]> git.proxmox.com Git - qemu.git/blob - hw/mips_malta.c
Add -drive parameter, by Laurent Vivier.
[qemu.git] / hw / mips_malta.c
1 /*
2 * QEMU Malta board support
3 *
4 * Copyright (c) 2006 Aurelien Jarno
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "mips.h"
32 #include "pci.h"
33 #include "qemu-char.h"
34 #include "sysemu.h"
35 #include "audio/audio.h"
36 #include "boards.h"
37
38 #ifdef TARGET_WORDS_BIGENDIAN
39 #define BIOS_FILENAME "mips_bios.bin"
40 #else
41 #define BIOS_FILENAME "mipsel_bios.bin"
42 #endif
43
44 #ifdef TARGET_MIPS64
45 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffULL)
46 #else
47 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffU)
48 #endif
49
50 #define ENVP_ADDR (int32_t)0x80002000
51 #define VIRT_TO_PHYS_ADDEND (-((int64_t)(int32_t)0x80000000))
52
53 #define ENVP_NB_ENTRIES 16
54 #define ENVP_ENTRY_SIZE 256
55
56 #define MAX_IDE_BUS 2
57
58 extern FILE *logfile;
59
60 typedef struct {
61 uint32_t leds;
62 uint32_t brk;
63 uint32_t gpout;
64 uint32_t i2cin;
65 uint32_t i2coe;
66 uint32_t i2cout;
67 uint32_t i2csel;
68 CharDriverState *display;
69 char display_text[9];
70 SerialState *uart;
71 } MaltaFPGAState;
72
73 static PITState *pit;
74
75 static struct _loaderparams {
76 int ram_size;
77 const char *kernel_filename;
78 const char *kernel_cmdline;
79 const char *initrd_filename;
80 } loaderparams;
81
82 /* Malta FPGA */
83 static void malta_fpga_update_display(void *opaque)
84 {
85 char leds_text[9];
86 int i;
87 MaltaFPGAState *s = opaque;
88
89 for (i = 7 ; i >= 0 ; i--) {
90 if (s->leds & (1 << i))
91 leds_text[i] = '#';
92 else
93 leds_text[i] = ' ';
94 }
95 leds_text[8] = '\0';
96
97 qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
98 qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
99 }
100
101 /*
102 * EEPROM 24C01 / 24C02 emulation.
103 *
104 * Emulation for serial EEPROMs:
105 * 24C01 - 1024 bit (128 x 8)
106 * 24C02 - 2048 bit (256 x 8)
107 *
108 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
109 */
110
111 //~ #define DEBUG
112
113 #if defined(DEBUG)
114 # define logout(fmt, args...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ##args)
115 #else
116 # define logout(fmt, args...) ((void)0)
117 #endif
118
119 struct _eeprom24c0x_t {
120 uint8_t tick;
121 uint8_t address;
122 uint8_t command;
123 uint8_t ack;
124 uint8_t scl;
125 uint8_t sda;
126 uint8_t data;
127 //~ uint16_t size;
128 uint8_t contents[256];
129 };
130
131 typedef struct _eeprom24c0x_t eeprom24c0x_t;
132
133 static eeprom24c0x_t eeprom = {
134 contents: {
135 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
136 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
137 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
138 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
139 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
140 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
141 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
142 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
143 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
146 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
147 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
148 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
149 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
150 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
151 },
152 };
153
154 static uint8_t eeprom24c0x_read()
155 {
156 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
157 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
158 return eeprom.sda;
159 }
160
161 static void eeprom24c0x_write(int scl, int sda)
162 {
163 if (eeprom.scl && scl && (eeprom.sda != sda)) {
164 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
165 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
166 if (!sda) {
167 eeprom.tick = 1;
168 eeprom.command = 0;
169 }
170 } else if (eeprom.tick == 0 && !eeprom.ack) {
171 /* Waiting for start. */
172 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
173 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
174 } else if (!eeprom.scl && scl) {
175 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
176 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
177 if (eeprom.ack) {
178 logout("\ti2c ack bit = 0\n");
179 sda = 0;
180 eeprom.ack = 0;
181 } else if (eeprom.sda == sda) {
182 uint8_t bit = (sda != 0);
183 logout("\ti2c bit = %d\n", bit);
184 if (eeprom.tick < 9) {
185 eeprom.command <<= 1;
186 eeprom.command += bit;
187 eeprom.tick++;
188 if (eeprom.tick == 9) {
189 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
190 eeprom.ack = 1;
191 }
192 } else if (eeprom.tick < 17) {
193 if (eeprom.command & 1) {
194 sda = ((eeprom.data & 0x80) != 0);
195 }
196 eeprom.address <<= 1;
197 eeprom.address += bit;
198 eeprom.tick++;
199 eeprom.data <<= 1;
200 if (eeprom.tick == 17) {
201 eeprom.data = eeprom.contents[eeprom.address];
202 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
203 eeprom.ack = 1;
204 eeprom.tick = 0;
205 }
206 } else if (eeprom.tick >= 17) {
207 sda = 0;
208 }
209 } else {
210 logout("\tsda changed with raising scl\n");
211 }
212 } else {
213 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
214 }
215 eeprom.scl = scl;
216 eeprom.sda = sda;
217 }
218
219 static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
220 {
221 MaltaFPGAState *s = opaque;
222 uint32_t val = 0;
223 uint32_t saddr;
224
225 saddr = (addr & 0xfffff);
226
227 switch (saddr) {
228
229 /* SWITCH Register */
230 case 0x00200:
231 val = 0x00000000; /* All switches closed */
232 break;
233
234 /* STATUS Register */
235 case 0x00208:
236 #ifdef TARGET_WORDS_BIGENDIAN
237 val = 0x00000012;
238 #else
239 val = 0x00000010;
240 #endif
241 break;
242
243 /* JMPRS Register */
244 case 0x00210:
245 val = 0x00;
246 break;
247
248 /* LEDBAR Register */
249 case 0x00408:
250 val = s->leds;
251 break;
252
253 /* BRKRES Register */
254 case 0x00508:
255 val = s->brk;
256 break;
257
258 /* UART Registers are handled directly by the serial device */
259
260 /* GPOUT Register */
261 case 0x00a00:
262 val = s->gpout;
263 break;
264
265 /* XXX: implement a real I2C controller */
266
267 /* GPINP Register */
268 case 0x00a08:
269 /* IN = OUT until a real I2C control is implemented */
270 if (s->i2csel)
271 val = s->i2cout;
272 else
273 val = 0x00;
274 break;
275
276 /* I2CINP Register */
277 case 0x00b00:
278 val = ((s->i2cin & ~1) | eeprom24c0x_read());
279 break;
280
281 /* I2COE Register */
282 case 0x00b08:
283 val = s->i2coe;
284 break;
285
286 /* I2COUT Register */
287 case 0x00b10:
288 val = s->i2cout;
289 break;
290
291 /* I2CSEL Register */
292 case 0x00b18:
293 val = s->i2csel;
294 break;
295
296 default:
297 #if 0
298 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
299 addr);
300 #endif
301 break;
302 }
303 return val;
304 }
305
306 static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
307 uint32_t val)
308 {
309 MaltaFPGAState *s = opaque;
310 uint32_t saddr;
311
312 saddr = (addr & 0xfffff);
313
314 switch (saddr) {
315
316 /* SWITCH Register */
317 case 0x00200:
318 break;
319
320 /* JMPRS Register */
321 case 0x00210:
322 break;
323
324 /* LEDBAR Register */
325 /* XXX: implement a 8-LED array */
326 case 0x00408:
327 s->leds = val & 0xff;
328 break;
329
330 /* ASCIIWORD Register */
331 case 0x00410:
332 snprintf(s->display_text, 9, "%08X", val);
333 malta_fpga_update_display(s);
334 break;
335
336 /* ASCIIPOS0 to ASCIIPOS7 Registers */
337 case 0x00418:
338 case 0x00420:
339 case 0x00428:
340 case 0x00430:
341 case 0x00438:
342 case 0x00440:
343 case 0x00448:
344 case 0x00450:
345 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
346 malta_fpga_update_display(s);
347 break;
348
349 /* SOFTRES Register */
350 case 0x00500:
351 if (val == 0x42)
352 qemu_system_reset_request ();
353 break;
354
355 /* BRKRES Register */
356 case 0x00508:
357 s->brk = val & 0xff;
358 break;
359
360 /* UART Registers are handled directly by the serial device */
361
362 /* GPOUT Register */
363 case 0x00a00:
364 s->gpout = val & 0xff;
365 break;
366
367 /* I2COE Register */
368 case 0x00b08:
369 s->i2coe = val & 0x03;
370 break;
371
372 /* I2COUT Register */
373 case 0x00b10:
374 eeprom24c0x_write(val & 0x02, val & 0x01);
375 s->i2cout = val;
376 break;
377
378 /* I2CSEL Register */
379 case 0x00b18:
380 s->i2csel = val & 0x01;
381 break;
382
383 default:
384 #if 0
385 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
386 addr);
387 #endif
388 break;
389 }
390 }
391
392 static CPUReadMemoryFunc *malta_fpga_read[] = {
393 malta_fpga_readl,
394 malta_fpga_readl,
395 malta_fpga_readl
396 };
397
398 static CPUWriteMemoryFunc *malta_fpga_write[] = {
399 malta_fpga_writel,
400 malta_fpga_writel,
401 malta_fpga_writel
402 };
403
404 static void malta_fpga_reset(void *opaque)
405 {
406 MaltaFPGAState *s = opaque;
407
408 s->leds = 0x00;
409 s->brk = 0x0a;
410 s->gpout = 0x00;
411 s->i2cin = 0x3;
412 s->i2coe = 0x0;
413 s->i2cout = 0x3;
414 s->i2csel = 0x1;
415
416 s->display_text[8] = '\0';
417 snprintf(s->display_text, 9, " ");
418 malta_fpga_update_display(s);
419 }
420
421 static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, CPUState *env)
422 {
423 MaltaFPGAState *s;
424 CharDriverState *uart_chr;
425 int malta;
426
427 s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
428
429 malta = cpu_register_io_memory(0, malta_fpga_read,
430 malta_fpga_write, s);
431
432 cpu_register_physical_memory(base, 0x900, malta);
433 cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
434
435 s->display = qemu_chr_open("vc");
436 qemu_chr_printf(s->display, "\e[HMalta LEDBAR\r\n");
437 qemu_chr_printf(s->display, "+--------+\r\n");
438 qemu_chr_printf(s->display, "+ +\r\n");
439 qemu_chr_printf(s->display, "+--------+\r\n");
440 qemu_chr_printf(s->display, "\n");
441 qemu_chr_printf(s->display, "Malta ASCII\r\n");
442 qemu_chr_printf(s->display, "+--------+\r\n");
443 qemu_chr_printf(s->display, "+ +\r\n");
444 qemu_chr_printf(s->display, "+--------+\r\n");
445
446 uart_chr = qemu_chr_open("vc");
447 qemu_chr_printf(uart_chr, "CBUS UART\r\n");
448 s->uart = serial_mm_init(base + 0x900, 3, env->irq[2], uart_chr, 1);
449
450 malta_fpga_reset(s);
451 qemu_register_reset(malta_fpga_reset, s);
452
453 return s;
454 }
455
456 /* Audio support */
457 #ifdef HAS_AUDIO
458 static void audio_init (PCIBus *pci_bus)
459 {
460 struct soundhw *c;
461 int audio_enabled = 0;
462
463 for (c = soundhw; !audio_enabled && c->name; ++c) {
464 audio_enabled = c->enabled;
465 }
466
467 if (audio_enabled) {
468 AudioState *s;
469
470 s = AUD_init ();
471 if (s) {
472 for (c = soundhw; c->name; ++c) {
473 if (c->enabled)
474 c->init.init_pci (pci_bus, s);
475 }
476 }
477 }
478 }
479 #endif
480
481 /* Network support */
482 static void network_init (PCIBus *pci_bus)
483 {
484 int i;
485 NICInfo *nd;
486
487 for(i = 0; i < nb_nics; i++) {
488 nd = &nd_table[i];
489 if (!nd->model) {
490 nd->model = "pcnet";
491 }
492 if (i == 0 && strcmp(nd->model, "pcnet") == 0) {
493 /* The malta board has a PCNet card using PCI SLOT 11 */
494 pci_nic_init(pci_bus, nd, 88);
495 } else {
496 pci_nic_init(pci_bus, nd, -1);
497 }
498 }
499 }
500
501 /* ROM and pseudo bootloader
502
503 The following code implements a very very simple bootloader. It first
504 loads the registers a0 to a3 to the values expected by the OS, and
505 then jump at the kernel address.
506
507 The bootloader should pass the locations of the kernel arguments and
508 environment variables tables. Those tables contain the 32-bit address
509 of NULL terminated strings. The environment variables table should be
510 terminated by a NULL address.
511
512 For a simpler implementation, the number of kernel arguments is fixed
513 to two (the name of the kernel and the command line), and the two
514 tables are actually the same one.
515
516 The registers a0 to a3 should contain the following values:
517 a0 - number of kernel arguments
518 a1 - 32-bit address of the kernel arguments table
519 a2 - 32-bit address of the environment variables table
520 a3 - RAM size in bytes
521 */
522
523 static void write_bootloader (CPUState *env, unsigned long bios_offset, int64_t kernel_entry)
524 {
525 uint32_t *p;
526
527 /* Small bootloader */
528 p = (uint32_t *) (phys_ram_base + bios_offset);
529 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
530 stl_raw(p++, 0x00000000); /* nop */
531
532 /* YAMON service vector */
533 stl_raw(phys_ram_base + bios_offset + 0x500, 0xbfc00580); /* start: */
534 stl_raw(phys_ram_base + bios_offset + 0x504, 0xbfc0083c); /* print_count: */
535 stl_raw(phys_ram_base + bios_offset + 0x520, 0xbfc00580); /* start: */
536 stl_raw(phys_ram_base + bios_offset + 0x52c, 0xbfc00800); /* flush_cache: */
537 stl_raw(phys_ram_base + bios_offset + 0x534, 0xbfc00808); /* print: */
538 stl_raw(phys_ram_base + bios_offset + 0x538, 0xbfc00800); /* reg_cpu_isr: */
539 stl_raw(phys_ram_base + bios_offset + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
540 stl_raw(phys_ram_base + bios_offset + 0x540, 0xbfc00800); /* reg_ic_isr: */
541 stl_raw(phys_ram_base + bios_offset + 0x544, 0xbfc00800); /* unred_ic_isr: */
542 stl_raw(phys_ram_base + bios_offset + 0x548, 0xbfc00800); /* reg_esr: */
543 stl_raw(phys_ram_base + bios_offset + 0x54c, 0xbfc00800); /* unreg_esr: */
544 stl_raw(phys_ram_base + bios_offset + 0x550, 0xbfc00800); /* getchar: */
545 stl_raw(phys_ram_base + bios_offset + 0x554, 0xbfc00800); /* syscon_read: */
546
547
548 /* Second part of the bootloader */
549 p = (uint32_t *) (phys_ram_base + bios_offset + 0x580);
550 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
551 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
552 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
553 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
554 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
555 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
556 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
557 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
558 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
559
560 /* Load BAR registers as done by YAMON */
561 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
562
563 #ifdef TARGET_WORDS_BIGENDIAN
564 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
565 #else
566 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
567 #endif
568 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
569
570 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
571
572 #ifdef TARGET_WORDS_BIGENDIAN
573 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
574 #else
575 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
576 #endif
577 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
578 #ifdef TARGET_WORDS_BIGENDIAN
579 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
580 #else
581 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
582 #endif
583 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
584
585 #ifdef TARGET_WORDS_BIGENDIAN
586 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
587 #else
588 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
589 #endif
590 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
591 #ifdef TARGET_WORDS_BIGENDIAN
592 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
593 #else
594 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
595 #endif
596 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
597
598 #ifdef TARGET_WORDS_BIGENDIAN
599 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
600 #else
601 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
602 #endif
603 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
604 #ifdef TARGET_WORDS_BIGENDIAN
605 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
606 #else
607 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
608 #endif
609 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
610
611 /* Jump to kernel code */
612 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
613 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
614 stl_raw(p++, 0x03e00008); /* jr ra */
615 stl_raw(p++, 0x00000000); /* nop */
616
617 /* YAMON subroutines */
618 p = (uint32_t *) (phys_ram_base + bios_offset + 0x800);
619 stl_raw(p++, 0x03e00008); /* jr ra */
620 stl_raw(p++, 0x24020000); /* li v0,0 */
621 /* 808 YAMON print */
622 stl_raw(p++, 0x03e06821); /* move t5,ra */
623 stl_raw(p++, 0x00805821); /* move t3,a0 */
624 stl_raw(p++, 0x00a05021); /* move t2,a1 */
625 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
626 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
627 stl_raw(p++, 0x10800005); /* beqz a0,834 */
628 stl_raw(p++, 0x00000000); /* nop */
629 stl_raw(p++, 0x0ff0021c); /* jal 870 */
630 stl_raw(p++, 0x00000000); /* nop */
631 stl_raw(p++, 0x08000205); /* j 814 */
632 stl_raw(p++, 0x00000000); /* nop */
633 stl_raw(p++, 0x01a00008); /* jr t5 */
634 stl_raw(p++, 0x01602021); /* move a0,t3 */
635 /* 0x83c YAMON print_count */
636 stl_raw(p++, 0x03e06821); /* move t5,ra */
637 stl_raw(p++, 0x00805821); /* move t3,a0 */
638 stl_raw(p++, 0x00a05021); /* move t2,a1 */
639 stl_raw(p++, 0x00c06021); /* move t4,a2 */
640 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
641 stl_raw(p++, 0x0ff0021c); /* jal 870 */
642 stl_raw(p++, 0x00000000); /* nop */
643 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
644 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
645 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
646 stl_raw(p++, 0x00000000); /* nop */
647 stl_raw(p++, 0x01a00008); /* jr t5 */
648 stl_raw(p++, 0x01602021); /* move a0,t3 */
649 /* 0x870 */
650 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
651 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
652 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
653 stl_raw(p++, 0x00000000); /* nop */
654 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
655 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
656 stl_raw(p++, 0x00000000); /* nop */
657 stl_raw(p++, 0x03e00008); /* jr ra */
658 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
659
660 }
661
662 static void prom_set(int index, const char *string, ...)
663 {
664 va_list ap;
665 int32_t *p;
666 int32_t table_addr;
667 char *s;
668
669 if (index >= ENVP_NB_ENTRIES)
670 return;
671
672 p = (int32_t *) (phys_ram_base + ENVP_ADDR + VIRT_TO_PHYS_ADDEND);
673 p += index;
674
675 if (string == NULL) {
676 stl_raw(p, 0);
677 return;
678 }
679
680 table_addr = ENVP_ADDR + sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
681 s = (char *) (phys_ram_base + VIRT_TO_PHYS_ADDEND + table_addr);
682
683 stl_raw(p, table_addr);
684
685 va_start(ap, string);
686 vsnprintf (s, ENVP_ENTRY_SIZE, string, ap);
687 va_end(ap);
688 }
689
690 /* Kernel */
691 static int64_t load_kernel (CPUState *env)
692 {
693 int64_t kernel_entry, kernel_low, kernel_high;
694 int index = 0;
695 long initrd_size;
696 ram_addr_t initrd_offset;
697
698 if (load_elf(loaderparams.kernel_filename, VIRT_TO_PHYS_ADDEND,
699 &kernel_entry, &kernel_low, &kernel_high) < 0) {
700 fprintf(stderr, "qemu: could not load kernel '%s'\n",
701 loaderparams.kernel_filename);
702 exit(1);
703 }
704
705 /* load initrd */
706 initrd_size = 0;
707 initrd_offset = 0;
708 if (loaderparams.initrd_filename) {
709 initrd_size = get_image_size (loaderparams.initrd_filename);
710 if (initrd_size > 0) {
711 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
712 if (initrd_offset + initrd_size > ram_size) {
713 fprintf(stderr,
714 "qemu: memory too small for initial ram disk '%s'\n",
715 loaderparams.initrd_filename);
716 exit(1);
717 }
718 initrd_size = load_image(loaderparams.initrd_filename,
719 phys_ram_base + initrd_offset);
720 }
721 if (initrd_size == (target_ulong) -1) {
722 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
723 loaderparams.initrd_filename);
724 exit(1);
725 }
726 }
727
728 /* Store command line. */
729 prom_set(index++, loaderparams.kernel_filename);
730 if (initrd_size > 0)
731 prom_set(index++, "rd_start=0x" TARGET_FMT_lx " rd_size=%li %s",
732 PHYS_TO_VIRT(initrd_offset), initrd_size,
733 loaderparams.kernel_cmdline);
734 else
735 prom_set(index++, loaderparams.kernel_cmdline);
736
737 /* Setup minimum environment variables */
738 prom_set(index++, "memsize");
739 prom_set(index++, "%i", loaderparams.ram_size);
740 prom_set(index++, "modetty0");
741 prom_set(index++, "38400n8r");
742 prom_set(index++, NULL);
743
744 return kernel_entry;
745 }
746
747 static void main_cpu_reset(void *opaque)
748 {
749 CPUState *env = opaque;
750 cpu_reset(env);
751
752 /* The bootload does not need to be rewritten as it is located in a
753 read only location. The kernel location and the arguments table
754 location does not change. */
755 if (loaderparams.kernel_filename) {
756 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
757 load_kernel (env);
758 }
759 }
760
761 static
762 void mips_malta_init (int ram_size, int vga_ram_size,
763 const char *boot_device, DisplayState *ds,
764 const char *kernel_filename, const char *kernel_cmdline,
765 const char *initrd_filename, const char *cpu_model)
766 {
767 char buf[1024];
768 unsigned long bios_offset;
769 int64_t kernel_entry;
770 PCIBus *pci_bus;
771 CPUState *env;
772 RTCState *rtc_state;
773 fdctrl_t *floppy_controller;
774 MaltaFPGAState *malta_fpga;
775 int ret;
776 qemu_irq *i8259;
777 int piix4_devfn;
778 uint8_t *eeprom_buf;
779 i2c_bus *smbus;
780 int i;
781 int index;
782 BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
783 BlockDriverState *fd[MAX_FD];
784
785 /* init CPUs */
786 if (cpu_model == NULL) {
787 #ifdef TARGET_MIPS64
788 cpu_model = "20Kc";
789 #else
790 cpu_model = "24Kf";
791 #endif
792 }
793 env = cpu_init(cpu_model);
794 if (!env) {
795 fprintf(stderr, "Unable to find CPU definition\n");
796 exit(1);
797 }
798 register_savevm("cpu", 0, 3, cpu_save, cpu_load, env);
799 qemu_register_reset(main_cpu_reset, env);
800
801 /* allocate RAM */
802 cpu_register_physical_memory(0, ram_size, IO_MEM_RAM);
803
804 /* Map the bios at two physical locations, as on the real board */
805 bios_offset = ram_size + vga_ram_size;
806 cpu_register_physical_memory(0x1e000000LL,
807 BIOS_SIZE, bios_offset | IO_MEM_ROM);
808 cpu_register_physical_memory(0x1fc00000LL,
809 BIOS_SIZE, bios_offset | IO_MEM_ROM);
810
811 /* FPGA */
812 malta_fpga = malta_fpga_init(0x1f000000LL, env);
813
814 /* Load a BIOS image unless a kernel image has been specified. */
815 if (!kernel_filename) {
816 if (bios_name == NULL)
817 bios_name = BIOS_FILENAME;
818 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
819 ret = load_image(buf, phys_ram_base + bios_offset);
820 if (ret < 0 || ret > BIOS_SIZE) {
821 fprintf(stderr,
822 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
823 buf);
824 exit(1);
825 }
826 /* In little endian mode the 32bit words in the bios are swapped,
827 a neat trick which allows bi-endian firmware. */
828 #ifndef TARGET_WORDS_BIGENDIAN
829 {
830 uint32_t *addr;
831 for (addr = (uint32_t *)(phys_ram_base + bios_offset);
832 addr < (uint32_t *)(phys_ram_base + bios_offset + ret);
833 addr++) {
834 *addr = bswap32(*addr);
835 }
836 }
837 #endif
838 }
839
840 /* If a kernel image has been specified, write a small bootloader
841 to the flash location. */
842 if (kernel_filename) {
843 loaderparams.ram_size = ram_size;
844 loaderparams.kernel_filename = kernel_filename;
845 loaderparams.kernel_cmdline = kernel_cmdline;
846 loaderparams.initrd_filename = initrd_filename;
847 kernel_entry = load_kernel(env);
848 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
849 write_bootloader(env, bios_offset, kernel_entry);
850 }
851
852 /* Board ID = 0x420 (Malta Board with CoreLV)
853 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
854 map to the board ID. */
855 stl_raw(phys_ram_base + bios_offset + 0x10, 0x00000420);
856
857 /* Init internal devices */
858 cpu_mips_irq_init_cpu(env);
859 cpu_mips_clock_init(env);
860 cpu_mips_irqctrl_init();
861
862 /* Interrupt controller */
863 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
864 i8259 = i8259_init(env->irq[2]);
865
866 /* Northbridge */
867 pci_bus = pci_gt64120_init(i8259);
868
869 /* Southbridge */
870
871 if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
872 fprintf(stderr, "qemu: too many IDE bus\n");
873 exit(1);
874 }
875
876 for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
877 index = drive_get_index(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
878 if (index != -1)
879 hd[i] = drives_table[index].bdrv;
880 else
881 hd[i] = NULL;
882 }
883
884 piix4_devfn = piix4_init(pci_bus, 80);
885 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1, i8259);
886 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
887 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100);
888 eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
889 for (i = 0; i < 8; i++) {
890 /* TODO: Populate SPD eeprom data. */
891 smbus_eeprom_device_init(smbus, 0x50 + i, eeprom_buf + (i * 256));
892 }
893 pit = pit_init(0x40, i8259[0]);
894 DMA_init(0);
895
896 /* Super I/O */
897 i8042_init(i8259[1], i8259[12], 0x60);
898 rtc_state = rtc_init(0x70, i8259[8]);
899 if (serial_hds[0])
900 serial_init(0x3f8, i8259[4], serial_hds[0]);
901 if (serial_hds[1])
902 serial_init(0x2f8, i8259[3], serial_hds[1]);
903 if (parallel_hds[0])
904 parallel_init(0x378, i8259[7], parallel_hds[0]);
905 for(i = 0; i < MAX_FD; i++) {
906 index = drive_get_index(IF_FLOPPY, 0, i);
907 if (index != -1)
908 fd[i] = drives_table[index].bdrv;
909 else
910 fd[i] = NULL;
911 }
912 floppy_controller = fdctrl_init(i8259[6], 2, 0, 0x3f0, fd);
913
914 /* Sound card */
915 #ifdef HAS_AUDIO
916 audio_init(pci_bus);
917 #endif
918
919 /* Network card */
920 network_init(pci_bus);
921
922 /* Optional PCI video card */
923 pci_cirrus_vga_init(pci_bus, ds, phys_ram_base + ram_size,
924 ram_size, vga_ram_size);
925 }
926
927 QEMUMachine mips_malta_machine = {
928 "malta",
929 "MIPS Malta Core LV",
930 mips_malta_init,
931 };