]> git.proxmox.com Git - qemu.git/blob - hw/musicpal.c
Make AUD_init failure fatal
[qemu.git] / hw / musicpal.c
1 /*
2 * Marvell MV88W8618 / Freecom MusicPal emulation.
3 *
4 * Copyright (c) 2008 Jan Kiszka
5 *
6 * This code is licenced under the GNU GPL v2.
7 */
8
9 #include "hw.h"
10 #include "arm-misc.h"
11 #include "devices.h"
12 #include "net.h"
13 #include "sysemu.h"
14 #include "boards.h"
15 #include "pc.h"
16 #include "qemu-timer.h"
17 #include "block.h"
18 #include "flash.h"
19 #include "console.h"
20 #include "audio/audio.h"
21 #include "i2c.h"
22
23 #define MP_MISC_BASE 0x80002000
24 #define MP_MISC_SIZE 0x00001000
25
26 #define MP_ETH_BASE 0x80008000
27 #define MP_ETH_SIZE 0x00001000
28
29 #define MP_WLAN_BASE 0x8000C000
30 #define MP_WLAN_SIZE 0x00000800
31
32 #define MP_UART1_BASE 0x8000C840
33 #define MP_UART2_BASE 0x8000C940
34
35 #define MP_GPIO_BASE 0x8000D000
36 #define MP_GPIO_SIZE 0x00001000
37
38 #define MP_FLASHCFG_BASE 0x90006000
39 #define MP_FLASHCFG_SIZE 0x00001000
40
41 #define MP_AUDIO_BASE 0x90007000
42 #define MP_AUDIO_SIZE 0x00001000
43
44 #define MP_PIC_BASE 0x90008000
45 #define MP_PIC_SIZE 0x00001000
46
47 #define MP_PIT_BASE 0x90009000
48 #define MP_PIT_SIZE 0x00001000
49
50 #define MP_LCD_BASE 0x9000c000
51 #define MP_LCD_SIZE 0x00001000
52
53 #define MP_SRAM_BASE 0xC0000000
54 #define MP_SRAM_SIZE 0x00020000
55
56 #define MP_RAM_DEFAULT_SIZE 32*1024*1024
57 #define MP_FLASH_SIZE_MAX 32*1024*1024
58
59 #define MP_TIMER1_IRQ 4
60 /* ... */
61 #define MP_TIMER4_IRQ 7
62 #define MP_EHCI_IRQ 8
63 #define MP_ETH_IRQ 9
64 #define MP_UART1_IRQ 11
65 #define MP_UART2_IRQ 11
66 #define MP_GPIO_IRQ 12
67 #define MP_RTC_IRQ 28
68 #define MP_AUDIO_IRQ 30
69
70 static uint32_t gpio_in_state = 0xffffffff;
71 static uint32_t gpio_isr;
72 static uint32_t gpio_out_state;
73 static ram_addr_t sram_off;
74
75 typedef enum i2c_state {
76 STOPPED = 0,
77 INITIALIZING,
78 SENDING_BIT7,
79 SENDING_BIT6,
80 SENDING_BIT5,
81 SENDING_BIT4,
82 SENDING_BIT3,
83 SENDING_BIT2,
84 SENDING_BIT1,
85 SENDING_BIT0,
86 WAITING_FOR_ACK,
87 RECEIVING_BIT7,
88 RECEIVING_BIT6,
89 RECEIVING_BIT5,
90 RECEIVING_BIT4,
91 RECEIVING_BIT3,
92 RECEIVING_BIT2,
93 RECEIVING_BIT1,
94 RECEIVING_BIT0,
95 SENDING_ACK
96 } i2c_state;
97
98 typedef struct i2c_interface {
99 i2c_bus *bus;
100 i2c_state state;
101 int last_data;
102 int last_clock;
103 uint8_t buffer;
104 int current_addr;
105 } i2c_interface;
106
107 static void i2c_enter_stop(i2c_interface *i2c)
108 {
109 if (i2c->current_addr >= 0)
110 i2c_end_transfer(i2c->bus);
111 i2c->current_addr = -1;
112 i2c->state = STOPPED;
113 }
114
115 static void i2c_state_update(i2c_interface *i2c, int data, int clock)
116 {
117 if (!i2c)
118 return;
119
120 switch (i2c->state) {
121 case STOPPED:
122 if (data == 0 && i2c->last_data == 1 && clock == 1)
123 i2c->state = INITIALIZING;
124 break;
125
126 case INITIALIZING:
127 if (clock == 0 && i2c->last_clock == 1 && data == 0)
128 i2c->state = SENDING_BIT7;
129 else
130 i2c_enter_stop(i2c);
131 break;
132
133 case SENDING_BIT7 ... SENDING_BIT0:
134 if (clock == 0 && i2c->last_clock == 1) {
135 i2c->buffer = (i2c->buffer << 1) | data;
136 i2c->state++; /* will end up in WAITING_FOR_ACK */
137 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
138 i2c_enter_stop(i2c);
139 break;
140
141 case WAITING_FOR_ACK:
142 if (clock == 0 && i2c->last_clock == 1) {
143 if (i2c->current_addr < 0) {
144 i2c->current_addr = i2c->buffer;
145 i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
146 i2c->buffer & 1);
147 } else
148 i2c_send(i2c->bus, i2c->buffer);
149 if (i2c->current_addr & 1) {
150 i2c->state = RECEIVING_BIT7;
151 i2c->buffer = i2c_recv(i2c->bus);
152 } else
153 i2c->state = SENDING_BIT7;
154 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
155 i2c_enter_stop(i2c);
156 break;
157
158 case RECEIVING_BIT7 ... RECEIVING_BIT0:
159 if (clock == 0 && i2c->last_clock == 1) {
160 i2c->state++; /* will end up in SENDING_ACK */
161 i2c->buffer <<= 1;
162 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
163 i2c_enter_stop(i2c);
164 break;
165
166 case SENDING_ACK:
167 if (clock == 0 && i2c->last_clock == 1) {
168 i2c->state = RECEIVING_BIT7;
169 if (data == 0)
170 i2c->buffer = i2c_recv(i2c->bus);
171 else
172 i2c_nack(i2c->bus);
173 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
174 i2c_enter_stop(i2c);
175 break;
176 }
177
178 i2c->last_data = data;
179 i2c->last_clock = clock;
180 }
181
182 static int i2c_get_data(i2c_interface *i2c)
183 {
184 if (!i2c)
185 return 0;
186
187 switch (i2c->state) {
188 case RECEIVING_BIT7 ... RECEIVING_BIT0:
189 return (i2c->buffer >> 7);
190
191 case WAITING_FOR_ACK:
192 default:
193 return 0;
194 }
195 }
196
197 static i2c_interface *mixer_i2c;
198
199 #ifdef HAS_AUDIO
200
201 /* Audio register offsets */
202 #define MP_AUDIO_PLAYBACK_MODE 0x00
203 #define MP_AUDIO_CLOCK_DIV 0x18
204 #define MP_AUDIO_IRQ_STATUS 0x20
205 #define MP_AUDIO_IRQ_ENABLE 0x24
206 #define MP_AUDIO_TX_START_LO 0x28
207 #define MP_AUDIO_TX_THRESHOLD 0x2C
208 #define MP_AUDIO_TX_STATUS 0x38
209 #define MP_AUDIO_TX_START_HI 0x40
210
211 /* Status register and IRQ enable bits */
212 #define MP_AUDIO_TX_HALF (1 << 6)
213 #define MP_AUDIO_TX_FULL (1 << 7)
214
215 /* Playback mode bits */
216 #define MP_AUDIO_16BIT_SAMPLE (1 << 0)
217 #define MP_AUDIO_PLAYBACK_EN (1 << 7)
218 #define MP_AUDIO_CLOCK_24MHZ (1 << 9)
219 #define MP_AUDIO_MONO (1 << 14)
220
221 /* Wolfson 8750 I2C address */
222 #define MP_WM_ADDR 0x34
223
224 static const char audio_name[] = "mv88w8618";
225
226 typedef struct musicpal_audio_state {
227 qemu_irq irq;
228 uint32_t playback_mode;
229 uint32_t status;
230 uint32_t irq_enable;
231 unsigned long phys_buf;
232 uint32_t target_buffer;
233 unsigned int threshold;
234 unsigned int play_pos;
235 unsigned int last_free;
236 uint32_t clock_div;
237 i2c_slave *wm;
238 } musicpal_audio_state;
239
240 static void audio_callback(void *opaque, int free_out, int free_in)
241 {
242 musicpal_audio_state *s = opaque;
243 int16_t *codec_buffer;
244 int8_t buf[4096];
245 int8_t *mem_buffer;
246 int pos, block_size;
247
248 if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
249 return;
250
251 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
252 free_out <<= 1;
253
254 if (!(s->playback_mode & MP_AUDIO_MONO))
255 free_out <<= 1;
256
257 block_size = s->threshold/2;
258 if (free_out - s->last_free < block_size)
259 return;
260
261 if (block_size > 4096)
262 return;
263
264 cpu_physical_memory_read(s->target_buffer + s->play_pos, (void *)buf,
265 block_size);
266 mem_buffer = buf;
267 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
268 if (s->playback_mode & MP_AUDIO_MONO) {
269 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
270 for (pos = 0; pos < block_size; pos += 2) {
271 *codec_buffer++ = *(int16_t *)mem_buffer;
272 *codec_buffer++ = *(int16_t *)mem_buffer;
273 mem_buffer += 2;
274 }
275 } else
276 memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
277 (uint32_t *)mem_buffer, block_size);
278 } else {
279 if (s->playback_mode & MP_AUDIO_MONO) {
280 codec_buffer = wm8750_dac_buffer(s->wm, block_size);
281 for (pos = 0; pos < block_size; pos++) {
282 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer);
283 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
284 }
285 } else {
286 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
287 for (pos = 0; pos < block_size; pos += 2) {
288 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
289 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
290 }
291 }
292 }
293 wm8750_dac_commit(s->wm);
294
295 s->last_free = free_out - block_size;
296
297 if (s->play_pos == 0) {
298 s->status |= MP_AUDIO_TX_HALF;
299 s->play_pos = block_size;
300 } else {
301 s->status |= MP_AUDIO_TX_FULL;
302 s->play_pos = 0;
303 }
304
305 if (s->status & s->irq_enable)
306 qemu_irq_raise(s->irq);
307 }
308
309 static void musicpal_audio_clock_update(musicpal_audio_state *s)
310 {
311 int rate;
312
313 if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
314 rate = 24576000 / 64; /* 24.576MHz */
315 else
316 rate = 11289600 / 64; /* 11.2896MHz */
317
318 rate /= ((s->clock_div >> 8) & 0xff) + 1;
319
320 wm8750_set_bclk_in(s->wm, rate);
321 }
322
323 static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
324 {
325 musicpal_audio_state *s = opaque;
326
327 switch (offset) {
328 case MP_AUDIO_PLAYBACK_MODE:
329 return s->playback_mode;
330
331 case MP_AUDIO_CLOCK_DIV:
332 return s->clock_div;
333
334 case MP_AUDIO_IRQ_STATUS:
335 return s->status;
336
337 case MP_AUDIO_IRQ_ENABLE:
338 return s->irq_enable;
339
340 case MP_AUDIO_TX_STATUS:
341 return s->play_pos >> 2;
342
343 default:
344 return 0;
345 }
346 }
347
348 static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
349 uint32_t value)
350 {
351 musicpal_audio_state *s = opaque;
352
353 switch (offset) {
354 case MP_AUDIO_PLAYBACK_MODE:
355 if (value & MP_AUDIO_PLAYBACK_EN &&
356 !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
357 s->status = 0;
358 s->last_free = 0;
359 s->play_pos = 0;
360 }
361 s->playback_mode = value;
362 musicpal_audio_clock_update(s);
363 break;
364
365 case MP_AUDIO_CLOCK_DIV:
366 s->clock_div = value;
367 s->last_free = 0;
368 s->play_pos = 0;
369 musicpal_audio_clock_update(s);
370 break;
371
372 case MP_AUDIO_IRQ_STATUS:
373 s->status &= ~value;
374 break;
375
376 case MP_AUDIO_IRQ_ENABLE:
377 s->irq_enable = value;
378 if (s->status & s->irq_enable)
379 qemu_irq_raise(s->irq);
380 break;
381
382 case MP_AUDIO_TX_START_LO:
383 s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
384 s->target_buffer = s->phys_buf;
385 s->play_pos = 0;
386 s->last_free = 0;
387 break;
388
389 case MP_AUDIO_TX_THRESHOLD:
390 s->threshold = (value + 1) * 4;
391 break;
392
393 case MP_AUDIO_TX_START_HI:
394 s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
395 s->target_buffer = s->phys_buf;
396 s->play_pos = 0;
397 s->last_free = 0;
398 break;
399 }
400 }
401
402 static void musicpal_audio_reset(void *opaque)
403 {
404 musicpal_audio_state *s = opaque;
405
406 s->playback_mode = 0;
407 s->status = 0;
408 s->irq_enable = 0;
409 }
410
411 static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
412 musicpal_audio_read,
413 musicpal_audio_read,
414 musicpal_audio_read
415 };
416
417 static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
418 musicpal_audio_write,
419 musicpal_audio_write,
420 musicpal_audio_write
421 };
422
423 static i2c_interface *musicpal_audio_init(qemu_irq irq)
424 {
425 AudioState *audio;
426 musicpal_audio_state *s;
427 i2c_interface *i2c;
428 int iomemtype;
429
430 audio = AUD_init();
431
432 s = qemu_mallocz(sizeof(musicpal_audio_state));
433 s->irq = irq;
434
435 i2c = qemu_mallocz(sizeof(i2c_interface));
436 i2c->bus = i2c_init_bus();
437 i2c->current_addr = -1;
438
439 s->wm = wm8750_init(i2c->bus, audio);
440 if (!s->wm)
441 return NULL;
442 i2c_set_slave_address(s->wm, MP_WM_ADDR);
443 wm8750_data_req_set(s->wm, audio_callback, s);
444
445 iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
446 musicpal_audio_writefn, s);
447 cpu_register_physical_memory(MP_AUDIO_BASE, MP_AUDIO_SIZE, iomemtype);
448
449 qemu_register_reset(musicpal_audio_reset, s);
450
451 return i2c;
452 }
453 #else /* !HAS_AUDIO */
454 static i2c_interface *musicpal_audio_init(qemu_irq irq)
455 {
456 return NULL;
457 }
458 #endif /* !HAS_AUDIO */
459
460 /* Ethernet register offsets */
461 #define MP_ETH_SMIR 0x010
462 #define MP_ETH_PCXR 0x408
463 #define MP_ETH_SDCMR 0x448
464 #define MP_ETH_ICR 0x450
465 #define MP_ETH_IMR 0x458
466 #define MP_ETH_FRDP0 0x480
467 #define MP_ETH_FRDP1 0x484
468 #define MP_ETH_FRDP2 0x488
469 #define MP_ETH_FRDP3 0x48C
470 #define MP_ETH_CRDP0 0x4A0
471 #define MP_ETH_CRDP1 0x4A4
472 #define MP_ETH_CRDP2 0x4A8
473 #define MP_ETH_CRDP3 0x4AC
474 #define MP_ETH_CTDP0 0x4E0
475 #define MP_ETH_CTDP1 0x4E4
476 #define MP_ETH_CTDP2 0x4E8
477 #define MP_ETH_CTDP3 0x4EC
478
479 /* MII PHY access */
480 #define MP_ETH_SMIR_DATA 0x0000FFFF
481 #define MP_ETH_SMIR_ADDR 0x03FF0000
482 #define MP_ETH_SMIR_OPCODE (1 << 26) /* Read value */
483 #define MP_ETH_SMIR_RDVALID (1 << 27)
484
485 /* PHY registers */
486 #define MP_ETH_PHY1_BMSR 0x00210000
487 #define MP_ETH_PHY1_PHYSID1 0x00410000
488 #define MP_ETH_PHY1_PHYSID2 0x00610000
489
490 #define MP_PHY_BMSR_LINK 0x0004
491 #define MP_PHY_BMSR_AUTONEG 0x0008
492
493 #define MP_PHY_88E3015 0x01410E20
494
495 /* TX descriptor status */
496 #define MP_ETH_TX_OWN (1 << 31)
497
498 /* RX descriptor status */
499 #define MP_ETH_RX_OWN (1 << 31)
500
501 /* Interrupt cause/mask bits */
502 #define MP_ETH_IRQ_RX_BIT 0
503 #define MP_ETH_IRQ_RX (1 << MP_ETH_IRQ_RX_BIT)
504 #define MP_ETH_IRQ_TXHI_BIT 2
505 #define MP_ETH_IRQ_TXLO_BIT 3
506
507 /* Port config bits */
508 #define MP_ETH_PCXR_2BSM_BIT 28 /* 2-byte incoming suffix */
509
510 /* SDMA command bits */
511 #define MP_ETH_CMD_TXHI (1 << 23)
512 #define MP_ETH_CMD_TXLO (1 << 22)
513
514 typedef struct mv88w8618_tx_desc {
515 uint32_t cmdstat;
516 uint16_t res;
517 uint16_t bytes;
518 uint32_t buffer;
519 uint32_t next;
520 } mv88w8618_tx_desc;
521
522 typedef struct mv88w8618_rx_desc {
523 uint32_t cmdstat;
524 uint16_t bytes;
525 uint16_t buffer_size;
526 uint32_t buffer;
527 uint32_t next;
528 } mv88w8618_rx_desc;
529
530 typedef struct mv88w8618_eth_state {
531 qemu_irq irq;
532 uint32_t smir;
533 uint32_t icr;
534 uint32_t imr;
535 int mmio_index;
536 int vlan_header;
537 uint32_t tx_queue[2];
538 uint32_t rx_queue[4];
539 uint32_t frx_queue[4];
540 uint32_t cur_rx[4];
541 VLANClientState *vc;
542 } mv88w8618_eth_state;
543
544 static void eth_rx_desc_put(uint32_t addr, mv88w8618_rx_desc *desc)
545 {
546 cpu_to_le32s(&desc->cmdstat);
547 cpu_to_le16s(&desc->bytes);
548 cpu_to_le16s(&desc->buffer_size);
549 cpu_to_le32s(&desc->buffer);
550 cpu_to_le32s(&desc->next);
551 cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
552 }
553
554 static void eth_rx_desc_get(uint32_t addr, mv88w8618_rx_desc *desc)
555 {
556 cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
557 le32_to_cpus(&desc->cmdstat);
558 le16_to_cpus(&desc->bytes);
559 le16_to_cpus(&desc->buffer_size);
560 le32_to_cpus(&desc->buffer);
561 le32_to_cpus(&desc->next);
562 }
563
564 static int eth_can_receive(void *opaque)
565 {
566 return 1;
567 }
568
569 static void eth_receive(void *opaque, const uint8_t *buf, int size)
570 {
571 mv88w8618_eth_state *s = opaque;
572 uint32_t desc_addr;
573 mv88w8618_rx_desc desc;
574 int i;
575
576 for (i = 0; i < 4; i++) {
577 desc_addr = s->cur_rx[i];
578 if (!desc_addr)
579 continue;
580 do {
581 eth_rx_desc_get(desc_addr, &desc);
582 if ((desc.cmdstat & MP_ETH_RX_OWN) && desc.buffer_size >= size) {
583 cpu_physical_memory_write(desc.buffer + s->vlan_header,
584 buf, size);
585 desc.bytes = size + s->vlan_header;
586 desc.cmdstat &= ~MP_ETH_RX_OWN;
587 s->cur_rx[i] = desc.next;
588
589 s->icr |= MP_ETH_IRQ_RX;
590 if (s->icr & s->imr)
591 qemu_irq_raise(s->irq);
592 eth_rx_desc_put(desc_addr, &desc);
593 return;
594 }
595 desc_addr = desc.next;
596 } while (desc_addr != s->rx_queue[i]);
597 }
598 }
599
600 static void eth_tx_desc_put(uint32_t addr, mv88w8618_tx_desc *desc)
601 {
602 cpu_to_le32s(&desc->cmdstat);
603 cpu_to_le16s(&desc->res);
604 cpu_to_le16s(&desc->bytes);
605 cpu_to_le32s(&desc->buffer);
606 cpu_to_le32s(&desc->next);
607 cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
608 }
609
610 static void eth_tx_desc_get(uint32_t addr, mv88w8618_tx_desc *desc)
611 {
612 cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
613 le32_to_cpus(&desc->cmdstat);
614 le16_to_cpus(&desc->res);
615 le16_to_cpus(&desc->bytes);
616 le32_to_cpus(&desc->buffer);
617 le32_to_cpus(&desc->next);
618 }
619
620 static void eth_send(mv88w8618_eth_state *s, int queue_index)
621 {
622 uint32_t desc_addr = s->tx_queue[queue_index];
623 mv88w8618_tx_desc desc;
624 uint8_t buf[2048];
625 int len;
626
627
628 do {
629 eth_tx_desc_get(desc_addr, &desc);
630 if (desc.cmdstat & MP_ETH_TX_OWN) {
631 len = desc.bytes;
632 if (len < 2048) {
633 cpu_physical_memory_read(desc.buffer, buf, len);
634 qemu_send_packet(s->vc, buf, len);
635 }
636 desc.cmdstat &= ~MP_ETH_TX_OWN;
637 s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
638 eth_tx_desc_put(desc_addr, &desc);
639 }
640 desc_addr = desc.next;
641 } while (desc_addr != s->tx_queue[queue_index]);
642 }
643
644 static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
645 {
646 mv88w8618_eth_state *s = opaque;
647
648 switch (offset) {
649 case MP_ETH_SMIR:
650 if (s->smir & MP_ETH_SMIR_OPCODE) {
651 switch (s->smir & MP_ETH_SMIR_ADDR) {
652 case MP_ETH_PHY1_BMSR:
653 return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
654 MP_ETH_SMIR_RDVALID;
655 case MP_ETH_PHY1_PHYSID1:
656 return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
657 case MP_ETH_PHY1_PHYSID2:
658 return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
659 default:
660 return MP_ETH_SMIR_RDVALID;
661 }
662 }
663 return 0;
664
665 case MP_ETH_ICR:
666 return s->icr;
667
668 case MP_ETH_IMR:
669 return s->imr;
670
671 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
672 return s->frx_queue[(offset - MP_ETH_FRDP0)/4];
673
674 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
675 return s->rx_queue[(offset - MP_ETH_CRDP0)/4];
676
677 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
678 return s->tx_queue[(offset - MP_ETH_CTDP0)/4];
679
680 default:
681 return 0;
682 }
683 }
684
685 static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
686 uint32_t value)
687 {
688 mv88w8618_eth_state *s = opaque;
689
690 switch (offset) {
691 case MP_ETH_SMIR:
692 s->smir = value;
693 break;
694
695 case MP_ETH_PCXR:
696 s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
697 break;
698
699 case MP_ETH_SDCMR:
700 if (value & MP_ETH_CMD_TXHI)
701 eth_send(s, 1);
702 if (value & MP_ETH_CMD_TXLO)
703 eth_send(s, 0);
704 if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
705 qemu_irq_raise(s->irq);
706 break;
707
708 case MP_ETH_ICR:
709 s->icr &= value;
710 break;
711
712 case MP_ETH_IMR:
713 s->imr = value;
714 if (s->icr & s->imr)
715 qemu_irq_raise(s->irq);
716 break;
717
718 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
719 s->frx_queue[(offset - MP_ETH_FRDP0)/4] = value;
720 break;
721
722 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
723 s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
724 s->cur_rx[(offset - MP_ETH_CRDP0)/4] = value;
725 break;
726
727 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
728 s->tx_queue[(offset - MP_ETH_CTDP0)/4] = value;
729 break;
730 }
731 }
732
733 static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
734 mv88w8618_eth_read,
735 mv88w8618_eth_read,
736 mv88w8618_eth_read
737 };
738
739 static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
740 mv88w8618_eth_write,
741 mv88w8618_eth_write,
742 mv88w8618_eth_write
743 };
744
745 static void eth_cleanup(VLANClientState *vc)
746 {
747 mv88w8618_eth_state *s = vc->opaque;
748
749 cpu_unregister_io_memory(s->mmio_index);
750
751 qemu_free(s);
752 }
753
754 static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
755 {
756 mv88w8618_eth_state *s;
757
758 qemu_check_nic_model(nd, "mv88w8618");
759
760 s = qemu_mallocz(sizeof(mv88w8618_eth_state));
761 s->irq = irq;
762 s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
763 eth_receive, eth_can_receive,
764 eth_cleanup, s);
765 s->mmio_index = cpu_register_io_memory(0, mv88w8618_eth_readfn,
766 mv88w8618_eth_writefn, s);
767 cpu_register_physical_memory(base, MP_ETH_SIZE, s->mmio_index);
768 }
769
770 /* LCD register offsets */
771 #define MP_LCD_IRQCTRL 0x180
772 #define MP_LCD_IRQSTAT 0x184
773 #define MP_LCD_SPICTRL 0x1ac
774 #define MP_LCD_INST 0x1bc
775 #define MP_LCD_DATA 0x1c0
776
777 /* Mode magics */
778 #define MP_LCD_SPI_DATA 0x00100011
779 #define MP_LCD_SPI_CMD 0x00104011
780 #define MP_LCD_SPI_INVALID 0x00000000
781
782 /* Commmands */
783 #define MP_LCD_INST_SETPAGE0 0xB0
784 /* ... */
785 #define MP_LCD_INST_SETPAGE7 0xB7
786
787 #define MP_LCD_TEXTCOLOR 0xe0e0ff /* RRGGBB */
788
789 typedef struct musicpal_lcd_state {
790 uint32_t mode;
791 uint32_t irqctrl;
792 int page;
793 int page_off;
794 DisplayState *ds;
795 uint8_t video_ram[128*64/8];
796 } musicpal_lcd_state;
797
798 static uint32_t lcd_brightness;
799
800 static uint8_t scale_lcd_color(uint8_t col)
801 {
802 int tmp = col;
803
804 switch (lcd_brightness) {
805 case 0x00000007: /* 0 */
806 return 0;
807
808 case 0x00020000: /* 1 */
809 return (tmp * 1) / 7;
810
811 case 0x00020001: /* 2 */
812 return (tmp * 2) / 7;
813
814 case 0x00040000: /* 3 */
815 return (tmp * 3) / 7;
816
817 case 0x00010006: /* 4 */
818 return (tmp * 4) / 7;
819
820 case 0x00020005: /* 5 */
821 return (tmp * 5) / 7;
822
823 case 0x00040003: /* 6 */
824 return (tmp * 6) / 7;
825
826 case 0x00030004: /* 7 */
827 default:
828 return col;
829 }
830 }
831
832 #define SET_LCD_PIXEL(depth, type) \
833 static inline void glue(set_lcd_pixel, depth) \
834 (musicpal_lcd_state *s, int x, int y, type col) \
835 { \
836 int dx, dy; \
837 type *pixel = &((type *) ds_get_data(s->ds))[(y * 128 * 3 + x) * 3]; \
838 \
839 for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
840 for (dx = 0; dx < 3; dx++, pixel++) \
841 *pixel = col; \
842 }
843 SET_LCD_PIXEL(8, uint8_t)
844 SET_LCD_PIXEL(16, uint16_t)
845 SET_LCD_PIXEL(32, uint32_t)
846
847 #include "pixel_ops.h"
848
849 static void lcd_refresh(void *opaque)
850 {
851 musicpal_lcd_state *s = opaque;
852 int x, y, col;
853
854 switch (ds_get_bits_per_pixel(s->ds)) {
855 case 0:
856 return;
857 #define LCD_REFRESH(depth, func) \
858 case depth: \
859 col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
860 scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
861 scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
862 for (x = 0; x < 128; x++) \
863 for (y = 0; y < 64; y++) \
864 if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
865 glue(set_lcd_pixel, depth)(s, x, y, col); \
866 else \
867 glue(set_lcd_pixel, depth)(s, x, y, 0); \
868 break;
869 LCD_REFRESH(8, rgb_to_pixel8)
870 LCD_REFRESH(16, rgb_to_pixel16)
871 LCD_REFRESH(32, (is_surface_bgr(s->ds->surface) ?
872 rgb_to_pixel32bgr : rgb_to_pixel32))
873 default:
874 hw_error("unsupported colour depth %i\n",
875 ds_get_bits_per_pixel(s->ds));
876 }
877
878 dpy_update(s->ds, 0, 0, 128*3, 64*3);
879 }
880
881 static void lcd_invalidate(void *opaque)
882 {
883 }
884
885 static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
886 {
887 musicpal_lcd_state *s = opaque;
888
889 switch (offset) {
890 case MP_LCD_IRQCTRL:
891 return s->irqctrl;
892
893 default:
894 return 0;
895 }
896 }
897
898 static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
899 uint32_t value)
900 {
901 musicpal_lcd_state *s = opaque;
902
903 switch (offset) {
904 case MP_LCD_IRQCTRL:
905 s->irqctrl = value;
906 break;
907
908 case MP_LCD_SPICTRL:
909 if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
910 s->mode = value;
911 else
912 s->mode = MP_LCD_SPI_INVALID;
913 break;
914
915 case MP_LCD_INST:
916 if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
917 s->page = value - MP_LCD_INST_SETPAGE0;
918 s->page_off = 0;
919 }
920 break;
921
922 case MP_LCD_DATA:
923 if (s->mode == MP_LCD_SPI_CMD) {
924 if (value >= MP_LCD_INST_SETPAGE0 &&
925 value <= MP_LCD_INST_SETPAGE7) {
926 s->page = value - MP_LCD_INST_SETPAGE0;
927 s->page_off = 0;
928 }
929 } else if (s->mode == MP_LCD_SPI_DATA) {
930 s->video_ram[s->page*128 + s->page_off] = value;
931 s->page_off = (s->page_off + 1) & 127;
932 }
933 break;
934 }
935 }
936
937 static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
938 musicpal_lcd_read,
939 musicpal_lcd_read,
940 musicpal_lcd_read
941 };
942
943 static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
944 musicpal_lcd_write,
945 musicpal_lcd_write,
946 musicpal_lcd_write
947 };
948
949 static void musicpal_lcd_init(void)
950 {
951 musicpal_lcd_state *s;
952 int iomemtype;
953
954 s = qemu_mallocz(sizeof(musicpal_lcd_state));
955 iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
956 musicpal_lcd_writefn, s);
957 cpu_register_physical_memory(MP_LCD_BASE, MP_LCD_SIZE, iomemtype);
958
959 s->ds = graphic_console_init(lcd_refresh, lcd_invalidate,
960 NULL, NULL, s);
961 qemu_console_resize(s->ds, 128*3, 64*3);
962 }
963
964 /* PIC register offsets */
965 #define MP_PIC_STATUS 0x00
966 #define MP_PIC_ENABLE_SET 0x08
967 #define MP_PIC_ENABLE_CLR 0x0C
968
969 typedef struct mv88w8618_pic_state
970 {
971 uint32_t level;
972 uint32_t enabled;
973 qemu_irq parent_irq;
974 } mv88w8618_pic_state;
975
976 static void mv88w8618_pic_update(mv88w8618_pic_state *s)
977 {
978 qemu_set_irq(s->parent_irq, (s->level & s->enabled));
979 }
980
981 static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
982 {
983 mv88w8618_pic_state *s = opaque;
984
985 if (level)
986 s->level |= 1 << irq;
987 else
988 s->level &= ~(1 << irq);
989 mv88w8618_pic_update(s);
990 }
991
992 static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
993 {
994 mv88w8618_pic_state *s = opaque;
995
996 switch (offset) {
997 case MP_PIC_STATUS:
998 return s->level & s->enabled;
999
1000 default:
1001 return 0;
1002 }
1003 }
1004
1005 static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
1006 uint32_t value)
1007 {
1008 mv88w8618_pic_state *s = opaque;
1009
1010 switch (offset) {
1011 case MP_PIC_ENABLE_SET:
1012 s->enabled |= value;
1013 break;
1014
1015 case MP_PIC_ENABLE_CLR:
1016 s->enabled &= ~value;
1017 s->level &= ~value;
1018 break;
1019 }
1020 mv88w8618_pic_update(s);
1021 }
1022
1023 static void mv88w8618_pic_reset(void *opaque)
1024 {
1025 mv88w8618_pic_state *s = opaque;
1026
1027 s->level = 0;
1028 s->enabled = 0;
1029 }
1030
1031 static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
1032 mv88w8618_pic_read,
1033 mv88w8618_pic_read,
1034 mv88w8618_pic_read
1035 };
1036
1037 static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
1038 mv88w8618_pic_write,
1039 mv88w8618_pic_write,
1040 mv88w8618_pic_write
1041 };
1042
1043 static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
1044 {
1045 mv88w8618_pic_state *s;
1046 int iomemtype;
1047 qemu_irq *qi;
1048
1049 s = qemu_mallocz(sizeof(mv88w8618_pic_state));
1050 qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
1051 s->parent_irq = parent_irq;
1052 iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
1053 mv88w8618_pic_writefn, s);
1054 cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);
1055
1056 qemu_register_reset(mv88w8618_pic_reset, s);
1057
1058 return qi;
1059 }
1060
1061 /* PIT register offsets */
1062 #define MP_PIT_TIMER1_LENGTH 0x00
1063 /* ... */
1064 #define MP_PIT_TIMER4_LENGTH 0x0C
1065 #define MP_PIT_CONTROL 0x10
1066 #define MP_PIT_TIMER1_VALUE 0x14
1067 /* ... */
1068 #define MP_PIT_TIMER4_VALUE 0x20
1069 #define MP_BOARD_RESET 0x34
1070
1071 /* Magic board reset value (probably some watchdog behind it) */
1072 #define MP_BOARD_RESET_MAGIC 0x10000
1073
1074 typedef struct mv88w8618_timer_state {
1075 ptimer_state *timer;
1076 uint32_t limit;
1077 int freq;
1078 qemu_irq irq;
1079 } mv88w8618_timer_state;
1080
1081 typedef struct mv88w8618_pit_state {
1082 void *timer[4];
1083 uint32_t control;
1084 } mv88w8618_pit_state;
1085
1086 static void mv88w8618_timer_tick(void *opaque)
1087 {
1088 mv88w8618_timer_state *s = opaque;
1089
1090 qemu_irq_raise(s->irq);
1091 }
1092
1093 static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
1094 {
1095 mv88w8618_timer_state *s;
1096 QEMUBH *bh;
1097
1098 s = qemu_mallocz(sizeof(mv88w8618_timer_state));
1099 s->irq = irq;
1100 s->freq = freq;
1101
1102 bh = qemu_bh_new(mv88w8618_timer_tick, s);
1103 s->timer = ptimer_init(bh);
1104
1105 return s;
1106 }
1107
1108 static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1109 {
1110 mv88w8618_pit_state *s = opaque;
1111 mv88w8618_timer_state *t;
1112
1113 switch (offset) {
1114 case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1115 t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1116 return ptimer_get_count(t->timer);
1117
1118 default:
1119 return 0;
1120 }
1121 }
1122
1123 static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1124 uint32_t value)
1125 {
1126 mv88w8618_pit_state *s = opaque;
1127 mv88w8618_timer_state *t;
1128 int i;
1129
1130 switch (offset) {
1131 case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1132 t = s->timer[offset >> 2];
1133 t->limit = value;
1134 ptimer_set_limit(t->timer, t->limit, 1);
1135 break;
1136
1137 case MP_PIT_CONTROL:
1138 for (i = 0; i < 4; i++) {
1139 if (value & 0xf) {
1140 t = s->timer[i];
1141 ptimer_set_limit(t->timer, t->limit, 0);
1142 ptimer_set_freq(t->timer, t->freq);
1143 ptimer_run(t->timer, 0);
1144 }
1145 value >>= 4;
1146 }
1147 break;
1148
1149 case MP_BOARD_RESET:
1150 if (value == MP_BOARD_RESET_MAGIC)
1151 qemu_system_reset_request();
1152 break;
1153 }
1154 }
1155
1156 static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1157 mv88w8618_pit_read,
1158 mv88w8618_pit_read,
1159 mv88w8618_pit_read
1160 };
1161
1162 static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1163 mv88w8618_pit_write,
1164 mv88w8618_pit_write,
1165 mv88w8618_pit_write
1166 };
1167
1168 static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
1169 {
1170 int iomemtype;
1171 mv88w8618_pit_state *s;
1172
1173 s = qemu_mallocz(sizeof(mv88w8618_pit_state));
1174
1175 /* Letting them all run at 1 MHz is likely just a pragmatic
1176 * simplification. */
1177 s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
1178 s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
1179 s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
1180 s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);
1181
1182 iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
1183 mv88w8618_pit_writefn, s);
1184 cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
1185 }
1186
1187 /* Flash config register offsets */
1188 #define MP_FLASHCFG_CFGR0 0x04
1189
1190 typedef struct mv88w8618_flashcfg_state {
1191 uint32_t cfgr0;
1192 } mv88w8618_flashcfg_state;
1193
1194 static uint32_t mv88w8618_flashcfg_read(void *opaque,
1195 target_phys_addr_t offset)
1196 {
1197 mv88w8618_flashcfg_state *s = opaque;
1198
1199 switch (offset) {
1200 case MP_FLASHCFG_CFGR0:
1201 return s->cfgr0;
1202
1203 default:
1204 return 0;
1205 }
1206 }
1207
1208 static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1209 uint32_t value)
1210 {
1211 mv88w8618_flashcfg_state *s = opaque;
1212
1213 switch (offset) {
1214 case MP_FLASHCFG_CFGR0:
1215 s->cfgr0 = value;
1216 break;
1217 }
1218 }
1219
1220 static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1221 mv88w8618_flashcfg_read,
1222 mv88w8618_flashcfg_read,
1223 mv88w8618_flashcfg_read
1224 };
1225
1226 static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1227 mv88w8618_flashcfg_write,
1228 mv88w8618_flashcfg_write,
1229 mv88w8618_flashcfg_write
1230 };
1231
1232 static void mv88w8618_flashcfg_init(uint32_t base)
1233 {
1234 int iomemtype;
1235 mv88w8618_flashcfg_state *s;
1236
1237 s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
1238
1239 s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1240 iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
1241 mv88w8618_flashcfg_writefn, s);
1242 cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
1243 }
1244
1245 /* Misc register offsets */
1246 #define MP_MISC_BOARD_REVISION 0x18
1247
1248 #define MP_BOARD_REVISION 0x31
1249
1250 static uint32_t musicpal_misc_read(void *opaque, target_phys_addr_t offset)
1251 {
1252 switch (offset) {
1253 case MP_MISC_BOARD_REVISION:
1254 return MP_BOARD_REVISION;
1255
1256 default:
1257 return 0;
1258 }
1259 }
1260
1261 static void musicpal_misc_write(void *opaque, target_phys_addr_t offset,
1262 uint32_t value)
1263 {
1264 }
1265
1266 static CPUReadMemoryFunc *musicpal_misc_readfn[] = {
1267 musicpal_misc_read,
1268 musicpal_misc_read,
1269 musicpal_misc_read,
1270 };
1271
1272 static CPUWriteMemoryFunc *musicpal_misc_writefn[] = {
1273 musicpal_misc_write,
1274 musicpal_misc_write,
1275 musicpal_misc_write,
1276 };
1277
1278 static void musicpal_misc_init(void)
1279 {
1280 int iomemtype;
1281
1282 iomemtype = cpu_register_io_memory(0, musicpal_misc_readfn,
1283 musicpal_misc_writefn, NULL);
1284 cpu_register_physical_memory(MP_MISC_BASE, MP_MISC_SIZE, iomemtype);
1285 }
1286
1287 /* WLAN register offsets */
1288 #define MP_WLAN_MAGIC1 0x11c
1289 #define MP_WLAN_MAGIC2 0x124
1290
1291 static uint32_t mv88w8618_wlan_read(void *opaque, target_phys_addr_t offset)
1292 {
1293 switch (offset) {
1294 /* Workaround to allow loading the binary-only wlandrv.ko crap
1295 * from the original Freecom firmware. */
1296 case MP_WLAN_MAGIC1:
1297 return ~3;
1298 case MP_WLAN_MAGIC2:
1299 return -1;
1300
1301 default:
1302 return 0;
1303 }
1304 }
1305
1306 static void mv88w8618_wlan_write(void *opaque, target_phys_addr_t offset,
1307 uint32_t value)
1308 {
1309 }
1310
1311 static CPUReadMemoryFunc *mv88w8618_wlan_readfn[] = {
1312 mv88w8618_wlan_read,
1313 mv88w8618_wlan_read,
1314 mv88w8618_wlan_read,
1315 };
1316
1317 static CPUWriteMemoryFunc *mv88w8618_wlan_writefn[] = {
1318 mv88w8618_wlan_write,
1319 mv88w8618_wlan_write,
1320 mv88w8618_wlan_write,
1321 };
1322
1323 static void mv88w8618_wlan_init(uint32_t base)
1324 {
1325 int iomemtype;
1326
1327 iomemtype = cpu_register_io_memory(0, mv88w8618_wlan_readfn,
1328 mv88w8618_wlan_writefn, NULL);
1329 cpu_register_physical_memory(base, MP_WLAN_SIZE, iomemtype);
1330 }
1331
1332 /* GPIO register offsets */
1333 #define MP_GPIO_OE_LO 0x008
1334 #define MP_GPIO_OUT_LO 0x00c
1335 #define MP_GPIO_IN_LO 0x010
1336 #define MP_GPIO_ISR_LO 0x020
1337 #define MP_GPIO_OE_HI 0x508
1338 #define MP_GPIO_OUT_HI 0x50c
1339 #define MP_GPIO_IN_HI 0x510
1340 #define MP_GPIO_ISR_HI 0x520
1341
1342 /* GPIO bits & masks */
1343 #define MP_GPIO_WHEEL_VOL (1 << 8)
1344 #define MP_GPIO_WHEEL_VOL_INV (1 << 9)
1345 #define MP_GPIO_WHEEL_NAV (1 << 10)
1346 #define MP_GPIO_WHEEL_NAV_INV (1 << 11)
1347 #define MP_GPIO_LCD_BRIGHTNESS 0x00070000
1348 #define MP_GPIO_BTN_FAVORITS (1 << 19)
1349 #define MP_GPIO_BTN_MENU (1 << 20)
1350 #define MP_GPIO_BTN_VOLUME (1 << 21)
1351 #define MP_GPIO_BTN_NAVIGATION (1 << 22)
1352 #define MP_GPIO_I2C_DATA_BIT 29
1353 #define MP_GPIO_I2C_DATA (1 << MP_GPIO_I2C_DATA_BIT)
1354 #define MP_GPIO_I2C_CLOCK_BIT 30
1355
1356 /* LCD brightness bits in GPIO_OE_HI */
1357 #define MP_OE_LCD_BRIGHTNESS 0x0007
1358
1359 static uint32_t musicpal_gpio_read(void *opaque, target_phys_addr_t offset)
1360 {
1361 switch (offset) {
1362 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1363 return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1364
1365 case MP_GPIO_OUT_LO:
1366 return gpio_out_state & 0xFFFF;
1367 case MP_GPIO_OUT_HI:
1368 return gpio_out_state >> 16;
1369
1370 case MP_GPIO_IN_LO:
1371 return gpio_in_state & 0xFFFF;
1372 case MP_GPIO_IN_HI:
1373 /* Update received I2C data */
1374 gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1375 (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1376 return gpio_in_state >> 16;
1377
1378 case MP_GPIO_ISR_LO:
1379 return gpio_isr & 0xFFFF;
1380 case MP_GPIO_ISR_HI:
1381 return gpio_isr >> 16;
1382
1383 default:
1384 return 0;
1385 }
1386 }
1387
1388 static void musicpal_gpio_write(void *opaque, target_phys_addr_t offset,
1389 uint32_t value)
1390 {
1391 switch (offset) {
1392 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1393 lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1394 (value & MP_OE_LCD_BRIGHTNESS);
1395 break;
1396
1397 case MP_GPIO_OUT_LO:
1398 gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1399 break;
1400 case MP_GPIO_OUT_HI:
1401 gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1402 lcd_brightness = (lcd_brightness & 0xFFFF) |
1403 (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1404 i2c_state_update(mixer_i2c,
1405 (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1406 (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1407 break;
1408
1409 }
1410 }
1411
1412 static CPUReadMemoryFunc *musicpal_gpio_readfn[] = {
1413 musicpal_gpio_read,
1414 musicpal_gpio_read,
1415 musicpal_gpio_read,
1416 };
1417
1418 static CPUWriteMemoryFunc *musicpal_gpio_writefn[] = {
1419 musicpal_gpio_write,
1420 musicpal_gpio_write,
1421 musicpal_gpio_write,
1422 };
1423
1424 static void musicpal_gpio_init(void)
1425 {
1426 int iomemtype;
1427
1428 iomemtype = cpu_register_io_memory(0, musicpal_gpio_readfn,
1429 musicpal_gpio_writefn, NULL);
1430 cpu_register_physical_memory(MP_GPIO_BASE, MP_GPIO_SIZE, iomemtype);
1431 }
1432
1433 /* Keyboard codes & masks */
1434 #define KEY_RELEASED 0x80
1435 #define KEY_CODE 0x7f
1436
1437 #define KEYCODE_TAB 0x0f
1438 #define KEYCODE_ENTER 0x1c
1439 #define KEYCODE_F 0x21
1440 #define KEYCODE_M 0x32
1441
1442 #define KEYCODE_EXTENDED 0xe0
1443 #define KEYCODE_UP 0x48
1444 #define KEYCODE_DOWN 0x50
1445 #define KEYCODE_LEFT 0x4b
1446 #define KEYCODE_RIGHT 0x4d
1447
1448 static void musicpal_key_event(void *opaque, int keycode)
1449 {
1450 qemu_irq irq = opaque;
1451 uint32_t event = 0;
1452 static int kbd_extended;
1453
1454 if (keycode == KEYCODE_EXTENDED) {
1455 kbd_extended = 1;
1456 return;
1457 }
1458
1459 if (kbd_extended)
1460 switch (keycode & KEY_CODE) {
1461 case KEYCODE_UP:
1462 event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1463 break;
1464
1465 case KEYCODE_DOWN:
1466 event = MP_GPIO_WHEEL_NAV;
1467 break;
1468
1469 case KEYCODE_LEFT:
1470 event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1471 break;
1472
1473 case KEYCODE_RIGHT:
1474 event = MP_GPIO_WHEEL_VOL;
1475 break;
1476 }
1477 else {
1478 switch (keycode & KEY_CODE) {
1479 case KEYCODE_F:
1480 event = MP_GPIO_BTN_FAVORITS;
1481 break;
1482
1483 case KEYCODE_TAB:
1484 event = MP_GPIO_BTN_VOLUME;
1485 break;
1486
1487 case KEYCODE_ENTER:
1488 event = MP_GPIO_BTN_NAVIGATION;
1489 break;
1490
1491 case KEYCODE_M:
1492 event = MP_GPIO_BTN_MENU;
1493 break;
1494 }
1495 /* Do not repeat already pressed buttons */
1496 if (!(keycode & KEY_RELEASED) && !(gpio_in_state & event))
1497 event = 0;
1498 }
1499
1500 if (event) {
1501 if (keycode & KEY_RELEASED) {
1502 gpio_in_state |= event;
1503 } else {
1504 gpio_in_state &= ~event;
1505 gpio_isr = event;
1506 qemu_irq_raise(irq);
1507 }
1508 }
1509
1510 kbd_extended = 0;
1511 }
1512
1513 static struct arm_boot_info musicpal_binfo = {
1514 .loader_start = 0x0,
1515 .board_id = 0x20e,
1516 };
1517
1518 static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
1519 const char *boot_device,
1520 const char *kernel_filename, const char *kernel_cmdline,
1521 const char *initrd_filename, const char *cpu_model)
1522 {
1523 CPUState *env;
1524 qemu_irq *pic;
1525 int index;
1526 unsigned long flash_size;
1527
1528 if (!cpu_model)
1529 cpu_model = "arm926";
1530
1531 env = cpu_init(cpu_model);
1532 if (!env) {
1533 fprintf(stderr, "Unable to find CPU definition\n");
1534 exit(1);
1535 }
1536 pic = arm_pic_init_cpu(env);
1537
1538 /* For now we use a fixed - the original - RAM size */
1539 cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1540 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1541
1542 sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1543 cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1544
1545 pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
1546 mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
1547
1548 if (serial_hds[0])
1549 serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
1550 serial_hds[0], 1);
1551 if (serial_hds[1])
1552 serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
1553 serial_hds[1], 1);
1554
1555 /* Register flash */
1556 index = drive_get_index(IF_PFLASH, 0, 0);
1557 if (index != -1) {
1558 flash_size = bdrv_getlength(drives_table[index].bdrv);
1559 if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1560 flash_size != 32*1024*1024) {
1561 fprintf(stderr, "Invalid flash image size\n");
1562 exit(1);
1563 }
1564
1565 /*
1566 * The original U-Boot accesses the flash at 0xFE000000 instead of
1567 * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1568 * image is smaller than 32 MB.
1569 */
1570 pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1571 drives_table[index].bdrv, 0x10000,
1572 (flash_size + 0xffff) >> 16,
1573 MP_FLASH_SIZE_MAX / flash_size,
1574 2, 0x00BF, 0x236D, 0x0000, 0x0000,
1575 0x5555, 0x2AAA);
1576 }
1577 mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
1578
1579 musicpal_lcd_init();
1580
1581 qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1582
1583 mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
1584
1585 mixer_i2c = musicpal_audio_init(pic[MP_AUDIO_IRQ]);
1586
1587 mv88w8618_wlan_init(MP_WLAN_BASE);
1588
1589 musicpal_misc_init();
1590 musicpal_gpio_init();
1591
1592 musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1593 musicpal_binfo.kernel_filename = kernel_filename;
1594 musicpal_binfo.kernel_cmdline = kernel_cmdline;
1595 musicpal_binfo.initrd_filename = initrd_filename;
1596 arm_load_kernel(env, &musicpal_binfo);
1597 }
1598
1599 QEMUMachine musicpal_machine = {
1600 .name = "musicpal",
1601 .desc = "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1602 .init = musicpal_init,
1603 };