority over a possible EL3 trap */
1965 return CP_ACCESS_TRAP_EL2;
1966 }
1967
1968 if (env->cp15.scr_el3 & SCR_IRQ) {
1969 switch (el) {
1970 case 1:
1971 if (arm_is_secure_below_el3(env) ||
1972 ((env->cp15.hcr_el2 & HCR_IMO) == 0)) {
1973 r = CP_ACCESS_TRAP_EL3;
1974 }
1975 break;
1976 case 2:
1977 r = CP_ACCESS_TRAP_EL3;
1978 break;
1979 case 3:
1980 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1981 r = CP_ACCESS_TRAP_EL3;
1982 }
1983 break;
1984 default:
1985 g_assert_not_reached();
1986 }
1987 }
1988
1989 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1990 r = CP_ACCESS_TRAP;
1991 }
1992 return r;
1993 }
1994
1995 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1996 {
1997 GICv3CPUState *cs = icc_cs_from_env(env);
1998
1999 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2000 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2001 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2002 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2003 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2004 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2005 cs->icc_pmr_el1 = 0;
2006 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
2007 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
2008 if (arm_feature(env, ARM_FEATURE_EL3)) {
2009 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
2010 } else {
2011 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
2012 }
2013 memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2014 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2015 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2016 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2017 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
2018
2019 memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2020 cs->ich_hcr_el2 = 0;
2021 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2022 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2023 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2024 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2025 }
2026
2027 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2028 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2029 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2030 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2031 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2032 .readfn = icc_pmr_read,
2033 .writefn = icc_pmr_write,
2034 /* We hang the whole cpu interface reset routine off here
2035 * rather than parcelling it out into one little function
2036 * per register
2037 */
2038 .resetfn = icc_reset,
2039 },
2040 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2041 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2042 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2043 .access = PL1_R, .accessfn = gicv3_fiq_access,
2044 .readfn = icc_iar0_read,
2045 },
2046 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2047 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2048 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2049 .access = PL1_W, .accessfn = gicv3_fiq_access,
2050 .writefn = icc_eoir_write,
2051 },
2052 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2053 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2054 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2055 .access = PL1_R, .accessfn = gicv3_fiq_access,
2056 .readfn = icc_hppir0_read,
2057 },
2058 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2059 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2060 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2061 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2062 .readfn = icc_bpr_read,
2063 .writefn = icc_bpr_write,
2064 },
2065 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2066 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2067 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2068 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2069 .readfn = icc_ap_read,
2070 .writefn = icc_ap_write,
2071 },
2072 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2073 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2074 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2075 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2076 .readfn = icc_ap_read,
2077 .writefn = icc_ap_write,
2078 },
2079 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2080 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2081 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2082 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2083 .readfn = icc_ap_read,
2084 .writefn = icc_ap_write,
2085 },
2086 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2087 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2088 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2089 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2090 .readfn = icc_ap_read,
2091 .writefn = icc_ap_write,
2092 },
2093 /* All the ICC_AP1R*_EL1 registers are banked */
2094 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2095 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2096 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2097 .access = PL1_RW, .accessfn = gicv3_irq_access,
2098 .readfn = icc_ap_read,
2099 .writefn = icc_ap_write,
2100 },
2101 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2102 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2103 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2104 .access = PL1_RW, .accessfn = gicv3_irq_access,
2105 .readfn = icc_ap_read,
2106 .writefn = icc_ap_write,
2107 },
2108 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2109 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2110 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2111 .access = PL1_RW, .accessfn = gicv3_irq_access,
2112 .readfn = icc_ap_read,
2113 .writefn = icc_ap_write,
2114 },
2115 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2116 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2117 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2118 .access = PL1_RW, .accessfn = gicv3_irq_access,
2119 .readfn = icc_ap_read,
2120 .writefn = icc_ap_write,
2121 },
2122 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2123 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2124 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2125 .access = PL1_W, .accessfn = gicv3_dir_access,
2126 .writefn = icc_dir_write,
2127 },
2128 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2129 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2130 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2131 .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2132 .readfn = icc_rpr_read,
2133 },
2134 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2135 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2136 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2137 .access = PL1_W, .accessfn = gicv3_sgi_access,
2138 .writefn = icc_sgi1r_write,
2139 },
2140 { .name = "ICC_SGI1R",
2141 .cp = 15, .opc1 = 0, .crm = 12,
2142 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2143 .access = PL1_W, .accessfn = gicv3_sgi_access,
2144 .writefn = icc_sgi1r_write,
2145 },
2146 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2147 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2148 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2149 .access = PL1_W, .accessfn = gicv3_sgi_access,
2150 .writefn = icc_asgi1r_write,
2151 },
2152 { .name = "ICC_ASGI1R",
2153 .cp = 15, .opc1 = 1, .crm = 12,
2154 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2155 .access = PL1_W, .accessfn = gicv3_sgi_access,
2156 .writefn = icc_asgi1r_write,
2157 },
2158 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2159 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2160 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2161 .access = PL1_W, .accessfn = gicv3_sgi_access,
2162 .writefn = icc_sgi0r_write,
2163 },
2164 { .name = "ICC_SGI0R",
2165 .cp = 15, .opc1 = 2, .crm = 12,
2166 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2167 .access = PL1_W, .accessfn = gicv3_sgi_access,
2168 .writefn = icc_sgi0r_write,
2169 },
2170 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2171 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2172 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2173 .access = PL1_R, .accessfn = gicv3_irq_access,
2174 .readfn = icc_iar1_read,
2175 },
2176 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2177 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2178 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2179 .access = PL1_W, .accessfn = gicv3_irq_access,
2180 .writefn = icc_eoir_write,
2181 },
2182 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2183 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2184 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2185 .access = PL1_R, .accessfn = gicv3_irq_access,
2186 .readfn = icc_hppir1_read,
2187 },
2188 /* This register is banked */
2189 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2190 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2191 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2192 .access = PL1_RW, .accessfn = gicv3_irq_access,
2193 .readfn = icc_bpr_read,
2194 .writefn = icc_bpr_write,
2195 },
2196 /* This register is banked */
2197 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2198 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2199 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2200 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2201 .readfn = icc_ctlr_el1_read,
2202 .writefn = icc_ctlr_el1_write,
2203 },
2204 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2205 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2206 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2207 .access = PL1_RW,
2208 /* We don't support IRQ/FIQ bypass and system registers are
2209 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2210 * This register is banked but since it's constant we don't
2211 * need to do anything special.
2212 */
2213 .resetvalue = 0x7,
2214 },
2215 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2216 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2217 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2218 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2219 .readfn = icc_igrpen_read,
2220 .writefn = icc_igrpen_write,
2221 },
2222 /* This register is banked */
2223 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2224 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2225 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2226 .access = PL1_RW, .accessfn = gicv3_irq_access,
2227 .readfn = icc_igrpen_read,
2228 .writefn = icc_igrpen_write,
2229 },
2230 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2231 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2232 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2233 .access = PL2_RW,
2234 /* We don't support IRQ/FIQ bypass and system registers are
2235 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2236 */
2237 .resetvalue = 0xf,
2238 },
2239 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2240 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2241 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2242 .access = PL3_RW,
2243 .readfn = icc_ctlr_el3_read,
2244 .writefn = icc_ctlr_el3_write,
2245 },
2246 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2247 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2248 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2249 .access = PL3_RW,
2250 /* We don't support IRQ/FIQ bypass and system registers are
2251 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2252 */
2253 .resetvalue = 0xf,
2254 },
2255 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2256 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2257 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2258 .access = PL3_RW,
2259 .readfn = icc_igrpen1_el3_read,
2260 .writefn = icc_igrpen1_el3_write,
2261 },
2262 REGINFO_SENTINEL
2263 };
2264
2265 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2266 {
2267 GICv3CPUState *cs = icc_cs_from_env(env);
2268 int regno = ri->opc2 & 3;
2269 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
2270 uint64_t value;
2271
2272 value = cs->ich_apr[grp][regno];
2273 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2274 return value;
2275 }
2276
2277 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2278 uint64_t value)
2279 {
2280 GICv3CPUState *cs = icc_cs_from_env(env);
2281 int regno = ri->opc2 & 3;
2282 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
2283
2284 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2285
2286 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2287 gicv3_cpuif_virt_update(cs);
2288 }
2289
2290 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2291 {
2292 GICv3CPUState *cs = icc_cs_from_env(env);
2293 uint64_t value = cs->ich_hcr_el2;
2294
2295 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2296 return value;
2297 }
2298
2299 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2300 uint64_t value)
2301 {
2302 GICv3CPUState *cs = icc_cs_from_env(env);
2303
2304 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2305
2306 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2307 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2308 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2309 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2310 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2311
2312 cs->ich_hcr_el2 = value;
2313 gicv3_cpuif_virt_update(cs);
2314 }
2315
2316 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2317 {
2318 GICv3CPUState *cs = icc_cs_from_env(env);
2319 uint64_t value = cs->ich_vmcr_el2;
2320
2321 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2322 return value;
2323 }
2324
2325 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2326 uint64_t value)
2327 {
2328 GICv3CPUState *cs = icc_cs_from_env(env);
2329
2330 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2331
2332 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2333 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2334 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2335 value |= ICH_VMCR_EL2_VFIQEN;
2336
2337 cs->ich_vmcr_el2 = value;
2338 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2339 * by reading and writing back the fields.
2340 */
2341 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0));
2342 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2343
2344 gicv3_cpuif_virt_update(cs);
2345 }
2346
2347 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2348 {
2349 GICv3CPUState *cs = icc_cs_from_env(env);
2350 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2351 uint64_t value;
2352
2353 /* This read function handles all of:
2354 * 64-bit reads of the whole LR
2355 * 32-bit reads of the low half of the LR
2356 * 32-bit reads of the high half of the LR
2357 */
2358 if (ri->state == ARM_CP_STATE_AA32) {
2359 if (ri->crm >= 14) {
2360 value = extract64(cs->ich_lr_el2[regno], 32, 32);
2361 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2362 } else {
2363 value = extract64(cs->ich_lr_el2[regno], 0, 32);
2364 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2365 }
2366 } else {
2367 value = cs->ich_lr_el2[regno];
2368 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2369 }
2370
2371 return value;
2372 }
2373
2374 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2375 uint64_t value)
2376 {
2377 GICv3CPUState *cs = icc_cs_from_env(env);
2378 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2379
2380 /* This write function handles all of:
2381 * 64-bit writes to the whole LR
2382 * 32-bit writes to the low half of the LR
2383 * 32-bit writes to the high half of the LR
2384 */
2385 if (ri->state == ARM_CP_STATE_AA32) {
2386 if (ri->crm >= 14) {
2387 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2388 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2389 } else {
2390 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2391 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2392 }
2393 } else {
2394 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2395 }
2396
2397 /* Enforce RES0 bits in priority field */
2398 if (cs->vpribits < 8) {
2399 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2400 8 - cs->vpribits, 0);
2401 }
2402
2403 cs->ich_lr_el2[regno] = value;
2404 gicv3_cpuif_virt_update(cs);
2405 }
2406
2407 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2408 {
2409 GICv3CPUState *cs = icc_cs_from_env(env);
2410 uint64_t value;
2411
2412 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2413 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
2414 | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2415 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2416 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2417
2418 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2419 return value;
2420 }
2421
2422 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2423 {
2424 GICv3CPUState *cs = icc_cs_from_env(env);
2425 uint64_t value = maintenance_interrupt_state(cs);
2426
2427 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2428 return value;
2429 }
2430
2431 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2432 {
2433 GICv3CPUState *cs = icc_cs_from_env(env);
2434 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2435
2436 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2437 return value;
2438 }
2439
2440 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2441 {
2442 GICv3CPUState *cs = icc_cs_from_env(env);
2443 uint64_t value = 0;
2444 int i;
2445
2446 for (i = 0; i < cs->num_list_regs; i++) {
2447 uint64_t lr = cs->ich_lr_el2[i];
2448
2449 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2450 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2451 value |= (1 << i);
2452 }
2453 }
2454
2455 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2456 return value;
2457 }
2458
2459 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2460 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2461 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2462 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2463 .access = PL2_RW,
2464 .readfn = ich_ap_read,
2465 .writefn = ich_ap_write,
2466 },
2467 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2468 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2469 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2470 .access = PL2_RW,
2471 .readfn = ich_ap_read,
2472 .writefn = ich_ap_write,
2473 },
2474 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2475 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2476 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2477 .access = PL2_RW,
2478 .readfn = ich_hcr_read,
2479 .writefn = ich_hcr_write,
2480 },
2481 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2482 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2483 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2484 .access = PL2_R,
2485 .readfn = ich_vtr_read,
2486 },
2487 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2488 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2489 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2490 .access = PL2_R,
2491 .readfn = ich_misr_read,
2492 },
2493 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2494 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2495 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2496 .access = PL2_R,
2497 .readfn = ich_eisr_read,
2498 },
2499 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2500 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2501 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2502 .access = PL2_R,
2503 .readfn = ich_elrsr_read,
2504 },
2505 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2506 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2507 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2508 .access = PL2_RW,
2509 .readfn = ich_vmcr_read,
2510 .writefn = ich_vmcr_write,
2511 },
2512 REGINFO_SENTINEL
2513 };
2514
2515 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2516 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2517 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2518 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2519 .access = PL2_RW,
2520 .readfn = ich_ap_read,
2521 .writefn = ich_ap_write,
2522 },
2523 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2524 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2525 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2526 .access = PL2_RW,
2527 .readfn = ich_ap_read,
2528 .writefn = ich_ap_write,
2529 },
2530 REGINFO_SENTINEL
2531 };
2532
2533 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2534 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2535 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2536 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2537 .access = PL2_RW,
2538 .readfn = ich_ap_read,
2539 .writefn = ich_ap_write,
2540 },
2541 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2542 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2543 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2544 .access = PL2_RW,
2545 .readfn = ich_ap_read,
2546 .writefn = ich_ap_write,
2547 },
2548 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2549 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2550 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2551 .access = PL2_RW,
2552 .readfn = ich_ap_read,
2553 .writefn = ich_ap_write,
2554 },
2555 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2556 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2557 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2558 .access = PL2_RW,
2559 .readfn = ich_ap_read,
2560 .writefn = ich_ap_write,
2561 },
2562 REGINFO_SENTINEL
2563 };
2564
2565 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2566 {
2567 GICv3CPUState *cs = opaque;
2568
2569 gicv3_cpuif_update(cs);
2570 }
2571
2572 void gicv3_init_cpuif(GICv3State *s)
2573 {
2574 /* Called from the GICv3 realize function; register our system
2575 * registers with the CPU
2576 */
2577 int i;
2578
2579 for (i = 0; i < s->num_cpu; i++) {
2580 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2581 GICv3CPUState *cs = &s->cpu[i];
2582
2583 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2584 * in define_arm_cp_regs_with_opaque(), because when we're called back
2585 * it might be with code translated by CPU 0 but run by CPU 1, in
2586 * which case we'd get the wrong value.
2587 * So instead we define the regs with no ri->opaque info, and
2588 * get back to the GICv3CPUState from the ARMCPU by reading back
2589 * the opaque pointer from the el_change_hook, which we're going
2590 * to need to register anyway.
2591 */
2592 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2593 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
2594 && cpu->gic_num_lrs) {
2595 int j;
2596
2597 cs->maintenance_irq = cpu->gicv3_maintenance_interrupt;
2598
2599 cs->num_list_regs = cpu->gic_num_lrs;
2600 cs->vpribits = cpu->gic_vpribits;
2601 cs->vprebits = cpu->gic_vprebits;
2602
2603 /* Check against architectural constraints: getting these
2604 * wrong would be a bug in the CPU code defining these,
2605 * and the implementation relies on them holding.
2606 */
2607 g_assert(cs->vprebits <= cs->vpribits);
2608 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2609 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2610
2611 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2612
2613 for (j = 0; j < cs->num_list_regs; j++) {
2614 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2615 * are split into two cp15 regs, LR (the low part, with the
2616 * same encoding as the AArch64 LR) and LRC (the high part).
2617 */
2618 ARMCPRegInfo lr_regset[] = {
2619 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2620 .opc0 = 3, .opc1 = 4, .crn = 12,
2621 .crm = 12 + (j >> 3), .opc2 = j & 7,
2622 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2623 .access = PL2_RW,
2624 .readfn = ich_lr_read,
2625 .writefn = ich_lr_write,
2626 },
2627 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2628 .cp = 15, .opc1 = 4, .crn = 12,
2629 .crm = 14 + (j >> 3), .opc2 = j & 7,
2630 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2631 .access = PL2_RW,
2632 .readfn = ich_lr_read,
2633 .writefn = ich_lr_write,
2634 },
2635 REGINFO_SENTINEL
2636 };
2637 define_arm_cp_regs(cpu, lr_regset);
2638 }
2639 if (cs->vprebits >= 6) {
2640 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2641 }
2642 if (cs->vprebits == 7) {
2643 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2644 }
2645 }
2646 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
2647 }
2648 }