]> git.proxmox.com Git - qemu.git/blob - hw/ne2000.c
update
[qemu.git] / hw / ne2000.c
1 /*
2 * QEMU NE2000 emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "vl.h"
25
26 /* debug NE2000 card */
27 //#define DEBUG_NE2000
28
29 #define MAX_ETH_FRAME_SIZE 1514
30
31 #define E8390_CMD 0x00 /* The command register (for all pages) */
32 /* Page 0 register offsets. */
33 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
34 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
35 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
36 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
37 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
38 #define EN0_TSR 0x04 /* Transmit status reg RD */
39 #define EN0_TPSR 0x04 /* Transmit starting page WR */
40 #define EN0_NCR 0x05 /* Number of collision reg RD */
41 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
42 #define EN0_FIFO 0x06 /* FIFO RD */
43 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
44 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
45 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
46 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
47 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
48 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
49 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
50 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
51 #define EN0_RSR 0x0c /* rx status reg RD */
52 #define EN0_RXCR 0x0c /* RX configuration reg WR */
53 #define EN0_TXCR 0x0d /* TX configuration reg WR */
54 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
55 #define EN0_DCFG 0x0e /* Data configuration reg WR */
56 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
57 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
58 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
59
60 #define EN1_PHYS 0x11
61 #define EN1_CURPAG 0x17
62 #define EN1_MULT 0x18
63
64 /* Register accessed at EN_CMD, the 8390 base addr. */
65 #define E8390_STOP 0x01 /* Stop and reset the chip */
66 #define E8390_START 0x02 /* Start the chip, clear reset */
67 #define E8390_TRANS 0x04 /* Transmit a frame */
68 #define E8390_RREAD 0x08 /* Remote read */
69 #define E8390_RWRITE 0x10 /* Remote write */
70 #define E8390_NODMA 0x20 /* Remote DMA */
71 #define E8390_PAGE0 0x00 /* Select page chip registers */
72 #define E8390_PAGE1 0x40 /* using the two high-order bits */
73 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
74
75 /* Bits in EN0_ISR - Interrupt status register */
76 #define ENISR_RX 0x01 /* Receiver, no error */
77 #define ENISR_TX 0x02 /* Transmitter, no error */
78 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
79 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
80 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
81 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
82 #define ENISR_RDC 0x40 /* remote dma complete */
83 #define ENISR_RESET 0x80 /* Reset completed */
84 #define ENISR_ALL 0x3f /* Interrupts we will enable */
85
86 /* Bits in received packet status byte and EN0_RSR*/
87 #define ENRSR_RXOK 0x01 /* Received a good packet */
88 #define ENRSR_CRC 0x02 /* CRC error */
89 #define ENRSR_FAE 0x04 /* frame alignment error */
90 #define ENRSR_FO 0x08 /* FIFO overrun */
91 #define ENRSR_MPA 0x10 /* missed pkt */
92 #define ENRSR_PHY 0x20 /* physical/multicast address */
93 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
94 #define ENRSR_DEF 0x80 /* deferring */
95
96 /* Transmitted packet status, EN0_TSR. */
97 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
98 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
99 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
100 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
101 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
102 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
103 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
104 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
105
106 #define NE2000_PMEM_SIZE (32*1024)
107 #define NE2000_PMEM_START (16*1024)
108 #define NE2000_PMEM_END (NE2000_PMEM_SIZE+NE2000_PMEM_START)
109 #define NE2000_MEM_SIZE NE2000_PMEM_END
110
111 typedef struct NE2000State {
112 uint8_t cmd;
113 uint32_t start;
114 uint32_t stop;
115 uint8_t boundary;
116 uint8_t tsr;
117 uint8_t tpsr;
118 uint16_t tcnt;
119 uint16_t rcnt;
120 uint32_t rsar;
121 uint8_t rsr;
122 uint8_t isr;
123 uint8_t dcfg;
124 uint8_t imr;
125 uint8_t phys[6]; /* mac address */
126 uint8_t curpag;
127 uint8_t mult[8]; /* multicast mask array */
128 int irq;
129 PCIDevice *pci_dev;
130 NetDriverState *nd;
131 uint8_t mem[NE2000_MEM_SIZE];
132 } NE2000State;
133
134 static void ne2000_reset(NE2000State *s)
135 {
136 int i;
137
138 s->isr = ENISR_RESET;
139 memcpy(s->mem, s->nd->macaddr, 6);
140 s->mem[14] = 0x57;
141 s->mem[15] = 0x57;
142
143 /* duplicate prom data */
144 for(i = 15;i >= 0; i--) {
145 s->mem[2 * i] = s->mem[i];
146 s->mem[2 * i + 1] = s->mem[i];
147 }
148 }
149
150 static void ne2000_update_irq(NE2000State *s)
151 {
152 int isr;
153 isr = s->isr & s->imr;
154 #if defined(DEBUG_NE2000)
155 printf("NE2000: Set IRQ line %d to %d (%02x %02x)\n",
156 s->irq, isr ? 1 : 0, s->isr, s->imr);
157 #endif
158 if (s->irq == 16) {
159 /* PCI irq */
160 pci_set_irq(s->pci_dev, 0, (isr != 0));
161 } else {
162 /* ISA irq */
163 pic_set_irq(s->irq, (isr != 0));
164 }
165 }
166
167 /* return the max buffer size if the NE2000 can receive more data */
168 static int ne2000_can_receive(void *opaque)
169 {
170 NE2000State *s = opaque;
171 int avail, index, boundary;
172
173 if (s->cmd & E8390_STOP)
174 return 0;
175 index = s->curpag << 8;
176 boundary = s->boundary << 8;
177 if (index < boundary)
178 avail = boundary - index;
179 else
180 avail = (s->stop - s->start) - (index - boundary);
181 if (avail < (MAX_ETH_FRAME_SIZE + 4))
182 return 0;
183 return MAX_ETH_FRAME_SIZE;
184 }
185
186 #define MIN_BUF_SIZE 60
187
188 static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
189 {
190 NE2000State *s = opaque;
191 uint8_t *p;
192 int total_len, next, avail, len, index;
193 uint8_t buf1[60];
194
195 #if defined(DEBUG_NE2000)
196 printf("NE2000: received len=%d\n", size);
197 #endif
198
199 /* if too small buffer, then expand it */
200 if (size < MIN_BUF_SIZE) {
201 memcpy(buf1, buf, size);
202 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
203 buf = buf1;
204 size = MIN_BUF_SIZE;
205 }
206
207 index = s->curpag << 8;
208 /* 4 bytes for header */
209 total_len = size + 4;
210 /* address for next packet (4 bytes for CRC) */
211 next = index + ((total_len + 4 + 255) & ~0xff);
212 if (next >= s->stop)
213 next -= (s->stop - s->start);
214 /* prepare packet header */
215 p = s->mem + index;
216 s->rsr = ENRSR_RXOK; /* receive status */
217 /* XXX: check this */
218 if (buf[0] & 0x01)
219 s->rsr |= ENRSR_PHY;
220 p[0] = s->rsr;
221 p[1] = next >> 8;
222 p[2] = total_len;
223 p[3] = total_len >> 8;
224 index += 4;
225
226 /* write packet data */
227 while (size > 0) {
228 avail = s->stop - index;
229 len = size;
230 if (len > avail)
231 len = avail;
232 memcpy(s->mem + index, buf, len);
233 buf += len;
234 index += len;
235 if (index == s->stop)
236 index = s->start;
237 size -= len;
238 }
239 s->curpag = next >> 8;
240
241 /* now we can signal we have receive something */
242 s->isr |= ENISR_RX;
243 ne2000_update_irq(s);
244 }
245
246 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
247 {
248 NE2000State *s = opaque;
249 int offset, page;
250
251 addr &= 0xf;
252 #ifdef DEBUG_NE2000
253 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
254 #endif
255 if (addr == E8390_CMD) {
256 /* control register */
257 s->cmd = val;
258 if (val & E8390_START) {
259 s->isr &= ~ENISR_RESET;
260 /* test specific case: zero length transfert */
261 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
262 s->rcnt == 0) {
263 s->isr |= ENISR_RDC;
264 ne2000_update_irq(s);
265 }
266 if (val & E8390_TRANS) {
267 qemu_send_packet(s->nd, s->mem + (s->tpsr << 8), s->tcnt);
268 /* signal end of transfert */
269 s->tsr = ENTSR_PTX;
270 s->isr |= ENISR_TX;
271 ne2000_update_irq(s);
272 }
273 }
274 } else {
275 page = s->cmd >> 6;
276 offset = addr | (page << 4);
277 switch(offset) {
278 case EN0_STARTPG:
279 s->start = val << 8;
280 break;
281 case EN0_STOPPG:
282 s->stop = val << 8;
283 break;
284 case EN0_BOUNDARY:
285 s->boundary = val;
286 break;
287 case EN0_IMR:
288 s->imr = val;
289 ne2000_update_irq(s);
290 break;
291 case EN0_TPSR:
292 s->tpsr = val;
293 break;
294 case EN0_TCNTLO:
295 s->tcnt = (s->tcnt & 0xff00) | val;
296 break;
297 case EN0_TCNTHI:
298 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
299 break;
300 case EN0_RSARLO:
301 s->rsar = (s->rsar & 0xff00) | val;
302 break;
303 case EN0_RSARHI:
304 s->rsar = (s->rsar & 0x00ff) | (val << 8);
305 break;
306 case EN0_RCNTLO:
307 s->rcnt = (s->rcnt & 0xff00) | val;
308 break;
309 case EN0_RCNTHI:
310 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
311 break;
312 case EN0_DCFG:
313 s->dcfg = val;
314 break;
315 case EN0_ISR:
316 s->isr &= ~(val & 0x7f);
317 ne2000_update_irq(s);
318 break;
319 case EN1_PHYS ... EN1_PHYS + 5:
320 s->phys[offset - EN1_PHYS] = val;
321 break;
322 case EN1_CURPAG:
323 s->curpag = val;
324 break;
325 case EN1_MULT ... EN1_MULT + 7:
326 s->mult[offset - EN1_MULT] = val;
327 break;
328 }
329 }
330 }
331
332 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
333 {
334 NE2000State *s = opaque;
335 int offset, page, ret;
336
337 addr &= 0xf;
338 if (addr == E8390_CMD) {
339 ret = s->cmd;
340 } else {
341 page = s->cmd >> 6;
342 offset = addr | (page << 4);
343 switch(offset) {
344 case EN0_TSR:
345 ret = s->tsr;
346 break;
347 case EN0_BOUNDARY:
348 ret = s->boundary;
349 break;
350 case EN0_ISR:
351 ret = s->isr;
352 break;
353 case EN0_RSARLO:
354 ret = s->rsar & 0x00ff;
355 break;
356 case EN0_RSARHI:
357 ret = s->rsar >> 8;
358 break;
359 case EN1_PHYS ... EN1_PHYS + 5:
360 ret = s->phys[offset - EN1_PHYS];
361 break;
362 case EN1_CURPAG:
363 ret = s->curpag;
364 break;
365 case EN1_MULT ... EN1_MULT + 7:
366 ret = s->mult[offset - EN1_MULT];
367 break;
368 case EN0_RSR:
369 ret = s->rsr;
370 break;
371 default:
372 ret = 0x00;
373 break;
374 }
375 }
376 #ifdef DEBUG_NE2000
377 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
378 #endif
379 return ret;
380 }
381
382 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
383 uint32_t val)
384 {
385 if (addr < 32 ||
386 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
387 s->mem[addr] = val;
388 }
389 }
390
391 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
392 uint32_t val)
393 {
394 addr &= ~1; /* XXX: check exact behaviour if not even */
395 if (addr < 32 ||
396 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
397 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
398 }
399 }
400
401 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
402 uint32_t val)
403 {
404 addr &= ~1; /* XXX: check exact behaviour if not even */
405 if (addr < 32 ||
406 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
407 cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
408 }
409 }
410
411 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
412 {
413 if (addr < 32 ||
414 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
415 return s->mem[addr];
416 } else {
417 return 0xff;
418 }
419 }
420
421 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
422 {
423 addr &= ~1; /* XXX: check exact behaviour if not even */
424 if (addr < 32 ||
425 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
426 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
427 } else {
428 return 0xffff;
429 }
430 }
431
432 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
433 {
434 addr &= ~1; /* XXX: check exact behaviour if not even */
435 if (addr < 32 ||
436 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
437 return le32_to_cpupu((uint32_t *)(s->mem + addr));
438 } else {
439 return 0xffffffff;
440 }
441 }
442
443 static inline void ne2000_dma_update(NE2000State *s, int len)
444 {
445 s->rsar += len;
446 /* wrap */
447 /* XXX: check what to do if rsar > stop */
448 if (s->rsar == s->stop)
449 s->rsar = s->start;
450
451 if (s->rcnt <= len) {
452 s->rcnt = 0;
453 /* signal end of transfert */
454 s->isr |= ENISR_RDC;
455 ne2000_update_irq(s);
456 } else {
457 s->rcnt -= len;
458 }
459 }
460
461 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
462 {
463 NE2000State *s = opaque;
464
465 #ifdef DEBUG_NE2000
466 printf("NE2000: asic write val=0x%04x\n", val);
467 #endif
468 if (s->rcnt == 0)
469 return;
470 if (s->dcfg & 0x01) {
471 /* 16 bit access */
472 ne2000_mem_writew(s, s->rsar, val);
473 ne2000_dma_update(s, 2);
474 } else {
475 /* 8 bit access */
476 ne2000_mem_writeb(s, s->rsar, val);
477 ne2000_dma_update(s, 1);
478 }
479 }
480
481 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
482 {
483 NE2000State *s = opaque;
484 int ret;
485
486 if (s->dcfg & 0x01) {
487 /* 16 bit access */
488 ret = ne2000_mem_readw(s, s->rsar);
489 ne2000_dma_update(s, 2);
490 } else {
491 /* 8 bit access */
492 ret = ne2000_mem_readb(s, s->rsar);
493 ne2000_dma_update(s, 1);
494 }
495 #ifdef DEBUG_NE2000
496 printf("NE2000: asic read val=0x%04x\n", ret);
497 #endif
498 return ret;
499 }
500
501 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
502 {
503 NE2000State *s = opaque;
504
505 #ifdef DEBUG_NE2000
506 printf("NE2000: asic writel val=0x%04x\n", val);
507 #endif
508 if (s->rcnt == 0)
509 return;
510 /* 32 bit access */
511 ne2000_mem_writel(s, s->rsar, val);
512 ne2000_dma_update(s, 4);
513 }
514
515 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
516 {
517 NE2000State *s = opaque;
518 int ret;
519
520 /* 32 bit access */
521 ret = ne2000_mem_readl(s, s->rsar);
522 ne2000_dma_update(s, 4);
523 #ifdef DEBUG_NE2000
524 printf("NE2000: asic readl val=0x%04x\n", ret);
525 #endif
526 return ret;
527 }
528
529 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
530 {
531 /* nothing to do (end of reset pulse) */
532 }
533
534 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
535 {
536 NE2000State *s = opaque;
537 ne2000_reset(s);
538 return 0;
539 }
540
541 void isa_ne2000_init(int base, int irq, NetDriverState *nd)
542 {
543 NE2000State *s;
544
545 s = qemu_mallocz(sizeof(NE2000State));
546 if (!s)
547 return;
548
549 register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
550 register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
551
552 register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
553 register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
554 register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
555 register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
556
557 register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
558 register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
559 s->irq = irq;
560 s->nd = nd;
561
562 ne2000_reset(s);
563
564 qemu_add_read_packet(nd, ne2000_can_receive, ne2000_receive, s);
565 }
566
567 /***********************************************************/
568 /* PCI NE2000 definitions */
569
570 typedef struct PCINE2000State {
571 PCIDevice dev;
572 NE2000State ne2000;
573 } PCINE2000State;
574
575 static void ne2000_map(PCIDevice *pci_dev, int region_num,
576 uint32_t addr, uint32_t size, int type)
577 {
578 PCINE2000State *d = (PCINE2000State *)pci_dev;
579 NE2000State *s = &d->ne2000;
580
581 register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
582 register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
583
584 register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
585 register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
586 register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
587 register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
588 register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
589 register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
590
591 register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
592 register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
593 }
594
595 void pci_ne2000_init(PCIBus *bus, NetDriverState *nd)
596 {
597 PCINE2000State *d;
598 NE2000State *s;
599 uint8_t *pci_conf;
600
601 d = (PCINE2000State *)pci_register_device(bus,
602 "NE2000", sizeof(PCINE2000State),
603 -1,
604 NULL, NULL);
605 pci_conf = d->dev.config;
606 pci_conf[0x00] = 0xec; // Realtek 8029
607 pci_conf[0x01] = 0x10;
608 pci_conf[0x02] = 0x29;
609 pci_conf[0x03] = 0x80;
610 pci_conf[0x0a] = 0x00; // ethernet network controller
611 pci_conf[0x0b] = 0x02;
612 pci_conf[0x0e] = 0x00; // header_type
613 pci_conf[0x3d] = 1; // interrupt pin 0
614
615 pci_register_io_region((PCIDevice *)d, 0, 0x100,
616 PCI_ADDRESS_SPACE_IO, ne2000_map);
617 s = &d->ne2000;
618 s->irq = 16; // PCI interrupt
619 s->pci_dev = (PCIDevice *)d;
620 s->nd = nd;
621 ne2000_reset(s);
622 qemu_add_read_packet(nd, ne2000_can_receive, ne2000_receive, s);
623 }