]> git.proxmox.com Git - qemu.git/blob - hw/ne2000.c
rxcr save/restore (initial patch by Jürgen Pfennig
[qemu.git] / hw / ne2000.c
1 /*
2 * QEMU NE2000 emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "vl.h"
25
26 /* debug NE2000 card */
27 //#define DEBUG_NE2000
28
29 #define MAX_ETH_FRAME_SIZE 1514
30
31 #define E8390_CMD 0x00 /* The command register (for all pages) */
32 /* Page 0 register offsets. */
33 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
34 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
35 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
36 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
37 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
38 #define EN0_TSR 0x04 /* Transmit status reg RD */
39 #define EN0_TPSR 0x04 /* Transmit starting page WR */
40 #define EN0_NCR 0x05 /* Number of collision reg RD */
41 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
42 #define EN0_FIFO 0x06 /* FIFO RD */
43 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
44 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
45 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
46 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
47 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
48 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
49 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
50 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
51 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
52 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
53 #define EN0_RSR 0x0c /* rx status reg RD */
54 #define EN0_RXCR 0x0c /* RX configuration reg WR */
55 #define EN0_TXCR 0x0d /* TX configuration reg WR */
56 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
57 #define EN0_DCFG 0x0e /* Data configuration reg WR */
58 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
59 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
60 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
61
62 #define EN1_PHYS 0x11
63 #define EN1_CURPAG 0x17
64 #define EN1_MULT 0x18
65
66 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
67 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
68
69 #define EN3_CONFIG0 0x33
70 #define EN3_CONFIG1 0x34
71 #define EN3_CONFIG2 0x35
72 #define EN3_CONFIG3 0x36
73
74 /* Register accessed at EN_CMD, the 8390 base addr. */
75 #define E8390_STOP 0x01 /* Stop and reset the chip */
76 #define E8390_START 0x02 /* Start the chip, clear reset */
77 #define E8390_TRANS 0x04 /* Transmit a frame */
78 #define E8390_RREAD 0x08 /* Remote read */
79 #define E8390_RWRITE 0x10 /* Remote write */
80 #define E8390_NODMA 0x20 /* Remote DMA */
81 #define E8390_PAGE0 0x00 /* Select page chip registers */
82 #define E8390_PAGE1 0x40 /* using the two high-order bits */
83 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
84
85 /* Bits in EN0_ISR - Interrupt status register */
86 #define ENISR_RX 0x01 /* Receiver, no error */
87 #define ENISR_TX 0x02 /* Transmitter, no error */
88 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
89 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
90 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
91 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
92 #define ENISR_RDC 0x40 /* remote dma complete */
93 #define ENISR_RESET 0x80 /* Reset completed */
94 #define ENISR_ALL 0x3f /* Interrupts we will enable */
95
96 /* Bits in received packet status byte and EN0_RSR*/
97 #define ENRSR_RXOK 0x01 /* Received a good packet */
98 #define ENRSR_CRC 0x02 /* CRC error */
99 #define ENRSR_FAE 0x04 /* frame alignment error */
100 #define ENRSR_FO 0x08 /* FIFO overrun */
101 #define ENRSR_MPA 0x10 /* missed pkt */
102 #define ENRSR_PHY 0x20 /* physical/multicast address */
103 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
104 #define ENRSR_DEF 0x80 /* deferring */
105
106 /* Transmitted packet status, EN0_TSR. */
107 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
108 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
109 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
110 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
111 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
112 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
113 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
114 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
115
116 #define NE2000_PMEM_SIZE (32*1024)
117 #define NE2000_PMEM_START (16*1024)
118 #define NE2000_PMEM_END (NE2000_PMEM_SIZE+NE2000_PMEM_START)
119 #define NE2000_MEM_SIZE NE2000_PMEM_END
120
121 typedef struct NE2000State {
122 uint8_t cmd;
123 uint32_t start;
124 uint32_t stop;
125 uint8_t boundary;
126 uint8_t tsr;
127 uint8_t tpsr;
128 uint16_t tcnt;
129 uint16_t rcnt;
130 uint32_t rsar;
131 uint8_t rsr;
132 uint8_t rxcr;
133 uint8_t isr;
134 uint8_t dcfg;
135 uint8_t imr;
136 uint8_t phys[6]; /* mac address */
137 uint8_t curpag;
138 uint8_t mult[8]; /* multicast mask array */
139 int irq;
140 PCIDevice *pci_dev;
141 VLANClientState *vc;
142 uint8_t macaddr[6];
143 uint8_t mem[NE2000_MEM_SIZE];
144 } NE2000State;
145
146 static void ne2000_reset(NE2000State *s)
147 {
148 int i;
149
150 s->isr = ENISR_RESET;
151 memcpy(s->mem, s->macaddr, 6);
152 s->mem[14] = 0x57;
153 s->mem[15] = 0x57;
154
155 /* duplicate prom data */
156 for(i = 15;i >= 0; i--) {
157 s->mem[2 * i] = s->mem[i];
158 s->mem[2 * i + 1] = s->mem[i];
159 }
160 }
161
162 static void ne2000_update_irq(NE2000State *s)
163 {
164 int isr;
165 isr = (s->isr & s->imr) & 0x7f;
166 #if defined(DEBUG_NE2000)
167 printf("NE2000: Set IRQ line %d to %d (%02x %02x)\n",
168 s->irq, isr ? 1 : 0, s->isr, s->imr);
169 #endif
170 if (s->irq == 16) {
171 /* PCI irq */
172 pci_set_irq(s->pci_dev, 0, (isr != 0));
173 } else {
174 /* ISA irq */
175 pic_set_irq(s->irq, (isr != 0));
176 }
177 }
178
179 #define POLYNOMIAL 0x04c11db6
180
181 /* From FreeBSD */
182 /* XXX: optimize */
183 static int compute_mcast_idx(const uint8_t *ep)
184 {
185 uint32_t crc;
186 int carry, i, j;
187 uint8_t b;
188
189 crc = 0xffffffff;
190 for (i = 0; i < 6; i++) {
191 b = *ep++;
192 for (j = 0; j < 8; j++) {
193 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
194 crc <<= 1;
195 b >>= 1;
196 if (carry)
197 crc = ((crc ^ POLYNOMIAL) | carry);
198 }
199 }
200 return (crc >> 26);
201 }
202
203 /* return the max buffer size if the NE2000 can receive more data */
204 static int ne2000_can_receive(void *opaque)
205 {
206 NE2000State *s = opaque;
207 int avail, index, boundary;
208
209 if (s->cmd & E8390_STOP)
210 return 0;
211 index = s->curpag << 8;
212 boundary = s->boundary << 8;
213 if (index < boundary)
214 avail = boundary - index;
215 else
216 avail = (s->stop - s->start) - (index - boundary);
217 if (avail < (MAX_ETH_FRAME_SIZE + 4))
218 return 0;
219 return MAX_ETH_FRAME_SIZE;
220 }
221
222 #define MIN_BUF_SIZE 60
223
224 static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
225 {
226 NE2000State *s = opaque;
227 uint8_t *p;
228 int total_len, next, avail, len, index, mcast_idx;
229 uint8_t buf1[60];
230 static const uint8_t broadcast_macaddr[6] =
231 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
232
233 #if defined(DEBUG_NE2000)
234 printf("NE2000: received len=%d\n", size);
235 #endif
236
237 if (!ne2000_can_receive(s))
238 return;
239
240 /* XXX: check this */
241 if (s->rxcr & 0x10) {
242 /* promiscuous: receive all */
243 } else {
244 if (!memcmp(buf, broadcast_macaddr, 6)) {
245 /* broadcast address */
246 if (!(s->rxcr & 0x04))
247 return;
248 } else if (buf[0] & 0x01) {
249 /* multicast */
250 if (!(s->rxcr & 0x08))
251 return;
252 mcast_idx = compute_mcast_idx(buf);
253 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
254 return;
255 } else if (s->mem[0] == buf[0] &&
256 s->mem[2] == buf[1] &&
257 s->mem[4] == buf[2] &&
258 s->mem[6] == buf[3] &&
259 s->mem[8] == buf[4] &&
260 s->mem[10] == buf[5]) {
261 /* match */
262 } else {
263 return;
264 }
265 }
266
267
268 /* if too small buffer, then expand it */
269 if (size < MIN_BUF_SIZE) {
270 memcpy(buf1, buf, size);
271 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
272 buf = buf1;
273 size = MIN_BUF_SIZE;
274 }
275
276 index = s->curpag << 8;
277 /* 4 bytes for header */
278 total_len = size + 4;
279 /* address for next packet (4 bytes for CRC) */
280 next = index + ((total_len + 4 + 255) & ~0xff);
281 if (next >= s->stop)
282 next -= (s->stop - s->start);
283 /* prepare packet header */
284 p = s->mem + index;
285 s->rsr = ENRSR_RXOK; /* receive status */
286 /* XXX: check this */
287 if (buf[0] & 0x01)
288 s->rsr |= ENRSR_PHY;
289 p[0] = s->rsr;
290 p[1] = next >> 8;
291 p[2] = total_len;
292 p[3] = total_len >> 8;
293 index += 4;
294
295 /* write packet data */
296 while (size > 0) {
297 avail = s->stop - index;
298 len = size;
299 if (len > avail)
300 len = avail;
301 memcpy(s->mem + index, buf, len);
302 buf += len;
303 index += len;
304 if (index == s->stop)
305 index = s->start;
306 size -= len;
307 }
308 s->curpag = next >> 8;
309
310 /* now we can signal we have receive something */
311 s->isr |= ENISR_RX;
312 ne2000_update_irq(s);
313 }
314
315 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
316 {
317 NE2000State *s = opaque;
318 int offset, page, index;
319
320 addr &= 0xf;
321 #ifdef DEBUG_NE2000
322 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
323 #endif
324 if (addr == E8390_CMD) {
325 /* control register */
326 s->cmd = val;
327 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
328 s->isr &= ~ENISR_RESET;
329 /* test specific case: zero length transfert */
330 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
331 s->rcnt == 0) {
332 s->isr |= ENISR_RDC;
333 ne2000_update_irq(s);
334 }
335 if (val & E8390_TRANS) {
336 index = (s->tpsr << 8);
337 /* XXX: next 2 lines are a hack to make netware 3.11 work */
338 if (index >= NE2000_PMEM_END)
339 index -= NE2000_PMEM_SIZE;
340 /* fail safe: check range on the transmitted length */
341 if (index + s->tcnt <= NE2000_PMEM_END) {
342 qemu_send_packet(s->vc, s->mem + index, s->tcnt);
343 }
344 /* signal end of transfert */
345 s->tsr = ENTSR_PTX;
346 s->isr |= ENISR_TX;
347 s->cmd &= ~E8390_TRANS;
348 ne2000_update_irq(s);
349 }
350 }
351 } else {
352 page = s->cmd >> 6;
353 offset = addr | (page << 4);
354 switch(offset) {
355 case EN0_STARTPG:
356 s->start = val << 8;
357 break;
358 case EN0_STOPPG:
359 s->stop = val << 8;
360 break;
361 case EN0_BOUNDARY:
362 s->boundary = val;
363 break;
364 case EN0_IMR:
365 s->imr = val;
366 ne2000_update_irq(s);
367 break;
368 case EN0_TPSR:
369 s->tpsr = val;
370 break;
371 case EN0_TCNTLO:
372 s->tcnt = (s->tcnt & 0xff00) | val;
373 break;
374 case EN0_TCNTHI:
375 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
376 break;
377 case EN0_RSARLO:
378 s->rsar = (s->rsar & 0xff00) | val;
379 break;
380 case EN0_RSARHI:
381 s->rsar = (s->rsar & 0x00ff) | (val << 8);
382 break;
383 case EN0_RCNTLO:
384 s->rcnt = (s->rcnt & 0xff00) | val;
385 break;
386 case EN0_RCNTHI:
387 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
388 break;
389 case EN0_RXCR:
390 s->rxcr = val;
391 break;
392 case EN0_DCFG:
393 s->dcfg = val;
394 break;
395 case EN0_ISR:
396 s->isr &= ~(val & 0x7f);
397 ne2000_update_irq(s);
398 break;
399 case EN1_PHYS ... EN1_PHYS + 5:
400 s->phys[offset - EN1_PHYS] = val;
401 break;
402 case EN1_CURPAG:
403 s->curpag = val;
404 break;
405 case EN1_MULT ... EN1_MULT + 7:
406 s->mult[offset - EN1_MULT] = val;
407 break;
408 }
409 }
410 }
411
412 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
413 {
414 NE2000State *s = opaque;
415 int offset, page, ret;
416
417 addr &= 0xf;
418 if (addr == E8390_CMD) {
419 ret = s->cmd;
420 } else {
421 page = s->cmd >> 6;
422 offset = addr | (page << 4);
423 switch(offset) {
424 case EN0_TSR:
425 ret = s->tsr;
426 break;
427 case EN0_BOUNDARY:
428 ret = s->boundary;
429 break;
430 case EN0_ISR:
431 ret = s->isr;
432 break;
433 case EN0_RSARLO:
434 ret = s->rsar & 0x00ff;
435 break;
436 case EN0_RSARHI:
437 ret = s->rsar >> 8;
438 break;
439 case EN1_PHYS ... EN1_PHYS + 5:
440 ret = s->phys[offset - EN1_PHYS];
441 break;
442 case EN1_CURPAG:
443 ret = s->curpag;
444 break;
445 case EN1_MULT ... EN1_MULT + 7:
446 ret = s->mult[offset - EN1_MULT];
447 break;
448 case EN0_RSR:
449 ret = s->rsr;
450 break;
451 case EN2_STARTPG:
452 ret = s->start >> 8;
453 break;
454 case EN2_STOPPG:
455 ret = s->stop >> 8;
456 break;
457 case EN0_RTL8029ID0:
458 ret = 0x50;
459 break;
460 case EN0_RTL8029ID1:
461 ret = 0x43;
462 break;
463 case EN3_CONFIG0:
464 ret = 0; /* 10baseT media */
465 break;
466 case EN3_CONFIG2:
467 ret = 0x40; /* 10baseT active */
468 break;
469 case EN3_CONFIG3:
470 ret = 0x40; /* Full duplex */
471 break;
472 default:
473 ret = 0x00;
474 break;
475 }
476 }
477 #ifdef DEBUG_NE2000
478 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
479 #endif
480 return ret;
481 }
482
483 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
484 uint32_t val)
485 {
486 if (addr < 32 ||
487 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
488 s->mem[addr] = val;
489 }
490 }
491
492 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
493 uint32_t val)
494 {
495 addr &= ~1; /* XXX: check exact behaviour if not even */
496 if (addr < 32 ||
497 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
498 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
499 }
500 }
501
502 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
503 uint32_t val)
504 {
505 addr &= ~1; /* XXX: check exact behaviour if not even */
506 if (addr < 32 ||
507 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
508 cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
509 }
510 }
511
512 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
513 {
514 if (addr < 32 ||
515 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
516 return s->mem[addr];
517 } else {
518 return 0xff;
519 }
520 }
521
522 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
523 {
524 addr &= ~1; /* XXX: check exact behaviour if not even */
525 if (addr < 32 ||
526 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
527 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
528 } else {
529 return 0xffff;
530 }
531 }
532
533 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
534 {
535 addr &= ~1; /* XXX: check exact behaviour if not even */
536 if (addr < 32 ||
537 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
538 return le32_to_cpupu((uint32_t *)(s->mem + addr));
539 } else {
540 return 0xffffffff;
541 }
542 }
543
544 static inline void ne2000_dma_update(NE2000State *s, int len)
545 {
546 s->rsar += len;
547 /* wrap */
548 /* XXX: check what to do if rsar > stop */
549 if (s->rsar == s->stop)
550 s->rsar = s->start;
551
552 if (s->rcnt <= len) {
553 s->rcnt = 0;
554 /* signal end of transfert */
555 s->isr |= ENISR_RDC;
556 ne2000_update_irq(s);
557 } else {
558 s->rcnt -= len;
559 }
560 }
561
562 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
563 {
564 NE2000State *s = opaque;
565
566 #ifdef DEBUG_NE2000
567 printf("NE2000: asic write val=0x%04x\n", val);
568 #endif
569 if (s->rcnt == 0)
570 return;
571 if (s->dcfg & 0x01) {
572 /* 16 bit access */
573 ne2000_mem_writew(s, s->rsar, val);
574 ne2000_dma_update(s, 2);
575 } else {
576 /* 8 bit access */
577 ne2000_mem_writeb(s, s->rsar, val);
578 ne2000_dma_update(s, 1);
579 }
580 }
581
582 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
583 {
584 NE2000State *s = opaque;
585 int ret;
586
587 if (s->dcfg & 0x01) {
588 /* 16 bit access */
589 ret = ne2000_mem_readw(s, s->rsar);
590 ne2000_dma_update(s, 2);
591 } else {
592 /* 8 bit access */
593 ret = ne2000_mem_readb(s, s->rsar);
594 ne2000_dma_update(s, 1);
595 }
596 #ifdef DEBUG_NE2000
597 printf("NE2000: asic read val=0x%04x\n", ret);
598 #endif
599 return ret;
600 }
601
602 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
603 {
604 NE2000State *s = opaque;
605
606 #ifdef DEBUG_NE2000
607 printf("NE2000: asic writel val=0x%04x\n", val);
608 #endif
609 if (s->rcnt == 0)
610 return;
611 /* 32 bit access */
612 ne2000_mem_writel(s, s->rsar, val);
613 ne2000_dma_update(s, 4);
614 }
615
616 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
617 {
618 NE2000State *s = opaque;
619 int ret;
620
621 /* 32 bit access */
622 ret = ne2000_mem_readl(s, s->rsar);
623 ne2000_dma_update(s, 4);
624 #ifdef DEBUG_NE2000
625 printf("NE2000: asic readl val=0x%04x\n", ret);
626 #endif
627 return ret;
628 }
629
630 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
631 {
632 /* nothing to do (end of reset pulse) */
633 }
634
635 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
636 {
637 NE2000State *s = opaque;
638 ne2000_reset(s);
639 return 0;
640 }
641
642 static void ne2000_save(QEMUFile* f,void* opaque)
643 {
644 NE2000State* s=(NE2000State*)opaque;
645
646 qemu_put_8s(f, &s->rxcr);
647
648 qemu_put_8s(f, &s->cmd);
649 qemu_put_be32s(f, &s->start);
650 qemu_put_be32s(f, &s->stop);
651 qemu_put_8s(f, &s->boundary);
652 qemu_put_8s(f, &s->tsr);
653 qemu_put_8s(f, &s->tpsr);
654 qemu_put_be16s(f, &s->tcnt);
655 qemu_put_be16s(f, &s->rcnt);
656 qemu_put_be32s(f, &s->rsar);
657 qemu_put_8s(f, &s->rsr);
658 qemu_put_8s(f, &s->isr);
659 qemu_put_8s(f, &s->dcfg);
660 qemu_put_8s(f, &s->imr);
661 qemu_put_buffer(f, s->phys, 6);
662 qemu_put_8s(f, &s->curpag);
663 qemu_put_buffer(f, s->mult, 8);
664 qemu_put_be32s(f, &s->irq);
665 qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
666 }
667
668 static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
669 {
670 NE2000State* s=(NE2000State*)opaque;
671
672 if (version_id == 2) {
673 qemu_get_8s(f, &s->rxcr);
674 } else if (version_id == 1) {
675 s->rxcr = 0x0c;
676 } else {
677 return -EINVAL;
678 }
679
680 qemu_get_8s(f, &s->cmd);
681 qemu_get_be32s(f, &s->start);
682 qemu_get_be32s(f, &s->stop);
683 qemu_get_8s(f, &s->boundary);
684 qemu_get_8s(f, &s->tsr);
685 qemu_get_8s(f, &s->tpsr);
686 qemu_get_be16s(f, &s->tcnt);
687 qemu_get_be16s(f, &s->rcnt);
688 qemu_get_be32s(f, &s->rsar);
689 qemu_get_8s(f, &s->rsr);
690 qemu_get_8s(f, &s->isr);
691 qemu_get_8s(f, &s->dcfg);
692 qemu_get_8s(f, &s->imr);
693 qemu_get_buffer(f, s->phys, 6);
694 qemu_get_8s(f, &s->curpag);
695 qemu_get_buffer(f, s->mult, 8);
696 qemu_get_be32s(f, &s->irq);
697 qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
698
699 return 0;
700 }
701
702 void isa_ne2000_init(int base, int irq, NICInfo *nd)
703 {
704 NE2000State *s;
705
706 s = qemu_mallocz(sizeof(NE2000State));
707 if (!s)
708 return;
709
710 register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
711 register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
712
713 register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
714 register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
715 register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
716 register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
717
718 register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
719 register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
720 s->irq = irq;
721 memcpy(s->macaddr, nd->macaddr, 6);
722
723 ne2000_reset(s);
724
725 s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive, s);
726
727 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
728 "ne2000 macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
729 s->macaddr[0],
730 s->macaddr[1],
731 s->macaddr[2],
732 s->macaddr[3],
733 s->macaddr[4],
734 s->macaddr[5]);
735
736 register_savevm("ne2000", 0, 2, ne2000_save, ne2000_load, s);
737 }
738
739 /***********************************************************/
740 /* PCI NE2000 definitions */
741
742 typedef struct PCINE2000State {
743 PCIDevice dev;
744 NE2000State ne2000;
745 } PCINE2000State;
746
747 static void ne2000_map(PCIDevice *pci_dev, int region_num,
748 uint32_t addr, uint32_t size, int type)
749 {
750 PCINE2000State *d = (PCINE2000State *)pci_dev;
751 NE2000State *s = &d->ne2000;
752
753 register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
754 register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
755
756 register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
757 register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
758 register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
759 register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
760 register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
761 register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
762
763 register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
764 register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
765 }
766
767 void pci_ne2000_init(PCIBus *bus, NICInfo *nd)
768 {
769 PCINE2000State *d;
770 NE2000State *s;
771 uint8_t *pci_conf;
772
773 d = (PCINE2000State *)pci_register_device(bus,
774 "NE2000", sizeof(PCINE2000State),
775 -1,
776 NULL, NULL);
777 pci_conf = d->dev.config;
778 pci_conf[0x00] = 0xec; // Realtek 8029
779 pci_conf[0x01] = 0x10;
780 pci_conf[0x02] = 0x29;
781 pci_conf[0x03] = 0x80;
782 pci_conf[0x0a] = 0x00; // ethernet network controller
783 pci_conf[0x0b] = 0x02;
784 pci_conf[0x0e] = 0x00; // header_type
785 pci_conf[0x3d] = 1; // interrupt pin 0
786
787 pci_register_io_region(&d->dev, 0, 0x100,
788 PCI_ADDRESS_SPACE_IO, ne2000_map);
789 s = &d->ne2000;
790 s->irq = 16; // PCI interrupt
791 s->pci_dev = (PCIDevice *)d;
792 memcpy(s->macaddr, nd->macaddr, 6);
793 ne2000_reset(s);
794 s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive, s);
795
796 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
797 "ne2000 pci macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
798 s->macaddr[0],
799 s->macaddr[1],
800 s->macaddr[2],
801 s->macaddr[3],
802 s->macaddr[4],
803 s->macaddr[5]);
804
805 /* XXX: instance number ? */
806 register_savevm("ne2000", 0, 2, ne2000_save, ne2000_load, s);
807 register_savevm("ne2000_pci", 0, 1, generic_pci_save, generic_pci_load,
808 &d->dev);
809 }