]> git.proxmox.com Git - qemu.git/blob - hw/nand.c
hw/nand: Writing to NAND can only clear bits
[qemu.git] / hw / nand.c
1 /*
2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4 * Samsung Electronic.
5 *
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <balrog@zabor.org>
8 *
9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
11 * from ST Microelectronics.
12 *
13 * This code is licensed under the GNU GPL v2.
14 */
15
16 #ifndef NAND_IO
17
18 # include "hw.h"
19 # include "flash.h"
20 # include "blockdev.h"
21
22 # define NAND_CMD_READ0 0x00
23 # define NAND_CMD_READ1 0x01
24 # define NAND_CMD_READ2 0x50
25 # define NAND_CMD_LPREAD2 0x30
26 # define NAND_CMD_NOSERIALREAD2 0x35
27 # define NAND_CMD_RANDOMREAD1 0x05
28 # define NAND_CMD_RANDOMREAD2 0xe0
29 # define NAND_CMD_READID 0x90
30 # define NAND_CMD_RESET 0xff
31 # define NAND_CMD_PAGEPROGRAM1 0x80
32 # define NAND_CMD_PAGEPROGRAM2 0x10
33 # define NAND_CMD_CACHEPROGRAM2 0x15
34 # define NAND_CMD_BLOCKERASE1 0x60
35 # define NAND_CMD_BLOCKERASE2 0xd0
36 # define NAND_CMD_READSTATUS 0x70
37 # define NAND_CMD_COPYBACKPRG1 0x85
38
39 # define NAND_IOSTATUS_ERROR (1 << 0)
40 # define NAND_IOSTATUS_PLANE0 (1 << 1)
41 # define NAND_IOSTATUS_PLANE1 (1 << 2)
42 # define NAND_IOSTATUS_PLANE2 (1 << 3)
43 # define NAND_IOSTATUS_PLANE3 (1 << 4)
44 # define NAND_IOSTATUS_BUSY (1 << 6)
45 # define NAND_IOSTATUS_UNPROTCT (1 << 7)
46
47 # define MAX_PAGE 0x800
48 # define MAX_OOB 0x40
49
50 struct NANDFlashState {
51 uint8_t manf_id, chip_id;
52 uint8_t buswidth; /* in BYTES */
53 int size, pages;
54 int page_shift, oob_shift, erase_shift, addr_shift;
55 uint8_t *storage;
56 BlockDriverState *bdrv;
57 int mem_oob;
58
59 uint8_t cle, ale, ce, wp, gnd;
60
61 uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
62 uint8_t *ioaddr;
63 int iolen;
64
65 uint32_t cmd;
66 uint64_t addr;
67 int addrlen;
68 int status;
69 int offset;
70
71 void (*blk_write)(NANDFlashState *s);
72 void (*blk_erase)(NANDFlashState *s);
73 void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
74
75 uint32_t ioaddr_vmstate;
76 };
77
78 static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
79 {
80 /* Like memcpy() but we logical-AND the data into the destination */
81 int i;
82 for (i = 0; i < n; i++) {
83 dest[i] &= src[i];
84 }
85 }
86
87 # define NAND_NO_AUTOINCR 0x00000001
88 # define NAND_BUSWIDTH_16 0x00000002
89 # define NAND_NO_PADDING 0x00000004
90 # define NAND_CACHEPRG 0x00000008
91 # define NAND_COPYBACK 0x00000010
92 # define NAND_IS_AND 0x00000020
93 # define NAND_4PAGE_ARRAY 0x00000040
94 # define NAND_NO_READRDY 0x00000100
95 # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
96
97 # define NAND_IO
98
99 # define PAGE(addr) ((addr) >> ADDR_SHIFT)
100 # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
101 # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
102 # define OOB_SHIFT (PAGE_SHIFT - 5)
103 # define OOB_SIZE (1 << OOB_SHIFT)
104 # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
105 # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
106
107 # define PAGE_SIZE 256
108 # define PAGE_SHIFT 8
109 # define PAGE_SECTORS 1
110 # define ADDR_SHIFT 8
111 # include "nand.c"
112 # define PAGE_SIZE 512
113 # define PAGE_SHIFT 9
114 # define PAGE_SECTORS 1
115 # define ADDR_SHIFT 8
116 # include "nand.c"
117 # define PAGE_SIZE 2048
118 # define PAGE_SHIFT 11
119 # define PAGE_SECTORS 4
120 # define ADDR_SHIFT 16
121 # include "nand.c"
122
123 /* Information based on Linux drivers/mtd/nand/nand_ids.c */
124 static const struct {
125 int size;
126 int width;
127 int page_shift;
128 int erase_shift;
129 uint32_t options;
130 } nand_flash_ids[0x100] = {
131 [0 ... 0xff] = { 0 },
132
133 [0x6e] = { 1, 8, 8, 4, 0 },
134 [0x64] = { 2, 8, 8, 4, 0 },
135 [0x6b] = { 4, 8, 9, 4, 0 },
136 [0xe8] = { 1, 8, 8, 4, 0 },
137 [0xec] = { 1, 8, 8, 4, 0 },
138 [0xea] = { 2, 8, 8, 4, 0 },
139 [0xd5] = { 4, 8, 9, 4, 0 },
140 [0xe3] = { 4, 8, 9, 4, 0 },
141 [0xe5] = { 4, 8, 9, 4, 0 },
142 [0xd6] = { 8, 8, 9, 4, 0 },
143
144 [0x39] = { 8, 8, 9, 4, 0 },
145 [0xe6] = { 8, 8, 9, 4, 0 },
146 [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
147 [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
148
149 [0x33] = { 16, 8, 9, 5, 0 },
150 [0x73] = { 16, 8, 9, 5, 0 },
151 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
152 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
153
154 [0x35] = { 32, 8, 9, 5, 0 },
155 [0x75] = { 32, 8, 9, 5, 0 },
156 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
157 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
158
159 [0x36] = { 64, 8, 9, 5, 0 },
160 [0x76] = { 64, 8, 9, 5, 0 },
161 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
162 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
163
164 [0x78] = { 128, 8, 9, 5, 0 },
165 [0x39] = { 128, 8, 9, 5, 0 },
166 [0x79] = { 128, 8, 9, 5, 0 },
167 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
168 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
169 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
170 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
171
172 [0x71] = { 256, 8, 9, 5, 0 },
173
174 /*
175 * These are the new chips with large page size. The pagesize and the
176 * erasesize is determined from the extended id bytes
177 */
178 # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
179 # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
180
181 /* 512 Megabit */
182 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
183 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
184 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
185 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
186
187 /* 1 Gigabit */
188 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
189 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
190 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
191 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
192
193 /* 2 Gigabit */
194 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
195 [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
196 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
197 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
198
199 /* 4 Gigabit */
200 [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
201 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
202 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
203 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
204
205 /* 8 Gigabit */
206 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
207 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
208 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
209 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
210
211 /* 16 Gigabit */
212 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
213 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
214 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
215 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
216 };
217
218 static void nand_reset(NANDFlashState *s)
219 {
220 s->cmd = NAND_CMD_READ0;
221 s->addr = 0;
222 s->addrlen = 0;
223 s->iolen = 0;
224 s->offset = 0;
225 s->status &= NAND_IOSTATUS_UNPROTCT;
226 }
227
228 static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
229 {
230 s->ioaddr[s->iolen++] = value;
231 for (value = s->buswidth; --value;) {
232 s->ioaddr[s->iolen++] = 0;
233 }
234 }
235
236 static void nand_command(NANDFlashState *s)
237 {
238 unsigned int offset;
239 switch (s->cmd) {
240 case NAND_CMD_READ0:
241 s->iolen = 0;
242 break;
243
244 case NAND_CMD_READID:
245 s->ioaddr = s->io;
246 s->iolen = 0;
247 nand_pushio_byte(s, s->manf_id);
248 nand_pushio_byte(s, s->chip_id);
249 nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
250 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
251 /* Page Size, Block Size, Spare Size; bit 6 indicates
252 * 8 vs 16 bit width NAND.
253 */
254 nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
255 } else {
256 nand_pushio_byte(s, 0xc0); /* Multi-plane */
257 }
258 break;
259
260 case NAND_CMD_RANDOMREAD2:
261 case NAND_CMD_NOSERIALREAD2:
262 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
263 break;
264 offset = s->addr & ((1 << s->addr_shift) - 1);
265 s->blk_load(s, s->addr, offset);
266 if (s->gnd)
267 s->iolen = (1 << s->page_shift) - offset;
268 else
269 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
270 break;
271
272 case NAND_CMD_RESET:
273 nand_reset(s);
274 break;
275
276 case NAND_CMD_PAGEPROGRAM1:
277 s->ioaddr = s->io;
278 s->iolen = 0;
279 break;
280
281 case NAND_CMD_PAGEPROGRAM2:
282 if (s->wp) {
283 s->blk_write(s);
284 }
285 break;
286
287 case NAND_CMD_BLOCKERASE1:
288 break;
289
290 case NAND_CMD_BLOCKERASE2:
291 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
292 s->addr <<= 16;
293 else
294 s->addr <<= 8;
295
296 if (s->wp) {
297 s->blk_erase(s);
298 }
299 break;
300
301 case NAND_CMD_READSTATUS:
302 s->ioaddr = s->io;
303 s->iolen = 0;
304 nand_pushio_byte(s, s->status);
305 break;
306
307 default:
308 printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
309 }
310 }
311
312 static void nand_pre_save(void *opaque)
313 {
314 NANDFlashState *s = opaque;
315
316 s->ioaddr_vmstate = s->ioaddr - s->io;
317 }
318
319 static int nand_post_load(void *opaque, int version_id)
320 {
321 NANDFlashState *s = opaque;
322
323 if (s->ioaddr_vmstate > sizeof(s->io)) {
324 return -EINVAL;
325 }
326 s->ioaddr = s->io + s->ioaddr_vmstate;
327
328 return 0;
329 }
330
331 static const VMStateDescription vmstate_nand = {
332 .name = "nand",
333 .version_id = 1,
334 .minimum_version_id = 1,
335 .minimum_version_id_old = 1,
336 .pre_save = nand_pre_save,
337 .post_load = nand_post_load,
338 .fields = (VMStateField[]) {
339 VMSTATE_UINT8(cle, NANDFlashState),
340 VMSTATE_UINT8(ale, NANDFlashState),
341 VMSTATE_UINT8(ce, NANDFlashState),
342 VMSTATE_UINT8(wp, NANDFlashState),
343 VMSTATE_UINT8(gnd, NANDFlashState),
344 VMSTATE_BUFFER(io, NANDFlashState),
345 VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
346 VMSTATE_INT32(iolen, NANDFlashState),
347 VMSTATE_UINT32(cmd, NANDFlashState),
348 VMSTATE_UINT64(addr, NANDFlashState),
349 VMSTATE_INT32(addrlen, NANDFlashState),
350 VMSTATE_INT32(status, NANDFlashState),
351 VMSTATE_INT32(offset, NANDFlashState),
352 /* XXX: do we want to save s->storage too? */
353 VMSTATE_END_OF_LIST()
354 }
355 };
356
357 /*
358 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
359 * outputs are R/B and eight I/O pins.
360 *
361 * CE, WP and R/B are active low.
362 */
363 void nand_setpins(NANDFlashState *s, uint8_t cle, uint8_t ale,
364 uint8_t ce, uint8_t wp, uint8_t gnd)
365 {
366 s->cle = cle;
367 s->ale = ale;
368 s->ce = ce;
369 s->wp = wp;
370 s->gnd = gnd;
371 if (wp)
372 s->status |= NAND_IOSTATUS_UNPROTCT;
373 else
374 s->status &= ~NAND_IOSTATUS_UNPROTCT;
375 }
376
377 void nand_getpins(NANDFlashState *s, int *rb)
378 {
379 *rb = 1;
380 }
381
382 void nand_setio(NANDFlashState *s, uint32_t value)
383 {
384 int i;
385
386 if (!s->ce && s->cle) {
387 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
388 if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
389 return;
390 if (value == NAND_CMD_RANDOMREAD1) {
391 s->addr &= ~((1 << s->addr_shift) - 1);
392 s->addrlen = 0;
393 return;
394 }
395 }
396 if (value == NAND_CMD_READ0)
397 s->offset = 0;
398 else if (value == NAND_CMD_READ1) {
399 s->offset = 0x100;
400 value = NAND_CMD_READ0;
401 }
402 else if (value == NAND_CMD_READ2) {
403 s->offset = 1 << s->page_shift;
404 value = NAND_CMD_READ0;
405 }
406
407 s->cmd = value;
408
409 if (s->cmd == NAND_CMD_READSTATUS ||
410 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
411 s->cmd == NAND_CMD_BLOCKERASE1 ||
412 s->cmd == NAND_CMD_BLOCKERASE2 ||
413 s->cmd == NAND_CMD_NOSERIALREAD2 ||
414 s->cmd == NAND_CMD_RANDOMREAD2 ||
415 s->cmd == NAND_CMD_RESET)
416 nand_command(s);
417
418 if (s->cmd != NAND_CMD_RANDOMREAD2) {
419 s->addrlen = 0;
420 }
421 }
422
423 if (s->ale) {
424 unsigned int shift = s->addrlen * 8;
425 unsigned int mask = ~(0xff << shift);
426 unsigned int v = value << shift;
427
428 s->addr = (s->addr & mask) | v;
429 s->addrlen ++;
430
431 switch (s->addrlen) {
432 case 1:
433 if (s->cmd == NAND_CMD_READID) {
434 nand_command(s);
435 }
436 break;
437 case 2: /* fix cache address as a byte address */
438 s->addr <<= (s->buswidth - 1);
439 break;
440 case 3:
441 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
442 (s->cmd == NAND_CMD_READ0 ||
443 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
444 nand_command(s);
445 }
446 break;
447 case 4:
448 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
449 nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
450 (s->cmd == NAND_CMD_READ0 ||
451 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
452 nand_command(s);
453 }
454 break;
455 case 5:
456 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
457 nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
458 (s->cmd == NAND_CMD_READ0 ||
459 s->cmd == NAND_CMD_PAGEPROGRAM1)) {
460 nand_command(s);
461 }
462 break;
463 default:
464 break;
465 }
466 }
467
468 if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
469 if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
470 for (i = s->buswidth; i--; value >>= 8) {
471 s->io[s->iolen ++] = (uint8_t) (value & 0xff);
472 }
473 }
474 } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
475 if ((s->addr & ((1 << s->addr_shift) - 1)) <
476 (1 << s->page_shift) + (1 << s->oob_shift)) {
477 for (i = s->buswidth; i--; s->addr++, value >>= 8) {
478 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
479 (uint8_t) (value & 0xff);
480 }
481 }
482 }
483 }
484
485 uint32_t nand_getio(NANDFlashState *s)
486 {
487 int offset;
488 uint32_t x = 0;
489
490 /* Allow sequential reading */
491 if (!s->iolen && s->cmd == NAND_CMD_READ0) {
492 offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
493 s->offset = 0;
494
495 s->blk_load(s, s->addr, offset);
496 if (s->gnd)
497 s->iolen = (1 << s->page_shift) - offset;
498 else
499 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
500 }
501
502 if (s->ce || s->iolen <= 0)
503 return 0;
504
505 for (offset = s->buswidth; offset--;) {
506 x |= s->ioaddr[offset] << (offset << 3);
507 }
508 /* after receiving READ STATUS command all subsequent reads will
509 * return the status register value until another command is issued
510 */
511 if (s->cmd != NAND_CMD_READSTATUS) {
512 s->addr += s->buswidth;
513 s->ioaddr += s->buswidth;
514 s->iolen -= s->buswidth;
515 }
516 return x;
517 }
518
519 uint32_t nand_getbuswidth(NANDFlashState *s)
520 {
521 return s->buswidth << 3;
522 }
523
524 NANDFlashState *nand_init(BlockDriverState *bdrv, int manf_id, int chip_id)
525 {
526 int pagesize;
527 NANDFlashState *s;
528
529 if (nand_flash_ids[chip_id].size == 0) {
530 hw_error("%s: Unsupported NAND chip ID.\n", __FUNCTION__);
531 }
532
533 s = (NANDFlashState *) qemu_mallocz(sizeof(NANDFlashState));
534 s->bdrv = bdrv;
535 s->manf_id = manf_id;
536 s->chip_id = chip_id;
537 s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
538 s->size = nand_flash_ids[s->chip_id].size << 20;
539 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
540 s->page_shift = 11;
541 s->erase_shift = 6;
542 } else {
543 s->page_shift = nand_flash_ids[s->chip_id].page_shift;
544 s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
545 }
546
547 switch (1 << s->page_shift) {
548 case 256:
549 nand_init_256(s);
550 break;
551 case 512:
552 nand_init_512(s);
553 break;
554 case 2048:
555 nand_init_2048(s);
556 break;
557 default:
558 hw_error("%s: Unsupported NAND block size.\n", __FUNCTION__);
559 }
560
561 pagesize = 1 << s->oob_shift;
562 s->mem_oob = 1;
563 if (s->bdrv && bdrv_getlength(s->bdrv) >=
564 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
565 pagesize = 0;
566 s->mem_oob = 0;
567 }
568
569 if (!s->bdrv)
570 pagesize += 1 << s->page_shift;
571 if (pagesize)
572 s->storage = (uint8_t *) memset(qemu_malloc(s->pages * pagesize),
573 0xff, s->pages * pagesize);
574 /* Give s->ioaddr a sane value in case we save state before it
575 is used. */
576 s->ioaddr = s->io;
577
578 vmstate_register(NULL, -1, &vmstate_nand, s);
579
580 return s;
581 }
582
583 void nand_done(NANDFlashState *s)
584 {
585 if (s->bdrv) {
586 bdrv_close(s->bdrv);
587 bdrv_delete(s->bdrv);
588 }
589
590 if (!s->bdrv || s->mem_oob)
591 qemu_free(s->storage);
592
593 qemu_free(s);
594 }
595
596 #else
597
598 /* Program a single page */
599 static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
600 {
601 uint64_t off, page, sector, soff;
602 uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
603 if (PAGE(s->addr) >= s->pages)
604 return;
605
606 if (!s->bdrv) {
607 mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
608 s->offset, s->io, s->iolen);
609 } else if (s->mem_oob) {
610 sector = SECTOR(s->addr);
611 off = (s->addr & PAGE_MASK) + s->offset;
612 soff = SECTOR_OFFSET(s->addr);
613 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1) {
614 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
615 return;
616 }
617
618 mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
619 if (off + s->iolen > PAGE_SIZE) {
620 page = PAGE(s->addr);
621 mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
622 MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
623 }
624
625 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1)
626 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
627 } else {
628 off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
629 sector = off >> 9;
630 soff = off & 0x1ff;
631 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1) {
632 printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
633 return;
634 }
635
636 mem_and(iobuf + soff, s->io, s->iolen);
637
638 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1)
639 printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
640 }
641 s->offset = 0;
642 }
643
644 /* Erase a single block */
645 static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
646 {
647 uint64_t i, page, addr;
648 uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
649 addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
650
651 if (PAGE(addr) >= s->pages)
652 return;
653
654 if (!s->bdrv) {
655 memset(s->storage + PAGE_START(addr),
656 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
657 } else if (s->mem_oob) {
658 memset(s->storage + (PAGE(addr) << OOB_SHIFT),
659 0xff, OOB_SIZE << s->erase_shift);
660 i = SECTOR(addr);
661 page = SECTOR(addr + (ADDR_SHIFT + s->erase_shift));
662 for (; i < page; i ++)
663 if (bdrv_write(s->bdrv, i, iobuf, 1) == -1)
664 printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
665 } else {
666 addr = PAGE_START(addr);
667 page = addr >> 9;
668 if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
669 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
670 memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
671 if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
672 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
673
674 memset(iobuf, 0xff, 0x200);
675 i = (addr & ~0x1ff) + 0x200;
676 for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
677 i < addr; i += 0x200)
678 if (bdrv_write(s->bdrv, i >> 9, iobuf, 1) == -1)
679 printf("%s: write error in sector %" PRIu64 "\n",
680 __func__, i >> 9);
681
682 page = i >> 9;
683 if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
684 printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
685 memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
686 if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
687 printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
688 }
689 }
690
691 static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
692 uint64_t addr, int offset)
693 {
694 if (PAGE(addr) >= s->pages)
695 return;
696
697 if (s->bdrv) {
698 if (s->mem_oob) {
699 if (bdrv_read(s->bdrv, SECTOR(addr), s->io, PAGE_SECTORS) == -1)
700 printf("%s: read error in sector %" PRIu64 "\n",
701 __func__, SECTOR(addr));
702 memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
703 s->storage + (PAGE(s->addr) << OOB_SHIFT),
704 OOB_SIZE);
705 s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
706 } else {
707 if (bdrv_read(s->bdrv, PAGE_START(addr) >> 9,
708 s->io, (PAGE_SECTORS + 2)) == -1)
709 printf("%s: read error in sector %" PRIu64 "\n",
710 __func__, PAGE_START(addr) >> 9);
711 s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
712 }
713 } else {
714 memcpy(s->io, s->storage + PAGE_START(s->addr) +
715 offset, PAGE_SIZE + OOB_SIZE - offset);
716 s->ioaddr = s->io;
717 }
718 }
719
720 static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
721 {
722 s->oob_shift = PAGE_SHIFT - 5;
723 s->pages = s->size >> PAGE_SHIFT;
724 s->addr_shift = ADDR_SHIFT;
725
726 s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
727 s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
728 s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
729 }
730
731 # undef PAGE_SIZE
732 # undef PAGE_SHIFT
733 # undef PAGE_SECTORS
734 # undef ADDR_SHIFT
735 #endif /* NAND_IO */