]> git.proxmox.com Git - mirror_qemu.git/blob - hw/nvme/ctrl.c
hw/nvme: add basic endurance group support
[mirror_qemu.git] / hw / nvme / ctrl.c
1 /*
2 * QEMU NVM Express Controller
3 *
4 * Copyright (c) 2012, Intel Corporation
5 *
6 * Written by Keith Busch <keith.busch@intel.com>
7 *
8 * This code is licensed under the GNU GPL v2 or later.
9 */
10
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
13 *
14 * https://nvmexpress.org/developers/nvme-specification/
15 *
16 *
17 * Notes on coding style
18 * ---------------------
19 * While QEMU coding style prefers lowercase hexadecimals in constants, the
20 * NVMe subsystem use thes format from the NVMe specifications in the comments
21 * (i.e. 'h' suffix instead of '0x' prefix).
22 *
23 * Usage
24 * -----
25 * See docs/system/nvme.rst for extensive documentation.
26 *
27 * Add options:
28 * -drive file=<file>,if=none,id=<drive_id>
29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30 * -device nvme,serial=<serial>,id=<bus_name>, \
31 * cmb_size_mb=<cmb_size_mb[optional]>, \
32 * [pmrdev=<mem_backend_file_id>,] \
33 * max_ioqpairs=<N[optional]>, \
34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35 * mdts=<N[optional]>,vsl=<N[optional]>, \
36 * zoned.zasl=<N[optional]>, \
37 * zoned.auto_transition=<on|off[optional]>, \
38 * sriov_max_vfs=<N[optional]> \
39 * sriov_vq_flexible=<N[optional]> \
40 * sriov_vi_flexible=<N[optional]> \
41 * sriov_max_vi_per_vf=<N[optional]> \
42 * sriov_max_vq_per_vf=<N[optional]> \
43 * subsys=<subsys_id>
44 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
45 * zoned=<true|false[optional]>, \
46 * subsys=<subsys_id>,detached=<true|false[optional]>
47 *
48 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
49 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
50 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
51 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
52 *
53 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
54 * For example:
55 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
56 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
57 *
58 * The PMR will use BAR 4/5 exclusively.
59 *
60 * To place controller(s) and namespace(s) to a subsystem, then provide
61 * nvme-subsys device as above.
62 *
63 * nvme subsystem device parameters
64 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
65 * - `nqn`
66 * This parameter provides the `<nqn_id>` part of the string
67 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
68 * of subsystem controllers. Note that `<nqn_id>` should be unique per
69 * subsystem, but this is not enforced by QEMU. If not specified, it will
70 * default to the value of the `id` parameter (`<subsys_id>`).
71 *
72 * nvme device parameters
73 * ~~~~~~~~~~~~~~~~~~~~~~
74 * - `subsys`
75 * Specifying this parameter attaches the controller to the subsystem and
76 * the SUBNQN field in the controller will report the NQN of the subsystem
77 * device. This also enables multi controller capability represented in
78 * Identify Controller data structure in CMIC (Controller Multi-path I/O and
79 * Namespace Sharing Capabilities).
80 *
81 * - `aerl`
82 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number
83 * of concurrently outstanding Asynchronous Event Request commands support
84 * by the controller. This is a 0's based value.
85 *
86 * - `aer_max_queued`
87 * This is the maximum number of events that the device will enqueue for
88 * completion when there are no outstanding AERs. When the maximum number of
89 * enqueued events are reached, subsequent events will be dropped.
90 *
91 * - `mdts`
92 * Indicates the maximum data transfer size for a command that transfers data
93 * between host-accessible memory and the controller. The value is specified
94 * as a power of two (2^n) and is in units of the minimum memory page size
95 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
96 *
97 * - `vsl`
98 * Indicates the maximum data size limit for the Verify command. Like `mdts`,
99 * this value is specified as a power of two (2^n) and is in units of the
100 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
101 * KiB).
102 *
103 * - `zoned.zasl`
104 * Indicates the maximum data transfer size for the Zone Append command. Like
105 * `mdts`, the value is specified as a power of two (2^n) and is in units of
106 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
107 * defaulting to the value of `mdts`).
108 *
109 * - `zoned.auto_transition`
110 * Indicates if zones in zone state implicitly opened can be automatically
111 * transitioned to zone state closed for resource management purposes.
112 * Defaults to 'on'.
113 *
114 * - `sriov_max_vfs`
115 * Indicates the maximum number of PCIe virtual functions supported
116 * by the controller. The default value is 0. Specifying a non-zero value
117 * enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
118 * Virtual function controllers will not report SR-IOV capability.
119 *
120 * NOTE: Single Root I/O Virtualization support is experimental.
121 * All the related parameters may be subject to change.
122 *
123 * - `sriov_vq_flexible`
124 * Indicates the total number of flexible queue resources assignable to all
125 * the secondary controllers. Implicitly sets the number of primary
126 * controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
127 *
128 * - `sriov_vi_flexible`
129 * Indicates the total number of flexible interrupt resources assignable to
130 * all the secondary controllers. Implicitly sets the number of primary
131 * controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
132 *
133 * - `sriov_max_vi_per_vf`
134 * Indicates the maximum number of virtual interrupt resources assignable
135 * to a secondary controller. The default 0 resolves to
136 * `(sriov_vi_flexible / sriov_max_vfs)`.
137 *
138 * - `sriov_max_vq_per_vf`
139 * Indicates the maximum number of virtual queue resources assignable to
140 * a secondary controller. The default 0 resolves to
141 * `(sriov_vq_flexible / sriov_max_vfs)`.
142 *
143 * nvme namespace device parameters
144 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
145 * - `shared`
146 * When the parent nvme device (as defined explicitly by the 'bus' parameter
147 * or implicitly by the most recently defined NvmeBus) is linked to an
148 * nvme-subsys device, the namespace will be attached to all controllers in
149 * the subsystem. If set to 'off' (the default), the namespace will remain a
150 * private namespace and may only be attached to a single controller at a
151 * time.
152 *
153 * - `detached`
154 * This parameter is only valid together with the `subsys` parameter. If left
155 * at the default value (`false/off`), the namespace will be attached to all
156 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
157 * namespace will be available in the subsystem but not attached to any
158 * controllers.
159 *
160 * Setting `zoned` to true selects Zoned Command Set at the namespace.
161 * In this case, the following namespace properties are available to configure
162 * zoned operation:
163 * zoned.zone_size=<zone size in bytes, default: 128MiB>
164 * The number may be followed by K, M, G as in kilo-, mega- or giga-.
165 *
166 * zoned.zone_capacity=<zone capacity in bytes, default: zone size>
167 * The value 0 (default) forces zone capacity to be the same as zone
168 * size. The value of this property may not exceed zone size.
169 *
170 * zoned.descr_ext_size=<zone descriptor extension size, default 0>
171 * This value needs to be specified in 64B units. If it is zero,
172 * namespace(s) will not support zone descriptor extensions.
173 *
174 * zoned.max_active=<Maximum Active Resources (zones), default: 0>
175 * The default value means there is no limit to the number of
176 * concurrently active zones.
177 *
178 * zoned.max_open=<Maximum Open Resources (zones), default: 0>
179 * The default value means there is no limit to the number of
180 * concurrently open zones.
181 *
182 * zoned.cross_read=<enable RAZB, default: false>
183 * Setting this property to true enables Read Across Zone Boundaries.
184 */
185
186 #include "qemu/osdep.h"
187 #include "qemu/cutils.h"
188 #include "qemu/error-report.h"
189 #include "qemu/log.h"
190 #include "qemu/units.h"
191 #include "qemu/range.h"
192 #include "qapi/error.h"
193 #include "qapi/visitor.h"
194 #include "sysemu/sysemu.h"
195 #include "sysemu/block-backend.h"
196 #include "sysemu/hostmem.h"
197 #include "hw/pci/msix.h"
198 #include "hw/pci/pcie_sriov.h"
199 #include "migration/vmstate.h"
200
201 #include "nvme.h"
202 #include "dif.h"
203 #include "trace.h"
204
205 #define NVME_MAX_IOQPAIRS 0xffff
206 #define NVME_DB_SIZE 4
207 #define NVME_SPEC_VER 0x00010400
208 #define NVME_CMB_BIR 2
209 #define NVME_PMR_BIR 4
210 #define NVME_TEMPERATURE 0x143
211 #define NVME_TEMPERATURE_WARNING 0x157
212 #define NVME_TEMPERATURE_CRITICAL 0x175
213 #define NVME_NUM_FW_SLOTS 1
214 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
215 #define NVME_MAX_VFS 127
216 #define NVME_VF_RES_GRANULARITY 1
217 #define NVME_VF_OFFSET 0x1
218 #define NVME_VF_STRIDE 1
219
220 #define NVME_GUEST_ERR(trace, fmt, ...) \
221 do { \
222 (trace_##trace)(__VA_ARGS__); \
223 qemu_log_mask(LOG_GUEST_ERROR, #trace \
224 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
225 } while (0)
226
227 static const bool nvme_feature_support[NVME_FID_MAX] = {
228 [NVME_ARBITRATION] = true,
229 [NVME_POWER_MANAGEMENT] = true,
230 [NVME_TEMPERATURE_THRESHOLD] = true,
231 [NVME_ERROR_RECOVERY] = true,
232 [NVME_VOLATILE_WRITE_CACHE] = true,
233 [NVME_NUMBER_OF_QUEUES] = true,
234 [NVME_INTERRUPT_COALESCING] = true,
235 [NVME_INTERRUPT_VECTOR_CONF] = true,
236 [NVME_WRITE_ATOMICITY] = true,
237 [NVME_ASYNCHRONOUS_EVENT_CONF] = true,
238 [NVME_TIMESTAMP] = true,
239 [NVME_HOST_BEHAVIOR_SUPPORT] = true,
240 [NVME_COMMAND_SET_PROFILE] = true,
241 };
242
243 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
244 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
245 [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
246 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
247 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
248 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
249 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
250 [NVME_HOST_BEHAVIOR_SUPPORT] = NVME_FEAT_CAP_CHANGE,
251 [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE,
252 };
253
254 static const uint32_t nvme_cse_acs[256] = {
255 [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP,
256 [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP,
257 [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP,
258 [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP,
259 [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP,
260 [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP,
261 [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP,
262 [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP,
263 [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP,
264 [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP,
265 [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
266 [NVME_ADM_CMD_VIRT_MNGMT] = NVME_CMD_EFF_CSUPP,
267 [NVME_ADM_CMD_DBBUF_CONFIG] = NVME_CMD_EFF_CSUPP,
268 [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
269 };
270
271 static const uint32_t nvme_cse_iocs_none[256];
272
273 static const uint32_t nvme_cse_iocs_nvm[256] = {
274 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
275 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
276 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
277 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
278 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
279 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
280 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
281 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
282 };
283
284 static const uint32_t nvme_cse_iocs_zoned[256] = {
285 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
286 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
287 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
288 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
289 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
290 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
291 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
292 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
293 [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
294 [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
295 [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
296 };
297
298 static void nvme_process_sq(void *opaque);
299 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
300
301 static uint16_t nvme_sqid(NvmeRequest *req)
302 {
303 return le16_to_cpu(req->sq->sqid);
304 }
305
306 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
307 NvmeZoneState state)
308 {
309 if (QTAILQ_IN_USE(zone, entry)) {
310 switch (nvme_get_zone_state(zone)) {
311 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
312 QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
313 break;
314 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
315 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
316 break;
317 case NVME_ZONE_STATE_CLOSED:
318 QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
319 break;
320 case NVME_ZONE_STATE_FULL:
321 QTAILQ_REMOVE(&ns->full_zones, zone, entry);
322 default:
323 ;
324 }
325 }
326
327 nvme_set_zone_state(zone, state);
328
329 switch (state) {
330 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
331 QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
332 break;
333 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
334 QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
335 break;
336 case NVME_ZONE_STATE_CLOSED:
337 QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
338 break;
339 case NVME_ZONE_STATE_FULL:
340 QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
341 case NVME_ZONE_STATE_READ_ONLY:
342 break;
343 default:
344 zone->d.za = 0;
345 }
346 }
347
348 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
349 uint32_t opn, uint32_t zrwa)
350 {
351 if (ns->params.max_active_zones != 0 &&
352 ns->nr_active_zones + act > ns->params.max_active_zones) {
353 trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
354 return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
355 }
356
357 if (ns->params.max_open_zones != 0 &&
358 ns->nr_open_zones + opn > ns->params.max_open_zones) {
359 trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
360 return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
361 }
362
363 if (zrwa > ns->zns.numzrwa) {
364 return NVME_NOZRWA | NVME_DNR;
365 }
366
367 return NVME_SUCCESS;
368 }
369
370 /*
371 * Check if we can open a zone without exceeding open/active limits.
372 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
373 */
374 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
375 {
376 return nvme_zns_check_resources(ns, act, opn, 0);
377 }
378
379 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
380 {
381 hwaddr hi, lo;
382
383 if (!n->cmb.cmse) {
384 return false;
385 }
386
387 lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
388 hi = lo + int128_get64(n->cmb.mem.size);
389
390 return addr >= lo && addr < hi;
391 }
392
393 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
394 {
395 hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
396 return &n->cmb.buf[addr - base];
397 }
398
399 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
400 {
401 hwaddr hi;
402
403 if (!n->pmr.cmse) {
404 return false;
405 }
406
407 hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
408
409 return addr >= n->pmr.cba && addr < hi;
410 }
411
412 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
413 {
414 return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
415 }
416
417 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
418 {
419 hwaddr hi, lo;
420
421 /*
422 * The purpose of this check is to guard against invalid "local" access to
423 * the iomem (i.e. controller registers). Thus, we check against the range
424 * covered by the 'bar0' MemoryRegion since that is currently composed of
425 * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
426 * that if the device model is ever changed to allow the CMB to be located
427 * in BAR0 as well, then this must be changed.
428 */
429 lo = n->bar0.addr;
430 hi = lo + int128_get64(n->bar0.size);
431
432 return addr >= lo && addr < hi;
433 }
434
435 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
436 {
437 hwaddr hi = addr + size - 1;
438 if (hi < addr) {
439 return 1;
440 }
441
442 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
443 memcpy(buf, nvme_addr_to_cmb(n, addr), size);
444 return 0;
445 }
446
447 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
448 memcpy(buf, nvme_addr_to_pmr(n, addr), size);
449 return 0;
450 }
451
452 return pci_dma_read(PCI_DEVICE(n), addr, buf, size);
453 }
454
455 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
456 {
457 hwaddr hi = addr + size - 1;
458 if (hi < addr) {
459 return 1;
460 }
461
462 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
463 memcpy(nvme_addr_to_cmb(n, addr), buf, size);
464 return 0;
465 }
466
467 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
468 memcpy(nvme_addr_to_pmr(n, addr), buf, size);
469 return 0;
470 }
471
472 return pci_dma_write(PCI_DEVICE(n), addr, buf, size);
473 }
474
475 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
476 {
477 return nsid &&
478 (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
479 }
480
481 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
482 {
483 return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
484 }
485
486 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
487 {
488 return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
489 }
490
491 static void nvme_inc_cq_tail(NvmeCQueue *cq)
492 {
493 cq->tail++;
494 if (cq->tail >= cq->size) {
495 cq->tail = 0;
496 cq->phase = !cq->phase;
497 }
498 }
499
500 static void nvme_inc_sq_head(NvmeSQueue *sq)
501 {
502 sq->head = (sq->head + 1) % sq->size;
503 }
504
505 static uint8_t nvme_cq_full(NvmeCQueue *cq)
506 {
507 return (cq->tail + 1) % cq->size == cq->head;
508 }
509
510 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
511 {
512 return sq->head == sq->tail;
513 }
514
515 static void nvme_irq_check(NvmeCtrl *n)
516 {
517 PCIDevice *pci = PCI_DEVICE(n);
518 uint32_t intms = ldl_le_p(&n->bar.intms);
519
520 if (msix_enabled(pci)) {
521 return;
522 }
523 if (~intms & n->irq_status) {
524 pci_irq_assert(pci);
525 } else {
526 pci_irq_deassert(pci);
527 }
528 }
529
530 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
531 {
532 PCIDevice *pci = PCI_DEVICE(n);
533
534 if (cq->irq_enabled) {
535 if (msix_enabled(pci)) {
536 trace_pci_nvme_irq_msix(cq->vector);
537 msix_notify(pci, cq->vector);
538 } else {
539 trace_pci_nvme_irq_pin();
540 assert(cq->vector < 32);
541 n->irq_status |= 1 << cq->vector;
542 nvme_irq_check(n);
543 }
544 } else {
545 trace_pci_nvme_irq_masked();
546 }
547 }
548
549 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
550 {
551 if (cq->irq_enabled) {
552 if (msix_enabled(PCI_DEVICE(n))) {
553 return;
554 } else {
555 assert(cq->vector < 32);
556 if (!n->cq_pending) {
557 n->irq_status &= ~(1 << cq->vector);
558 }
559 nvme_irq_check(n);
560 }
561 }
562 }
563
564 static void nvme_req_clear(NvmeRequest *req)
565 {
566 req->ns = NULL;
567 req->opaque = NULL;
568 req->aiocb = NULL;
569 memset(&req->cqe, 0x0, sizeof(req->cqe));
570 req->status = NVME_SUCCESS;
571 }
572
573 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
574 {
575 if (dma) {
576 pci_dma_sglist_init(&sg->qsg, PCI_DEVICE(n), 0);
577 sg->flags = NVME_SG_DMA;
578 } else {
579 qemu_iovec_init(&sg->iov, 0);
580 }
581
582 sg->flags |= NVME_SG_ALLOC;
583 }
584
585 static inline void nvme_sg_unmap(NvmeSg *sg)
586 {
587 if (!(sg->flags & NVME_SG_ALLOC)) {
588 return;
589 }
590
591 if (sg->flags & NVME_SG_DMA) {
592 qemu_sglist_destroy(&sg->qsg);
593 } else {
594 qemu_iovec_destroy(&sg->iov);
595 }
596
597 memset(sg, 0x0, sizeof(*sg));
598 }
599
600 /*
601 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
602 * holds both data and metadata. This function splits the data and metadata
603 * into two separate QSG/IOVs.
604 */
605 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
606 NvmeSg *mdata)
607 {
608 NvmeSg *dst = data;
609 uint32_t trans_len, count = ns->lbasz;
610 uint64_t offset = 0;
611 bool dma = sg->flags & NVME_SG_DMA;
612 size_t sge_len;
613 size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
614 int sg_idx = 0;
615
616 assert(sg->flags & NVME_SG_ALLOC);
617
618 while (sg_len) {
619 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
620
621 trans_len = MIN(sg_len, count);
622 trans_len = MIN(trans_len, sge_len - offset);
623
624 if (dst) {
625 if (dma) {
626 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
627 trans_len);
628 } else {
629 qemu_iovec_add(&dst->iov,
630 sg->iov.iov[sg_idx].iov_base + offset,
631 trans_len);
632 }
633 }
634
635 sg_len -= trans_len;
636 count -= trans_len;
637 offset += trans_len;
638
639 if (count == 0) {
640 dst = (dst == data) ? mdata : data;
641 count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
642 }
643
644 if (sge_len == offset) {
645 offset = 0;
646 sg_idx++;
647 }
648 }
649 }
650
651 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
652 size_t len)
653 {
654 if (!len) {
655 return NVME_SUCCESS;
656 }
657
658 trace_pci_nvme_map_addr_cmb(addr, len);
659
660 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
661 return NVME_DATA_TRAS_ERROR;
662 }
663
664 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
665
666 return NVME_SUCCESS;
667 }
668
669 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
670 size_t len)
671 {
672 if (!len) {
673 return NVME_SUCCESS;
674 }
675
676 if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
677 return NVME_DATA_TRAS_ERROR;
678 }
679
680 qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
681
682 return NVME_SUCCESS;
683 }
684
685 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
686 {
687 bool cmb = false, pmr = false;
688
689 if (!len) {
690 return NVME_SUCCESS;
691 }
692
693 trace_pci_nvme_map_addr(addr, len);
694
695 if (nvme_addr_is_iomem(n, addr)) {
696 return NVME_DATA_TRAS_ERROR;
697 }
698
699 if (nvme_addr_is_cmb(n, addr)) {
700 cmb = true;
701 } else if (nvme_addr_is_pmr(n, addr)) {
702 pmr = true;
703 }
704
705 if (cmb || pmr) {
706 if (sg->flags & NVME_SG_DMA) {
707 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
708 }
709
710 if (sg->iov.niov + 1 > IOV_MAX) {
711 goto max_mappings_exceeded;
712 }
713
714 if (cmb) {
715 return nvme_map_addr_cmb(n, &sg->iov, addr, len);
716 } else {
717 return nvme_map_addr_pmr(n, &sg->iov, addr, len);
718 }
719 }
720
721 if (!(sg->flags & NVME_SG_DMA)) {
722 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
723 }
724
725 if (sg->qsg.nsg + 1 > IOV_MAX) {
726 goto max_mappings_exceeded;
727 }
728
729 qemu_sglist_add(&sg->qsg, addr, len);
730
731 return NVME_SUCCESS;
732
733 max_mappings_exceeded:
734 NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
735 "number of mappings exceed 1024");
736 return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
737 }
738
739 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
740 {
741 return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
742 }
743
744 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
745 uint64_t prp2, uint32_t len)
746 {
747 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
748 trans_len = MIN(len, trans_len);
749 int num_prps = (len >> n->page_bits) + 1;
750 uint16_t status;
751 int ret;
752
753 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
754
755 nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
756
757 status = nvme_map_addr(n, sg, prp1, trans_len);
758 if (status) {
759 goto unmap;
760 }
761
762 len -= trans_len;
763 if (len) {
764 if (len > n->page_size) {
765 uint64_t prp_list[n->max_prp_ents];
766 uint32_t nents, prp_trans;
767 int i = 0;
768
769 /*
770 * The first PRP list entry, pointed to by PRP2 may contain offset.
771 * Hence, we need to calculate the number of entries in based on
772 * that offset.
773 */
774 nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
775 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
776 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
777 if (ret) {
778 trace_pci_nvme_err_addr_read(prp2);
779 status = NVME_DATA_TRAS_ERROR;
780 goto unmap;
781 }
782 while (len != 0) {
783 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
784
785 if (i == nents - 1 && len > n->page_size) {
786 if (unlikely(prp_ent & (n->page_size - 1))) {
787 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
788 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
789 goto unmap;
790 }
791
792 i = 0;
793 nents = (len + n->page_size - 1) >> n->page_bits;
794 nents = MIN(nents, n->max_prp_ents);
795 prp_trans = nents * sizeof(uint64_t);
796 ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
797 prp_trans);
798 if (ret) {
799 trace_pci_nvme_err_addr_read(prp_ent);
800 status = NVME_DATA_TRAS_ERROR;
801 goto unmap;
802 }
803 prp_ent = le64_to_cpu(prp_list[i]);
804 }
805
806 if (unlikely(prp_ent & (n->page_size - 1))) {
807 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
808 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
809 goto unmap;
810 }
811
812 trans_len = MIN(len, n->page_size);
813 status = nvme_map_addr(n, sg, prp_ent, trans_len);
814 if (status) {
815 goto unmap;
816 }
817
818 len -= trans_len;
819 i++;
820 }
821 } else {
822 if (unlikely(prp2 & (n->page_size - 1))) {
823 trace_pci_nvme_err_invalid_prp2_align(prp2);
824 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
825 goto unmap;
826 }
827 status = nvme_map_addr(n, sg, prp2, len);
828 if (status) {
829 goto unmap;
830 }
831 }
832 }
833
834 return NVME_SUCCESS;
835
836 unmap:
837 nvme_sg_unmap(sg);
838 return status;
839 }
840
841 /*
842 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
843 * number of bytes mapped in len.
844 */
845 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
846 NvmeSglDescriptor *segment, uint64_t nsgld,
847 size_t *len, NvmeCmd *cmd)
848 {
849 dma_addr_t addr, trans_len;
850 uint32_t dlen;
851 uint16_t status;
852
853 for (int i = 0; i < nsgld; i++) {
854 uint8_t type = NVME_SGL_TYPE(segment[i].type);
855
856 switch (type) {
857 case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
858 break;
859 case NVME_SGL_DESCR_TYPE_SEGMENT:
860 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
861 return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
862 default:
863 return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
864 }
865
866 dlen = le32_to_cpu(segment[i].len);
867
868 if (!dlen) {
869 continue;
870 }
871
872 if (*len == 0) {
873 /*
874 * All data has been mapped, but the SGL contains additional
875 * segments and/or descriptors. The controller might accept
876 * ignoring the rest of the SGL.
877 */
878 uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
879 if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
880 break;
881 }
882
883 trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
884 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
885 }
886
887 trans_len = MIN(*len, dlen);
888
889 addr = le64_to_cpu(segment[i].addr);
890
891 if (UINT64_MAX - addr < dlen) {
892 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
893 }
894
895 status = nvme_map_addr(n, sg, addr, trans_len);
896 if (status) {
897 return status;
898 }
899
900 *len -= trans_len;
901 }
902
903 return NVME_SUCCESS;
904 }
905
906 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
907 size_t len, NvmeCmd *cmd)
908 {
909 /*
910 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
911 * dynamically allocating a potentially huge SGL. The spec allows the SGL
912 * to be larger (as in number of bytes required to describe the SGL
913 * descriptors and segment chain) than the command transfer size, so it is
914 * not bounded by MDTS.
915 */
916 const int SEG_CHUNK_SIZE = 256;
917
918 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
919 uint64_t nsgld;
920 uint32_t seg_len;
921 uint16_t status;
922 hwaddr addr;
923 int ret;
924
925 sgld = &sgl;
926 addr = le64_to_cpu(sgl.addr);
927
928 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
929
930 nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
931
932 /*
933 * If the entire transfer can be described with a single data block it can
934 * be mapped directly.
935 */
936 if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
937 status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
938 if (status) {
939 goto unmap;
940 }
941
942 goto out;
943 }
944
945 for (;;) {
946 switch (NVME_SGL_TYPE(sgld->type)) {
947 case NVME_SGL_DESCR_TYPE_SEGMENT:
948 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
949 break;
950 default:
951 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
952 }
953
954 seg_len = le32_to_cpu(sgld->len);
955
956 /* check the length of the (Last) Segment descriptor */
957 if (!seg_len || seg_len & 0xf) {
958 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
959 }
960
961 if (UINT64_MAX - addr < seg_len) {
962 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
963 }
964
965 nsgld = seg_len / sizeof(NvmeSglDescriptor);
966
967 while (nsgld > SEG_CHUNK_SIZE) {
968 if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
969 trace_pci_nvme_err_addr_read(addr);
970 status = NVME_DATA_TRAS_ERROR;
971 goto unmap;
972 }
973
974 status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
975 &len, cmd);
976 if (status) {
977 goto unmap;
978 }
979
980 nsgld -= SEG_CHUNK_SIZE;
981 addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
982 }
983
984 ret = nvme_addr_read(n, addr, segment, nsgld *
985 sizeof(NvmeSglDescriptor));
986 if (ret) {
987 trace_pci_nvme_err_addr_read(addr);
988 status = NVME_DATA_TRAS_ERROR;
989 goto unmap;
990 }
991
992 last_sgld = &segment[nsgld - 1];
993
994 /*
995 * If the segment ends with a Data Block, then we are done.
996 */
997 if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
998 status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
999 if (status) {
1000 goto unmap;
1001 }
1002
1003 goto out;
1004 }
1005
1006 /*
1007 * If the last descriptor was not a Data Block, then the current
1008 * segment must not be a Last Segment.
1009 */
1010 if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
1011 status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1012 goto unmap;
1013 }
1014
1015 sgld = last_sgld;
1016 addr = le64_to_cpu(sgld->addr);
1017
1018 /*
1019 * Do not map the last descriptor; it will be a Segment or Last Segment
1020 * descriptor and is handled by the next iteration.
1021 */
1022 status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
1023 if (status) {
1024 goto unmap;
1025 }
1026 }
1027
1028 out:
1029 /* if there is any residual left in len, the SGL was too short */
1030 if (len) {
1031 status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1032 goto unmap;
1033 }
1034
1035 return NVME_SUCCESS;
1036
1037 unmap:
1038 nvme_sg_unmap(sg);
1039 return status;
1040 }
1041
1042 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1043 NvmeCmd *cmd)
1044 {
1045 uint64_t prp1, prp2;
1046
1047 switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
1048 case NVME_PSDT_PRP:
1049 prp1 = le64_to_cpu(cmd->dptr.prp1);
1050 prp2 = le64_to_cpu(cmd->dptr.prp2);
1051
1052 return nvme_map_prp(n, sg, prp1, prp2, len);
1053 case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
1054 case NVME_PSDT_SGL_MPTR_SGL:
1055 return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
1056 default:
1057 return NVME_INVALID_FIELD;
1058 }
1059 }
1060
1061 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1062 NvmeCmd *cmd)
1063 {
1064 int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
1065 hwaddr mptr = le64_to_cpu(cmd->mptr);
1066 uint16_t status;
1067
1068 if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1069 NvmeSglDescriptor sgl;
1070
1071 if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1072 return NVME_DATA_TRAS_ERROR;
1073 }
1074
1075 status = nvme_map_sgl(n, sg, sgl, len, cmd);
1076 if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1077 status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1078 }
1079
1080 return status;
1081 }
1082
1083 nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1084 status = nvme_map_addr(n, sg, mptr, len);
1085 if (status) {
1086 nvme_sg_unmap(sg);
1087 }
1088
1089 return status;
1090 }
1091
1092 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1093 {
1094 NvmeNamespace *ns = req->ns;
1095 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1096 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1097 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1098 size_t len = nvme_l2b(ns, nlb);
1099 uint16_t status;
1100
1101 if (nvme_ns_ext(ns) &&
1102 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1103 NvmeSg sg;
1104
1105 len += nvme_m2b(ns, nlb);
1106
1107 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1108 if (status) {
1109 return status;
1110 }
1111
1112 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1113 nvme_sg_split(&sg, ns, &req->sg, NULL);
1114 nvme_sg_unmap(&sg);
1115
1116 return NVME_SUCCESS;
1117 }
1118
1119 return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1120 }
1121
1122 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1123 {
1124 NvmeNamespace *ns = req->ns;
1125 size_t len = nvme_m2b(ns, nlb);
1126 uint16_t status;
1127
1128 if (nvme_ns_ext(ns)) {
1129 NvmeSg sg;
1130
1131 len += nvme_l2b(ns, nlb);
1132
1133 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1134 if (status) {
1135 return status;
1136 }
1137
1138 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1139 nvme_sg_split(&sg, ns, NULL, &req->sg);
1140 nvme_sg_unmap(&sg);
1141
1142 return NVME_SUCCESS;
1143 }
1144
1145 return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1146 }
1147
1148 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1149 uint32_t len, uint32_t bytes,
1150 int32_t skip_bytes, int64_t offset,
1151 NvmeTxDirection dir)
1152 {
1153 hwaddr addr;
1154 uint32_t trans_len, count = bytes;
1155 bool dma = sg->flags & NVME_SG_DMA;
1156 int64_t sge_len;
1157 int sg_idx = 0;
1158 int ret;
1159
1160 assert(sg->flags & NVME_SG_ALLOC);
1161
1162 while (len) {
1163 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1164
1165 if (sge_len - offset < 0) {
1166 offset -= sge_len;
1167 sg_idx++;
1168 continue;
1169 }
1170
1171 if (sge_len == offset) {
1172 offset = 0;
1173 sg_idx++;
1174 continue;
1175 }
1176
1177 trans_len = MIN(len, count);
1178 trans_len = MIN(trans_len, sge_len - offset);
1179
1180 if (dma) {
1181 addr = sg->qsg.sg[sg_idx].base + offset;
1182 } else {
1183 addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1184 }
1185
1186 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1187 ret = nvme_addr_read(n, addr, ptr, trans_len);
1188 } else {
1189 ret = nvme_addr_write(n, addr, ptr, trans_len);
1190 }
1191
1192 if (ret) {
1193 return NVME_DATA_TRAS_ERROR;
1194 }
1195
1196 ptr += trans_len;
1197 len -= trans_len;
1198 count -= trans_len;
1199 offset += trans_len;
1200
1201 if (count == 0) {
1202 count = bytes;
1203 offset += skip_bytes;
1204 }
1205 }
1206
1207 return NVME_SUCCESS;
1208 }
1209
1210 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
1211 NvmeTxDirection dir)
1212 {
1213 assert(sg->flags & NVME_SG_ALLOC);
1214
1215 if (sg->flags & NVME_SG_DMA) {
1216 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1217 dma_addr_t residual;
1218
1219 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1220 dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
1221 } else {
1222 dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
1223 }
1224
1225 if (unlikely(residual)) {
1226 trace_pci_nvme_err_invalid_dma();
1227 return NVME_INVALID_FIELD | NVME_DNR;
1228 }
1229 } else {
1230 size_t bytes;
1231
1232 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1233 bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1234 } else {
1235 bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1236 }
1237
1238 if (unlikely(bytes != len)) {
1239 trace_pci_nvme_err_invalid_dma();
1240 return NVME_INVALID_FIELD | NVME_DNR;
1241 }
1242 }
1243
1244 return NVME_SUCCESS;
1245 }
1246
1247 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
1248 NvmeRequest *req)
1249 {
1250 uint16_t status;
1251
1252 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1253 if (status) {
1254 return status;
1255 }
1256
1257 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1258 }
1259
1260 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
1261 NvmeRequest *req)
1262 {
1263 uint16_t status;
1264
1265 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1266 if (status) {
1267 return status;
1268 }
1269
1270 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1271 }
1272
1273 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
1274 NvmeTxDirection dir, NvmeRequest *req)
1275 {
1276 NvmeNamespace *ns = req->ns;
1277 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1278 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1279 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1280
1281 if (nvme_ns_ext(ns) &&
1282 !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1283 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1284 ns->lbaf.ms, 0, dir);
1285 }
1286
1287 return nvme_tx(n, &req->sg, ptr, len, dir);
1288 }
1289
1290 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
1291 NvmeTxDirection dir, NvmeRequest *req)
1292 {
1293 NvmeNamespace *ns = req->ns;
1294 uint16_t status;
1295
1296 if (nvme_ns_ext(ns)) {
1297 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1298 ns->lbasz, ns->lbasz, dir);
1299 }
1300
1301 nvme_sg_unmap(&req->sg);
1302
1303 status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1304 if (status) {
1305 return status;
1306 }
1307
1308 return nvme_tx(n, &req->sg, ptr, len, dir);
1309 }
1310
1311 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1312 BlockCompletionFunc *cb, NvmeRequest *req)
1313 {
1314 assert(req->sg.flags & NVME_SG_ALLOC);
1315
1316 if (req->sg.flags & NVME_SG_DMA) {
1317 req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1318 cb, req);
1319 } else {
1320 req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1321 }
1322 }
1323
1324 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1325 BlockCompletionFunc *cb, NvmeRequest *req)
1326 {
1327 assert(req->sg.flags & NVME_SG_ALLOC);
1328
1329 if (req->sg.flags & NVME_SG_DMA) {
1330 req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1331 cb, req);
1332 } else {
1333 req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1334 }
1335 }
1336
1337 static void nvme_update_cq_eventidx(const NvmeCQueue *cq)
1338 {
1339 uint32_t v = cpu_to_le32(cq->head);
1340
1341 trace_pci_nvme_update_cq_eventidx(cq->cqid, cq->head);
1342
1343 pci_dma_write(PCI_DEVICE(cq->ctrl), cq->ei_addr, &v, sizeof(v));
1344 }
1345
1346 static void nvme_update_cq_head(NvmeCQueue *cq)
1347 {
1348 uint32_t v;
1349
1350 pci_dma_read(PCI_DEVICE(cq->ctrl), cq->db_addr, &v, sizeof(v));
1351
1352 cq->head = le32_to_cpu(v);
1353
1354 trace_pci_nvme_update_cq_head(cq->cqid, cq->head);
1355 }
1356
1357 static void nvme_post_cqes(void *opaque)
1358 {
1359 NvmeCQueue *cq = opaque;
1360 NvmeCtrl *n = cq->ctrl;
1361 NvmeRequest *req, *next;
1362 bool pending = cq->head != cq->tail;
1363 int ret;
1364
1365 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1366 NvmeSQueue *sq;
1367 hwaddr addr;
1368
1369 if (n->dbbuf_enabled) {
1370 nvme_update_cq_eventidx(cq);
1371 nvme_update_cq_head(cq);
1372 }
1373
1374 if (nvme_cq_full(cq)) {
1375 break;
1376 }
1377
1378 sq = req->sq;
1379 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1380 req->cqe.sq_id = cpu_to_le16(sq->sqid);
1381 req->cqe.sq_head = cpu_to_le16(sq->head);
1382 addr = cq->dma_addr + cq->tail * n->cqe_size;
1383 ret = pci_dma_write(PCI_DEVICE(n), addr, (void *)&req->cqe,
1384 sizeof(req->cqe));
1385 if (ret) {
1386 trace_pci_nvme_err_addr_write(addr);
1387 trace_pci_nvme_err_cfs();
1388 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1389 break;
1390 }
1391 QTAILQ_REMOVE(&cq->req_list, req, entry);
1392 nvme_inc_cq_tail(cq);
1393 nvme_sg_unmap(&req->sg);
1394 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1395 }
1396 if (cq->tail != cq->head) {
1397 if (cq->irq_enabled && !pending) {
1398 n->cq_pending++;
1399 }
1400
1401 nvme_irq_assert(n, cq);
1402 }
1403 }
1404
1405 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1406 {
1407 assert(cq->cqid == req->sq->cqid);
1408 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1409 le32_to_cpu(req->cqe.result),
1410 le32_to_cpu(req->cqe.dw1),
1411 req->status);
1412
1413 if (req->status) {
1414 trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1415 req->status, req->cmd.opcode);
1416 }
1417
1418 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1419 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1420
1421 qemu_bh_schedule(cq->bh);
1422 }
1423
1424 static void nvme_process_aers(void *opaque)
1425 {
1426 NvmeCtrl *n = opaque;
1427 NvmeAsyncEvent *event, *next;
1428
1429 trace_pci_nvme_process_aers(n->aer_queued);
1430
1431 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1432 NvmeRequest *req;
1433 NvmeAerResult *result;
1434
1435 /* can't post cqe if there is nothing to complete */
1436 if (!n->outstanding_aers) {
1437 trace_pci_nvme_no_outstanding_aers();
1438 break;
1439 }
1440
1441 /* ignore if masked (cqe posted, but event not cleared) */
1442 if (n->aer_mask & (1 << event->result.event_type)) {
1443 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1444 continue;
1445 }
1446
1447 QTAILQ_REMOVE(&n->aer_queue, event, entry);
1448 n->aer_queued--;
1449
1450 n->aer_mask |= 1 << event->result.event_type;
1451 n->outstanding_aers--;
1452
1453 req = n->aer_reqs[n->outstanding_aers];
1454
1455 result = (NvmeAerResult *) &req->cqe.result;
1456 result->event_type = event->result.event_type;
1457 result->event_info = event->result.event_info;
1458 result->log_page = event->result.log_page;
1459 g_free(event);
1460
1461 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1462 result->log_page);
1463
1464 nvme_enqueue_req_completion(&n->admin_cq, req);
1465 }
1466 }
1467
1468 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1469 uint8_t event_info, uint8_t log_page)
1470 {
1471 NvmeAsyncEvent *event;
1472
1473 trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1474
1475 if (n->aer_queued == n->params.aer_max_queued) {
1476 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1477 return;
1478 }
1479
1480 event = g_new(NvmeAsyncEvent, 1);
1481 event->result = (NvmeAerResult) {
1482 .event_type = event_type,
1483 .event_info = event_info,
1484 .log_page = log_page,
1485 };
1486
1487 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1488 n->aer_queued++;
1489
1490 nvme_process_aers(n);
1491 }
1492
1493 static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1494 {
1495 uint8_t aer_info;
1496
1497 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1498 if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1499 return;
1500 }
1501
1502 switch (event) {
1503 case NVME_SMART_SPARE:
1504 aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1505 break;
1506 case NVME_SMART_TEMPERATURE:
1507 aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1508 break;
1509 case NVME_SMART_RELIABILITY:
1510 case NVME_SMART_MEDIA_READ_ONLY:
1511 case NVME_SMART_FAILED_VOLATILE_MEDIA:
1512 case NVME_SMART_PMR_UNRELIABLE:
1513 aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1514 break;
1515 default:
1516 return;
1517 }
1518
1519 nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1520 }
1521
1522 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1523 {
1524 n->aer_mask &= ~(1 << event_type);
1525 if (!QTAILQ_EMPTY(&n->aer_queue)) {
1526 nvme_process_aers(n);
1527 }
1528 }
1529
1530 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1531 {
1532 uint8_t mdts = n->params.mdts;
1533
1534 if (mdts && len > n->page_size << mdts) {
1535 trace_pci_nvme_err_mdts(len);
1536 return NVME_INVALID_FIELD | NVME_DNR;
1537 }
1538
1539 return NVME_SUCCESS;
1540 }
1541
1542 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1543 uint32_t nlb)
1544 {
1545 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1546
1547 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1548 trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1549 return NVME_LBA_RANGE | NVME_DNR;
1550 }
1551
1552 return NVME_SUCCESS;
1553 }
1554
1555 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1556 uint32_t nlb, int flags)
1557 {
1558 BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1559
1560 int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1561 int64_t offset = nvme_l2b(ns, slba);
1562 int ret;
1563
1564 /*
1565 * `pnum` holds the number of bytes after offset that shares the same
1566 * allocation status as the byte at offset. If `pnum` is different from
1567 * `bytes`, we should check the allocation status of the next range and
1568 * continue this until all bytes have been checked.
1569 */
1570 do {
1571 bytes -= pnum;
1572
1573 ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1574 if (ret < 0) {
1575 return ret;
1576 }
1577
1578
1579 trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1580 !!(ret & BDRV_BLOCK_ZERO));
1581
1582 if (!(ret & flags)) {
1583 return 1;
1584 }
1585
1586 offset += pnum;
1587 } while (pnum != bytes);
1588
1589 return 0;
1590 }
1591
1592 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1593 uint32_t nlb)
1594 {
1595 int ret;
1596 Error *err = NULL;
1597
1598 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1599 if (ret) {
1600 if (ret < 0) {
1601 error_setg_errno(&err, -ret, "unable to get block status");
1602 error_report_err(err);
1603
1604 return NVME_INTERNAL_DEV_ERROR;
1605 }
1606
1607 return NVME_DULB;
1608 }
1609
1610 return NVME_SUCCESS;
1611 }
1612
1613 static void nvme_aio_err(NvmeRequest *req, int ret)
1614 {
1615 uint16_t status = NVME_SUCCESS;
1616 Error *local_err = NULL;
1617
1618 switch (req->cmd.opcode) {
1619 case NVME_CMD_READ:
1620 status = NVME_UNRECOVERED_READ;
1621 break;
1622 case NVME_CMD_FLUSH:
1623 case NVME_CMD_WRITE:
1624 case NVME_CMD_WRITE_ZEROES:
1625 case NVME_CMD_ZONE_APPEND:
1626 status = NVME_WRITE_FAULT;
1627 break;
1628 default:
1629 status = NVME_INTERNAL_DEV_ERROR;
1630 break;
1631 }
1632
1633 trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1634
1635 error_setg_errno(&local_err, -ret, "aio failed");
1636 error_report_err(local_err);
1637
1638 /*
1639 * Set the command status code to the first encountered error but allow a
1640 * subsequent Internal Device Error to trump it.
1641 */
1642 if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1643 return;
1644 }
1645
1646 req->status = status;
1647 }
1648
1649 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1650 {
1651 return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1652 slba / ns->zone_size;
1653 }
1654
1655 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1656 {
1657 uint32_t zone_idx = nvme_zone_idx(ns, slba);
1658
1659 if (zone_idx >= ns->num_zones) {
1660 return NULL;
1661 }
1662
1663 return &ns->zone_array[zone_idx];
1664 }
1665
1666 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1667 {
1668 uint64_t zslba = zone->d.zslba;
1669
1670 switch (nvme_get_zone_state(zone)) {
1671 case NVME_ZONE_STATE_EMPTY:
1672 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1673 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1674 case NVME_ZONE_STATE_CLOSED:
1675 return NVME_SUCCESS;
1676 case NVME_ZONE_STATE_FULL:
1677 trace_pci_nvme_err_zone_is_full(zslba);
1678 return NVME_ZONE_FULL;
1679 case NVME_ZONE_STATE_OFFLINE:
1680 trace_pci_nvme_err_zone_is_offline(zslba);
1681 return NVME_ZONE_OFFLINE;
1682 case NVME_ZONE_STATE_READ_ONLY:
1683 trace_pci_nvme_err_zone_is_read_only(zslba);
1684 return NVME_ZONE_READ_ONLY;
1685 default:
1686 assert(false);
1687 }
1688
1689 return NVME_INTERNAL_DEV_ERROR;
1690 }
1691
1692 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1693 uint64_t slba, uint32_t nlb)
1694 {
1695 uint64_t zcap = nvme_zone_wr_boundary(zone);
1696 uint16_t status;
1697
1698 status = nvme_check_zone_state_for_write(zone);
1699 if (status) {
1700 return status;
1701 }
1702
1703 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1704 uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
1705
1706 if (slba < zone->w_ptr || slba + nlb > ezrwa) {
1707 trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
1708 return NVME_ZONE_INVALID_WRITE;
1709 }
1710 } else {
1711 if (unlikely(slba != zone->w_ptr)) {
1712 trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
1713 zone->w_ptr);
1714 return NVME_ZONE_INVALID_WRITE;
1715 }
1716 }
1717
1718 if (unlikely((slba + nlb) > zcap)) {
1719 trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1720 return NVME_ZONE_BOUNDARY_ERROR;
1721 }
1722
1723 return NVME_SUCCESS;
1724 }
1725
1726 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1727 {
1728 switch (nvme_get_zone_state(zone)) {
1729 case NVME_ZONE_STATE_EMPTY:
1730 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1731 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1732 case NVME_ZONE_STATE_FULL:
1733 case NVME_ZONE_STATE_CLOSED:
1734 case NVME_ZONE_STATE_READ_ONLY:
1735 return NVME_SUCCESS;
1736 case NVME_ZONE_STATE_OFFLINE:
1737 trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1738 return NVME_ZONE_OFFLINE;
1739 default:
1740 assert(false);
1741 }
1742
1743 return NVME_INTERNAL_DEV_ERROR;
1744 }
1745
1746 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1747 uint32_t nlb)
1748 {
1749 NvmeZone *zone;
1750 uint64_t bndry, end;
1751 uint16_t status;
1752
1753 zone = nvme_get_zone_by_slba(ns, slba);
1754 assert(zone);
1755
1756 bndry = nvme_zone_rd_boundary(ns, zone);
1757 end = slba + nlb;
1758
1759 status = nvme_check_zone_state_for_read(zone);
1760 if (status) {
1761 ;
1762 } else if (unlikely(end > bndry)) {
1763 if (!ns->params.cross_zone_read) {
1764 status = NVME_ZONE_BOUNDARY_ERROR;
1765 } else {
1766 /*
1767 * Read across zone boundary - check that all subsequent
1768 * zones that are being read have an appropriate state.
1769 */
1770 do {
1771 zone++;
1772 status = nvme_check_zone_state_for_read(zone);
1773 if (status) {
1774 break;
1775 }
1776 } while (end > nvme_zone_rd_boundary(ns, zone));
1777 }
1778 }
1779
1780 return status;
1781 }
1782
1783 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1784 {
1785 switch (nvme_get_zone_state(zone)) {
1786 case NVME_ZONE_STATE_FULL:
1787 return NVME_SUCCESS;
1788
1789 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1790 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1791 nvme_aor_dec_open(ns);
1792 /* fallthrough */
1793 case NVME_ZONE_STATE_CLOSED:
1794 nvme_aor_dec_active(ns);
1795
1796 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1797 zone->d.za &= ~NVME_ZA_ZRWA_VALID;
1798 if (ns->params.numzrwa) {
1799 ns->zns.numzrwa++;
1800 }
1801 }
1802
1803 /* fallthrough */
1804 case NVME_ZONE_STATE_EMPTY:
1805 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1806 return NVME_SUCCESS;
1807
1808 default:
1809 return NVME_ZONE_INVAL_TRANSITION;
1810 }
1811 }
1812
1813 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1814 {
1815 switch (nvme_get_zone_state(zone)) {
1816 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1817 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1818 nvme_aor_dec_open(ns);
1819 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1820 /* fall through */
1821 case NVME_ZONE_STATE_CLOSED:
1822 return NVME_SUCCESS;
1823
1824 default:
1825 return NVME_ZONE_INVAL_TRANSITION;
1826 }
1827 }
1828
1829 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1830 {
1831 switch (nvme_get_zone_state(zone)) {
1832 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1833 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1834 nvme_aor_dec_open(ns);
1835 /* fallthrough */
1836 case NVME_ZONE_STATE_CLOSED:
1837 nvme_aor_dec_active(ns);
1838
1839 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1840 if (ns->params.numzrwa) {
1841 ns->zns.numzrwa++;
1842 }
1843 }
1844
1845 /* fallthrough */
1846 case NVME_ZONE_STATE_FULL:
1847 zone->w_ptr = zone->d.zslba;
1848 zone->d.wp = zone->w_ptr;
1849 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
1850 /* fallthrough */
1851 case NVME_ZONE_STATE_EMPTY:
1852 return NVME_SUCCESS;
1853
1854 default:
1855 return NVME_ZONE_INVAL_TRANSITION;
1856 }
1857 }
1858
1859 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1860 {
1861 NvmeZone *zone;
1862
1863 if (ns->params.max_open_zones &&
1864 ns->nr_open_zones == ns->params.max_open_zones) {
1865 zone = QTAILQ_FIRST(&ns->imp_open_zones);
1866 if (zone) {
1867 /*
1868 * Automatically close this implicitly open zone.
1869 */
1870 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
1871 nvme_zrm_close(ns, zone);
1872 }
1873 }
1874 }
1875
1876 enum {
1877 NVME_ZRM_AUTO = 1 << 0,
1878 NVME_ZRM_ZRWA = 1 << 1,
1879 };
1880
1881 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
1882 NvmeZone *zone, int flags)
1883 {
1884 int act = 0;
1885 uint16_t status;
1886
1887 switch (nvme_get_zone_state(zone)) {
1888 case NVME_ZONE_STATE_EMPTY:
1889 act = 1;
1890
1891 /* fallthrough */
1892
1893 case NVME_ZONE_STATE_CLOSED:
1894 if (n->params.auto_transition_zones) {
1895 nvme_zrm_auto_transition_zone(ns);
1896 }
1897 status = nvme_zns_check_resources(ns, act, 1,
1898 (flags & NVME_ZRM_ZRWA) ? 1 : 0);
1899 if (status) {
1900 return status;
1901 }
1902
1903 if (act) {
1904 nvme_aor_inc_active(ns);
1905 }
1906
1907 nvme_aor_inc_open(ns);
1908
1909 if (flags & NVME_ZRM_AUTO) {
1910 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
1911 return NVME_SUCCESS;
1912 }
1913
1914 /* fallthrough */
1915
1916 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1917 if (flags & NVME_ZRM_AUTO) {
1918 return NVME_SUCCESS;
1919 }
1920
1921 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
1922
1923 /* fallthrough */
1924
1925 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1926 if (flags & NVME_ZRM_ZRWA) {
1927 ns->zns.numzrwa--;
1928
1929 zone->d.za |= NVME_ZA_ZRWA_VALID;
1930 }
1931
1932 return NVME_SUCCESS;
1933
1934 default:
1935 return NVME_ZONE_INVAL_TRANSITION;
1936 }
1937 }
1938
1939 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
1940 NvmeZone *zone)
1941 {
1942 return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
1943 }
1944
1945 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
1946 uint32_t nlb)
1947 {
1948 zone->d.wp += nlb;
1949
1950 if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
1951 nvme_zrm_finish(ns, zone);
1952 }
1953 }
1954
1955 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
1956 uint32_t nlbc)
1957 {
1958 uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
1959
1960 nlbc = nzrwafgs * ns->zns.zrwafg;
1961
1962 trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
1963
1964 zone->w_ptr += nlbc;
1965
1966 nvme_advance_zone_wp(ns, zone, nlbc);
1967 }
1968
1969 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
1970 {
1971 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1972 NvmeZone *zone;
1973 uint64_t slba;
1974 uint32_t nlb;
1975
1976 slba = le64_to_cpu(rw->slba);
1977 nlb = le16_to_cpu(rw->nlb) + 1;
1978 zone = nvme_get_zone_by_slba(ns, slba);
1979 assert(zone);
1980
1981 if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1982 uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
1983 uint64_t elba = slba + nlb - 1;
1984
1985 if (elba > ezrwa) {
1986 nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
1987 }
1988
1989 return;
1990 }
1991
1992 nvme_advance_zone_wp(ns, zone, nlb);
1993 }
1994
1995 static inline bool nvme_is_write(NvmeRequest *req)
1996 {
1997 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1998
1999 return rw->opcode == NVME_CMD_WRITE ||
2000 rw->opcode == NVME_CMD_ZONE_APPEND ||
2001 rw->opcode == NVME_CMD_WRITE_ZEROES;
2002 }
2003
2004 static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
2005 {
2006 return qemu_get_aio_context();
2007 }
2008
2009 static void nvme_misc_cb(void *opaque, int ret)
2010 {
2011 NvmeRequest *req = opaque;
2012
2013 trace_pci_nvme_misc_cb(nvme_cid(req));
2014
2015 if (ret) {
2016 nvme_aio_err(req, ret);
2017 }
2018
2019 nvme_enqueue_req_completion(nvme_cq(req), req);
2020 }
2021
2022 void nvme_rw_complete_cb(void *opaque, int ret)
2023 {
2024 NvmeRequest *req = opaque;
2025 NvmeNamespace *ns = req->ns;
2026 BlockBackend *blk = ns->blkconf.blk;
2027 BlockAcctCookie *acct = &req->acct;
2028 BlockAcctStats *stats = blk_get_stats(blk);
2029
2030 trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
2031
2032 if (ret) {
2033 block_acct_failed(stats, acct);
2034 nvme_aio_err(req, ret);
2035 } else {
2036 block_acct_done(stats, acct);
2037 }
2038
2039 if (ns->params.zoned && nvme_is_write(req)) {
2040 nvme_finalize_zoned_write(ns, req);
2041 }
2042
2043 nvme_enqueue_req_completion(nvme_cq(req), req);
2044 }
2045
2046 static void nvme_rw_cb(void *opaque, int ret)
2047 {
2048 NvmeRequest *req = opaque;
2049 NvmeNamespace *ns = req->ns;
2050
2051 BlockBackend *blk = ns->blkconf.blk;
2052
2053 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
2054
2055 if (ret) {
2056 goto out;
2057 }
2058
2059 if (ns->lbaf.ms) {
2060 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2061 uint64_t slba = le64_to_cpu(rw->slba);
2062 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2063 uint64_t offset = nvme_moff(ns, slba);
2064
2065 if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
2066 size_t mlen = nvme_m2b(ns, nlb);
2067
2068 req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
2069 BDRV_REQ_MAY_UNMAP,
2070 nvme_rw_complete_cb, req);
2071 return;
2072 }
2073
2074 if (nvme_ns_ext(ns) || req->cmd.mptr) {
2075 uint16_t status;
2076
2077 nvme_sg_unmap(&req->sg);
2078 status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
2079 if (status) {
2080 ret = -EFAULT;
2081 goto out;
2082 }
2083
2084 if (req->cmd.opcode == NVME_CMD_READ) {
2085 return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
2086 }
2087
2088 return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
2089 }
2090 }
2091
2092 out:
2093 nvme_rw_complete_cb(req, ret);
2094 }
2095
2096 static void nvme_verify_cb(void *opaque, int ret)
2097 {
2098 NvmeBounceContext *ctx = opaque;
2099 NvmeRequest *req = ctx->req;
2100 NvmeNamespace *ns = req->ns;
2101 BlockBackend *blk = ns->blkconf.blk;
2102 BlockAcctCookie *acct = &req->acct;
2103 BlockAcctStats *stats = blk_get_stats(blk);
2104 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2105 uint64_t slba = le64_to_cpu(rw->slba);
2106 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2107 uint16_t apptag = le16_to_cpu(rw->apptag);
2108 uint16_t appmask = le16_to_cpu(rw->appmask);
2109 uint64_t reftag = le32_to_cpu(rw->reftag);
2110 uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2111 uint16_t status;
2112
2113 reftag |= cdw3 << 32;
2114
2115 trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
2116
2117 if (ret) {
2118 block_acct_failed(stats, acct);
2119 nvme_aio_err(req, ret);
2120 goto out;
2121 }
2122
2123 block_acct_done(stats, acct);
2124
2125 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2126 status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
2127 ctx->mdata.iov.size, slba);
2128 if (status) {
2129 req->status = status;
2130 goto out;
2131 }
2132
2133 req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2134 ctx->mdata.bounce, ctx->mdata.iov.size,
2135 prinfo, slba, apptag, appmask, &reftag);
2136 }
2137
2138 out:
2139 qemu_iovec_destroy(&ctx->data.iov);
2140 g_free(ctx->data.bounce);
2141
2142 qemu_iovec_destroy(&ctx->mdata.iov);
2143 g_free(ctx->mdata.bounce);
2144
2145 g_free(ctx);
2146
2147 nvme_enqueue_req_completion(nvme_cq(req), req);
2148 }
2149
2150
2151 static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2152 {
2153 NvmeBounceContext *ctx = opaque;
2154 NvmeRequest *req = ctx->req;
2155 NvmeNamespace *ns = req->ns;
2156 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2157 uint64_t slba = le64_to_cpu(rw->slba);
2158 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2159 size_t mlen = nvme_m2b(ns, nlb);
2160 uint64_t offset = nvme_moff(ns, slba);
2161 BlockBackend *blk = ns->blkconf.blk;
2162
2163 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2164
2165 if (ret) {
2166 goto out;
2167 }
2168
2169 ctx->mdata.bounce = g_malloc(mlen);
2170
2171 qemu_iovec_reset(&ctx->mdata.iov);
2172 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2173
2174 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2175 nvme_verify_cb, ctx);
2176 return;
2177
2178 out:
2179 nvme_verify_cb(ctx, ret);
2180 }
2181
2182 struct nvme_compare_ctx {
2183 struct {
2184 QEMUIOVector iov;
2185 uint8_t *bounce;
2186 } data;
2187
2188 struct {
2189 QEMUIOVector iov;
2190 uint8_t *bounce;
2191 } mdata;
2192 };
2193
2194 static void nvme_compare_mdata_cb(void *opaque, int ret)
2195 {
2196 NvmeRequest *req = opaque;
2197 NvmeNamespace *ns = req->ns;
2198 NvmeCtrl *n = nvme_ctrl(req);
2199 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2200 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2201 uint16_t apptag = le16_to_cpu(rw->apptag);
2202 uint16_t appmask = le16_to_cpu(rw->appmask);
2203 uint64_t reftag = le32_to_cpu(rw->reftag);
2204 uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2205 struct nvme_compare_ctx *ctx = req->opaque;
2206 g_autofree uint8_t *buf = NULL;
2207 BlockBackend *blk = ns->blkconf.blk;
2208 BlockAcctCookie *acct = &req->acct;
2209 BlockAcctStats *stats = blk_get_stats(blk);
2210 uint16_t status = NVME_SUCCESS;
2211
2212 reftag |= cdw3 << 32;
2213
2214 trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2215
2216 if (ret) {
2217 block_acct_failed(stats, acct);
2218 nvme_aio_err(req, ret);
2219 goto out;
2220 }
2221
2222 buf = g_malloc(ctx->mdata.iov.size);
2223
2224 status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2225 NVME_TX_DIRECTION_TO_DEVICE, req);
2226 if (status) {
2227 req->status = status;
2228 goto out;
2229 }
2230
2231 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2232 uint64_t slba = le64_to_cpu(rw->slba);
2233 uint8_t *bufp;
2234 uint8_t *mbufp = ctx->mdata.bounce;
2235 uint8_t *end = mbufp + ctx->mdata.iov.size;
2236 int16_t pil = 0;
2237
2238 status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2239 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2240 slba, apptag, appmask, &reftag);
2241 if (status) {
2242 req->status = status;
2243 goto out;
2244 }
2245
2246 /*
2247 * When formatted with protection information, do not compare the DIF
2248 * tuple.
2249 */
2250 if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2251 pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
2252 }
2253
2254 for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2255 if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2256 req->status = NVME_CMP_FAILURE;
2257 goto out;
2258 }
2259 }
2260
2261 goto out;
2262 }
2263
2264 if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2265 req->status = NVME_CMP_FAILURE;
2266 goto out;
2267 }
2268
2269 block_acct_done(stats, acct);
2270
2271 out:
2272 qemu_iovec_destroy(&ctx->data.iov);
2273 g_free(ctx->data.bounce);
2274
2275 qemu_iovec_destroy(&ctx->mdata.iov);
2276 g_free(ctx->mdata.bounce);
2277
2278 g_free(ctx);
2279
2280 nvme_enqueue_req_completion(nvme_cq(req), req);
2281 }
2282
2283 static void nvme_compare_data_cb(void *opaque, int ret)
2284 {
2285 NvmeRequest *req = opaque;
2286 NvmeCtrl *n = nvme_ctrl(req);
2287 NvmeNamespace *ns = req->ns;
2288 BlockBackend *blk = ns->blkconf.blk;
2289 BlockAcctCookie *acct = &req->acct;
2290 BlockAcctStats *stats = blk_get_stats(blk);
2291
2292 struct nvme_compare_ctx *ctx = req->opaque;
2293 g_autofree uint8_t *buf = NULL;
2294 uint16_t status;
2295
2296 trace_pci_nvme_compare_data_cb(nvme_cid(req));
2297
2298 if (ret) {
2299 block_acct_failed(stats, acct);
2300 nvme_aio_err(req, ret);
2301 goto out;
2302 }
2303
2304 buf = g_malloc(ctx->data.iov.size);
2305
2306 status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2307 NVME_TX_DIRECTION_TO_DEVICE, req);
2308 if (status) {
2309 req->status = status;
2310 goto out;
2311 }
2312
2313 if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2314 req->status = NVME_CMP_FAILURE;
2315 goto out;
2316 }
2317
2318 if (ns->lbaf.ms) {
2319 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2320 uint64_t slba = le64_to_cpu(rw->slba);
2321 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2322 size_t mlen = nvme_m2b(ns, nlb);
2323 uint64_t offset = nvme_moff(ns, slba);
2324
2325 ctx->mdata.bounce = g_malloc(mlen);
2326
2327 qemu_iovec_init(&ctx->mdata.iov, 1);
2328 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2329
2330 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2331 nvme_compare_mdata_cb, req);
2332 return;
2333 }
2334
2335 block_acct_done(stats, acct);
2336
2337 out:
2338 qemu_iovec_destroy(&ctx->data.iov);
2339 g_free(ctx->data.bounce);
2340 g_free(ctx);
2341
2342 nvme_enqueue_req_completion(nvme_cq(req), req);
2343 }
2344
2345 typedef struct NvmeDSMAIOCB {
2346 BlockAIOCB common;
2347 BlockAIOCB *aiocb;
2348 NvmeRequest *req;
2349 int ret;
2350
2351 NvmeDsmRange *range;
2352 unsigned int nr;
2353 unsigned int idx;
2354 } NvmeDSMAIOCB;
2355
2356 static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2357 {
2358 NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2359
2360 /* break nvme_dsm_cb loop */
2361 iocb->idx = iocb->nr;
2362 iocb->ret = -ECANCELED;
2363
2364 if (iocb->aiocb) {
2365 blk_aio_cancel_async(iocb->aiocb);
2366 iocb->aiocb = NULL;
2367 } else {
2368 /*
2369 * We only reach this if nvme_dsm_cancel() has already been called or
2370 * the command ran to completion.
2371 */
2372 assert(iocb->idx == iocb->nr);
2373 }
2374 }
2375
2376 static const AIOCBInfo nvme_dsm_aiocb_info = {
2377 .aiocb_size = sizeof(NvmeDSMAIOCB),
2378 .cancel_async = nvme_dsm_cancel,
2379 };
2380
2381 static void nvme_dsm_cb(void *opaque, int ret);
2382
2383 static void nvme_dsm_md_cb(void *opaque, int ret)
2384 {
2385 NvmeDSMAIOCB *iocb = opaque;
2386 NvmeRequest *req = iocb->req;
2387 NvmeNamespace *ns = req->ns;
2388 NvmeDsmRange *range;
2389 uint64_t slba;
2390 uint32_t nlb;
2391
2392 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2393 goto done;
2394 }
2395
2396 range = &iocb->range[iocb->idx - 1];
2397 slba = le64_to_cpu(range->slba);
2398 nlb = le32_to_cpu(range->nlb);
2399
2400 /*
2401 * Check that all block were discarded (zeroed); otherwise we do not zero
2402 * the metadata.
2403 */
2404
2405 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2406 if (ret) {
2407 if (ret < 0) {
2408 goto done;
2409 }
2410
2411 nvme_dsm_cb(iocb, 0);
2412 return;
2413 }
2414
2415 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2416 nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2417 nvme_dsm_cb, iocb);
2418 return;
2419
2420 done:
2421 nvme_dsm_cb(iocb, ret);
2422 }
2423
2424 static void nvme_dsm_cb(void *opaque, int ret)
2425 {
2426 NvmeDSMAIOCB *iocb = opaque;
2427 NvmeRequest *req = iocb->req;
2428 NvmeCtrl *n = nvme_ctrl(req);
2429 NvmeNamespace *ns = req->ns;
2430 NvmeDsmRange *range;
2431 uint64_t slba;
2432 uint32_t nlb;
2433
2434 if (iocb->ret < 0) {
2435 goto done;
2436 } else if (ret < 0) {
2437 iocb->ret = ret;
2438 goto done;
2439 }
2440
2441 next:
2442 if (iocb->idx == iocb->nr) {
2443 goto done;
2444 }
2445
2446 range = &iocb->range[iocb->idx++];
2447 slba = le64_to_cpu(range->slba);
2448 nlb = le32_to_cpu(range->nlb);
2449
2450 trace_pci_nvme_dsm_deallocate(slba, nlb);
2451
2452 if (nlb > n->dmrsl) {
2453 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2454 goto next;
2455 }
2456
2457 if (nvme_check_bounds(ns, slba, nlb)) {
2458 trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2459 ns->id_ns.nsze);
2460 goto next;
2461 }
2462
2463 iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2464 nvme_l2b(ns, nlb),
2465 nvme_dsm_md_cb, iocb);
2466 return;
2467
2468 done:
2469 iocb->aiocb = NULL;
2470 iocb->common.cb(iocb->common.opaque, iocb->ret);
2471 qemu_aio_unref(iocb);
2472 }
2473
2474 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2475 {
2476 NvmeNamespace *ns = req->ns;
2477 NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2478 uint32_t attr = le32_to_cpu(dsm->attributes);
2479 uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2480 uint16_t status = NVME_SUCCESS;
2481
2482 trace_pci_nvme_dsm(nr, attr);
2483
2484 if (attr & NVME_DSMGMT_AD) {
2485 NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2486 nvme_misc_cb, req);
2487
2488 iocb->req = req;
2489 iocb->ret = 0;
2490 iocb->range = g_new(NvmeDsmRange, nr);
2491 iocb->nr = nr;
2492 iocb->idx = 0;
2493
2494 status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2495 req);
2496 if (status) {
2497 return status;
2498 }
2499
2500 req->aiocb = &iocb->common;
2501 nvme_dsm_cb(iocb, 0);
2502
2503 return NVME_NO_COMPLETE;
2504 }
2505
2506 return status;
2507 }
2508
2509 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2510 {
2511 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2512 NvmeNamespace *ns = req->ns;
2513 BlockBackend *blk = ns->blkconf.blk;
2514 uint64_t slba = le64_to_cpu(rw->slba);
2515 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2516 size_t len = nvme_l2b(ns, nlb);
2517 int64_t offset = nvme_l2b(ns, slba);
2518 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2519 uint32_t reftag = le32_to_cpu(rw->reftag);
2520 NvmeBounceContext *ctx = NULL;
2521 uint16_t status;
2522
2523 trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2524
2525 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2526 status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2527 if (status) {
2528 return status;
2529 }
2530
2531 if (prinfo & NVME_PRINFO_PRACT) {
2532 return NVME_INVALID_PROT_INFO | NVME_DNR;
2533 }
2534 }
2535
2536 if (len > n->page_size << n->params.vsl) {
2537 return NVME_INVALID_FIELD | NVME_DNR;
2538 }
2539
2540 status = nvme_check_bounds(ns, slba, nlb);
2541 if (status) {
2542 return status;
2543 }
2544
2545 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2546 status = nvme_check_dulbe(ns, slba, nlb);
2547 if (status) {
2548 return status;
2549 }
2550 }
2551
2552 ctx = g_new0(NvmeBounceContext, 1);
2553 ctx->req = req;
2554
2555 ctx->data.bounce = g_malloc(len);
2556
2557 qemu_iovec_init(&ctx->data.iov, 1);
2558 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2559
2560 block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2561 BLOCK_ACCT_READ);
2562
2563 req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2564 nvme_verify_mdata_in_cb, ctx);
2565 return NVME_NO_COMPLETE;
2566 }
2567
2568 typedef struct NvmeCopyAIOCB {
2569 BlockAIOCB common;
2570 BlockAIOCB *aiocb;
2571 NvmeRequest *req;
2572 int ret;
2573
2574 void *ranges;
2575 unsigned int format;
2576 int nr;
2577 int idx;
2578
2579 uint8_t *bounce;
2580 QEMUIOVector iov;
2581 struct {
2582 BlockAcctCookie read;
2583 BlockAcctCookie write;
2584 } acct;
2585
2586 uint64_t reftag;
2587 uint64_t slba;
2588
2589 NvmeZone *zone;
2590 } NvmeCopyAIOCB;
2591
2592 static void nvme_copy_cancel(BlockAIOCB *aiocb)
2593 {
2594 NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2595
2596 iocb->ret = -ECANCELED;
2597
2598 if (iocb->aiocb) {
2599 blk_aio_cancel_async(iocb->aiocb);
2600 iocb->aiocb = NULL;
2601 }
2602 }
2603
2604 static const AIOCBInfo nvme_copy_aiocb_info = {
2605 .aiocb_size = sizeof(NvmeCopyAIOCB),
2606 .cancel_async = nvme_copy_cancel,
2607 };
2608
2609 static void nvme_copy_done(NvmeCopyAIOCB *iocb)
2610 {
2611 NvmeRequest *req = iocb->req;
2612 NvmeNamespace *ns = req->ns;
2613 BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2614
2615 if (iocb->idx != iocb->nr) {
2616 req->cqe.result = cpu_to_le32(iocb->idx);
2617 }
2618
2619 qemu_iovec_destroy(&iocb->iov);
2620 g_free(iocb->bounce);
2621
2622 if (iocb->ret < 0) {
2623 block_acct_failed(stats, &iocb->acct.read);
2624 block_acct_failed(stats, &iocb->acct.write);
2625 } else {
2626 block_acct_done(stats, &iocb->acct.read);
2627 block_acct_done(stats, &iocb->acct.write);
2628 }
2629
2630 iocb->common.cb(iocb->common.opaque, iocb->ret);
2631 qemu_aio_unref(iocb);
2632 }
2633
2634 static void nvme_do_copy(NvmeCopyAIOCB *iocb);
2635
2636 static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
2637 uint64_t *slba, uint32_t *nlb,
2638 uint16_t *apptag,
2639 uint16_t *appmask,
2640 uint64_t *reftag)
2641 {
2642 NvmeCopySourceRangeFormat0 *_ranges = ranges;
2643
2644 if (slba) {
2645 *slba = le64_to_cpu(_ranges[idx].slba);
2646 }
2647
2648 if (nlb) {
2649 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2650 }
2651
2652 if (apptag) {
2653 *apptag = le16_to_cpu(_ranges[idx].apptag);
2654 }
2655
2656 if (appmask) {
2657 *appmask = le16_to_cpu(_ranges[idx].appmask);
2658 }
2659
2660 if (reftag) {
2661 *reftag = le32_to_cpu(_ranges[idx].reftag);
2662 }
2663 }
2664
2665 static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
2666 uint64_t *slba, uint32_t *nlb,
2667 uint16_t *apptag,
2668 uint16_t *appmask,
2669 uint64_t *reftag)
2670 {
2671 NvmeCopySourceRangeFormat1 *_ranges = ranges;
2672
2673 if (slba) {
2674 *slba = le64_to_cpu(_ranges[idx].slba);
2675 }
2676
2677 if (nlb) {
2678 *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2679 }
2680
2681 if (apptag) {
2682 *apptag = le16_to_cpu(_ranges[idx].apptag);
2683 }
2684
2685 if (appmask) {
2686 *appmask = le16_to_cpu(_ranges[idx].appmask);
2687 }
2688
2689 if (reftag) {
2690 *reftag = 0;
2691
2692 *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
2693 *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
2694 *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
2695 *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
2696 *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
2697 *reftag |= (uint64_t)_ranges[idx].sr[9];
2698 }
2699 }
2700
2701 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
2702 uint64_t *slba, uint32_t *nlb,
2703 uint16_t *apptag, uint16_t *appmask,
2704 uint64_t *reftag)
2705 {
2706 switch (format) {
2707 case NVME_COPY_FORMAT_0:
2708 nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
2709 appmask, reftag);
2710 break;
2711
2712 case NVME_COPY_FORMAT_1:
2713 nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
2714 appmask, reftag);
2715 break;
2716
2717 default:
2718 abort();
2719 }
2720 }
2721
2722 static void nvme_copy_out_completed_cb(void *opaque, int ret)
2723 {
2724 NvmeCopyAIOCB *iocb = opaque;
2725 NvmeRequest *req = iocb->req;
2726 NvmeNamespace *ns = req->ns;
2727 uint32_t nlb;
2728
2729 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2730 &nlb, NULL, NULL, NULL);
2731
2732 if (ret < 0) {
2733 iocb->ret = ret;
2734 goto out;
2735 } else if (iocb->ret < 0) {
2736 goto out;
2737 }
2738
2739 if (ns->params.zoned) {
2740 nvme_advance_zone_wp(ns, iocb->zone, nlb);
2741 }
2742
2743 iocb->idx++;
2744 iocb->slba += nlb;
2745 out:
2746 nvme_do_copy(iocb);
2747 }
2748
2749 static void nvme_copy_out_cb(void *opaque, int ret)
2750 {
2751 NvmeCopyAIOCB *iocb = opaque;
2752 NvmeRequest *req = iocb->req;
2753 NvmeNamespace *ns = req->ns;
2754 uint32_t nlb;
2755 size_t mlen;
2756 uint8_t *mbounce;
2757
2758 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2759 goto out;
2760 }
2761
2762 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2763 &nlb, NULL, NULL, NULL);
2764
2765 mlen = nvme_m2b(ns, nlb);
2766 mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2767
2768 qemu_iovec_reset(&iocb->iov);
2769 qemu_iovec_add(&iocb->iov, mbounce, mlen);
2770
2771 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
2772 &iocb->iov, 0, nvme_copy_out_completed_cb,
2773 iocb);
2774
2775 return;
2776
2777 out:
2778 nvme_copy_out_completed_cb(iocb, ret);
2779 }
2780
2781 static void nvme_copy_in_completed_cb(void *opaque, int ret)
2782 {
2783 NvmeCopyAIOCB *iocb = opaque;
2784 NvmeRequest *req = iocb->req;
2785 NvmeNamespace *ns = req->ns;
2786 uint32_t nlb;
2787 uint64_t slba;
2788 uint16_t apptag, appmask;
2789 uint64_t reftag;
2790 size_t len;
2791 uint16_t status;
2792
2793 if (ret < 0) {
2794 iocb->ret = ret;
2795 goto out;
2796 } else if (iocb->ret < 0) {
2797 goto out;
2798 }
2799
2800 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2801 &nlb, &apptag, &appmask, &reftag);
2802 len = nvme_l2b(ns, nlb);
2803
2804 trace_pci_nvme_copy_out(iocb->slba, nlb);
2805
2806 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2807 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2808
2809 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2810 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2811
2812 size_t mlen = nvme_m2b(ns, nlb);
2813 uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2814
2815 status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba);
2816 if (status) {
2817 goto invalid;
2818 }
2819 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
2820 slba, apptag, appmask, &reftag);
2821 if (status) {
2822 goto invalid;
2823 }
2824
2825 apptag = le16_to_cpu(copy->apptag);
2826 appmask = le16_to_cpu(copy->appmask);
2827
2828 if (prinfow & NVME_PRINFO_PRACT) {
2829 status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
2830 if (status) {
2831 goto invalid;
2832 }
2833
2834 nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
2835 apptag, &iocb->reftag);
2836 } else {
2837 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
2838 prinfow, iocb->slba, apptag, appmask,
2839 &iocb->reftag);
2840 if (status) {
2841 goto invalid;
2842 }
2843 }
2844 }
2845
2846 status = nvme_check_bounds(ns, iocb->slba, nlb);
2847 if (status) {
2848 goto invalid;
2849 }
2850
2851 if (ns->params.zoned) {
2852 status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
2853 if (status) {
2854 goto invalid;
2855 }
2856
2857 if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
2858 iocb->zone->w_ptr += nlb;
2859 }
2860 }
2861
2862 qemu_iovec_reset(&iocb->iov);
2863 qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2864
2865 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
2866 &iocb->iov, 0, nvme_copy_out_cb, iocb);
2867
2868 return;
2869
2870 invalid:
2871 req->status = status;
2872 iocb->ret = -1;
2873 out:
2874 nvme_do_copy(iocb);
2875 }
2876
2877 static void nvme_copy_in_cb(void *opaque, int ret)
2878 {
2879 NvmeCopyAIOCB *iocb = opaque;
2880 NvmeRequest *req = iocb->req;
2881 NvmeNamespace *ns = req->ns;
2882 uint64_t slba;
2883 uint32_t nlb;
2884
2885 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
2886 goto out;
2887 }
2888
2889 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2890 &nlb, NULL, NULL, NULL);
2891
2892 qemu_iovec_reset(&iocb->iov);
2893 qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
2894 nvme_m2b(ns, nlb));
2895
2896 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
2897 &iocb->iov, 0, nvme_copy_in_completed_cb,
2898 iocb);
2899 return;
2900
2901 out:
2902 nvme_copy_in_completed_cb(iocb, ret);
2903 }
2904
2905 static void nvme_do_copy(NvmeCopyAIOCB *iocb)
2906 {
2907 NvmeRequest *req = iocb->req;
2908 NvmeNamespace *ns = req->ns;
2909 uint64_t slba;
2910 uint32_t nlb;
2911 size_t len;
2912 uint16_t status;
2913
2914 if (iocb->ret < 0) {
2915 goto done;
2916 }
2917
2918 if (iocb->idx == iocb->nr) {
2919 goto done;
2920 }
2921
2922 nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2923 &nlb, NULL, NULL, NULL);
2924 len = nvme_l2b(ns, nlb);
2925
2926 trace_pci_nvme_copy_source_range(slba, nlb);
2927
2928 if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
2929 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2930 goto invalid;
2931 }
2932
2933 status = nvme_check_bounds(ns, slba, nlb);
2934 if (status) {
2935 goto invalid;
2936 }
2937
2938 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2939 status = nvme_check_dulbe(ns, slba, nlb);
2940 if (status) {
2941 goto invalid;
2942 }
2943 }
2944
2945 if (ns->params.zoned) {
2946 status = nvme_check_zone_read(ns, slba, nlb);
2947 if (status) {
2948 goto invalid;
2949 }
2950 }
2951
2952 qemu_iovec_reset(&iocb->iov);
2953 qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2954
2955 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
2956 &iocb->iov, 0, nvme_copy_in_cb, iocb);
2957 return;
2958
2959 invalid:
2960 req->status = status;
2961 iocb->ret = -1;
2962 done:
2963 nvme_copy_done(iocb);
2964 }
2965
2966 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
2967 {
2968 NvmeNamespace *ns = req->ns;
2969 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2970 NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
2971 nvme_misc_cb, req);
2972 uint16_t nr = copy->nr + 1;
2973 uint8_t format = copy->control[0] & 0xf;
2974 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2975 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2976 size_t len = sizeof(NvmeCopySourceRangeFormat0);
2977
2978 uint16_t status;
2979
2980 trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
2981
2982 iocb->ranges = NULL;
2983 iocb->zone = NULL;
2984
2985 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
2986 ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
2987 status = NVME_INVALID_FIELD | NVME_DNR;
2988 goto invalid;
2989 }
2990
2991 if (!(n->id_ctrl.ocfs & (1 << format))) {
2992 trace_pci_nvme_err_copy_invalid_format(format);
2993 status = NVME_INVALID_FIELD | NVME_DNR;
2994 goto invalid;
2995 }
2996
2997 if (nr > ns->id_ns.msrc + 1) {
2998 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2999 goto invalid;
3000 }
3001
3002 if ((ns->pif == 0x0 && format != 0x0) ||
3003 (ns->pif != 0x0 && format != 0x1)) {
3004 status = NVME_INVALID_FORMAT | NVME_DNR;
3005 goto invalid;
3006 }
3007
3008 if (ns->pif) {
3009 len = sizeof(NvmeCopySourceRangeFormat1);
3010 }
3011
3012 iocb->format = format;
3013 iocb->ranges = g_malloc_n(nr, len);
3014 status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
3015 if (status) {
3016 goto invalid;
3017 }
3018
3019 iocb->slba = le64_to_cpu(copy->sdlba);
3020
3021 if (ns->params.zoned) {
3022 iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
3023 if (!iocb->zone) {
3024 status = NVME_LBA_RANGE | NVME_DNR;
3025 goto invalid;
3026 }
3027
3028 status = nvme_zrm_auto(n, ns, iocb->zone);
3029 if (status) {
3030 goto invalid;
3031 }
3032 }
3033
3034 iocb->req = req;
3035 iocb->ret = 0;
3036 iocb->nr = nr;
3037 iocb->idx = 0;
3038 iocb->reftag = le32_to_cpu(copy->reftag);
3039 iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
3040 iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
3041 ns->lbasz + ns->lbaf.ms);
3042
3043 qemu_iovec_init(&iocb->iov, 1);
3044
3045 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
3046 BLOCK_ACCT_READ);
3047 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
3048 BLOCK_ACCT_WRITE);
3049
3050 req->aiocb = &iocb->common;
3051 nvme_do_copy(iocb);
3052
3053 return NVME_NO_COMPLETE;
3054
3055 invalid:
3056 g_free(iocb->ranges);
3057 qemu_aio_unref(iocb);
3058 return status;
3059 }
3060
3061 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
3062 {
3063 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3064 NvmeNamespace *ns = req->ns;
3065 BlockBackend *blk = ns->blkconf.blk;
3066 uint64_t slba = le64_to_cpu(rw->slba);
3067 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
3068 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3069 size_t data_len = nvme_l2b(ns, nlb);
3070 size_t len = data_len;
3071 int64_t offset = nvme_l2b(ns, slba);
3072 struct nvme_compare_ctx *ctx = NULL;
3073 uint16_t status;
3074
3075 trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
3076
3077 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
3078 return NVME_INVALID_PROT_INFO | NVME_DNR;
3079 }
3080
3081 if (nvme_ns_ext(ns)) {
3082 len += nvme_m2b(ns, nlb);
3083 }
3084
3085 status = nvme_check_mdts(n, len);
3086 if (status) {
3087 return status;
3088 }
3089
3090 status = nvme_check_bounds(ns, slba, nlb);
3091 if (status) {
3092 return status;
3093 }
3094
3095 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3096 status = nvme_check_dulbe(ns, slba, nlb);
3097 if (status) {
3098 return status;
3099 }
3100 }
3101
3102 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
3103 if (status) {
3104 return status;
3105 }
3106
3107 ctx = g_new(struct nvme_compare_ctx, 1);
3108 ctx->data.bounce = g_malloc(data_len);
3109
3110 req->opaque = ctx;
3111
3112 qemu_iovec_init(&ctx->data.iov, 1);
3113 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
3114
3115 block_acct_start(blk_get_stats(blk), &req->acct, data_len,
3116 BLOCK_ACCT_READ);
3117 req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
3118 nvme_compare_data_cb, req);
3119
3120 return NVME_NO_COMPLETE;
3121 }
3122
3123 typedef struct NvmeFlushAIOCB {
3124 BlockAIOCB common;
3125 BlockAIOCB *aiocb;
3126 NvmeRequest *req;
3127 int ret;
3128
3129 NvmeNamespace *ns;
3130 uint32_t nsid;
3131 bool broadcast;
3132 } NvmeFlushAIOCB;
3133
3134 static void nvme_flush_cancel(BlockAIOCB *acb)
3135 {
3136 NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
3137
3138 iocb->ret = -ECANCELED;
3139
3140 if (iocb->aiocb) {
3141 blk_aio_cancel_async(iocb->aiocb);
3142 iocb->aiocb = NULL;
3143 }
3144 }
3145
3146 static const AIOCBInfo nvme_flush_aiocb_info = {
3147 .aiocb_size = sizeof(NvmeFlushAIOCB),
3148 .cancel_async = nvme_flush_cancel,
3149 .get_aio_context = nvme_get_aio_context,
3150 };
3151
3152 static void nvme_do_flush(NvmeFlushAIOCB *iocb);
3153
3154 static void nvme_flush_ns_cb(void *opaque, int ret)
3155 {
3156 NvmeFlushAIOCB *iocb = opaque;
3157 NvmeNamespace *ns = iocb->ns;
3158
3159 if (ret < 0) {
3160 iocb->ret = ret;
3161 goto out;
3162 } else if (iocb->ret < 0) {
3163 goto out;
3164 }
3165
3166 if (ns) {
3167 trace_pci_nvme_flush_ns(iocb->nsid);
3168
3169 iocb->ns = NULL;
3170 iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
3171 return;
3172 }
3173
3174 out:
3175 nvme_do_flush(iocb);
3176 }
3177
3178 static void nvme_do_flush(NvmeFlushAIOCB *iocb)
3179 {
3180 NvmeRequest *req = iocb->req;
3181 NvmeCtrl *n = nvme_ctrl(req);
3182 int i;
3183
3184 if (iocb->ret < 0) {
3185 goto done;
3186 }
3187
3188 if (iocb->broadcast) {
3189 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
3190 iocb->ns = nvme_ns(n, i);
3191 if (iocb->ns) {
3192 iocb->nsid = i;
3193 break;
3194 }
3195 }
3196 }
3197
3198 if (!iocb->ns) {
3199 goto done;
3200 }
3201
3202 nvme_flush_ns_cb(iocb, 0);
3203 return;
3204
3205 done:
3206 iocb->common.cb(iocb->common.opaque, iocb->ret);
3207 qemu_aio_unref(iocb);
3208 }
3209
3210 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3211 {
3212 NvmeFlushAIOCB *iocb;
3213 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3214 uint16_t status;
3215
3216 iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3217
3218 iocb->req = req;
3219 iocb->ret = 0;
3220 iocb->ns = NULL;
3221 iocb->nsid = 0;
3222 iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3223
3224 if (!iocb->broadcast) {
3225 if (!nvme_nsid_valid(n, nsid)) {
3226 status = NVME_INVALID_NSID | NVME_DNR;
3227 goto out;
3228 }
3229
3230 iocb->ns = nvme_ns(n, nsid);
3231 if (!iocb->ns) {
3232 status = NVME_INVALID_FIELD | NVME_DNR;
3233 goto out;
3234 }
3235
3236 iocb->nsid = nsid;
3237 }
3238
3239 req->aiocb = &iocb->common;
3240 nvme_do_flush(iocb);
3241
3242 return NVME_NO_COMPLETE;
3243
3244 out:
3245 qemu_aio_unref(iocb);
3246
3247 return status;
3248 }
3249
3250 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3251 {
3252 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3253 NvmeNamespace *ns = req->ns;
3254 uint64_t slba = le64_to_cpu(rw->slba);
3255 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3256 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3257 uint64_t data_size = nvme_l2b(ns, nlb);
3258 uint64_t mapped_size = data_size;
3259 uint64_t data_offset;
3260 BlockBackend *blk = ns->blkconf.blk;
3261 uint16_t status;
3262
3263 if (nvme_ns_ext(ns)) {
3264 mapped_size += nvme_m2b(ns, nlb);
3265
3266 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3267 bool pract = prinfo & NVME_PRINFO_PRACT;
3268
3269 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3270 mapped_size = data_size;
3271 }
3272 }
3273 }
3274
3275 trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3276
3277 status = nvme_check_mdts(n, mapped_size);
3278 if (status) {
3279 goto invalid;
3280 }
3281
3282 status = nvme_check_bounds(ns, slba, nlb);
3283 if (status) {
3284 goto invalid;
3285 }
3286
3287 if (ns->params.zoned) {
3288 status = nvme_check_zone_read(ns, slba, nlb);
3289 if (status) {
3290 trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3291 goto invalid;
3292 }
3293 }
3294
3295 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3296 status = nvme_check_dulbe(ns, slba, nlb);
3297 if (status) {
3298 goto invalid;
3299 }
3300 }
3301
3302 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3303 return nvme_dif_rw(n, req);
3304 }
3305
3306 status = nvme_map_data(n, nlb, req);
3307 if (status) {
3308 goto invalid;
3309 }
3310
3311 data_offset = nvme_l2b(ns, slba);
3312
3313 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3314 BLOCK_ACCT_READ);
3315 nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
3316 return NVME_NO_COMPLETE;
3317
3318 invalid:
3319 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3320 return status | NVME_DNR;
3321 }
3322
3323 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3324 bool wrz)
3325 {
3326 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3327 NvmeNamespace *ns = req->ns;
3328 uint64_t slba = le64_to_cpu(rw->slba);
3329 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3330 uint16_t ctrl = le16_to_cpu(rw->control);
3331 uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3332 uint64_t data_size = nvme_l2b(ns, nlb);
3333 uint64_t mapped_size = data_size;
3334 uint64_t data_offset;
3335 NvmeZone *zone;
3336 NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3337 BlockBackend *blk = ns->blkconf.blk;
3338 uint16_t status;
3339
3340 if (nvme_ns_ext(ns)) {
3341 mapped_size += nvme_m2b(ns, nlb);
3342
3343 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3344 bool pract = prinfo & NVME_PRINFO_PRACT;
3345
3346 if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3347 mapped_size -= nvme_m2b(ns, nlb);
3348 }
3349 }
3350 }
3351
3352 trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3353 nvme_nsid(ns), nlb, mapped_size, slba);
3354
3355 if (!wrz) {
3356 status = nvme_check_mdts(n, mapped_size);
3357 if (status) {
3358 goto invalid;
3359 }
3360 }
3361
3362 status = nvme_check_bounds(ns, slba, nlb);
3363 if (status) {
3364 goto invalid;
3365 }
3366
3367 if (ns->params.zoned) {
3368 zone = nvme_get_zone_by_slba(ns, slba);
3369 assert(zone);
3370
3371 if (append) {
3372 bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3373
3374 if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3375 return NVME_INVALID_ZONE_OP | NVME_DNR;
3376 }
3377
3378 if (unlikely(slba != zone->d.zslba)) {
3379 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3380 status = NVME_INVALID_FIELD;
3381 goto invalid;
3382 }
3383
3384 if (n->params.zasl &&
3385 data_size > (uint64_t)n->page_size << n->params.zasl) {
3386 trace_pci_nvme_err_zasl(data_size);
3387 return NVME_INVALID_FIELD | NVME_DNR;
3388 }
3389
3390 slba = zone->w_ptr;
3391 rw->slba = cpu_to_le64(slba);
3392 res->slba = cpu_to_le64(slba);
3393
3394 switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3395 case NVME_ID_NS_DPS_TYPE_1:
3396 if (!piremap) {
3397 return NVME_INVALID_PROT_INFO | NVME_DNR;
3398 }
3399
3400 /* fallthrough */
3401
3402 case NVME_ID_NS_DPS_TYPE_2:
3403 if (piremap) {
3404 uint32_t reftag = le32_to_cpu(rw->reftag);
3405 rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3406 }
3407
3408 break;
3409
3410 case NVME_ID_NS_DPS_TYPE_3:
3411 if (piremap) {
3412 return NVME_INVALID_PROT_INFO | NVME_DNR;
3413 }
3414
3415 break;
3416 }
3417 }
3418
3419 status = nvme_check_zone_write(ns, zone, slba, nlb);
3420 if (status) {
3421 goto invalid;
3422 }
3423
3424 status = nvme_zrm_auto(n, ns, zone);
3425 if (status) {
3426 goto invalid;
3427 }
3428
3429 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3430 zone->w_ptr += nlb;
3431 }
3432 }
3433
3434 data_offset = nvme_l2b(ns, slba);
3435
3436 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3437 return nvme_dif_rw(n, req);
3438 }
3439
3440 if (!wrz) {
3441 status = nvme_map_data(n, nlb, req);
3442 if (status) {
3443 goto invalid;
3444 }
3445
3446 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3447 BLOCK_ACCT_WRITE);
3448 nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
3449 } else {
3450 req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3451 BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3452 req);
3453 }
3454
3455 return NVME_NO_COMPLETE;
3456
3457 invalid:
3458 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3459 return status | NVME_DNR;
3460 }
3461
3462 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3463 {
3464 return nvme_do_write(n, req, false, false);
3465 }
3466
3467 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3468 {
3469 return nvme_do_write(n, req, false, true);
3470 }
3471
3472 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3473 {
3474 return nvme_do_write(n, req, true, false);
3475 }
3476
3477 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3478 uint64_t *slba, uint32_t *zone_idx)
3479 {
3480 uint32_t dw10 = le32_to_cpu(c->cdw10);
3481 uint32_t dw11 = le32_to_cpu(c->cdw11);
3482
3483 if (!ns->params.zoned) {
3484 trace_pci_nvme_err_invalid_opc(c->opcode);
3485 return NVME_INVALID_OPCODE | NVME_DNR;
3486 }
3487
3488 *slba = ((uint64_t)dw11) << 32 | dw10;
3489 if (unlikely(*slba >= ns->id_ns.nsze)) {
3490 trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3491 *slba = 0;
3492 return NVME_LBA_RANGE | NVME_DNR;
3493 }
3494
3495 *zone_idx = nvme_zone_idx(ns, *slba);
3496 assert(*zone_idx < ns->num_zones);
3497
3498 return NVME_SUCCESS;
3499 }
3500
3501 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3502 NvmeRequest *);
3503
3504 enum NvmeZoneProcessingMask {
3505 NVME_PROC_CURRENT_ZONE = 0,
3506 NVME_PROC_OPENED_ZONES = 1 << 0,
3507 NVME_PROC_CLOSED_ZONES = 1 << 1,
3508 NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3509 NVME_PROC_FULL_ZONES = 1 << 3,
3510 };
3511
3512 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3513 NvmeZoneState state, NvmeRequest *req)
3514 {
3515 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3516 int flags = 0;
3517
3518 if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
3519 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3520
3521 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3522 return NVME_INVALID_ZONE_OP | NVME_DNR;
3523 }
3524
3525 if (zone->w_ptr % ns->zns.zrwafg) {
3526 return NVME_NOZRWA | NVME_DNR;
3527 }
3528
3529 flags = NVME_ZRM_ZRWA;
3530 }
3531
3532 return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
3533 }
3534
3535 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3536 NvmeZoneState state, NvmeRequest *req)
3537 {
3538 return nvme_zrm_close(ns, zone);
3539 }
3540
3541 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3542 NvmeZoneState state, NvmeRequest *req)
3543 {
3544 return nvme_zrm_finish(ns, zone);
3545 }
3546
3547 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3548 NvmeZoneState state, NvmeRequest *req)
3549 {
3550 switch (state) {
3551 case NVME_ZONE_STATE_READ_ONLY:
3552 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3553 /* fall through */
3554 case NVME_ZONE_STATE_OFFLINE:
3555 return NVME_SUCCESS;
3556 default:
3557 return NVME_ZONE_INVAL_TRANSITION;
3558 }
3559 }
3560
3561 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3562 {
3563 uint16_t status;
3564 uint8_t state = nvme_get_zone_state(zone);
3565
3566 if (state == NVME_ZONE_STATE_EMPTY) {
3567 status = nvme_aor_check(ns, 1, 0);
3568 if (status) {
3569 return status;
3570 }
3571 nvme_aor_inc_active(ns);
3572 zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3573 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3574 return NVME_SUCCESS;
3575 }
3576
3577 return NVME_ZONE_INVAL_TRANSITION;
3578 }
3579
3580 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3581 enum NvmeZoneProcessingMask proc_mask,
3582 op_handler_t op_hndlr, NvmeRequest *req)
3583 {
3584 uint16_t status = NVME_SUCCESS;
3585 NvmeZoneState zs = nvme_get_zone_state(zone);
3586 bool proc_zone;
3587
3588 switch (zs) {
3589 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3590 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3591 proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3592 break;
3593 case NVME_ZONE_STATE_CLOSED:
3594 proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3595 break;
3596 case NVME_ZONE_STATE_READ_ONLY:
3597 proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3598 break;
3599 case NVME_ZONE_STATE_FULL:
3600 proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3601 break;
3602 default:
3603 proc_zone = false;
3604 }
3605
3606 if (proc_zone) {
3607 status = op_hndlr(ns, zone, zs, req);
3608 }
3609
3610 return status;
3611 }
3612
3613 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3614 enum NvmeZoneProcessingMask proc_mask,
3615 op_handler_t op_hndlr, NvmeRequest *req)
3616 {
3617 NvmeZone *next;
3618 uint16_t status = NVME_SUCCESS;
3619 int i;
3620
3621 if (!proc_mask) {
3622 status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3623 } else {
3624 if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3625 QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3626 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3627 req);
3628 if (status && status != NVME_NO_COMPLETE) {
3629 goto out;
3630 }
3631 }
3632 }
3633 if (proc_mask & NVME_PROC_OPENED_ZONES) {
3634 QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3635 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3636 req);
3637 if (status && status != NVME_NO_COMPLETE) {
3638 goto out;
3639 }
3640 }
3641
3642 QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3643 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3644 req);
3645 if (status && status != NVME_NO_COMPLETE) {
3646 goto out;
3647 }
3648 }
3649 }
3650 if (proc_mask & NVME_PROC_FULL_ZONES) {
3651 QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3652 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3653 req);
3654 if (status && status != NVME_NO_COMPLETE) {
3655 goto out;
3656 }
3657 }
3658 }
3659
3660 if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3661 for (i = 0; i < ns->num_zones; i++, zone++) {
3662 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3663 req);
3664 if (status && status != NVME_NO_COMPLETE) {
3665 goto out;
3666 }
3667 }
3668 }
3669 }
3670
3671 out:
3672 return status;
3673 }
3674
3675 typedef struct NvmeZoneResetAIOCB {
3676 BlockAIOCB common;
3677 BlockAIOCB *aiocb;
3678 NvmeRequest *req;
3679 int ret;
3680
3681 bool all;
3682 int idx;
3683 NvmeZone *zone;
3684 } NvmeZoneResetAIOCB;
3685
3686 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
3687 {
3688 NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
3689 NvmeRequest *req = iocb->req;
3690 NvmeNamespace *ns = req->ns;
3691
3692 iocb->idx = ns->num_zones;
3693
3694 iocb->ret = -ECANCELED;
3695
3696 if (iocb->aiocb) {
3697 blk_aio_cancel_async(iocb->aiocb);
3698 iocb->aiocb = NULL;
3699 }
3700 }
3701
3702 static const AIOCBInfo nvme_zone_reset_aiocb_info = {
3703 .aiocb_size = sizeof(NvmeZoneResetAIOCB),
3704 .cancel_async = nvme_zone_reset_cancel,
3705 };
3706
3707 static void nvme_zone_reset_cb(void *opaque, int ret);
3708
3709 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
3710 {
3711 NvmeZoneResetAIOCB *iocb = opaque;
3712 NvmeRequest *req = iocb->req;
3713 NvmeNamespace *ns = req->ns;
3714 int64_t moff;
3715 int count;
3716
3717 if (ret < 0 || iocb->ret < 0 || !ns->lbaf.ms) {
3718 goto out;
3719 }
3720
3721 moff = nvme_moff(ns, iocb->zone->d.zslba);
3722 count = nvme_m2b(ns, ns->zone_size);
3723
3724 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
3725 BDRV_REQ_MAY_UNMAP,
3726 nvme_zone_reset_cb, iocb);
3727 return;
3728
3729 out:
3730 nvme_zone_reset_cb(iocb, ret);
3731 }
3732
3733 static void nvme_zone_reset_cb(void *opaque, int ret)
3734 {
3735 NvmeZoneResetAIOCB *iocb = opaque;
3736 NvmeRequest *req = iocb->req;
3737 NvmeNamespace *ns = req->ns;
3738
3739 if (iocb->ret < 0) {
3740 goto done;
3741 } else if (ret < 0) {
3742 iocb->ret = ret;
3743 goto done;
3744 }
3745
3746 if (iocb->zone) {
3747 nvme_zrm_reset(ns, iocb->zone);
3748
3749 if (!iocb->all) {
3750 goto done;
3751 }
3752 }
3753
3754 while (iocb->idx < ns->num_zones) {
3755 NvmeZone *zone = &ns->zone_array[iocb->idx++];
3756
3757 switch (nvme_get_zone_state(zone)) {
3758 case NVME_ZONE_STATE_EMPTY:
3759 if (!iocb->all) {
3760 goto done;
3761 }
3762
3763 continue;
3764
3765 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3766 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3767 case NVME_ZONE_STATE_CLOSED:
3768 case NVME_ZONE_STATE_FULL:
3769 iocb->zone = zone;
3770 break;
3771
3772 default:
3773 continue;
3774 }
3775
3776 trace_pci_nvme_zns_zone_reset(zone->d.zslba);
3777
3778 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
3779 nvme_l2b(ns, zone->d.zslba),
3780 nvme_l2b(ns, ns->zone_size),
3781 BDRV_REQ_MAY_UNMAP,
3782 nvme_zone_reset_epilogue_cb,
3783 iocb);
3784 return;
3785 }
3786
3787 done:
3788 iocb->aiocb = NULL;
3789
3790 iocb->common.cb(iocb->common.opaque, iocb->ret);
3791 qemu_aio_unref(iocb);
3792 }
3793
3794 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
3795 uint64_t elba, NvmeRequest *req)
3796 {
3797 NvmeNamespace *ns = req->ns;
3798 uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3799 uint64_t wp = zone->d.wp;
3800 uint32_t nlb = elba - wp + 1;
3801 uint16_t status;
3802
3803
3804 if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3805 return NVME_INVALID_ZONE_OP | NVME_DNR;
3806 }
3807
3808 if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3809 return NVME_INVALID_FIELD | NVME_DNR;
3810 }
3811
3812 if (elba < wp || elba > wp + ns->zns.zrwas) {
3813 return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
3814 }
3815
3816 if (nlb % ns->zns.zrwafg) {
3817 return NVME_INVALID_FIELD | NVME_DNR;
3818 }
3819
3820 status = nvme_zrm_auto(n, ns, zone);
3821 if (status) {
3822 return status;
3823 }
3824
3825 zone->w_ptr += nlb;
3826
3827 nvme_advance_zone_wp(ns, zone, nlb);
3828
3829 return NVME_SUCCESS;
3830 }
3831
3832 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
3833 {
3834 NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3835 NvmeNamespace *ns = req->ns;
3836 NvmeZone *zone;
3837 NvmeZoneResetAIOCB *iocb;
3838 uint8_t *zd_ext;
3839 uint64_t slba = 0;
3840 uint32_t zone_idx = 0;
3841 uint16_t status;
3842 uint8_t action = cmd->zsa;
3843 bool all;
3844 enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
3845
3846 all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
3847
3848 req->status = NVME_SUCCESS;
3849
3850 if (!all) {
3851 status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
3852 if (status) {
3853 return status;
3854 }
3855 }
3856
3857 zone = &ns->zone_array[zone_idx];
3858 if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
3859 trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
3860 return NVME_INVALID_FIELD | NVME_DNR;
3861 }
3862
3863 switch (action) {
3864
3865 case NVME_ZONE_ACTION_OPEN:
3866 if (all) {
3867 proc_mask = NVME_PROC_CLOSED_ZONES;
3868 }
3869 trace_pci_nvme_open_zone(slba, zone_idx, all);
3870 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
3871 break;
3872
3873 case NVME_ZONE_ACTION_CLOSE:
3874 if (all) {
3875 proc_mask = NVME_PROC_OPENED_ZONES;
3876 }
3877 trace_pci_nvme_close_zone(slba, zone_idx, all);
3878 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
3879 break;
3880
3881 case NVME_ZONE_ACTION_FINISH:
3882 if (all) {
3883 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
3884 }
3885 trace_pci_nvme_finish_zone(slba, zone_idx, all);
3886 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
3887 break;
3888
3889 case NVME_ZONE_ACTION_RESET:
3890 trace_pci_nvme_reset_zone(slba, zone_idx, all);
3891
3892 iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
3893 nvme_misc_cb, req);
3894
3895 iocb->req = req;
3896 iocb->ret = 0;
3897 iocb->all = all;
3898 iocb->idx = zone_idx;
3899 iocb->zone = NULL;
3900
3901 req->aiocb = &iocb->common;
3902 nvme_zone_reset_cb(iocb, 0);
3903
3904 return NVME_NO_COMPLETE;
3905
3906 case NVME_ZONE_ACTION_OFFLINE:
3907 if (all) {
3908 proc_mask = NVME_PROC_READ_ONLY_ZONES;
3909 }
3910 trace_pci_nvme_offline_zone(slba, zone_idx, all);
3911 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
3912 break;
3913
3914 case NVME_ZONE_ACTION_SET_ZD_EXT:
3915 trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
3916 if (all || !ns->params.zd_extension_size) {
3917 return NVME_INVALID_FIELD | NVME_DNR;
3918 }
3919 zd_ext = nvme_get_zd_extension(ns, zone_idx);
3920 status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
3921 if (status) {
3922 trace_pci_nvme_err_zd_extension_map_error(zone_idx);
3923 return status;
3924 }
3925
3926 status = nvme_set_zd_ext(ns, zone);
3927 if (status == NVME_SUCCESS) {
3928 trace_pci_nvme_zd_extension_set(zone_idx);
3929 return status;
3930 }
3931 break;
3932
3933 case NVME_ZONE_ACTION_ZRWA_FLUSH:
3934 if (all) {
3935 return NVME_INVALID_FIELD | NVME_DNR;
3936 }
3937
3938 return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
3939
3940 default:
3941 trace_pci_nvme_err_invalid_mgmt_action(action);
3942 status = NVME_INVALID_FIELD;
3943 }
3944
3945 if (status == NVME_ZONE_INVAL_TRANSITION) {
3946 trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
3947 zone->d.za);
3948 }
3949 if (status) {
3950 status |= NVME_DNR;
3951 }
3952
3953 return status;
3954 }
3955
3956 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
3957 {
3958 NvmeZoneState zs = nvme_get_zone_state(zl);
3959
3960 switch (zafs) {
3961 case NVME_ZONE_REPORT_ALL:
3962 return true;
3963 case NVME_ZONE_REPORT_EMPTY:
3964 return zs == NVME_ZONE_STATE_EMPTY;
3965 case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
3966 return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
3967 case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
3968 return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
3969 case NVME_ZONE_REPORT_CLOSED:
3970 return zs == NVME_ZONE_STATE_CLOSED;
3971 case NVME_ZONE_REPORT_FULL:
3972 return zs == NVME_ZONE_STATE_FULL;
3973 case NVME_ZONE_REPORT_READ_ONLY:
3974 return zs == NVME_ZONE_STATE_READ_ONLY;
3975 case NVME_ZONE_REPORT_OFFLINE:
3976 return zs == NVME_ZONE_STATE_OFFLINE;
3977 default:
3978 return false;
3979 }
3980 }
3981
3982 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
3983 {
3984 NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
3985 NvmeNamespace *ns = req->ns;
3986 /* cdw12 is zero-based number of dwords to return. Convert to bytes */
3987 uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
3988 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
3989 uint32_t zone_idx, zra, zrasf, partial;
3990 uint64_t max_zones, nr_zones = 0;
3991 uint16_t status;
3992 uint64_t slba;
3993 NvmeZoneDescr *z;
3994 NvmeZone *zone;
3995 NvmeZoneReportHeader *header;
3996 void *buf, *buf_p;
3997 size_t zone_entry_sz;
3998 int i;
3999
4000 req->status = NVME_SUCCESS;
4001
4002 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
4003 if (status) {
4004 return status;
4005 }
4006
4007 zra = dw13 & 0xff;
4008 if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
4009 return NVME_INVALID_FIELD | NVME_DNR;
4010 }
4011 if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
4012 return NVME_INVALID_FIELD | NVME_DNR;
4013 }
4014
4015 zrasf = (dw13 >> 8) & 0xff;
4016 if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
4017 return NVME_INVALID_FIELD | NVME_DNR;
4018 }
4019
4020 if (data_size < sizeof(NvmeZoneReportHeader)) {
4021 return NVME_INVALID_FIELD | NVME_DNR;
4022 }
4023
4024 status = nvme_check_mdts(n, data_size);
4025 if (status) {
4026 return status;
4027 }
4028
4029 partial = (dw13 >> 16) & 0x01;
4030
4031 zone_entry_sz = sizeof(NvmeZoneDescr);
4032 if (zra == NVME_ZONE_REPORT_EXTENDED) {
4033 zone_entry_sz += ns->params.zd_extension_size;
4034 }
4035
4036 max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
4037 buf = g_malloc0(data_size);
4038
4039 zone = &ns->zone_array[zone_idx];
4040 for (i = zone_idx; i < ns->num_zones; i++) {
4041 if (partial && nr_zones >= max_zones) {
4042 break;
4043 }
4044 if (nvme_zone_matches_filter(zrasf, zone++)) {
4045 nr_zones++;
4046 }
4047 }
4048 header = buf;
4049 header->nr_zones = cpu_to_le64(nr_zones);
4050
4051 buf_p = buf + sizeof(NvmeZoneReportHeader);
4052 for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
4053 zone = &ns->zone_array[zone_idx];
4054 if (nvme_zone_matches_filter(zrasf, zone)) {
4055 z = buf_p;
4056 buf_p += sizeof(NvmeZoneDescr);
4057
4058 z->zt = zone->d.zt;
4059 z->zs = zone->d.zs;
4060 z->zcap = cpu_to_le64(zone->d.zcap);
4061 z->zslba = cpu_to_le64(zone->d.zslba);
4062 z->za = zone->d.za;
4063
4064 if (nvme_wp_is_valid(zone)) {
4065 z->wp = cpu_to_le64(zone->d.wp);
4066 } else {
4067 z->wp = cpu_to_le64(~0ULL);
4068 }
4069
4070 if (zra == NVME_ZONE_REPORT_EXTENDED) {
4071 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
4072 memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
4073 ns->params.zd_extension_size);
4074 }
4075 buf_p += ns->params.zd_extension_size;
4076 }
4077
4078 max_zones--;
4079 }
4080 }
4081
4082 status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
4083
4084 g_free(buf);
4085
4086 return status;
4087 }
4088
4089 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
4090 {
4091 NvmeNamespace *ns;
4092 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4093
4094 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
4095 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
4096
4097 if (!nvme_nsid_valid(n, nsid)) {
4098 return NVME_INVALID_NSID | NVME_DNR;
4099 }
4100
4101 /*
4102 * In the base NVM command set, Flush may apply to all namespaces
4103 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
4104 * along with TP 4056 (Namespace Types), it may be pretty screwed up.
4105 *
4106 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
4107 * opcode with a specific command since we cannot determine a unique I/O
4108 * command set. Opcode 0h could have any other meaning than something
4109 * equivalent to flushing and say it DOES have completely different
4110 * semantics in some other command set - does an NSID of FFFFFFFFh then
4111 * mean "for all namespaces, apply whatever command set specific command
4112 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
4113 * whatever command that uses the 0h opcode if, and only if, it allows NSID
4114 * to be FFFFFFFFh"?
4115 *
4116 * Anyway (and luckily), for now, we do not care about this since the
4117 * device only supports namespace types that includes the NVM Flush command
4118 * (NVM and Zoned), so always do an NVM Flush.
4119 */
4120 if (req->cmd.opcode == NVME_CMD_FLUSH) {
4121 return nvme_flush(n, req);
4122 }
4123
4124 ns = nvme_ns(n, nsid);
4125 if (unlikely(!ns)) {
4126 return NVME_INVALID_FIELD | NVME_DNR;
4127 }
4128
4129 if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
4130 trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
4131 return NVME_INVALID_OPCODE | NVME_DNR;
4132 }
4133
4134 if (ns->status) {
4135 return ns->status;
4136 }
4137
4138 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
4139 return NVME_INVALID_FIELD;
4140 }
4141
4142 req->ns = ns;
4143
4144 switch (req->cmd.opcode) {
4145 case NVME_CMD_WRITE_ZEROES:
4146 return nvme_write_zeroes(n, req);
4147 case NVME_CMD_ZONE_APPEND:
4148 return nvme_zone_append(n, req);
4149 case NVME_CMD_WRITE:
4150 return nvme_write(n, req);
4151 case NVME_CMD_READ:
4152 return nvme_read(n, req);
4153 case NVME_CMD_COMPARE:
4154 return nvme_compare(n, req);
4155 case NVME_CMD_DSM:
4156 return nvme_dsm(n, req);
4157 case NVME_CMD_VERIFY:
4158 return nvme_verify(n, req);
4159 case NVME_CMD_COPY:
4160 return nvme_copy(n, req);
4161 case NVME_CMD_ZONE_MGMT_SEND:
4162 return nvme_zone_mgmt_send(n, req);
4163 case NVME_CMD_ZONE_MGMT_RECV:
4164 return nvme_zone_mgmt_recv(n, req);
4165 default:
4166 assert(false);
4167 }
4168
4169 return NVME_INVALID_OPCODE | NVME_DNR;
4170 }
4171
4172 static void nvme_cq_notifier(EventNotifier *e)
4173 {
4174 NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier);
4175 NvmeCtrl *n = cq->ctrl;
4176
4177 if (!event_notifier_test_and_clear(e)) {
4178 return;
4179 }
4180
4181 nvme_update_cq_head(cq);
4182
4183 if (cq->tail == cq->head) {
4184 if (cq->irq_enabled) {
4185 n->cq_pending--;
4186 }
4187
4188 nvme_irq_deassert(n, cq);
4189 }
4190
4191 qemu_bh_schedule(cq->bh);
4192 }
4193
4194 static int nvme_init_cq_ioeventfd(NvmeCQueue *cq)
4195 {
4196 NvmeCtrl *n = cq->ctrl;
4197 uint16_t offset = (cq->cqid << 3) + (1 << 2);
4198 int ret;
4199
4200 ret = event_notifier_init(&cq->notifier, 0);
4201 if (ret < 0) {
4202 return ret;
4203 }
4204
4205 event_notifier_set_handler(&cq->notifier, nvme_cq_notifier);
4206 memory_region_add_eventfd(&n->iomem,
4207 0x1000 + offset, 4, false, 0, &cq->notifier);
4208
4209 return 0;
4210 }
4211
4212 static void nvme_sq_notifier(EventNotifier *e)
4213 {
4214 NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier);
4215
4216 if (!event_notifier_test_and_clear(e)) {
4217 return;
4218 }
4219
4220 nvme_process_sq(sq);
4221 }
4222
4223 static int nvme_init_sq_ioeventfd(NvmeSQueue *sq)
4224 {
4225 NvmeCtrl *n = sq->ctrl;
4226 uint16_t offset = sq->sqid << 3;
4227 int ret;
4228
4229 ret = event_notifier_init(&sq->notifier, 0);
4230 if (ret < 0) {
4231 return ret;
4232 }
4233
4234 event_notifier_set_handler(&sq->notifier, nvme_sq_notifier);
4235 memory_region_add_eventfd(&n->iomem,
4236 0x1000 + offset, 4, false, 0, &sq->notifier);
4237
4238 return 0;
4239 }
4240
4241 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
4242 {
4243 uint16_t offset = sq->sqid << 3;
4244
4245 n->sq[sq->sqid] = NULL;
4246 qemu_bh_delete(sq->bh);
4247 if (sq->ioeventfd_enabled) {
4248 memory_region_del_eventfd(&n->iomem,
4249 0x1000 + offset, 4, false, 0, &sq->notifier);
4250 event_notifier_set_handler(&sq->notifier, NULL);
4251 event_notifier_cleanup(&sq->notifier);
4252 }
4253 g_free(sq->io_req);
4254 if (sq->sqid) {
4255 g_free(sq);
4256 }
4257 }
4258
4259 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
4260 {
4261 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4262 NvmeRequest *r, *next;
4263 NvmeSQueue *sq;
4264 NvmeCQueue *cq;
4265 uint16_t qid = le16_to_cpu(c->qid);
4266
4267 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
4268 trace_pci_nvme_err_invalid_del_sq(qid);
4269 return NVME_INVALID_QID | NVME_DNR;
4270 }
4271
4272 trace_pci_nvme_del_sq(qid);
4273
4274 sq = n->sq[qid];
4275 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
4276 r = QTAILQ_FIRST(&sq->out_req_list);
4277 assert(r->aiocb);
4278 blk_aio_cancel(r->aiocb);
4279 }
4280
4281 assert(QTAILQ_EMPTY(&sq->out_req_list));
4282
4283 if (!nvme_check_cqid(n, sq->cqid)) {
4284 cq = n->cq[sq->cqid];
4285 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
4286
4287 nvme_post_cqes(cq);
4288 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
4289 if (r->sq == sq) {
4290 QTAILQ_REMOVE(&cq->req_list, r, entry);
4291 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
4292 }
4293 }
4294 }
4295
4296 nvme_free_sq(sq, n);
4297 return NVME_SUCCESS;
4298 }
4299
4300 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
4301 uint16_t sqid, uint16_t cqid, uint16_t size)
4302 {
4303 int i;
4304 NvmeCQueue *cq;
4305
4306 sq->ctrl = n;
4307 sq->dma_addr = dma_addr;
4308 sq->sqid = sqid;
4309 sq->size = size;
4310 sq->cqid = cqid;
4311 sq->head = sq->tail = 0;
4312 sq->io_req = g_new0(NvmeRequest, sq->size);
4313
4314 QTAILQ_INIT(&sq->req_list);
4315 QTAILQ_INIT(&sq->out_req_list);
4316 for (i = 0; i < sq->size; i++) {
4317 sq->io_req[i].sq = sq;
4318 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
4319 }
4320
4321 sq->bh = qemu_bh_new(nvme_process_sq, sq);
4322
4323 if (n->dbbuf_enabled) {
4324 sq->db_addr = n->dbbuf_dbs + (sqid << 3);
4325 sq->ei_addr = n->dbbuf_eis + (sqid << 3);
4326
4327 if (n->params.ioeventfd && sq->sqid != 0) {
4328 if (!nvme_init_sq_ioeventfd(sq)) {
4329 sq->ioeventfd_enabled = true;
4330 }
4331 }
4332 }
4333
4334 assert(n->cq[cqid]);
4335 cq = n->cq[cqid];
4336 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4337 n->sq[sqid] = sq;
4338 }
4339
4340 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4341 {
4342 NvmeSQueue *sq;
4343 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4344
4345 uint16_t cqid = le16_to_cpu(c->cqid);
4346 uint16_t sqid = le16_to_cpu(c->sqid);
4347 uint16_t qsize = le16_to_cpu(c->qsize);
4348 uint16_t qflags = le16_to_cpu(c->sq_flags);
4349 uint64_t prp1 = le64_to_cpu(c->prp1);
4350
4351 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4352
4353 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4354 trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4355 return NVME_INVALID_CQID | NVME_DNR;
4356 }
4357 if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) {
4358 trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4359 return NVME_INVALID_QID | NVME_DNR;
4360 }
4361 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4362 trace_pci_nvme_err_invalid_create_sq_size(qsize);
4363 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4364 }
4365 if (unlikely(prp1 & (n->page_size - 1))) {
4366 trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4367 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4368 }
4369 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4370 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4371 return NVME_INVALID_FIELD | NVME_DNR;
4372 }
4373 sq = g_malloc0(sizeof(*sq));
4374 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4375 return NVME_SUCCESS;
4376 }
4377
4378 struct nvme_stats {
4379 uint64_t units_read;
4380 uint64_t units_written;
4381 uint64_t read_commands;
4382 uint64_t write_commands;
4383 };
4384
4385 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4386 {
4387 BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4388
4389 stats->units_read += s->nr_bytes[BLOCK_ACCT_READ];
4390 stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE];
4391 stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4392 stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4393 }
4394
4395 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4396 uint64_t off, NvmeRequest *req)
4397 {
4398 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4399 struct nvme_stats stats = { 0 };
4400 NvmeSmartLog smart = { 0 };
4401 uint32_t trans_len;
4402 NvmeNamespace *ns;
4403 time_t current_ms;
4404 uint64_t u_read, u_written;
4405
4406 if (off >= sizeof(smart)) {
4407 return NVME_INVALID_FIELD | NVME_DNR;
4408 }
4409
4410 if (nsid != 0xffffffff) {
4411 ns = nvme_ns(n, nsid);
4412 if (!ns) {
4413 return NVME_INVALID_NSID | NVME_DNR;
4414 }
4415 nvme_set_blk_stats(ns, &stats);
4416 } else {
4417 int i;
4418
4419 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4420 ns = nvme_ns(n, i);
4421 if (!ns) {
4422 continue;
4423 }
4424 nvme_set_blk_stats(ns, &stats);
4425 }
4426 }
4427
4428 trans_len = MIN(sizeof(smart) - off, buf_len);
4429 smart.critical_warning = n->smart_critical_warning;
4430
4431 u_read = DIV_ROUND_UP(stats.units_read >> BDRV_SECTOR_BITS, 1000);
4432 u_written = DIV_ROUND_UP(stats.units_written >> BDRV_SECTOR_BITS, 1000);
4433
4434 smart.data_units_read[0] = cpu_to_le64(u_read);
4435 smart.data_units_written[0] = cpu_to_le64(u_written);
4436 smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4437 smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4438
4439 smart.temperature = cpu_to_le16(n->temperature);
4440
4441 if ((n->temperature >= n->features.temp_thresh_hi) ||
4442 (n->temperature <= n->features.temp_thresh_low)) {
4443 smart.critical_warning |= NVME_SMART_TEMPERATURE;
4444 }
4445
4446 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4447 smart.power_on_hours[0] =
4448 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4449
4450 if (!rae) {
4451 nvme_clear_events(n, NVME_AER_TYPE_SMART);
4452 }
4453
4454 return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4455 }
4456
4457 static uint16_t nvme_endgrp_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4458 uint64_t off, NvmeRequest *req)
4459 {
4460 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
4461 uint16_t endgrpid = (dw11 >> 16) & 0xffff;
4462 struct nvme_stats stats = {};
4463 NvmeEndGrpLog info = {};
4464 int i;
4465
4466 if (!n->subsys || endgrpid != 0x1) {
4467 return NVME_INVALID_FIELD | NVME_DNR;
4468 }
4469
4470 if (off >= sizeof(info)) {
4471 return NVME_INVALID_FIELD | NVME_DNR;
4472 }
4473
4474 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4475 NvmeNamespace *ns = nvme_subsys_ns(n->subsys, i);
4476 if (!ns) {
4477 continue;
4478 }
4479
4480 nvme_set_blk_stats(ns, &stats);
4481 }
4482
4483 info.data_units_read[0] =
4484 cpu_to_le64(DIV_ROUND_UP(stats.units_read / 1000000000, 1000000000));
4485 info.data_units_written[0] =
4486 cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000));
4487 info.media_units_written[0] =
4488 cpu_to_le64(DIV_ROUND_UP(stats.units_written / 1000000000, 1000000000));
4489
4490 info.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4491 info.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4492
4493 buf_len = MIN(sizeof(info) - off, buf_len);
4494
4495 return nvme_c2h(n, (uint8_t *)&info + off, buf_len, req);
4496 }
4497
4498
4499 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
4500 NvmeRequest *req)
4501 {
4502 uint32_t trans_len;
4503 NvmeFwSlotInfoLog fw_log = {
4504 .afi = 0x1,
4505 };
4506
4507 if (off >= sizeof(fw_log)) {
4508 return NVME_INVALID_FIELD | NVME_DNR;
4509 }
4510
4511 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
4512 trans_len = MIN(sizeof(fw_log) - off, buf_len);
4513
4514 return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
4515 }
4516
4517 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4518 uint64_t off, NvmeRequest *req)
4519 {
4520 uint32_t trans_len;
4521 NvmeErrorLog errlog;
4522
4523 if (off >= sizeof(errlog)) {
4524 return NVME_INVALID_FIELD | NVME_DNR;
4525 }
4526
4527 if (!rae) {
4528 nvme_clear_events(n, NVME_AER_TYPE_ERROR);
4529 }
4530
4531 memset(&errlog, 0x0, sizeof(errlog));
4532 trans_len = MIN(sizeof(errlog) - off, buf_len);
4533
4534 return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
4535 }
4536
4537 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4538 uint64_t off, NvmeRequest *req)
4539 {
4540 uint32_t nslist[1024];
4541 uint32_t trans_len;
4542 int i = 0;
4543 uint32_t nsid;
4544
4545 if (off >= sizeof(nslist)) {
4546 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
4547 return NVME_INVALID_FIELD | NVME_DNR;
4548 }
4549
4550 memset(nslist, 0x0, sizeof(nslist));
4551 trans_len = MIN(sizeof(nslist) - off, buf_len);
4552
4553 while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
4554 NVME_CHANGED_NSID_SIZE) {
4555 /*
4556 * If more than 1024 namespaces, the first entry in the log page should
4557 * be set to FFFFFFFFh and the others to 0 as spec.
4558 */
4559 if (i == ARRAY_SIZE(nslist)) {
4560 memset(nslist, 0x0, sizeof(nslist));
4561 nslist[0] = 0xffffffff;
4562 break;
4563 }
4564
4565 nslist[i++] = nsid;
4566 clear_bit(nsid, n->changed_nsids);
4567 }
4568
4569 /*
4570 * Remove all the remaining list entries in case returns directly due to
4571 * more than 1024 namespaces.
4572 */
4573 if (nslist[0] == 0xffffffff) {
4574 bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
4575 }
4576
4577 if (!rae) {
4578 nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
4579 }
4580
4581 return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
4582 }
4583
4584 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
4585 uint64_t off, NvmeRequest *req)
4586 {
4587 NvmeEffectsLog log = {};
4588 const uint32_t *src_iocs = NULL;
4589 uint32_t trans_len;
4590
4591 if (off >= sizeof(log)) {
4592 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
4593 return NVME_INVALID_FIELD | NVME_DNR;
4594 }
4595
4596 switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
4597 case NVME_CC_CSS_NVM:
4598 src_iocs = nvme_cse_iocs_nvm;
4599 /* fall through */
4600 case NVME_CC_CSS_ADMIN_ONLY:
4601 break;
4602 case NVME_CC_CSS_CSI:
4603 switch (csi) {
4604 case NVME_CSI_NVM:
4605 src_iocs = nvme_cse_iocs_nvm;
4606 break;
4607 case NVME_CSI_ZONED:
4608 src_iocs = nvme_cse_iocs_zoned;
4609 break;
4610 }
4611 }
4612
4613 memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4614
4615 if (src_iocs) {
4616 memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4617 }
4618
4619 trans_len = MIN(sizeof(log) - off, buf_len);
4620
4621 return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4622 }
4623
4624 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
4625 {
4626 NvmeCmd *cmd = &req->cmd;
4627
4628 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4629 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4630 uint32_t dw12 = le32_to_cpu(cmd->cdw12);
4631 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4632 uint8_t lid = dw10 & 0xff;
4633 uint8_t lsp = (dw10 >> 8) & 0xf;
4634 uint8_t rae = (dw10 >> 15) & 0x1;
4635 uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24;
4636 uint32_t numdl, numdu;
4637 uint64_t off, lpol, lpou;
4638 size_t len;
4639 uint16_t status;
4640
4641 numdl = (dw10 >> 16);
4642 numdu = (dw11 & 0xffff);
4643 lpol = dw12;
4644 lpou = dw13;
4645
4646 len = (((numdu << 16) | numdl) + 1) << 2;
4647 off = (lpou << 32ULL) | lpol;
4648
4649 if (off & 0x3) {
4650 return NVME_INVALID_FIELD | NVME_DNR;
4651 }
4652
4653 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
4654
4655 status = nvme_check_mdts(n, len);
4656 if (status) {
4657 return status;
4658 }
4659
4660 switch (lid) {
4661 case NVME_LOG_ERROR_INFO:
4662 return nvme_error_info(n, rae, len, off, req);
4663 case NVME_LOG_SMART_INFO:
4664 return nvme_smart_info(n, rae, len, off, req);
4665 case NVME_LOG_FW_SLOT_INFO:
4666 return nvme_fw_log_info(n, len, off, req);
4667 case NVME_LOG_CHANGED_NSLIST:
4668 return nvme_changed_nslist(n, rae, len, off, req);
4669 case NVME_LOG_CMD_EFFECTS:
4670 return nvme_cmd_effects(n, csi, len, off, req);
4671 case NVME_LOG_ENDGRP:
4672 return nvme_endgrp_info(n, rae, len, off, req);
4673 default:
4674 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
4675 return NVME_INVALID_FIELD | NVME_DNR;
4676 }
4677 }
4678
4679 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
4680 {
4681 PCIDevice *pci = PCI_DEVICE(n);
4682 uint16_t offset = (cq->cqid << 3) + (1 << 2);
4683
4684 n->cq[cq->cqid] = NULL;
4685 qemu_bh_delete(cq->bh);
4686 if (cq->ioeventfd_enabled) {
4687 memory_region_del_eventfd(&n->iomem,
4688 0x1000 + offset, 4, false, 0, &cq->notifier);
4689 event_notifier_set_handler(&cq->notifier, NULL);
4690 event_notifier_cleanup(&cq->notifier);
4691 }
4692 if (msix_enabled(pci)) {
4693 msix_vector_unuse(pci, cq->vector);
4694 }
4695 if (cq->cqid) {
4696 g_free(cq);
4697 }
4698 }
4699
4700 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
4701 {
4702 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4703 NvmeCQueue *cq;
4704 uint16_t qid = le16_to_cpu(c->qid);
4705
4706 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
4707 trace_pci_nvme_err_invalid_del_cq_cqid(qid);
4708 return NVME_INVALID_CQID | NVME_DNR;
4709 }
4710
4711 cq = n->cq[qid];
4712 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
4713 trace_pci_nvme_err_invalid_del_cq_notempty(qid);
4714 return NVME_INVALID_QUEUE_DEL;
4715 }
4716
4717 if (cq->irq_enabled && cq->tail != cq->head) {
4718 n->cq_pending--;
4719 }
4720
4721 nvme_irq_deassert(n, cq);
4722 trace_pci_nvme_del_cq(qid);
4723 nvme_free_cq(cq, n);
4724 return NVME_SUCCESS;
4725 }
4726
4727 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
4728 uint16_t cqid, uint16_t vector, uint16_t size,
4729 uint16_t irq_enabled)
4730 {
4731 PCIDevice *pci = PCI_DEVICE(n);
4732
4733 if (msix_enabled(pci)) {
4734 msix_vector_use(pci, vector);
4735 }
4736 cq->ctrl = n;
4737 cq->cqid = cqid;
4738 cq->size = size;
4739 cq->dma_addr = dma_addr;
4740 cq->phase = 1;
4741 cq->irq_enabled = irq_enabled;
4742 cq->vector = vector;
4743 cq->head = cq->tail = 0;
4744 QTAILQ_INIT(&cq->req_list);
4745 QTAILQ_INIT(&cq->sq_list);
4746 if (n->dbbuf_enabled) {
4747 cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2);
4748 cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2);
4749
4750 if (n->params.ioeventfd && cqid != 0) {
4751 if (!nvme_init_cq_ioeventfd(cq)) {
4752 cq->ioeventfd_enabled = true;
4753 }
4754 }
4755 }
4756 n->cq[cqid] = cq;
4757 cq->bh = qemu_bh_new(nvme_post_cqes, cq);
4758 }
4759
4760 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
4761 {
4762 NvmeCQueue *cq;
4763 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
4764 uint16_t cqid = le16_to_cpu(c->cqid);
4765 uint16_t vector = le16_to_cpu(c->irq_vector);
4766 uint16_t qsize = le16_to_cpu(c->qsize);
4767 uint16_t qflags = le16_to_cpu(c->cq_flags);
4768 uint64_t prp1 = le64_to_cpu(c->prp1);
4769
4770 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
4771 NVME_CQ_FLAGS_IEN(qflags) != 0);
4772
4773 if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) {
4774 trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
4775 return NVME_INVALID_QID | NVME_DNR;
4776 }
4777 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4778 trace_pci_nvme_err_invalid_create_cq_size(qsize);
4779 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4780 }
4781 if (unlikely(prp1 & (n->page_size - 1))) {
4782 trace_pci_nvme_err_invalid_create_cq_addr(prp1);
4783 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4784 }
4785 if (unlikely(!msix_enabled(PCI_DEVICE(n)) && vector)) {
4786 trace_pci_nvme_err_invalid_create_cq_vector(vector);
4787 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4788 }
4789 if (unlikely(vector >= n->conf_msix_qsize)) {
4790 trace_pci_nvme_err_invalid_create_cq_vector(vector);
4791 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4792 }
4793 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
4794 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
4795 return NVME_INVALID_FIELD | NVME_DNR;
4796 }
4797
4798 cq = g_malloc0(sizeof(*cq));
4799 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
4800 NVME_CQ_FLAGS_IEN(qflags));
4801
4802 /*
4803 * It is only required to set qs_created when creating a completion queue;
4804 * creating a submission queue without a matching completion queue will
4805 * fail.
4806 */
4807 n->qs_created = true;
4808 return NVME_SUCCESS;
4809 }
4810
4811 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
4812 {
4813 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4814
4815 return nvme_c2h(n, id, sizeof(id), req);
4816 }
4817
4818 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
4819 {
4820 trace_pci_nvme_identify_ctrl();
4821
4822 return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
4823 }
4824
4825 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
4826 {
4827 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4828 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4829 NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
4830
4831 trace_pci_nvme_identify_ctrl_csi(c->csi);
4832
4833 switch (c->csi) {
4834 case NVME_CSI_NVM:
4835 id_nvm->vsl = n->params.vsl;
4836 id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
4837 break;
4838
4839 case NVME_CSI_ZONED:
4840 ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
4841 break;
4842
4843 default:
4844 return NVME_INVALID_FIELD | NVME_DNR;
4845 }
4846
4847 return nvme_c2h(n, id, sizeof(id), req);
4848 }
4849
4850 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
4851 {
4852 NvmeNamespace *ns;
4853 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4854 uint32_t nsid = le32_to_cpu(c->nsid);
4855
4856 trace_pci_nvme_identify_ns(nsid);
4857
4858 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4859 return NVME_INVALID_NSID | NVME_DNR;
4860 }
4861
4862 ns = nvme_ns(n, nsid);
4863 if (unlikely(!ns)) {
4864 if (!active) {
4865 ns = nvme_subsys_ns(n->subsys, nsid);
4866 if (!ns) {
4867 return nvme_rpt_empty_id_struct(n, req);
4868 }
4869 } else {
4870 return nvme_rpt_empty_id_struct(n, req);
4871 }
4872 }
4873
4874 if (active || ns->csi == NVME_CSI_NVM) {
4875 return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
4876 }
4877
4878 return NVME_INVALID_CMD_SET | NVME_DNR;
4879 }
4880
4881 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
4882 bool attached)
4883 {
4884 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4885 uint32_t nsid = le32_to_cpu(c->nsid);
4886 uint16_t min_id = le16_to_cpu(c->ctrlid);
4887 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
4888 uint16_t *ids = &list[1];
4889 NvmeNamespace *ns;
4890 NvmeCtrl *ctrl;
4891 int cntlid, nr_ids = 0;
4892
4893 trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
4894
4895 if (!n->subsys) {
4896 return NVME_INVALID_FIELD | NVME_DNR;
4897 }
4898
4899 if (attached) {
4900 if (nsid == NVME_NSID_BROADCAST) {
4901 return NVME_INVALID_FIELD | NVME_DNR;
4902 }
4903
4904 ns = nvme_subsys_ns(n->subsys, nsid);
4905 if (!ns) {
4906 return NVME_INVALID_FIELD | NVME_DNR;
4907 }
4908 }
4909
4910 for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
4911 ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
4912 if (!ctrl) {
4913 continue;
4914 }
4915
4916 if (attached && !nvme_ns(ctrl, nsid)) {
4917 continue;
4918 }
4919
4920 ids[nr_ids++] = cntlid;
4921 }
4922
4923 list[0] = nr_ids;
4924
4925 return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
4926 }
4927
4928 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req)
4929 {
4930 trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid));
4931
4932 return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap,
4933 sizeof(NvmePriCtrlCap), req);
4934 }
4935
4936 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req)
4937 {
4938 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4939 uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid);
4940 uint16_t min_id = le16_to_cpu(c->ctrlid);
4941 uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl;
4942 NvmeSecCtrlList list = {0};
4943 uint8_t i;
4944
4945 for (i = 0; i < num_sec_ctrl; i++) {
4946 if (n->sec_ctrl_list.sec[i].scid >= min_id) {
4947 list.numcntl = num_sec_ctrl - i;
4948 memcpy(&list.sec, n->sec_ctrl_list.sec + i,
4949 list.numcntl * sizeof(NvmeSecCtrlEntry));
4950 break;
4951 }
4952 }
4953
4954 trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl);
4955
4956 return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req);
4957 }
4958
4959 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
4960 bool active)
4961 {
4962 NvmeNamespace *ns;
4963 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4964 uint32_t nsid = le32_to_cpu(c->nsid);
4965
4966 trace_pci_nvme_identify_ns_csi(nsid, c->csi);
4967
4968 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4969 return NVME_INVALID_NSID | NVME_DNR;
4970 }
4971
4972 ns = nvme_ns(n, nsid);
4973 if (unlikely(!ns)) {
4974 if (!active) {
4975 ns = nvme_subsys_ns(n->subsys, nsid);
4976 if (!ns) {
4977 return nvme_rpt_empty_id_struct(n, req);
4978 }
4979 } else {
4980 return nvme_rpt_empty_id_struct(n, req);
4981 }
4982 }
4983
4984 if (c->csi == NVME_CSI_NVM) {
4985 return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
4986 req);
4987 } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
4988 return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
4989 req);
4990 }
4991
4992 return NVME_INVALID_FIELD | NVME_DNR;
4993 }
4994
4995 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
4996 bool active)
4997 {
4998 NvmeNamespace *ns;
4999 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5000 uint32_t min_nsid = le32_to_cpu(c->nsid);
5001 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5002 static const int data_len = sizeof(list);
5003 uint32_t *list_ptr = (uint32_t *)list;
5004 int i, j = 0;
5005
5006 trace_pci_nvme_identify_nslist(min_nsid);
5007
5008 /*
5009 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
5010 * since the Active Namespace ID List should return namespaces with ids
5011 * *higher* than the NSID specified in the command. This is also specified
5012 * in the spec (NVM Express v1.3d, Section 5.15.4).
5013 */
5014 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5015 return NVME_INVALID_NSID | NVME_DNR;
5016 }
5017
5018 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5019 ns = nvme_ns(n, i);
5020 if (!ns) {
5021 if (!active) {
5022 ns = nvme_subsys_ns(n->subsys, i);
5023 if (!ns) {
5024 continue;
5025 }
5026 } else {
5027 continue;
5028 }
5029 }
5030 if (ns->params.nsid <= min_nsid) {
5031 continue;
5032 }
5033 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5034 if (j == data_len / sizeof(uint32_t)) {
5035 break;
5036 }
5037 }
5038
5039 return nvme_c2h(n, list, data_len, req);
5040 }
5041
5042 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
5043 bool active)
5044 {
5045 NvmeNamespace *ns;
5046 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5047 uint32_t min_nsid = le32_to_cpu(c->nsid);
5048 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5049 static const int data_len = sizeof(list);
5050 uint32_t *list_ptr = (uint32_t *)list;
5051 int i, j = 0;
5052
5053 trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
5054
5055 /*
5056 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
5057 */
5058 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
5059 return NVME_INVALID_NSID | NVME_DNR;
5060 }
5061
5062 if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
5063 return NVME_INVALID_FIELD | NVME_DNR;
5064 }
5065
5066 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5067 ns = nvme_ns(n, i);
5068 if (!ns) {
5069 if (!active) {
5070 ns = nvme_subsys_ns(n->subsys, i);
5071 if (!ns) {
5072 continue;
5073 }
5074 } else {
5075 continue;
5076 }
5077 }
5078 if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
5079 continue;
5080 }
5081 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
5082 if (j == data_len / sizeof(uint32_t)) {
5083 break;
5084 }
5085 }
5086
5087 return nvme_c2h(n, list, data_len, req);
5088 }
5089
5090 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
5091 {
5092 NvmeNamespace *ns;
5093 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5094 uint32_t nsid = le32_to_cpu(c->nsid);
5095 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5096 uint8_t *pos = list;
5097 struct {
5098 NvmeIdNsDescr hdr;
5099 uint8_t v[NVME_NIDL_UUID];
5100 } QEMU_PACKED uuid = {};
5101 struct {
5102 NvmeIdNsDescr hdr;
5103 uint64_t v;
5104 } QEMU_PACKED eui64 = {};
5105 struct {
5106 NvmeIdNsDescr hdr;
5107 uint8_t v;
5108 } QEMU_PACKED csi = {};
5109
5110 trace_pci_nvme_identify_ns_descr_list(nsid);
5111
5112 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5113 return NVME_INVALID_NSID | NVME_DNR;
5114 }
5115
5116 ns = nvme_ns(n, nsid);
5117 if (unlikely(!ns)) {
5118 return NVME_INVALID_FIELD | NVME_DNR;
5119 }
5120
5121 if (!qemu_uuid_is_null(&ns->params.uuid)) {
5122 uuid.hdr.nidt = NVME_NIDT_UUID;
5123 uuid.hdr.nidl = NVME_NIDL_UUID;
5124 memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
5125 memcpy(pos, &uuid, sizeof(uuid));
5126 pos += sizeof(uuid);
5127 }
5128
5129 if (ns->params.eui64) {
5130 eui64.hdr.nidt = NVME_NIDT_EUI64;
5131 eui64.hdr.nidl = NVME_NIDL_EUI64;
5132 eui64.v = cpu_to_be64(ns->params.eui64);
5133 memcpy(pos, &eui64, sizeof(eui64));
5134 pos += sizeof(eui64);
5135 }
5136
5137 csi.hdr.nidt = NVME_NIDT_CSI;
5138 csi.hdr.nidl = NVME_NIDL_CSI;
5139 csi.v = ns->csi;
5140 memcpy(pos, &csi, sizeof(csi));
5141 pos += sizeof(csi);
5142
5143 return nvme_c2h(n, list, sizeof(list), req);
5144 }
5145
5146 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
5147 {
5148 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5149 static const int data_len = sizeof(list);
5150
5151 trace_pci_nvme_identify_cmd_set();
5152
5153 NVME_SET_CSI(*list, NVME_CSI_NVM);
5154 NVME_SET_CSI(*list, NVME_CSI_ZONED);
5155
5156 return nvme_c2h(n, list, data_len, req);
5157 }
5158
5159 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
5160 {
5161 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5162
5163 trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
5164 c->csi);
5165
5166 switch (c->cns) {
5167 case NVME_ID_CNS_NS:
5168 return nvme_identify_ns(n, req, true);
5169 case NVME_ID_CNS_NS_PRESENT:
5170 return nvme_identify_ns(n, req, false);
5171 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
5172 return nvme_identify_ctrl_list(n, req, true);
5173 case NVME_ID_CNS_CTRL_LIST:
5174 return nvme_identify_ctrl_list(n, req, false);
5175 case NVME_ID_CNS_PRIMARY_CTRL_CAP:
5176 return nvme_identify_pri_ctrl_cap(n, req);
5177 case NVME_ID_CNS_SECONDARY_CTRL_LIST:
5178 return nvme_identify_sec_ctrl_list(n, req);
5179 case NVME_ID_CNS_CS_NS:
5180 return nvme_identify_ns_csi(n, req, true);
5181 case NVME_ID_CNS_CS_NS_PRESENT:
5182 return nvme_identify_ns_csi(n, req, false);
5183 case NVME_ID_CNS_CTRL:
5184 return nvme_identify_ctrl(n, req);
5185 case NVME_ID_CNS_CS_CTRL:
5186 return nvme_identify_ctrl_csi(n, req);
5187 case NVME_ID_CNS_NS_ACTIVE_LIST:
5188 return nvme_identify_nslist(n, req, true);
5189 case NVME_ID_CNS_NS_PRESENT_LIST:
5190 return nvme_identify_nslist(n, req, false);
5191 case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
5192 return nvme_identify_nslist_csi(n, req, true);
5193 case NVME_ID_CNS_CS_NS_PRESENT_LIST:
5194 return nvme_identify_nslist_csi(n, req, false);
5195 case NVME_ID_CNS_NS_DESCR_LIST:
5196 return nvme_identify_ns_descr_list(n, req);
5197 case NVME_ID_CNS_IO_COMMAND_SET:
5198 return nvme_identify_cmd_set(n, req);
5199 default:
5200 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
5201 return NVME_INVALID_FIELD | NVME_DNR;
5202 }
5203 }
5204
5205 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
5206 {
5207 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
5208
5209 req->cqe.result = 1;
5210 if (nvme_check_sqid(n, sqid)) {
5211 return NVME_INVALID_FIELD | NVME_DNR;
5212 }
5213
5214 return NVME_SUCCESS;
5215 }
5216
5217 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
5218 {
5219 trace_pci_nvme_setfeat_timestamp(ts);
5220
5221 n->host_timestamp = le64_to_cpu(ts);
5222 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5223 }
5224
5225 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
5226 {
5227 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5228 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
5229
5230 union nvme_timestamp {
5231 struct {
5232 uint64_t timestamp:48;
5233 uint64_t sync:1;
5234 uint64_t origin:3;
5235 uint64_t rsvd1:12;
5236 };
5237 uint64_t all;
5238 };
5239
5240 union nvme_timestamp ts;
5241 ts.all = 0;
5242 ts.timestamp = n->host_timestamp + elapsed_time;
5243
5244 /* If the host timestamp is non-zero, set the timestamp origin */
5245 ts.origin = n->host_timestamp ? 0x01 : 0x00;
5246
5247 trace_pci_nvme_getfeat_timestamp(ts.all);
5248
5249 return cpu_to_le64(ts.all);
5250 }
5251
5252 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5253 {
5254 uint64_t timestamp = nvme_get_timestamp(n);
5255
5256 return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5257 }
5258
5259 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
5260 {
5261 NvmeCmd *cmd = &req->cmd;
5262 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5263 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5264 uint32_t nsid = le32_to_cpu(cmd->nsid);
5265 uint32_t result;
5266 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5267 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
5268 uint16_t iv;
5269 NvmeNamespace *ns;
5270 int i;
5271
5272 static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
5273 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
5274 };
5275
5276 trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
5277
5278 if (!nvme_feature_support[fid]) {
5279 return NVME_INVALID_FIELD | NVME_DNR;
5280 }
5281
5282 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5283 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5284 /*
5285 * The Reservation Notification Mask and Reservation Persistence
5286 * features require a status code of Invalid Field in Command when
5287 * NSID is FFFFFFFFh. Since the device does not support those
5288 * features we can always return Invalid Namespace or Format as we
5289 * should do for all other features.
5290 */
5291 return NVME_INVALID_NSID | NVME_DNR;
5292 }
5293
5294 if (!nvme_ns(n, nsid)) {
5295 return NVME_INVALID_FIELD | NVME_DNR;
5296 }
5297 }
5298
5299 switch (sel) {
5300 case NVME_GETFEAT_SELECT_CURRENT:
5301 break;
5302 case NVME_GETFEAT_SELECT_SAVED:
5303 /* no features are saveable by the controller; fallthrough */
5304 case NVME_GETFEAT_SELECT_DEFAULT:
5305 goto defaults;
5306 case NVME_GETFEAT_SELECT_CAP:
5307 result = nvme_feature_cap[fid];
5308 goto out;
5309 }
5310
5311 switch (fid) {
5312 case NVME_TEMPERATURE_THRESHOLD:
5313 result = 0;
5314
5315 /*
5316 * The controller only implements the Composite Temperature sensor, so
5317 * return 0 for all other sensors.
5318 */
5319 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5320 goto out;
5321 }
5322
5323 switch (NVME_TEMP_THSEL(dw11)) {
5324 case NVME_TEMP_THSEL_OVER:
5325 result = n->features.temp_thresh_hi;
5326 goto out;
5327 case NVME_TEMP_THSEL_UNDER:
5328 result = n->features.temp_thresh_low;
5329 goto out;
5330 }
5331
5332 return NVME_INVALID_FIELD | NVME_DNR;
5333 case NVME_ERROR_RECOVERY:
5334 if (!nvme_nsid_valid(n, nsid)) {
5335 return NVME_INVALID_NSID | NVME_DNR;
5336 }
5337
5338 ns = nvme_ns(n, nsid);
5339 if (unlikely(!ns)) {
5340 return NVME_INVALID_FIELD | NVME_DNR;
5341 }
5342
5343 result = ns->features.err_rec;
5344 goto out;
5345 case NVME_VOLATILE_WRITE_CACHE:
5346 result = 0;
5347 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5348 ns = nvme_ns(n, i);
5349 if (!ns) {
5350 continue;
5351 }
5352
5353 result = blk_enable_write_cache(ns->blkconf.blk);
5354 if (result) {
5355 break;
5356 }
5357 }
5358 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
5359 goto out;
5360 case NVME_ASYNCHRONOUS_EVENT_CONF:
5361 result = n->features.async_config;
5362 goto out;
5363 case NVME_TIMESTAMP:
5364 return nvme_get_feature_timestamp(n, req);
5365 case NVME_HOST_BEHAVIOR_SUPPORT:
5366 return nvme_c2h(n, (uint8_t *)&n->features.hbs,
5367 sizeof(n->features.hbs), req);
5368 default:
5369 break;
5370 }
5371
5372 defaults:
5373 switch (fid) {
5374 case NVME_TEMPERATURE_THRESHOLD:
5375 result = 0;
5376
5377 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5378 break;
5379 }
5380
5381 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
5382 result = NVME_TEMPERATURE_WARNING;
5383 }
5384
5385 break;
5386 case NVME_NUMBER_OF_QUEUES:
5387 result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16);
5388 trace_pci_nvme_getfeat_numq(result);
5389 break;
5390 case NVME_INTERRUPT_VECTOR_CONF:
5391 iv = dw11 & 0xffff;
5392 if (iv >= n->conf_ioqpairs + 1) {
5393 return NVME_INVALID_FIELD | NVME_DNR;
5394 }
5395
5396 result = iv;
5397 if (iv == n->admin_cq.vector) {
5398 result |= NVME_INTVC_NOCOALESCING;
5399 }
5400 break;
5401 default:
5402 result = nvme_feature_default[fid];
5403 break;
5404 }
5405
5406 out:
5407 req->cqe.result = cpu_to_le32(result);
5408 return NVME_SUCCESS;
5409 }
5410
5411 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5412 {
5413 uint16_t ret;
5414 uint64_t timestamp;
5415
5416 ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5417 if (ret) {
5418 return ret;
5419 }
5420
5421 nvme_set_timestamp(n, timestamp);
5422
5423 return NVME_SUCCESS;
5424 }
5425
5426 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
5427 {
5428 NvmeNamespace *ns = NULL;
5429
5430 NvmeCmd *cmd = &req->cmd;
5431 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5432 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5433 uint32_t nsid = le32_to_cpu(cmd->nsid);
5434 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5435 uint8_t save = NVME_SETFEAT_SAVE(dw10);
5436 uint16_t status;
5437 int i;
5438
5439 trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
5440
5441 if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
5442 return NVME_FID_NOT_SAVEABLE | NVME_DNR;
5443 }
5444
5445 if (!nvme_feature_support[fid]) {
5446 return NVME_INVALID_FIELD | NVME_DNR;
5447 }
5448
5449 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5450 if (nsid != NVME_NSID_BROADCAST) {
5451 if (!nvme_nsid_valid(n, nsid)) {
5452 return NVME_INVALID_NSID | NVME_DNR;
5453 }
5454
5455 ns = nvme_ns(n, nsid);
5456 if (unlikely(!ns)) {
5457 return NVME_INVALID_FIELD | NVME_DNR;
5458 }
5459 }
5460 } else if (nsid && nsid != NVME_NSID_BROADCAST) {
5461 if (!nvme_nsid_valid(n, nsid)) {
5462 return NVME_INVALID_NSID | NVME_DNR;
5463 }
5464
5465 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
5466 }
5467
5468 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
5469 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5470 }
5471
5472 switch (fid) {
5473 case NVME_TEMPERATURE_THRESHOLD:
5474 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5475 break;
5476 }
5477
5478 switch (NVME_TEMP_THSEL(dw11)) {
5479 case NVME_TEMP_THSEL_OVER:
5480 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
5481 break;
5482 case NVME_TEMP_THSEL_UNDER:
5483 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
5484 break;
5485 default:
5486 return NVME_INVALID_FIELD | NVME_DNR;
5487 }
5488
5489 if ((n->temperature >= n->features.temp_thresh_hi) ||
5490 (n->temperature <= n->features.temp_thresh_low)) {
5491 nvme_smart_event(n, NVME_SMART_TEMPERATURE);
5492 }
5493
5494 break;
5495 case NVME_ERROR_RECOVERY:
5496 if (nsid == NVME_NSID_BROADCAST) {
5497 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5498 ns = nvme_ns(n, i);
5499
5500 if (!ns) {
5501 continue;
5502 }
5503
5504 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
5505 ns->features.err_rec = dw11;
5506 }
5507 }
5508
5509 break;
5510 }
5511
5512 assert(ns);
5513 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
5514 ns->features.err_rec = dw11;
5515 }
5516 break;
5517 case NVME_VOLATILE_WRITE_CACHE:
5518 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5519 ns = nvme_ns(n, i);
5520 if (!ns) {
5521 continue;
5522 }
5523
5524 if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
5525 blk_flush(ns->blkconf.blk);
5526 }
5527
5528 blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
5529 }
5530
5531 break;
5532
5533 case NVME_NUMBER_OF_QUEUES:
5534 if (n->qs_created) {
5535 return NVME_CMD_SEQ_ERROR | NVME_DNR;
5536 }
5537
5538 /*
5539 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
5540 * and NSQR.
5541 */
5542 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
5543 return NVME_INVALID_FIELD | NVME_DNR;
5544 }
5545
5546 trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
5547 ((dw11 >> 16) & 0xffff) + 1,
5548 n->conf_ioqpairs,
5549 n->conf_ioqpairs);
5550 req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) |
5551 ((n->conf_ioqpairs - 1) << 16));
5552 break;
5553 case NVME_ASYNCHRONOUS_EVENT_CONF:
5554 n->features.async_config = dw11;
5555 break;
5556 case NVME_TIMESTAMP:
5557 return nvme_set_feature_timestamp(n, req);
5558 case NVME_HOST_BEHAVIOR_SUPPORT:
5559 status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
5560 sizeof(n->features.hbs), req);
5561 if (status) {
5562 return status;
5563 }
5564
5565 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5566 ns = nvme_ns(n, i);
5567
5568 if (!ns) {
5569 continue;
5570 }
5571
5572 ns->id_ns.nlbaf = ns->nlbaf - 1;
5573 if (!n->features.hbs.lbafee) {
5574 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
5575 }
5576 }
5577
5578 return status;
5579 case NVME_COMMAND_SET_PROFILE:
5580 if (dw11 & 0x1ff) {
5581 trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
5582 return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
5583 }
5584 break;
5585 default:
5586 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5587 }
5588 return NVME_SUCCESS;
5589 }
5590
5591 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
5592 {
5593 trace_pci_nvme_aer(nvme_cid(req));
5594
5595 if (n->outstanding_aers > n->params.aerl) {
5596 trace_pci_nvme_aer_aerl_exceeded();
5597 return NVME_AER_LIMIT_EXCEEDED;
5598 }
5599
5600 n->aer_reqs[n->outstanding_aers] = req;
5601 n->outstanding_aers++;
5602
5603 if (!QTAILQ_EMPTY(&n->aer_queue)) {
5604 nvme_process_aers(n);
5605 }
5606
5607 return NVME_NO_COMPLETE;
5608 }
5609
5610 static void nvme_update_dmrsl(NvmeCtrl *n)
5611 {
5612 int nsid;
5613
5614 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
5615 NvmeNamespace *ns = nvme_ns(n, nsid);
5616 if (!ns) {
5617 continue;
5618 }
5619
5620 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
5621 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
5622 }
5623 }
5624
5625 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
5626 {
5627 uint32_t cc = ldl_le_p(&n->bar.cc);
5628
5629 ns->iocs = nvme_cse_iocs_none;
5630 switch (ns->csi) {
5631 case NVME_CSI_NVM:
5632 if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
5633 ns->iocs = nvme_cse_iocs_nvm;
5634 }
5635 break;
5636 case NVME_CSI_ZONED:
5637 if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
5638 ns->iocs = nvme_cse_iocs_zoned;
5639 } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
5640 ns->iocs = nvme_cse_iocs_nvm;
5641 }
5642 break;
5643 }
5644 }
5645
5646 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
5647 {
5648 NvmeNamespace *ns;
5649 NvmeCtrl *ctrl;
5650 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5651 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5652 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5653 uint8_t sel = dw10 & 0xf;
5654 uint16_t *nr_ids = &list[0];
5655 uint16_t *ids = &list[1];
5656 uint16_t ret;
5657 int i;
5658
5659 trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
5660
5661 if (!nvme_nsid_valid(n, nsid)) {
5662 return NVME_INVALID_NSID | NVME_DNR;
5663 }
5664
5665 ns = nvme_subsys_ns(n->subsys, nsid);
5666 if (!ns) {
5667 return NVME_INVALID_FIELD | NVME_DNR;
5668 }
5669
5670 ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
5671 if (ret) {
5672 return ret;
5673 }
5674
5675 if (!*nr_ids) {
5676 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5677 }
5678
5679 *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
5680 for (i = 0; i < *nr_ids; i++) {
5681 ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
5682 if (!ctrl) {
5683 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5684 }
5685
5686 switch (sel) {
5687 case NVME_NS_ATTACHMENT_ATTACH:
5688 if (nvme_ns(ctrl, nsid)) {
5689 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
5690 }
5691
5692 if (ns->attached && !ns->params.shared) {
5693 return NVME_NS_PRIVATE | NVME_DNR;
5694 }
5695
5696 nvme_attach_ns(ctrl, ns);
5697 nvme_select_iocs_ns(ctrl, ns);
5698
5699 break;
5700
5701 case NVME_NS_ATTACHMENT_DETACH:
5702 if (!nvme_ns(ctrl, nsid)) {
5703 return NVME_NS_NOT_ATTACHED | NVME_DNR;
5704 }
5705
5706 ctrl->namespaces[nsid] = NULL;
5707 ns->attached--;
5708
5709 nvme_update_dmrsl(ctrl);
5710
5711 break;
5712
5713 default:
5714 return NVME_INVALID_FIELD | NVME_DNR;
5715 }
5716
5717 /*
5718 * Add namespace id to the changed namespace id list for event clearing
5719 * via Get Log Page command.
5720 */
5721 if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
5722 nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
5723 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
5724 NVME_LOG_CHANGED_NSLIST);
5725 }
5726 }
5727
5728 return NVME_SUCCESS;
5729 }
5730
5731 typedef struct NvmeFormatAIOCB {
5732 BlockAIOCB common;
5733 BlockAIOCB *aiocb;
5734 NvmeRequest *req;
5735 int ret;
5736
5737 NvmeNamespace *ns;
5738 uint32_t nsid;
5739 bool broadcast;
5740 int64_t offset;
5741
5742 uint8_t lbaf;
5743 uint8_t mset;
5744 uint8_t pi;
5745 uint8_t pil;
5746 } NvmeFormatAIOCB;
5747
5748 static void nvme_format_cancel(BlockAIOCB *aiocb)
5749 {
5750 NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
5751
5752 iocb->ret = -ECANCELED;
5753
5754 if (iocb->aiocb) {
5755 blk_aio_cancel_async(iocb->aiocb);
5756 iocb->aiocb = NULL;
5757 }
5758 }
5759
5760 static const AIOCBInfo nvme_format_aiocb_info = {
5761 .aiocb_size = sizeof(NvmeFormatAIOCB),
5762 .cancel_async = nvme_format_cancel,
5763 .get_aio_context = nvme_get_aio_context,
5764 };
5765
5766 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
5767 uint8_t pi, uint8_t pil)
5768 {
5769 uint8_t lbafl = lbaf & 0xf;
5770 uint8_t lbafu = lbaf >> 4;
5771
5772 trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
5773
5774 ns->id_ns.dps = (pil << 3) | pi;
5775 ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
5776
5777 nvme_ns_init_format(ns);
5778 }
5779
5780 static void nvme_do_format(NvmeFormatAIOCB *iocb);
5781
5782 static void nvme_format_ns_cb(void *opaque, int ret)
5783 {
5784 NvmeFormatAIOCB *iocb = opaque;
5785 NvmeNamespace *ns = iocb->ns;
5786 int bytes;
5787
5788 if (iocb->ret < 0) {
5789 goto done;
5790 } else if (ret < 0) {
5791 iocb->ret = ret;
5792 goto done;
5793 }
5794
5795 assert(ns);
5796
5797 if (iocb->offset < ns->size) {
5798 bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
5799
5800 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
5801 bytes, BDRV_REQ_MAY_UNMAP,
5802 nvme_format_ns_cb, iocb);
5803
5804 iocb->offset += bytes;
5805 return;
5806 }
5807
5808 nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
5809 ns->status = 0x0;
5810 iocb->ns = NULL;
5811 iocb->offset = 0;
5812
5813 done:
5814 nvme_do_format(iocb);
5815 }
5816
5817 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
5818 {
5819 if (ns->params.zoned) {
5820 return NVME_INVALID_FORMAT | NVME_DNR;
5821 }
5822
5823 if (lbaf > ns->id_ns.nlbaf) {
5824 return NVME_INVALID_FORMAT | NVME_DNR;
5825 }
5826
5827 if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
5828 return NVME_INVALID_FORMAT | NVME_DNR;
5829 }
5830
5831 if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
5832 return NVME_INVALID_FIELD | NVME_DNR;
5833 }
5834
5835 return NVME_SUCCESS;
5836 }
5837
5838 static void nvme_do_format(NvmeFormatAIOCB *iocb)
5839 {
5840 NvmeRequest *req = iocb->req;
5841 NvmeCtrl *n = nvme_ctrl(req);
5842 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5843 uint8_t lbaf = dw10 & 0xf;
5844 uint8_t pi = (dw10 >> 5) & 0x7;
5845 uint16_t status;
5846 int i;
5847
5848 if (iocb->ret < 0) {
5849 goto done;
5850 }
5851
5852 if (iocb->broadcast) {
5853 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
5854 iocb->ns = nvme_ns(n, i);
5855 if (iocb->ns) {
5856 iocb->nsid = i;
5857 break;
5858 }
5859 }
5860 }
5861
5862 if (!iocb->ns) {
5863 goto done;
5864 }
5865
5866 status = nvme_format_check(iocb->ns, lbaf, pi);
5867 if (status) {
5868 req->status = status;
5869 goto done;
5870 }
5871
5872 iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
5873 nvme_format_ns_cb(iocb, 0);
5874 return;
5875
5876 done:
5877 iocb->common.cb(iocb->common.opaque, iocb->ret);
5878 qemu_aio_unref(iocb);
5879 }
5880
5881 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
5882 {
5883 NvmeFormatAIOCB *iocb;
5884 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5885 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5886 uint8_t lbaf = dw10 & 0xf;
5887 uint8_t mset = (dw10 >> 4) & 0x1;
5888 uint8_t pi = (dw10 >> 5) & 0x7;
5889 uint8_t pil = (dw10 >> 8) & 0x1;
5890 uint8_t lbafu = (dw10 >> 12) & 0x3;
5891 uint16_t status;
5892
5893 iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
5894
5895 iocb->req = req;
5896 iocb->ret = 0;
5897 iocb->ns = NULL;
5898 iocb->nsid = 0;
5899 iocb->lbaf = lbaf;
5900 iocb->mset = mset;
5901 iocb->pi = pi;
5902 iocb->pil = pil;
5903 iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
5904 iocb->offset = 0;
5905
5906 if (n->features.hbs.lbafee) {
5907 iocb->lbaf |= lbafu << 4;
5908 }
5909
5910 if (!iocb->broadcast) {
5911 if (!nvme_nsid_valid(n, nsid)) {
5912 status = NVME_INVALID_NSID | NVME_DNR;
5913 goto out;
5914 }
5915
5916 iocb->ns = nvme_ns(n, nsid);
5917 if (!iocb->ns) {
5918 status = NVME_INVALID_FIELD | NVME_DNR;
5919 goto out;
5920 }
5921 }
5922
5923 req->aiocb = &iocb->common;
5924 nvme_do_format(iocb);
5925
5926 return NVME_NO_COMPLETE;
5927
5928 out:
5929 qemu_aio_unref(iocb);
5930
5931 return status;
5932 }
5933
5934 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total,
5935 int *num_prim, int *num_sec)
5936 {
5937 *num_total = le32_to_cpu(rt ?
5938 n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt);
5939 *num_prim = le16_to_cpu(rt ?
5940 n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap);
5941 *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa);
5942 }
5943
5944 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req,
5945 uint16_t cntlid, uint8_t rt,
5946 int nr)
5947 {
5948 int num_total, num_prim, num_sec;
5949
5950 if (cntlid != n->cntlid) {
5951 return NVME_INVALID_CTRL_ID | NVME_DNR;
5952 }
5953
5954 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
5955
5956 if (nr > num_total) {
5957 return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
5958 }
5959
5960 if (nr > num_total - num_sec) {
5961 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
5962 }
5963
5964 if (rt) {
5965 n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr);
5966 } else {
5967 n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr);
5968 }
5969
5970 req->cqe.result = cpu_to_le32(nr);
5971 return req->status;
5972 }
5973
5974 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl,
5975 uint8_t rt, int nr)
5976 {
5977 int prev_nr, prev_total;
5978
5979 if (rt) {
5980 prev_nr = le16_to_cpu(sctrl->nvi);
5981 prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa);
5982 sctrl->nvi = cpu_to_le16(nr);
5983 n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr);
5984 } else {
5985 prev_nr = le16_to_cpu(sctrl->nvq);
5986 prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa);
5987 sctrl->nvq = cpu_to_le16(nr);
5988 n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr);
5989 }
5990 }
5991
5992 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req,
5993 uint16_t cntlid, uint8_t rt, int nr)
5994 {
5995 int num_total, num_prim, num_sec, num_free, diff, limit;
5996 NvmeSecCtrlEntry *sctrl;
5997
5998 sctrl = nvme_sctrl_for_cntlid(n, cntlid);
5999 if (!sctrl) {
6000 return NVME_INVALID_CTRL_ID | NVME_DNR;
6001 }
6002
6003 if (sctrl->scs) {
6004 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6005 }
6006
6007 limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm);
6008 if (nr > limit) {
6009 return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
6010 }
6011
6012 nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
6013 num_free = num_total - num_prim - num_sec;
6014 diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq);
6015
6016 if (diff > num_free) {
6017 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6018 }
6019
6020 nvme_update_virt_res(n, sctrl, rt, nr);
6021 req->cqe.result = cpu_to_le32(nr);
6022
6023 return req->status;
6024 }
6025
6026 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online)
6027 {
6028 PCIDevice *pci = PCI_DEVICE(n);
6029 NvmeCtrl *sn = NULL;
6030 NvmeSecCtrlEntry *sctrl;
6031 int vf_index;
6032
6033 sctrl = nvme_sctrl_for_cntlid(n, cntlid);
6034 if (!sctrl) {
6035 return NVME_INVALID_CTRL_ID | NVME_DNR;
6036 }
6037
6038 if (!pci_is_vf(pci)) {
6039 vf_index = le16_to_cpu(sctrl->vfn) - 1;
6040 sn = NVME(pcie_sriov_get_vf_at_index(pci, vf_index));
6041 }
6042
6043 if (online) {
6044 if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) {
6045 return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
6046 }
6047
6048 if (!sctrl->scs) {
6049 sctrl->scs = 0x1;
6050 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6051 }
6052 } else {
6053 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0);
6054 nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0);
6055
6056 if (sctrl->scs) {
6057 sctrl->scs = 0x0;
6058 if (sn) {
6059 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
6060 }
6061 }
6062 }
6063
6064 return NVME_SUCCESS;
6065 }
6066
6067 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req)
6068 {
6069 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
6070 uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
6071 uint8_t act = dw10 & 0xf;
6072 uint8_t rt = (dw10 >> 8) & 0x7;
6073 uint16_t cntlid = (dw10 >> 16) & 0xffff;
6074 int nr = dw11 & 0xffff;
6075
6076 trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr);
6077
6078 if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) {
6079 return NVME_INVALID_RESOURCE_ID | NVME_DNR;
6080 }
6081
6082 switch (act) {
6083 case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN:
6084 return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr);
6085 case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC:
6086 return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr);
6087 case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE:
6088 return nvme_virt_set_state(n, cntlid, true);
6089 case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE:
6090 return nvme_virt_set_state(n, cntlid, false);
6091 default:
6092 return NVME_INVALID_FIELD | NVME_DNR;
6093 }
6094 }
6095
6096 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req)
6097 {
6098 PCIDevice *pci = PCI_DEVICE(n);
6099 uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1);
6100 uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2);
6101 int i;
6102
6103 /* Address should be page aligned */
6104 if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) {
6105 return NVME_INVALID_FIELD | NVME_DNR;
6106 }
6107
6108 /* Save shadow buffer base addr for use during queue creation */
6109 n->dbbuf_dbs = dbs_addr;
6110 n->dbbuf_eis = eis_addr;
6111 n->dbbuf_enabled = true;
6112
6113 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6114 NvmeSQueue *sq = n->sq[i];
6115 NvmeCQueue *cq = n->cq[i];
6116
6117 if (sq) {
6118 /*
6119 * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
6120 * nvme_process_db() uses this hard-coded way to calculate
6121 * doorbell offsets. Be consistent with that here.
6122 */
6123 sq->db_addr = dbs_addr + (i << 3);
6124 sq->ei_addr = eis_addr + (i << 3);
6125 pci_dma_write(pci, sq->db_addr, &sq->tail, sizeof(sq->tail));
6126
6127 if (n->params.ioeventfd && sq->sqid != 0) {
6128 if (!nvme_init_sq_ioeventfd(sq)) {
6129 sq->ioeventfd_enabled = true;
6130 }
6131 }
6132 }
6133
6134 if (cq) {
6135 /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
6136 cq->db_addr = dbs_addr + (i << 3) + (1 << 2);
6137 cq->ei_addr = eis_addr + (i << 3) + (1 << 2);
6138 pci_dma_write(pci, cq->db_addr, &cq->head, sizeof(cq->head));
6139
6140 if (n->params.ioeventfd && cq->cqid != 0) {
6141 if (!nvme_init_cq_ioeventfd(cq)) {
6142 cq->ioeventfd_enabled = true;
6143 }
6144 }
6145 }
6146 }
6147
6148 trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr);
6149
6150 return NVME_SUCCESS;
6151 }
6152
6153 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
6154 {
6155 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
6156 nvme_adm_opc_str(req->cmd.opcode));
6157
6158 if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
6159 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
6160 return NVME_INVALID_OPCODE | NVME_DNR;
6161 }
6162
6163 /* SGLs shall not be used for Admin commands in NVMe over PCIe */
6164 if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
6165 return NVME_INVALID_FIELD | NVME_DNR;
6166 }
6167
6168 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
6169 return NVME_INVALID_FIELD;
6170 }
6171
6172 switch (req->cmd.opcode) {
6173 case NVME_ADM_CMD_DELETE_SQ:
6174 return nvme_del_sq(n, req);
6175 case NVME_ADM_CMD_CREATE_SQ:
6176 return nvme_create_sq(n, req);
6177 case NVME_ADM_CMD_GET_LOG_PAGE:
6178 return nvme_get_log(n, req);
6179 case NVME_ADM_CMD_DELETE_CQ:
6180 return nvme_del_cq(n, req);
6181 case NVME_ADM_CMD_CREATE_CQ:
6182 return nvme_create_cq(n, req);
6183 case NVME_ADM_CMD_IDENTIFY:
6184 return nvme_identify(n, req);
6185 case NVME_ADM_CMD_ABORT:
6186 return nvme_abort(n, req);
6187 case NVME_ADM_CMD_SET_FEATURES:
6188 return nvme_set_feature(n, req);
6189 case NVME_ADM_CMD_GET_FEATURES:
6190 return nvme_get_feature(n, req);
6191 case NVME_ADM_CMD_ASYNC_EV_REQ:
6192 return nvme_aer(n, req);
6193 case NVME_ADM_CMD_NS_ATTACHMENT:
6194 return nvme_ns_attachment(n, req);
6195 case NVME_ADM_CMD_VIRT_MNGMT:
6196 return nvme_virt_mngmt(n, req);
6197 case NVME_ADM_CMD_DBBUF_CONFIG:
6198 return nvme_dbbuf_config(n, req);
6199 case NVME_ADM_CMD_FORMAT_NVM:
6200 return nvme_format(n, req);
6201 default:
6202 assert(false);
6203 }
6204
6205 return NVME_INVALID_OPCODE | NVME_DNR;
6206 }
6207
6208 static void nvme_update_sq_eventidx(const NvmeSQueue *sq)
6209 {
6210 uint32_t v = cpu_to_le32(sq->tail);
6211
6212 trace_pci_nvme_update_sq_eventidx(sq->sqid, sq->tail);
6213
6214 pci_dma_write(PCI_DEVICE(sq->ctrl), sq->ei_addr, &v, sizeof(v));
6215 }
6216
6217 static void nvme_update_sq_tail(NvmeSQueue *sq)
6218 {
6219 uint32_t v;
6220
6221 pci_dma_read(PCI_DEVICE(sq->ctrl), sq->db_addr, &v, sizeof(v));
6222
6223 sq->tail = le32_to_cpu(v);
6224
6225 trace_pci_nvme_update_sq_tail(sq->sqid, sq->tail);
6226 }
6227
6228 static void nvme_process_sq(void *opaque)
6229 {
6230 NvmeSQueue *sq = opaque;
6231 NvmeCtrl *n = sq->ctrl;
6232 NvmeCQueue *cq = n->cq[sq->cqid];
6233
6234 uint16_t status;
6235 hwaddr addr;
6236 NvmeCmd cmd;
6237 NvmeRequest *req;
6238
6239 if (n->dbbuf_enabled) {
6240 nvme_update_sq_tail(sq);
6241 }
6242
6243 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
6244 addr = sq->dma_addr + sq->head * n->sqe_size;
6245 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
6246 trace_pci_nvme_err_addr_read(addr);
6247 trace_pci_nvme_err_cfs();
6248 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
6249 break;
6250 }
6251 nvme_inc_sq_head(sq);
6252
6253 req = QTAILQ_FIRST(&sq->req_list);
6254 QTAILQ_REMOVE(&sq->req_list, req, entry);
6255 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
6256 nvme_req_clear(req);
6257 req->cqe.cid = cmd.cid;
6258 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
6259
6260 status = sq->sqid ? nvme_io_cmd(n, req) :
6261 nvme_admin_cmd(n, req);
6262 if (status != NVME_NO_COMPLETE) {
6263 req->status = status;
6264 nvme_enqueue_req_completion(cq, req);
6265 }
6266
6267 if (n->dbbuf_enabled) {
6268 nvme_update_sq_eventidx(sq);
6269 nvme_update_sq_tail(sq);
6270 }
6271 }
6272 }
6273
6274 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size)
6275 {
6276 uint8_t *config;
6277
6278 if (!msix_present(pci_dev)) {
6279 return;
6280 }
6281
6282 assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr);
6283
6284 config = pci_dev->config + pci_dev->msix_cap;
6285 pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE,
6286 table_size - 1);
6287 }
6288
6289 static void nvme_activate_virt_res(NvmeCtrl *n)
6290 {
6291 PCIDevice *pci_dev = PCI_DEVICE(n);
6292 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
6293 NvmeSecCtrlEntry *sctrl;
6294
6295 /* -1 to account for the admin queue */
6296 if (pci_is_vf(pci_dev)) {
6297 sctrl = nvme_sctrl(n);
6298 cap->vqprt = sctrl->nvq;
6299 cap->viprt = sctrl->nvi;
6300 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
6301 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
6302 } else {
6303 cap->vqrfap = n->next_pri_ctrl_cap.vqrfap;
6304 cap->virfap = n->next_pri_ctrl_cap.virfap;
6305 n->conf_ioqpairs = le16_to_cpu(cap->vqprt) +
6306 le16_to_cpu(cap->vqrfap) - 1;
6307 n->conf_msix_qsize = le16_to_cpu(cap->viprt) +
6308 le16_to_cpu(cap->virfap);
6309 }
6310 }
6311
6312 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst)
6313 {
6314 PCIDevice *pci_dev = PCI_DEVICE(n);
6315 NvmeSecCtrlEntry *sctrl;
6316 NvmeNamespace *ns;
6317 int i;
6318
6319 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6320 ns = nvme_ns(n, i);
6321 if (!ns) {
6322 continue;
6323 }
6324
6325 nvme_ns_drain(ns);
6326 }
6327
6328 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6329 if (n->sq[i] != NULL) {
6330 nvme_free_sq(n->sq[i], n);
6331 }
6332 }
6333 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6334 if (n->cq[i] != NULL) {
6335 nvme_free_cq(n->cq[i], n);
6336 }
6337 }
6338
6339 while (!QTAILQ_EMPTY(&n->aer_queue)) {
6340 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
6341 QTAILQ_REMOVE(&n->aer_queue, event, entry);
6342 g_free(event);
6343 }
6344
6345 if (n->params.sriov_max_vfs) {
6346 if (!pci_is_vf(pci_dev)) {
6347 for (i = 0; i < n->sec_ctrl_list.numcntl; i++) {
6348 sctrl = &n->sec_ctrl_list.sec[i];
6349 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
6350 }
6351
6352 if (rst != NVME_RESET_CONTROLLER) {
6353 pcie_sriov_pf_disable_vfs(pci_dev);
6354 }
6355 }
6356
6357 if (rst != NVME_RESET_CONTROLLER) {
6358 nvme_activate_virt_res(n);
6359 }
6360 }
6361
6362 n->aer_queued = 0;
6363 n->aer_mask = 0;
6364 n->outstanding_aers = 0;
6365 n->qs_created = false;
6366
6367 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
6368
6369 if (pci_is_vf(pci_dev)) {
6370 sctrl = nvme_sctrl(n);
6371
6372 stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED);
6373 } else {
6374 stl_le_p(&n->bar.csts, 0);
6375 }
6376
6377 stl_le_p(&n->bar.intms, 0);
6378 stl_le_p(&n->bar.intmc, 0);
6379 stl_le_p(&n->bar.cc, 0);
6380
6381 n->dbbuf_dbs = 0;
6382 n->dbbuf_eis = 0;
6383 n->dbbuf_enabled = false;
6384 }
6385
6386 static void nvme_ctrl_shutdown(NvmeCtrl *n)
6387 {
6388 NvmeNamespace *ns;
6389 int i;
6390
6391 if (n->pmr.dev) {
6392 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6393 }
6394
6395 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6396 ns = nvme_ns(n, i);
6397 if (!ns) {
6398 continue;
6399 }
6400
6401 nvme_ns_shutdown(ns);
6402 }
6403 }
6404
6405 static void nvme_select_iocs(NvmeCtrl *n)
6406 {
6407 NvmeNamespace *ns;
6408 int i;
6409
6410 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6411 ns = nvme_ns(n, i);
6412 if (!ns) {
6413 continue;
6414 }
6415
6416 nvme_select_iocs_ns(n, ns);
6417 }
6418 }
6419
6420 static int nvme_start_ctrl(NvmeCtrl *n)
6421 {
6422 uint64_t cap = ldq_le_p(&n->bar.cap);
6423 uint32_t cc = ldl_le_p(&n->bar.cc);
6424 uint32_t aqa = ldl_le_p(&n->bar.aqa);
6425 uint64_t asq = ldq_le_p(&n->bar.asq);
6426 uint64_t acq = ldq_le_p(&n->bar.acq);
6427 uint32_t page_bits = NVME_CC_MPS(cc) + 12;
6428 uint32_t page_size = 1 << page_bits;
6429 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
6430
6431 if (pci_is_vf(PCI_DEVICE(n)) && !sctrl->scs) {
6432 trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi),
6433 le16_to_cpu(sctrl->nvq),
6434 sctrl->scs ? "ONLINE" :
6435 "OFFLINE");
6436 return -1;
6437 }
6438 if (unlikely(n->cq[0])) {
6439 trace_pci_nvme_err_startfail_cq();
6440 return -1;
6441 }
6442 if (unlikely(n->sq[0])) {
6443 trace_pci_nvme_err_startfail_sq();
6444 return -1;
6445 }
6446 if (unlikely(asq & (page_size - 1))) {
6447 trace_pci_nvme_err_startfail_asq_misaligned(asq);
6448 return -1;
6449 }
6450 if (unlikely(acq & (page_size - 1))) {
6451 trace_pci_nvme_err_startfail_acq_misaligned(acq);
6452 return -1;
6453 }
6454 if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
6455 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
6456 return -1;
6457 }
6458 if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
6459 trace_pci_nvme_err_startfail_page_too_small(
6460 NVME_CC_MPS(cc),
6461 NVME_CAP_MPSMIN(cap));
6462 return -1;
6463 }
6464 if (unlikely(NVME_CC_MPS(cc) >
6465 NVME_CAP_MPSMAX(cap))) {
6466 trace_pci_nvme_err_startfail_page_too_large(
6467 NVME_CC_MPS(cc),
6468 NVME_CAP_MPSMAX(cap));
6469 return -1;
6470 }
6471 if (unlikely(NVME_CC_IOCQES(cc) <
6472 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
6473 trace_pci_nvme_err_startfail_cqent_too_small(
6474 NVME_CC_IOCQES(cc),
6475 NVME_CTRL_CQES_MIN(cap));
6476 return -1;
6477 }
6478 if (unlikely(NVME_CC_IOCQES(cc) >
6479 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
6480 trace_pci_nvme_err_startfail_cqent_too_large(
6481 NVME_CC_IOCQES(cc),
6482 NVME_CTRL_CQES_MAX(cap));
6483 return -1;
6484 }
6485 if (unlikely(NVME_CC_IOSQES(cc) <
6486 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
6487 trace_pci_nvme_err_startfail_sqent_too_small(
6488 NVME_CC_IOSQES(cc),
6489 NVME_CTRL_SQES_MIN(cap));
6490 return -1;
6491 }
6492 if (unlikely(NVME_CC_IOSQES(cc) >
6493 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
6494 trace_pci_nvme_err_startfail_sqent_too_large(
6495 NVME_CC_IOSQES(cc),
6496 NVME_CTRL_SQES_MAX(cap));
6497 return -1;
6498 }
6499 if (unlikely(!NVME_AQA_ASQS(aqa))) {
6500 trace_pci_nvme_err_startfail_asqent_sz_zero();
6501 return -1;
6502 }
6503 if (unlikely(!NVME_AQA_ACQS(aqa))) {
6504 trace_pci_nvme_err_startfail_acqent_sz_zero();
6505 return -1;
6506 }
6507
6508 n->page_bits = page_bits;
6509 n->page_size = page_size;
6510 n->max_prp_ents = n->page_size / sizeof(uint64_t);
6511 n->cqe_size = 1 << NVME_CC_IOCQES(cc);
6512 n->sqe_size = 1 << NVME_CC_IOSQES(cc);
6513 nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
6514 nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
6515
6516 nvme_set_timestamp(n, 0ULL);
6517
6518 nvme_select_iocs(n);
6519
6520 return 0;
6521 }
6522
6523 static void nvme_cmb_enable_regs(NvmeCtrl *n)
6524 {
6525 uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
6526 uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
6527
6528 NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
6529 NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
6530 NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
6531 stl_le_p(&n->bar.cmbloc, cmbloc);
6532
6533 NVME_CMBSZ_SET_SQS(cmbsz, 1);
6534 NVME_CMBSZ_SET_CQS(cmbsz, 0);
6535 NVME_CMBSZ_SET_LISTS(cmbsz, 1);
6536 NVME_CMBSZ_SET_RDS(cmbsz, 1);
6537 NVME_CMBSZ_SET_WDS(cmbsz, 1);
6538 NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
6539 NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
6540 stl_le_p(&n->bar.cmbsz, cmbsz);
6541 }
6542
6543 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
6544 unsigned size)
6545 {
6546 PCIDevice *pci = PCI_DEVICE(n);
6547 uint64_t cap = ldq_le_p(&n->bar.cap);
6548 uint32_t cc = ldl_le_p(&n->bar.cc);
6549 uint32_t intms = ldl_le_p(&n->bar.intms);
6550 uint32_t csts = ldl_le_p(&n->bar.csts);
6551 uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
6552
6553 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
6554 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
6555 "MMIO write not 32-bit aligned,"
6556 " offset=0x%"PRIx64"", offset);
6557 /* should be ignored, fall through for now */
6558 }
6559
6560 if (unlikely(size < sizeof(uint32_t))) {
6561 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
6562 "MMIO write smaller than 32-bits,"
6563 " offset=0x%"PRIx64", size=%u",
6564 offset, size);
6565 /* should be ignored, fall through for now */
6566 }
6567
6568 switch (offset) {
6569 case NVME_REG_INTMS:
6570 if (unlikely(msix_enabled(pci))) {
6571 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6572 "undefined access to interrupt mask set"
6573 " when MSI-X is enabled");
6574 /* should be ignored, fall through for now */
6575 }
6576 intms |= data;
6577 stl_le_p(&n->bar.intms, intms);
6578 n->bar.intmc = n->bar.intms;
6579 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
6580 nvme_irq_check(n);
6581 break;
6582 case NVME_REG_INTMC:
6583 if (unlikely(msix_enabled(pci))) {
6584 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6585 "undefined access to interrupt mask clr"
6586 " when MSI-X is enabled");
6587 /* should be ignored, fall through for now */
6588 }
6589 intms &= ~data;
6590 stl_le_p(&n->bar.intms, intms);
6591 n->bar.intmc = n->bar.intms;
6592 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
6593 nvme_irq_check(n);
6594 break;
6595 case NVME_REG_CC:
6596 stl_le_p(&n->bar.cc, data);
6597
6598 trace_pci_nvme_mmio_cfg(data & 0xffffffff);
6599
6600 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
6601 trace_pci_nvme_mmio_shutdown_set();
6602 nvme_ctrl_shutdown(n);
6603 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
6604 csts |= NVME_CSTS_SHST_COMPLETE;
6605 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
6606 trace_pci_nvme_mmio_shutdown_cleared();
6607 csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
6608 }
6609
6610 if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
6611 if (unlikely(nvme_start_ctrl(n))) {
6612 trace_pci_nvme_err_startfail();
6613 csts = NVME_CSTS_FAILED;
6614 } else {
6615 trace_pci_nvme_mmio_start_success();
6616 csts = NVME_CSTS_READY;
6617 }
6618 } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
6619 trace_pci_nvme_mmio_stopped();
6620 nvme_ctrl_reset(n, NVME_RESET_CONTROLLER);
6621
6622 break;
6623 }
6624
6625 stl_le_p(&n->bar.csts, csts);
6626
6627 break;
6628 case NVME_REG_CSTS:
6629 if (data & (1 << 4)) {
6630 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
6631 "attempted to W1C CSTS.NSSRO"
6632 " but CAP.NSSRS is zero (not supported)");
6633 } else if (data != 0) {
6634 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
6635 "attempted to set a read only bit"
6636 " of controller status");
6637 }
6638 break;
6639 case NVME_REG_NSSR:
6640 if (data == 0x4e564d65) {
6641 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
6642 } else {
6643 /* The spec says that writes of other values have no effect */
6644 return;
6645 }
6646 break;
6647 case NVME_REG_AQA:
6648 stl_le_p(&n->bar.aqa, data);
6649 trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
6650 break;
6651 case NVME_REG_ASQ:
6652 stn_le_p(&n->bar.asq, size, data);
6653 trace_pci_nvme_mmio_asqaddr(data);
6654 break;
6655 case NVME_REG_ASQ + 4:
6656 stl_le_p((uint8_t *)&n->bar.asq + 4, data);
6657 trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
6658 break;
6659 case NVME_REG_ACQ:
6660 trace_pci_nvme_mmio_acqaddr(data);
6661 stn_le_p(&n->bar.acq, size, data);
6662 break;
6663 case NVME_REG_ACQ + 4:
6664 stl_le_p((uint8_t *)&n->bar.acq + 4, data);
6665 trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
6666 break;
6667 case NVME_REG_CMBLOC:
6668 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
6669 "invalid write to reserved CMBLOC"
6670 " when CMBSZ is zero, ignored");
6671 return;
6672 case NVME_REG_CMBSZ:
6673 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
6674 "invalid write to read only CMBSZ, ignored");
6675 return;
6676 case NVME_REG_CMBMSC:
6677 if (!NVME_CAP_CMBS(cap)) {
6678 return;
6679 }
6680
6681 stn_le_p(&n->bar.cmbmsc, size, data);
6682 n->cmb.cmse = false;
6683
6684 if (NVME_CMBMSC_CRE(data)) {
6685 nvme_cmb_enable_regs(n);
6686
6687 if (NVME_CMBMSC_CMSE(data)) {
6688 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
6689 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
6690 if (cba + int128_get64(n->cmb.mem.size) < cba) {
6691 uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
6692 NVME_CMBSTS_SET_CBAI(cmbsts, 1);
6693 stl_le_p(&n->bar.cmbsts, cmbsts);
6694 return;
6695 }
6696
6697 n->cmb.cba = cba;
6698 n->cmb.cmse = true;
6699 }
6700 } else {
6701 n->bar.cmbsz = 0;
6702 n->bar.cmbloc = 0;
6703 }
6704
6705 return;
6706 case NVME_REG_CMBMSC + 4:
6707 stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
6708 return;
6709
6710 case NVME_REG_PMRCAP:
6711 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
6712 "invalid write to PMRCAP register, ignored");
6713 return;
6714 case NVME_REG_PMRCTL:
6715 if (!NVME_CAP_PMRS(cap)) {
6716 return;
6717 }
6718
6719 stl_le_p(&n->bar.pmrctl, data);
6720 if (NVME_PMRCTL_EN(data)) {
6721 memory_region_set_enabled(&n->pmr.dev->mr, true);
6722 pmrsts = 0;
6723 } else {
6724 memory_region_set_enabled(&n->pmr.dev->mr, false);
6725 NVME_PMRSTS_SET_NRDY(pmrsts, 1);
6726 n->pmr.cmse = false;
6727 }
6728 stl_le_p(&n->bar.pmrsts, pmrsts);
6729 return;
6730 case NVME_REG_PMRSTS:
6731 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
6732 "invalid write to PMRSTS register, ignored");
6733 return;
6734 case NVME_REG_PMREBS:
6735 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
6736 "invalid write to PMREBS register, ignored");
6737 return;
6738 case NVME_REG_PMRSWTP:
6739 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
6740 "invalid write to PMRSWTP register, ignored");
6741 return;
6742 case NVME_REG_PMRMSCL:
6743 if (!NVME_CAP_PMRS(cap)) {
6744 return;
6745 }
6746
6747 stl_le_p(&n->bar.pmrmscl, data);
6748 n->pmr.cmse = false;
6749
6750 if (NVME_PMRMSCL_CMSE(data)) {
6751 uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
6752 hwaddr cba = pmrmscu << 32 |
6753 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
6754 if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
6755 NVME_PMRSTS_SET_CBAI(pmrsts, 1);
6756 stl_le_p(&n->bar.pmrsts, pmrsts);
6757 return;
6758 }
6759
6760 n->pmr.cmse = true;
6761 n->pmr.cba = cba;
6762 }
6763
6764 return;
6765 case NVME_REG_PMRMSCU:
6766 if (!NVME_CAP_PMRS(cap)) {
6767 return;
6768 }
6769
6770 stl_le_p(&n->bar.pmrmscu, data);
6771 return;
6772 default:
6773 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
6774 "invalid MMIO write,"
6775 " offset=0x%"PRIx64", data=%"PRIx64"",
6776 offset, data);
6777 break;
6778 }
6779 }
6780
6781 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
6782 {
6783 NvmeCtrl *n = (NvmeCtrl *)opaque;
6784 uint8_t *ptr = (uint8_t *)&n->bar;
6785
6786 trace_pci_nvme_mmio_read(addr, size);
6787
6788 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
6789 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
6790 "MMIO read not 32-bit aligned,"
6791 " offset=0x%"PRIx64"", addr);
6792 /* should RAZ, fall through for now */
6793 } else if (unlikely(size < sizeof(uint32_t))) {
6794 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
6795 "MMIO read smaller than 32-bits,"
6796 " offset=0x%"PRIx64"", addr);
6797 /* should RAZ, fall through for now */
6798 }
6799
6800 if (addr > sizeof(n->bar) - size) {
6801 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
6802 "MMIO read beyond last register,"
6803 " offset=0x%"PRIx64", returning 0", addr);
6804
6805 return 0;
6806 }
6807
6808 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
6809 addr != NVME_REG_CSTS) {
6810 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
6811 return 0;
6812 }
6813
6814 /*
6815 * When PMRWBM bit 1 is set then read from
6816 * from PMRSTS should ensure prior writes
6817 * made it to persistent media
6818 */
6819 if (addr == NVME_REG_PMRSTS &&
6820 (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
6821 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6822 }
6823
6824 return ldn_le_p(ptr + addr, size);
6825 }
6826
6827 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
6828 {
6829 PCIDevice *pci = PCI_DEVICE(n);
6830 uint32_t qid;
6831
6832 if (unlikely(addr & ((1 << 2) - 1))) {
6833 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
6834 "doorbell write not 32-bit aligned,"
6835 " offset=0x%"PRIx64", ignoring", addr);
6836 return;
6837 }
6838
6839 if (((addr - 0x1000) >> 2) & 1) {
6840 /* Completion queue doorbell write */
6841
6842 uint16_t new_head = val & 0xffff;
6843 int start_sqs;
6844 NvmeCQueue *cq;
6845
6846 qid = (addr - (0x1000 + (1 << 2))) >> 3;
6847 if (unlikely(nvme_check_cqid(n, qid))) {
6848 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
6849 "completion queue doorbell write"
6850 " for nonexistent queue,"
6851 " sqid=%"PRIu32", ignoring", qid);
6852
6853 /*
6854 * NVM Express v1.3d, Section 4.1 state: "If host software writes
6855 * an invalid value to the Submission Queue Tail Doorbell or
6856 * Completion Queue Head Doorbell regiter and an Asynchronous Event
6857 * Request command is outstanding, then an asynchronous event is
6858 * posted to the Admin Completion Queue with a status code of
6859 * Invalid Doorbell Write Value."
6860 *
6861 * Also note that the spec includes the "Invalid Doorbell Register"
6862 * status code, but nowhere does it specify when to use it.
6863 * However, it seems reasonable to use it here in a similar
6864 * fashion.
6865 */
6866 if (n->outstanding_aers) {
6867 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6868 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6869 NVME_LOG_ERROR_INFO);
6870 }
6871
6872 return;
6873 }
6874
6875 cq = n->cq[qid];
6876 if (unlikely(new_head >= cq->size)) {
6877 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
6878 "completion queue doorbell write value"
6879 " beyond queue size, sqid=%"PRIu32","
6880 " new_head=%"PRIu16", ignoring",
6881 qid, new_head);
6882
6883 if (n->outstanding_aers) {
6884 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6885 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6886 NVME_LOG_ERROR_INFO);
6887 }
6888
6889 return;
6890 }
6891
6892 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
6893
6894 start_sqs = nvme_cq_full(cq) ? 1 : 0;
6895 cq->head = new_head;
6896 if (!qid && n->dbbuf_enabled) {
6897 pci_dma_write(pci, cq->db_addr, &cq->head, sizeof(cq->head));
6898 }
6899 if (start_sqs) {
6900 NvmeSQueue *sq;
6901 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
6902 qemu_bh_schedule(sq->bh);
6903 }
6904 qemu_bh_schedule(cq->bh);
6905 }
6906
6907 if (cq->tail == cq->head) {
6908 if (cq->irq_enabled) {
6909 n->cq_pending--;
6910 }
6911
6912 nvme_irq_deassert(n, cq);
6913 }
6914 } else {
6915 /* Submission queue doorbell write */
6916
6917 uint16_t new_tail = val & 0xffff;
6918 NvmeSQueue *sq;
6919
6920 qid = (addr - 0x1000) >> 3;
6921 if (unlikely(nvme_check_sqid(n, qid))) {
6922 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
6923 "submission queue doorbell write"
6924 " for nonexistent queue,"
6925 " sqid=%"PRIu32", ignoring", qid);
6926
6927 if (n->outstanding_aers) {
6928 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6929 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6930 NVME_LOG_ERROR_INFO);
6931 }
6932
6933 return;
6934 }
6935
6936 sq = n->sq[qid];
6937 if (unlikely(new_tail >= sq->size)) {
6938 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
6939 "submission queue doorbell write value"
6940 " beyond queue size, sqid=%"PRIu32","
6941 " new_tail=%"PRIu16", ignoring",
6942 qid, new_tail);
6943
6944 if (n->outstanding_aers) {
6945 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6946 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6947 NVME_LOG_ERROR_INFO);
6948 }
6949
6950 return;
6951 }
6952
6953 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
6954
6955 sq->tail = new_tail;
6956 if (!qid && n->dbbuf_enabled) {
6957 /*
6958 * The spec states "the host shall also update the controller's
6959 * corresponding doorbell property to match the value of that entry
6960 * in the Shadow Doorbell buffer."
6961 *
6962 * Since this context is currently a VM trap, we can safely enforce
6963 * the requirement from the device side in case the host is
6964 * misbehaving.
6965 *
6966 * Note, we shouldn't have to do this, but various drivers
6967 * including ones that run on Linux, are not updating Admin Queues,
6968 * so we can't trust reading it for an appropriate sq tail.
6969 */
6970 pci_dma_write(pci, sq->db_addr, &sq->tail, sizeof(sq->tail));
6971 }
6972
6973 qemu_bh_schedule(sq->bh);
6974 }
6975 }
6976
6977 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
6978 unsigned size)
6979 {
6980 NvmeCtrl *n = (NvmeCtrl *)opaque;
6981
6982 trace_pci_nvme_mmio_write(addr, data, size);
6983
6984 if (pci_is_vf(PCI_DEVICE(n)) && !nvme_sctrl(n)->scs &&
6985 addr != NVME_REG_CSTS) {
6986 trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
6987 return;
6988 }
6989
6990 if (addr < sizeof(n->bar)) {
6991 nvme_write_bar(n, addr, data, size);
6992 } else {
6993 nvme_process_db(n, addr, data);
6994 }
6995 }
6996
6997 static const MemoryRegionOps nvme_mmio_ops = {
6998 .read = nvme_mmio_read,
6999 .write = nvme_mmio_write,
7000 .endianness = DEVICE_LITTLE_ENDIAN,
7001 .impl = {
7002 .min_access_size = 2,
7003 .max_access_size = 8,
7004 },
7005 };
7006
7007 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
7008 unsigned size)
7009 {
7010 NvmeCtrl *n = (NvmeCtrl *)opaque;
7011 stn_le_p(&n->cmb.buf[addr], size, data);
7012 }
7013
7014 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
7015 {
7016 NvmeCtrl *n = (NvmeCtrl *)opaque;
7017 return ldn_le_p(&n->cmb.buf[addr], size);
7018 }
7019
7020 static const MemoryRegionOps nvme_cmb_ops = {
7021 .read = nvme_cmb_read,
7022 .write = nvme_cmb_write,
7023 .endianness = DEVICE_LITTLE_ENDIAN,
7024 .impl = {
7025 .min_access_size = 1,
7026 .max_access_size = 8,
7027 },
7028 };
7029
7030 static bool nvme_check_params(NvmeCtrl *n, Error **errp)
7031 {
7032 NvmeParams *params = &n->params;
7033
7034 if (params->num_queues) {
7035 warn_report("num_queues is deprecated; please use max_ioqpairs "
7036 "instead");
7037
7038 params->max_ioqpairs = params->num_queues - 1;
7039 }
7040
7041 if (n->namespace.blkconf.blk && n->subsys) {
7042 error_setg(errp, "subsystem support is unavailable with legacy "
7043 "namespace ('drive' property)");
7044 return false;
7045 }
7046
7047 if (params->max_ioqpairs < 1 ||
7048 params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
7049 error_setg(errp, "max_ioqpairs must be between 1 and %d",
7050 NVME_MAX_IOQPAIRS);
7051 return false;
7052 }
7053
7054 if (params->msix_qsize < 1 ||
7055 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
7056 error_setg(errp, "msix_qsize must be between 1 and %d",
7057 PCI_MSIX_FLAGS_QSIZE + 1);
7058 return false;
7059 }
7060
7061 if (!params->serial) {
7062 error_setg(errp, "serial property not set");
7063 return false;
7064 }
7065
7066 if (n->pmr.dev) {
7067 if (host_memory_backend_is_mapped(n->pmr.dev)) {
7068 error_setg(errp, "can't use already busy memdev: %s",
7069 object_get_canonical_path_component(OBJECT(n->pmr.dev)));
7070 return false;
7071 }
7072
7073 if (!is_power_of_2(n->pmr.dev->size)) {
7074 error_setg(errp, "pmr backend size needs to be power of 2 in size");
7075 return false;
7076 }
7077
7078 host_memory_backend_set_mapped(n->pmr.dev, true);
7079 }
7080
7081 if (n->params.zasl > n->params.mdts) {
7082 error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
7083 "than or equal to mdts (Maximum Data Transfer Size)");
7084 return false;
7085 }
7086
7087 if (!n->params.vsl) {
7088 error_setg(errp, "vsl must be non-zero");
7089 return false;
7090 }
7091
7092 if (params->sriov_max_vfs) {
7093 if (!n->subsys) {
7094 error_setg(errp, "subsystem is required for the use of SR-IOV");
7095 return false;
7096 }
7097
7098 if (params->sriov_max_vfs > NVME_MAX_VFS) {
7099 error_setg(errp, "sriov_max_vfs must be between 0 and %d",
7100 NVME_MAX_VFS);
7101 return false;
7102 }
7103
7104 if (params->cmb_size_mb) {
7105 error_setg(errp, "CMB is not supported with SR-IOV");
7106 return false;
7107 }
7108
7109 if (n->pmr.dev) {
7110 error_setg(errp, "PMR is not supported with SR-IOV");
7111 return false;
7112 }
7113
7114 if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) {
7115 error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible"
7116 " must be set for the use of SR-IOV");
7117 return false;
7118 }
7119
7120 if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) {
7121 error_setg(errp, "sriov_vq_flexible must be greater than or equal"
7122 " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2);
7123 return false;
7124 }
7125
7126 if (params->max_ioqpairs < params->sriov_vq_flexible + 2) {
7127 error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be"
7128 " greater than or equal to 2");
7129 return false;
7130 }
7131
7132 if (params->sriov_vi_flexible < params->sriov_max_vfs) {
7133 error_setg(errp, "sriov_vi_flexible must be greater than or equal"
7134 " to %d (sriov_max_vfs)", params->sriov_max_vfs);
7135 return false;
7136 }
7137
7138 if (params->msix_qsize < params->sriov_vi_flexible + 1) {
7139 error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be"
7140 " greater than or equal to 1");
7141 return false;
7142 }
7143
7144 if (params->sriov_max_vi_per_vf &&
7145 (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) {
7146 error_setg(errp, "sriov_max_vi_per_vf must meet:"
7147 " (sriov_max_vi_per_vf - 1) %% %d == 0 and"
7148 " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY);
7149 return false;
7150 }
7151
7152 if (params->sriov_max_vq_per_vf &&
7153 (params->sriov_max_vq_per_vf < 2 ||
7154 (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) {
7155 error_setg(errp, "sriov_max_vq_per_vf must meet:"
7156 " (sriov_max_vq_per_vf - 1) %% %d == 0 and"
7157 " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY);
7158 return false;
7159 }
7160 }
7161
7162 return true;
7163 }
7164
7165 static void nvme_init_state(NvmeCtrl *n)
7166 {
7167 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7168 NvmeSecCtrlList *list = &n->sec_ctrl_list;
7169 NvmeSecCtrlEntry *sctrl;
7170 PCIDevice *pci = PCI_DEVICE(n);
7171 uint8_t max_vfs;
7172 int i;
7173
7174 if (pci_is_vf(pci)) {
7175 sctrl = nvme_sctrl(n);
7176 max_vfs = 0;
7177 n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7178 n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7179 } else {
7180 max_vfs = n->params.sriov_max_vfs;
7181 n->conf_ioqpairs = n->params.max_ioqpairs;
7182 n->conf_msix_qsize = n->params.msix_qsize;
7183 }
7184
7185 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
7186 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
7187 n->temperature = NVME_TEMPERATURE;
7188 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
7189 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
7190 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
7191 QTAILQ_INIT(&n->aer_queue);
7192
7193 list->numcntl = cpu_to_le16(max_vfs);
7194 for (i = 0; i < max_vfs; i++) {
7195 sctrl = &list->sec[i];
7196 sctrl->pcid = cpu_to_le16(n->cntlid);
7197 sctrl->vfn = cpu_to_le16(i + 1);
7198 }
7199
7200 cap->cntlid = cpu_to_le16(n->cntlid);
7201 cap->crt = NVME_CRT_VQ | NVME_CRT_VI;
7202
7203 if (pci_is_vf(pci)) {
7204 cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs);
7205 } else {
7206 cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs -
7207 n->params.sriov_vq_flexible);
7208 cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible);
7209 cap->vqrfap = cap->vqfrt;
7210 cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7211 cap->vqfrsm = n->params.sriov_max_vq_per_vf ?
7212 cpu_to_le16(n->params.sriov_max_vq_per_vf) :
7213 cap->vqfrt / MAX(max_vfs, 1);
7214 }
7215
7216 if (pci_is_vf(pci)) {
7217 cap->viprt = cpu_to_le16(n->conf_msix_qsize);
7218 } else {
7219 cap->viprt = cpu_to_le16(n->params.msix_qsize -
7220 n->params.sriov_vi_flexible);
7221 cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible);
7222 cap->virfap = cap->vifrt;
7223 cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7224 cap->vifrsm = n->params.sriov_max_vi_per_vf ?
7225 cpu_to_le16(n->params.sriov_max_vi_per_vf) :
7226 cap->vifrt / MAX(max_vfs, 1);
7227 }
7228 }
7229
7230 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
7231 {
7232 uint64_t cmb_size = n->params.cmb_size_mb * MiB;
7233 uint64_t cap = ldq_le_p(&n->bar.cap);
7234
7235 n->cmb.buf = g_malloc0(cmb_size);
7236 memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
7237 "nvme-cmb", cmb_size);
7238 pci_register_bar(pci_dev, NVME_CMB_BIR,
7239 PCI_BASE_ADDRESS_SPACE_MEMORY |
7240 PCI_BASE_ADDRESS_MEM_TYPE_64 |
7241 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
7242
7243 NVME_CAP_SET_CMBS(cap, 1);
7244 stq_le_p(&n->bar.cap, cap);
7245
7246 if (n->params.legacy_cmb) {
7247 nvme_cmb_enable_regs(n);
7248 n->cmb.cmse = true;
7249 }
7250 }
7251
7252 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
7253 {
7254 uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
7255
7256 NVME_PMRCAP_SET_RDS(pmrcap, 1);
7257 NVME_PMRCAP_SET_WDS(pmrcap, 1);
7258 NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
7259 /* Turn on bit 1 support */
7260 NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
7261 NVME_PMRCAP_SET_CMSS(pmrcap, 1);
7262 stl_le_p(&n->bar.pmrcap, pmrcap);
7263
7264 pci_register_bar(pci_dev, NVME_PMR_BIR,
7265 PCI_BASE_ADDRESS_SPACE_MEMORY |
7266 PCI_BASE_ADDRESS_MEM_TYPE_64 |
7267 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
7268
7269 memory_region_set_enabled(&n->pmr.dev->mr, false);
7270 }
7271
7272 static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs,
7273 unsigned *msix_table_offset,
7274 unsigned *msix_pba_offset)
7275 {
7276 uint64_t bar_size, msix_table_size, msix_pba_size;
7277
7278 bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE;
7279 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
7280
7281 if (msix_table_offset) {
7282 *msix_table_offset = bar_size;
7283 }
7284
7285 msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs;
7286 bar_size += msix_table_size;
7287 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
7288
7289 if (msix_pba_offset) {
7290 *msix_pba_offset = bar_size;
7291 }
7292
7293 msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8;
7294 bar_size += msix_pba_size;
7295
7296 bar_size = pow2ceil(bar_size);
7297 return bar_size;
7298 }
7299
7300 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset)
7301 {
7302 uint16_t vf_dev_id = n->params.use_intel_id ?
7303 PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME;
7304 NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7305 uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm),
7306 le16_to_cpu(cap->vifrsm),
7307 NULL, NULL);
7308
7309 pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id,
7310 n->params.sriov_max_vfs, n->params.sriov_max_vfs,
7311 NVME_VF_OFFSET, NVME_VF_STRIDE);
7312
7313 pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
7314 PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size);
7315 }
7316
7317 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset)
7318 {
7319 Error *err = NULL;
7320 int ret;
7321
7322 ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset,
7323 PCI_PM_SIZEOF, &err);
7324 if (err) {
7325 error_report_err(err);
7326 return ret;
7327 }
7328
7329 pci_set_word(pci_dev->config + offset + PCI_PM_PMC,
7330 PCI_PM_CAP_VER_1_2);
7331 pci_set_word(pci_dev->config + offset + PCI_PM_CTRL,
7332 PCI_PM_CTRL_NO_SOFT_RESET);
7333 pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL,
7334 PCI_PM_CTRL_STATE_MASK);
7335
7336 return 0;
7337 }
7338
7339 static bool nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
7340 {
7341 ERRP_GUARD();
7342 uint8_t *pci_conf = pci_dev->config;
7343 uint64_t bar_size;
7344 unsigned msix_table_offset, msix_pba_offset;
7345 int ret;
7346
7347 pci_conf[PCI_INTERRUPT_PIN] = 1;
7348 pci_config_set_prog_interface(pci_conf, 0x2);
7349
7350 if (n->params.use_intel_id) {
7351 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
7352 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME);
7353 } else {
7354 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
7355 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
7356 }
7357
7358 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
7359 nvme_add_pm_capability(pci_dev, 0x60);
7360 pcie_endpoint_cap_init(pci_dev, 0x80);
7361 pcie_cap_flr_init(pci_dev);
7362 if (n->params.sriov_max_vfs) {
7363 pcie_ari_init(pci_dev, 0x100, 1);
7364 }
7365
7366 /* add one to max_ioqpairs to account for the admin queue pair */
7367 bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize,
7368 &msix_table_offset, &msix_pba_offset);
7369
7370 memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
7371 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
7372 msix_table_offset);
7373 memory_region_add_subregion(&n->bar0, 0, &n->iomem);
7374
7375 if (pci_is_vf(pci_dev)) {
7376 pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0);
7377 } else {
7378 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
7379 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
7380 }
7381 ret = msix_init(pci_dev, n->params.msix_qsize,
7382 &n->bar0, 0, msix_table_offset,
7383 &n->bar0, 0, msix_pba_offset, 0, errp);
7384 if (ret == -ENOTSUP) {
7385 /* report that msix is not supported, but do not error out */
7386 warn_report_err(*errp);
7387 *errp = NULL;
7388 } else if (ret < 0) {
7389 /* propagate error to caller */
7390 return false;
7391 }
7392
7393 nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
7394
7395 if (n->params.cmb_size_mb) {
7396 nvme_init_cmb(n, pci_dev);
7397 }
7398
7399 if (n->pmr.dev) {
7400 nvme_init_pmr(n, pci_dev);
7401 }
7402
7403 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
7404 nvme_init_sriov(n, pci_dev, 0x120);
7405 }
7406
7407 return true;
7408 }
7409
7410 static void nvme_init_subnqn(NvmeCtrl *n)
7411 {
7412 NvmeSubsystem *subsys = n->subsys;
7413 NvmeIdCtrl *id = &n->id_ctrl;
7414
7415 if (!subsys) {
7416 snprintf((char *)id->subnqn, sizeof(id->subnqn),
7417 "nqn.2019-08.org.qemu:%s", n->params.serial);
7418 } else {
7419 pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
7420 }
7421 }
7422
7423 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
7424 {
7425 NvmeIdCtrl *id = &n->id_ctrl;
7426 uint8_t *pci_conf = pci_dev->config;
7427 uint64_t cap = ldq_le_p(&n->bar.cap);
7428 NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
7429 uint32_t ctratt;
7430
7431 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
7432 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
7433 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
7434 strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' ');
7435 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
7436
7437 id->cntlid = cpu_to_le16(n->cntlid);
7438
7439 id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
7440 ctratt = NVME_CTRATT_ELBAS;
7441
7442 id->rab = 6;
7443
7444 if (n->params.use_intel_id) {
7445 id->ieee[0] = 0xb3;
7446 id->ieee[1] = 0x02;
7447 id->ieee[2] = 0x00;
7448 } else {
7449 id->ieee[0] = 0x00;
7450 id->ieee[1] = 0x54;
7451 id->ieee[2] = 0x52;
7452 }
7453
7454 id->mdts = n->params.mdts;
7455 id->ver = cpu_to_le32(NVME_SPEC_VER);
7456 id->oacs =
7457 cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF);
7458 id->cntrltype = 0x1;
7459
7460 /*
7461 * Because the controller always completes the Abort command immediately,
7462 * there can never be more than one concurrently executing Abort command,
7463 * so this value is never used for anything. Note that there can easily be
7464 * many Abort commands in the queues, but they are not considered
7465 * "executing" until processed by nvme_abort.
7466 *
7467 * The specification recommends a value of 3 for Abort Command Limit (four
7468 * concurrently outstanding Abort commands), so lets use that though it is
7469 * inconsequential.
7470 */
7471 id->acl = 3;
7472 id->aerl = n->params.aerl;
7473 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
7474 id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
7475
7476 /* recommended default value (~70 C) */
7477 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
7478 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
7479
7480 id->sqes = (0x6 << 4) | 0x6;
7481 id->cqes = (0x4 << 4) | 0x4;
7482 id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
7483 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
7484 NVME_ONCS_FEATURES | NVME_ONCS_DSM |
7485 NVME_ONCS_COMPARE | NVME_ONCS_COPY);
7486
7487 /*
7488 * NOTE: If this device ever supports a command set that does NOT use 0x0
7489 * as a Flush-equivalent operation, support for the broadcast NSID in Flush
7490 * should probably be removed.
7491 *
7492 * See comment in nvme_io_cmd.
7493 */
7494 id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
7495
7496 id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1);
7497 id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN);
7498
7499 nvme_init_subnqn(n);
7500
7501 id->psd[0].mp = cpu_to_le16(0x9c4);
7502 id->psd[0].enlat = cpu_to_le32(0x10);
7503 id->psd[0].exlat = cpu_to_le32(0x4);
7504
7505 if (n->subsys) {
7506 id->cmic |= NVME_CMIC_MULTI_CTRL;
7507 ctratt |= NVME_CTRATT_ENDGRPS;
7508
7509 id->endgidmax = cpu_to_le16(0x1);
7510 }
7511
7512 id->ctratt = cpu_to_le32(ctratt);
7513
7514 NVME_CAP_SET_MQES(cap, 0x7ff);
7515 NVME_CAP_SET_CQR(cap, 1);
7516 NVME_CAP_SET_TO(cap, 0xf);
7517 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
7518 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
7519 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
7520 NVME_CAP_SET_MPSMAX(cap, 4);
7521 NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
7522 NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
7523 stq_le_p(&n->bar.cap, cap);
7524
7525 stl_le_p(&n->bar.vs, NVME_SPEC_VER);
7526 n->bar.intmc = n->bar.intms = 0;
7527
7528 if (pci_is_vf(pci_dev) && !sctrl->scs) {
7529 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
7530 }
7531 }
7532
7533 static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
7534 {
7535 int cntlid;
7536
7537 if (!n->subsys) {
7538 return 0;
7539 }
7540
7541 cntlid = nvme_subsys_register_ctrl(n, errp);
7542 if (cntlid < 0) {
7543 return -1;
7544 }
7545
7546 n->cntlid = cntlid;
7547
7548 return 0;
7549 }
7550
7551 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
7552 {
7553 uint32_t nsid = ns->params.nsid;
7554 assert(nsid && nsid <= NVME_MAX_NAMESPACES);
7555
7556 n->namespaces[nsid] = ns;
7557 ns->attached++;
7558
7559 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
7560 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
7561 }
7562
7563 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
7564 {
7565 NvmeCtrl *n = NVME(pci_dev);
7566 DeviceState *dev = DEVICE(pci_dev);
7567 NvmeNamespace *ns;
7568 NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
7569
7570 if (pci_is_vf(pci_dev)) {
7571 /*
7572 * VFs derive settings from the parent. PF's lifespan exceeds
7573 * that of VF's, so it's safe to share params.serial.
7574 */
7575 memcpy(&n->params, &pn->params, sizeof(NvmeParams));
7576 n->subsys = pn->subsys;
7577 }
7578
7579 if (!nvme_check_params(n, errp)) {
7580 return;
7581 }
7582
7583 qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, dev, dev->id);
7584
7585 if (nvme_init_subsys(n, errp)) {
7586 return;
7587 }
7588 nvme_init_state(n);
7589 if (!nvme_init_pci(n, pci_dev, errp)) {
7590 return;
7591 }
7592 nvme_init_ctrl(n, pci_dev);
7593
7594 /* setup a namespace if the controller drive property was given */
7595 if (n->namespace.blkconf.blk) {
7596 ns = &n->namespace;
7597 ns->params.nsid = 1;
7598
7599 if (nvme_ns_setup(ns, errp)) {
7600 return;
7601 }
7602
7603 nvme_attach_ns(n, ns);
7604 }
7605 }
7606
7607 static void nvme_exit(PCIDevice *pci_dev)
7608 {
7609 NvmeCtrl *n = NVME(pci_dev);
7610 NvmeNamespace *ns;
7611 int i;
7612
7613 nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
7614
7615 if (n->subsys) {
7616 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7617 ns = nvme_ns(n, i);
7618 if (ns) {
7619 ns->attached--;
7620 }
7621 }
7622
7623 nvme_subsys_unregister_ctrl(n->subsys, n);
7624 }
7625
7626 g_free(n->cq);
7627 g_free(n->sq);
7628 g_free(n->aer_reqs);
7629
7630 if (n->params.cmb_size_mb) {
7631 g_free(n->cmb.buf);
7632 }
7633
7634 if (n->pmr.dev) {
7635 host_memory_backend_set_mapped(n->pmr.dev, false);
7636 }
7637
7638 if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
7639 pcie_sriov_pf_exit(pci_dev);
7640 }
7641
7642 msix_uninit(pci_dev, &n->bar0, &n->bar0);
7643 memory_region_del_subregion(&n->bar0, &n->iomem);
7644 }
7645
7646 static Property nvme_props[] = {
7647 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
7648 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
7649 HostMemoryBackend *),
7650 DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
7651 NvmeSubsystem *),
7652 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
7653 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
7654 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
7655 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
7656 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
7657 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
7658 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
7659 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
7660 DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
7661 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
7662 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
7663 DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, false),
7664 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
7665 DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
7666 params.auto_transition_zones, true),
7667 DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0),
7668 DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl,
7669 params.sriov_vq_flexible, 0),
7670 DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl,
7671 params.sriov_vi_flexible, 0),
7672 DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl,
7673 params.sriov_max_vi_per_vf, 0),
7674 DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl,
7675 params.sriov_max_vq_per_vf, 0),
7676 DEFINE_PROP_END_OF_LIST(),
7677 };
7678
7679 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
7680 void *opaque, Error **errp)
7681 {
7682 NvmeCtrl *n = NVME(obj);
7683 uint8_t value = n->smart_critical_warning;
7684
7685 visit_type_uint8(v, name, &value, errp);
7686 }
7687
7688 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
7689 void *opaque, Error **errp)
7690 {
7691 NvmeCtrl *n = NVME(obj);
7692 uint8_t value, old_value, cap = 0, index, event;
7693
7694 if (!visit_type_uint8(v, name, &value, errp)) {
7695 return;
7696 }
7697
7698 cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
7699 | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
7700 if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
7701 cap |= NVME_SMART_PMR_UNRELIABLE;
7702 }
7703
7704 if ((value & cap) != value) {
7705 error_setg(errp, "unsupported smart critical warning bits: 0x%x",
7706 value & ~cap);
7707 return;
7708 }
7709
7710 old_value = n->smart_critical_warning;
7711 n->smart_critical_warning = value;
7712
7713 /* only inject new bits of smart critical warning */
7714 for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
7715 event = 1 << index;
7716 if (value & ~old_value & event)
7717 nvme_smart_event(n, event);
7718 }
7719 }
7720
7721 static void nvme_pci_reset(DeviceState *qdev)
7722 {
7723 PCIDevice *pci_dev = PCI_DEVICE(qdev);
7724 NvmeCtrl *n = NVME(pci_dev);
7725
7726 trace_pci_nvme_pci_reset();
7727 nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
7728 }
7729
7730 static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address,
7731 uint32_t val, int len)
7732 {
7733 NvmeCtrl *n = NVME(dev);
7734 NvmeSecCtrlEntry *sctrl;
7735 uint16_t sriov_cap = dev->exp.sriov_cap;
7736 uint32_t off = address - sriov_cap;
7737 int i, num_vfs;
7738
7739 if (!sriov_cap) {
7740 return;
7741 }
7742
7743 if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) {
7744 if (!(val & PCI_SRIOV_CTRL_VFE)) {
7745 num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF);
7746 for (i = 0; i < num_vfs; i++) {
7747 sctrl = &n->sec_ctrl_list.sec[i];
7748 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
7749 }
7750 }
7751 }
7752 }
7753
7754 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address,
7755 uint32_t val, int len)
7756 {
7757 nvme_sriov_pre_write_ctrl(dev, address, val, len);
7758 pci_default_write_config(dev, address, val, len);
7759 pcie_cap_flr_write_config(dev, address, val, len);
7760 }
7761
7762 static const VMStateDescription nvme_vmstate = {
7763 .name = "nvme",
7764 .unmigratable = 1,
7765 };
7766
7767 static void nvme_class_init(ObjectClass *oc, void *data)
7768 {
7769 DeviceClass *dc = DEVICE_CLASS(oc);
7770 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
7771
7772 pc->realize = nvme_realize;
7773 pc->config_write = nvme_pci_write_config;
7774 pc->exit = nvme_exit;
7775 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
7776 pc->revision = 2;
7777
7778 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
7779 dc->desc = "Non-Volatile Memory Express";
7780 device_class_set_props(dc, nvme_props);
7781 dc->vmsd = &nvme_vmstate;
7782 dc->reset = nvme_pci_reset;
7783 }
7784
7785 static void nvme_instance_init(Object *obj)
7786 {
7787 NvmeCtrl *n = NVME(obj);
7788
7789 device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
7790 "bootindex", "/namespace@1,0",
7791 DEVICE(obj));
7792
7793 object_property_add(obj, "smart_critical_warning", "uint8",
7794 nvme_get_smart_warning,
7795 nvme_set_smart_warning, NULL, NULL);
7796 }
7797
7798 static const TypeInfo nvme_info = {
7799 .name = TYPE_NVME,
7800 .parent = TYPE_PCI_DEVICE,
7801 .instance_size = sizeof(NvmeCtrl),
7802 .instance_init = nvme_instance_init,
7803 .class_init = nvme_class_init,
7804 .interfaces = (InterfaceInfo[]) {
7805 { INTERFACE_PCIE_DEVICE },
7806 { }
7807 },
7808 };
7809
7810 static const TypeInfo nvme_bus_info = {
7811 .name = TYPE_NVME_BUS,
7812 .parent = TYPE_BUS,
7813 .instance_size = sizeof(NvmeBus),
7814 };
7815
7816 static void nvme_register_types(void)
7817 {
7818 type_register_static(&nvme_info);
7819 type_register_static(&nvme_bus_info);
7820 }
7821
7822 type_init(nvme_register_types)