]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ppc/pnv.c
ppc/pnv: Link "psi" property to PnvLpc::psi pointer
[mirror_qemu.git] / hw / ppc / pnv.c
1 /*
2 * QEMU PowerPC PowerNV machine model
3 *
4 * Copyright (c) 2016, IBM Corporation.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43
44 #include "hw/ppc/xics.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/ppc/pnv_xscom.h"
47 #include "hw/ppc/pnv_pnor.h"
48
49 #include "hw/isa/isa.h"
50 #include "hw/boards.h"
51 #include "hw/char/serial.h"
52 #include "hw/rtc/mc146818rtc.h"
53
54 #include <libfdt.h>
55
56 #define FDT_MAX_SIZE (1 * MiB)
57
58 #define FW_FILE_NAME "skiboot.lid"
59 #define FW_LOAD_ADDR 0x0
60 #define FW_MAX_SIZE (4 * MiB)
61
62 #define KERNEL_LOAD_ADDR 0x20000000
63 #define KERNEL_MAX_SIZE (256 * MiB)
64 #define INITRD_LOAD_ADDR 0x60000000
65 #define INITRD_MAX_SIZE (256 * MiB)
66
67 static const char *pnv_chip_core_typename(const PnvChip *o)
68 {
69 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
70 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
71 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
72 const char *core_type = object_class_get_name(object_class_by_name(s));
73 g_free(s);
74 return core_type;
75 }
76
77 /*
78 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
79 * 4 * 4 sockets * 12 cores * 8 threads = 1536
80 * Let's make it 2^11
81 */
82 #define MAX_CPUS 2048
83
84 /*
85 * Memory nodes are created by hostboot, one for each range of memory
86 * that has a different "affinity". In practice, it means one range
87 * per chip.
88 */
89 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
90 {
91 char *mem_name;
92 uint64_t mem_reg_property[2];
93 int off;
94
95 mem_reg_property[0] = cpu_to_be64(start);
96 mem_reg_property[1] = cpu_to_be64(size);
97
98 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
99 off = fdt_add_subnode(fdt, 0, mem_name);
100 g_free(mem_name);
101
102 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
103 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
104 sizeof(mem_reg_property))));
105 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
106 }
107
108 static int get_cpus_node(void *fdt)
109 {
110 int cpus_offset = fdt_path_offset(fdt, "/cpus");
111
112 if (cpus_offset < 0) {
113 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
114 if (cpus_offset) {
115 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
116 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
117 }
118 }
119 _FDT(cpus_offset);
120 return cpus_offset;
121 }
122
123 /*
124 * The PowerNV cores (and threads) need to use real HW ids and not an
125 * incremental index like it has been done on other platforms. This HW
126 * id is stored in the CPU PIR, it is used to create cpu nodes in the
127 * device tree, used in XSCOM to address cores and in interrupt
128 * servers.
129 */
130 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
131 {
132 PowerPCCPU *cpu = pc->threads[0];
133 CPUState *cs = CPU(cpu);
134 DeviceClass *dc = DEVICE_GET_CLASS(cs);
135 int smt_threads = CPU_CORE(pc)->nr_threads;
136 CPUPPCState *env = &cpu->env;
137 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
138 uint32_t servers_prop[smt_threads];
139 int i;
140 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
141 0xffffffff, 0xffffffff};
142 uint32_t tbfreq = PNV_TIMEBASE_FREQ;
143 uint32_t cpufreq = 1000000000;
144 uint32_t page_sizes_prop[64];
145 size_t page_sizes_prop_size;
146 const uint8_t pa_features[] = { 24, 0,
147 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
148 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
149 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
150 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
151 int offset;
152 char *nodename;
153 int cpus_offset = get_cpus_node(fdt);
154
155 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
156 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
157 _FDT(offset);
158 g_free(nodename);
159
160 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
161
162 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
163 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
164 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
165
166 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
167 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
168 env->dcache_line_size)));
169 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
170 env->dcache_line_size)));
171 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
172 env->icache_line_size)));
173 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
174 env->icache_line_size)));
175
176 if (pcc->l1_dcache_size) {
177 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
178 pcc->l1_dcache_size)));
179 } else {
180 warn_report("Unknown L1 dcache size for cpu");
181 }
182 if (pcc->l1_icache_size) {
183 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
184 pcc->l1_icache_size)));
185 } else {
186 warn_report("Unknown L1 icache size for cpu");
187 }
188
189 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
190 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
191 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
192 cpu->hash64_opts->slb_size)));
193 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
194 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
195
196 if (env->spr_cb[SPR_PURR].oea_read) {
197 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
198 }
199
200 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
201 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
202 segs, sizeof(segs))));
203 }
204
205 /*
206 * Advertise VMX/VSX (vector extensions) if available
207 * 0 / no property == no vector extensions
208 * 1 == VMX / Altivec available
209 * 2 == VSX available
210 */
211 if (env->insns_flags & PPC_ALTIVEC) {
212 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
213
214 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
215 }
216
217 /*
218 * Advertise DFP (Decimal Floating Point) if available
219 * 0 / no property == no DFP
220 * 1 == DFP available
221 */
222 if (env->insns_flags2 & PPC2_DFP) {
223 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
224 }
225
226 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
227 sizeof(page_sizes_prop));
228 if (page_sizes_prop_size) {
229 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
230 page_sizes_prop, page_sizes_prop_size)));
231 }
232
233 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
234 pa_features, sizeof(pa_features))));
235
236 /* Build interrupt servers properties */
237 for (i = 0; i < smt_threads; i++) {
238 servers_prop[i] = cpu_to_be32(pc->pir + i);
239 }
240 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
241 servers_prop, sizeof(servers_prop))));
242 }
243
244 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
245 uint32_t nr_threads)
246 {
247 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
248 char *name;
249 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
250 uint32_t irange[2], i, rsize;
251 uint64_t *reg;
252 int offset;
253
254 irange[0] = cpu_to_be32(pir);
255 irange[1] = cpu_to_be32(nr_threads);
256
257 rsize = sizeof(uint64_t) * 2 * nr_threads;
258 reg = g_malloc(rsize);
259 for (i = 0; i < nr_threads; i++) {
260 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
261 reg[i * 2 + 1] = cpu_to_be64(0x1000);
262 }
263
264 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
265 offset = fdt_add_subnode(fdt, 0, name);
266 _FDT(offset);
267 g_free(name);
268
269 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
270 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
271 _FDT((fdt_setprop_string(fdt, offset, "device_type",
272 "PowerPC-External-Interrupt-Presentation")));
273 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
274 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
275 irange, sizeof(irange))));
276 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
277 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
278 g_free(reg);
279 }
280
281 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
282 {
283 const char *typename = pnv_chip_core_typename(chip);
284 size_t typesize = object_type_get_instance_size(typename);
285 int i;
286
287 pnv_dt_xscom(chip, fdt, 0);
288
289 for (i = 0; i < chip->nr_cores; i++) {
290 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
291
292 pnv_dt_core(chip, pnv_core, fdt);
293
294 /* Interrupt Control Presenters (ICP). One per core. */
295 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
296 }
297
298 if (chip->ram_size) {
299 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
300 }
301 }
302
303 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
304 {
305 const char *typename = pnv_chip_core_typename(chip);
306 size_t typesize = object_type_get_instance_size(typename);
307 int i;
308
309 pnv_dt_xscom(chip, fdt, 0);
310
311 for (i = 0; i < chip->nr_cores; i++) {
312 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
313
314 pnv_dt_core(chip, pnv_core, fdt);
315 }
316
317 if (chip->ram_size) {
318 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
319 }
320
321 pnv_dt_lpc(chip, fdt, 0);
322 }
323
324 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
325 {
326 uint32_t io_base = d->ioport_id;
327 uint32_t io_regs[] = {
328 cpu_to_be32(1),
329 cpu_to_be32(io_base),
330 cpu_to_be32(2)
331 };
332 char *name;
333 int node;
334
335 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
336 node = fdt_add_subnode(fdt, lpc_off, name);
337 _FDT(node);
338 g_free(name);
339
340 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
341 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
342 }
343
344 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
345 {
346 const char compatible[] = "ns16550\0pnpPNP,501";
347 uint32_t io_base = d->ioport_id;
348 uint32_t io_regs[] = {
349 cpu_to_be32(1),
350 cpu_to_be32(io_base),
351 cpu_to_be32(8)
352 };
353 char *name;
354 int node;
355
356 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
357 node = fdt_add_subnode(fdt, lpc_off, name);
358 _FDT(node);
359 g_free(name);
360
361 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
362 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
363 sizeof(compatible))));
364
365 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
366 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
367 _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
368 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
369 fdt_get_phandle(fdt, lpc_off))));
370
371 /* This is needed by Linux */
372 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
373 }
374
375 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
376 {
377 const char compatible[] = "bt\0ipmi-bt";
378 uint32_t io_base;
379 uint32_t io_regs[] = {
380 cpu_to_be32(1),
381 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
382 cpu_to_be32(3)
383 };
384 uint32_t irq;
385 char *name;
386 int node;
387
388 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
389 io_regs[1] = cpu_to_be32(io_base);
390
391 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
392
393 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
394 node = fdt_add_subnode(fdt, lpc_off, name);
395 _FDT(node);
396 g_free(name);
397
398 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
399 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
400 sizeof(compatible))));
401
402 /* Mark it as reserved to avoid Linux trying to claim it */
403 _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
404 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
405 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
406 fdt_get_phandle(fdt, lpc_off))));
407 }
408
409 typedef struct ForeachPopulateArgs {
410 void *fdt;
411 int offset;
412 } ForeachPopulateArgs;
413
414 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
415 {
416 ForeachPopulateArgs *args = opaque;
417 ISADevice *d = ISA_DEVICE(dev);
418
419 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
420 pnv_dt_rtc(d, args->fdt, args->offset);
421 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
422 pnv_dt_serial(d, args->fdt, args->offset);
423 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
424 pnv_dt_ipmi_bt(d, args->fdt, args->offset);
425 } else {
426 error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
427 d->ioport_id);
428 }
429
430 return 0;
431 }
432
433 /*
434 * The default LPC bus of a multichip system is on chip 0. It's
435 * recognized by the firmware (skiboot) using a "primary" property.
436 */
437 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
438 {
439 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
440 ForeachPopulateArgs args = {
441 .fdt = fdt,
442 .offset = isa_offset,
443 };
444 uint32_t phandle;
445
446 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
447
448 phandle = qemu_fdt_alloc_phandle(fdt);
449 assert(phandle > 0);
450 _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
451
452 /*
453 * ISA devices are not necessarily parented to the ISA bus so we
454 * can not use object_child_foreach()
455 */
456 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
457 &args);
458 }
459
460 static void pnv_dt_power_mgt(void *fdt)
461 {
462 int off;
463
464 off = fdt_add_subnode(fdt, 0, "ibm,opal");
465 off = fdt_add_subnode(fdt, off, "power-mgt");
466
467 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
468 }
469
470 static void *pnv_dt_create(MachineState *machine)
471 {
472 const char plat_compat8[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
473 const char plat_compat9[] = "qemu,powernv9\0ibm,powernv";
474 PnvMachineState *pnv = PNV_MACHINE(machine);
475 void *fdt;
476 char *buf;
477 int off;
478 int i;
479
480 fdt = g_malloc0(FDT_MAX_SIZE);
481 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
482
483 /* /qemu node */
484 _FDT((fdt_add_subnode(fdt, 0, "qemu")));
485
486 /* Root node */
487 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
488 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
489 _FDT((fdt_setprop_string(fdt, 0, "model",
490 "IBM PowerNV (emulated by qemu)")));
491 if (pnv_is_power9(pnv)) {
492 _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat9,
493 sizeof(plat_compat9))));
494 } else {
495 _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat8,
496 sizeof(plat_compat8))));
497 }
498
499
500 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
501 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
502 if (qemu_uuid_set) {
503 _FDT((fdt_property_string(fdt, "system-id", buf)));
504 }
505 g_free(buf);
506
507 off = fdt_add_subnode(fdt, 0, "chosen");
508 if (machine->kernel_cmdline) {
509 _FDT((fdt_setprop_string(fdt, off, "bootargs",
510 machine->kernel_cmdline)));
511 }
512
513 if (pnv->initrd_size) {
514 uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
515 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
516
517 _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
518 &start_prop, sizeof(start_prop))));
519 _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
520 &end_prop, sizeof(end_prop))));
521 }
522
523 /* Populate device tree for each chip */
524 for (i = 0; i < pnv->num_chips; i++) {
525 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
526 }
527
528 /* Populate ISA devices on chip 0 */
529 pnv_dt_isa(pnv, fdt);
530
531 if (pnv->bmc) {
532 pnv_dt_bmc_sensors(pnv->bmc, fdt);
533 }
534
535 /* Create an extra node for power management on Power9 */
536 if (pnv_is_power9(pnv)) {
537 pnv_dt_power_mgt(fdt);
538 }
539
540 return fdt;
541 }
542
543 static void pnv_powerdown_notify(Notifier *n, void *opaque)
544 {
545 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
546
547 if (pnv->bmc) {
548 pnv_bmc_powerdown(pnv->bmc);
549 }
550 }
551
552 static void pnv_reset(MachineState *machine)
553 {
554 PnvMachineState *pnv = PNV_MACHINE(machine);
555 void *fdt;
556 Object *obj;
557
558 qemu_devices_reset();
559
560 /*
561 * OpenPOWER systems have a BMC, which can be defined on the
562 * command line with:
563 *
564 * -device ipmi-bmc-sim,id=bmc0
565 *
566 * This is the internal simulator but it could also be an external
567 * BMC.
568 */
569 obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL);
570 if (obj) {
571 pnv->bmc = IPMI_BMC(obj);
572 }
573
574 fdt = pnv_dt_create(machine);
575
576 /* Pack resulting tree */
577 _FDT((fdt_pack(fdt)));
578
579 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
580 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
581 }
582
583 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
584 {
585 Pnv8Chip *chip8 = PNV8_CHIP(chip);
586 return pnv_lpc_isa_create(&chip8->lpc, true, errp);
587 }
588
589 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
590 {
591 Pnv8Chip *chip8 = PNV8_CHIP(chip);
592 return pnv_lpc_isa_create(&chip8->lpc, false, errp);
593 }
594
595 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
596 {
597 Pnv9Chip *chip9 = PNV9_CHIP(chip);
598 return pnv_lpc_isa_create(&chip9->lpc, false, errp);
599 }
600
601 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
602 {
603 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
604 }
605
606 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
607 {
608 Pnv8Chip *chip8 = PNV8_CHIP(chip);
609
610 ics_pic_print_info(&chip8->psi.ics, mon);
611 }
612
613 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
614 {
615 Pnv9Chip *chip9 = PNV9_CHIP(chip);
616
617 pnv_xive_pic_print_info(&chip9->xive, mon);
618 pnv_psi_pic_print_info(&chip9->psi, mon);
619 }
620
621 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
622 {
623 PowerPCCPUClass *ppc_default =
624 POWERPC_CPU_CLASS(object_class_by_name(default_type));
625 PowerPCCPUClass *ppc =
626 POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
627
628 return ppc_default->pvr_match(ppc_default, ppc->pvr);
629 }
630
631 static void pnv_init(MachineState *machine)
632 {
633 PnvMachineState *pnv = PNV_MACHINE(machine);
634 MachineClass *mc = MACHINE_GET_CLASS(machine);
635 MemoryRegion *ram;
636 char *fw_filename;
637 long fw_size;
638 int i;
639 char *chip_typename;
640 DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
641 DeviceState *dev;
642
643 /* allocate RAM */
644 if (machine->ram_size < (1 * GiB)) {
645 warn_report("skiboot may not work with < 1GB of RAM");
646 }
647
648 ram = g_new(MemoryRegion, 1);
649 memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
650 machine->ram_size);
651 memory_region_add_subregion(get_system_memory(), 0, ram);
652
653 /*
654 * Create our simple PNOR device
655 */
656 dev = qdev_create(NULL, TYPE_PNV_PNOR);
657 if (pnor) {
658 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
659 &error_abort);
660 }
661 qdev_init_nofail(dev);
662 pnv->pnor = PNV_PNOR(dev);
663
664 /* load skiboot firmware */
665 if (bios_name == NULL) {
666 bios_name = FW_FILE_NAME;
667 }
668
669 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
670 if (!fw_filename) {
671 error_report("Could not find OPAL firmware '%s'", bios_name);
672 exit(1);
673 }
674
675 fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
676 if (fw_size < 0) {
677 error_report("Could not load OPAL firmware '%s'", fw_filename);
678 exit(1);
679 }
680 g_free(fw_filename);
681
682 /* load kernel */
683 if (machine->kernel_filename) {
684 long kernel_size;
685
686 kernel_size = load_image_targphys(machine->kernel_filename,
687 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
688 if (kernel_size < 0) {
689 error_report("Could not load kernel '%s'",
690 machine->kernel_filename);
691 exit(1);
692 }
693 }
694
695 /* load initrd */
696 if (machine->initrd_filename) {
697 pnv->initrd_base = INITRD_LOAD_ADDR;
698 pnv->initrd_size = load_image_targphys(machine->initrd_filename,
699 pnv->initrd_base, INITRD_MAX_SIZE);
700 if (pnv->initrd_size < 0) {
701 error_report("Could not load initial ram disk '%s'",
702 machine->initrd_filename);
703 exit(1);
704 }
705 }
706
707 /*
708 * Check compatibility of the specified CPU with the machine
709 * default.
710 */
711 if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
712 error_report("invalid CPU model '%s' for %s machine",
713 machine->cpu_type, mc->name);
714 exit(1);
715 }
716
717 /* Create the processor chips */
718 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
719 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
720 i, machine->cpu_type);
721 if (!object_class_by_name(chip_typename)) {
722 error_report("invalid chip model '%.*s' for %s machine",
723 i, machine->cpu_type, mc->name);
724 exit(1);
725 }
726
727 pnv->chips = g_new0(PnvChip *, pnv->num_chips);
728 for (i = 0; i < pnv->num_chips; i++) {
729 char chip_name[32];
730 Object *chip = object_new(chip_typename);
731
732 pnv->chips[i] = PNV_CHIP(chip);
733
734 /*
735 * TODO: put all the memory in one node on chip 0 until we find a
736 * way to specify different ranges for each chip
737 */
738 if (i == 0) {
739 object_property_set_int(chip, machine->ram_size, "ram-size",
740 &error_fatal);
741 }
742
743 snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
744 object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
745 object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
746 &error_fatal);
747 object_property_set_int(chip, machine->smp.cores,
748 "nr-cores", &error_fatal);
749 object_property_set_bool(chip, true, "realized", &error_fatal);
750 }
751 g_free(chip_typename);
752
753 /* Instantiate ISA bus on chip 0 */
754 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
755
756 /* Create serial port */
757 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
758
759 /* Create an RTC ISA device too */
760 mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
761
762 /*
763 * OpenPOWER systems use a IPMI SEL Event message to notify the
764 * host to powerdown
765 */
766 pnv->powerdown_notifier.notify = pnv_powerdown_notify;
767 qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
768 }
769
770 /*
771 * 0:21 Reserved - Read as zeros
772 * 22:24 Chip ID
773 * 25:28 Core number
774 * 29:31 Thread ID
775 */
776 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
777 {
778 return (chip->chip_id << 7) | (core_id << 3);
779 }
780
781 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
782 Error **errp)
783 {
784 Error *local_err = NULL;
785 Object *obj;
786 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
787
788 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, XICS_FABRIC(qdev_get_machine()),
789 &local_err);
790 if (local_err) {
791 error_propagate(errp, local_err);
792 return;
793 }
794
795 pnv_cpu->intc = obj;
796 }
797
798
799 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
800 {
801 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
802
803 icp_reset(ICP(pnv_cpu->intc));
804 }
805
806 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
807 {
808 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
809
810 icp_destroy(ICP(pnv_cpu->intc));
811 pnv_cpu->intc = NULL;
812 }
813
814 /*
815 * 0:48 Reserved - Read as zeroes
816 * 49:52 Node ID
817 * 53:55 Chip ID
818 * 56 Reserved - Read as zero
819 * 57:61 Core number
820 * 62:63 Thread ID
821 *
822 * We only care about the lower bits. uint32_t is fine for the moment.
823 */
824 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
825 {
826 return (chip->chip_id << 8) | (core_id << 2);
827 }
828
829 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
830 Error **errp)
831 {
832 Pnv9Chip *chip9 = PNV9_CHIP(chip);
833 Error *local_err = NULL;
834 Object *obj;
835 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
836
837 /*
838 * The core creates its interrupt presenter but the XIVE interrupt
839 * controller object is initialized afterwards. Hopefully, it's
840 * only used at runtime.
841 */
842 obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err);
843 if (local_err) {
844 error_propagate(errp, local_err);
845 return;
846 }
847
848 pnv_cpu->intc = obj;
849 }
850
851 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
852 {
853 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
854
855 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
856 }
857
858 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
859 {
860 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
861
862 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
863 pnv_cpu->intc = NULL;
864 }
865
866 /*
867 * Allowed core identifiers on a POWER8 Processor Chip :
868 *
869 * <EX0 reserved>
870 * EX1 - Venice only
871 * EX2 - Venice only
872 * EX3 - Venice only
873 * EX4
874 * EX5
875 * EX6
876 * <EX7,8 reserved> <reserved>
877 * EX9 - Venice only
878 * EX10 - Venice only
879 * EX11 - Venice only
880 * EX12
881 * EX13
882 * EX14
883 * <EX15 reserved>
884 */
885 #define POWER8E_CORE_MASK (0x7070ull)
886 #define POWER8_CORE_MASK (0x7e7eull)
887
888 /*
889 * POWER9 has 24 cores, ids starting at 0x0
890 */
891 #define POWER9_CORE_MASK (0xffffffffffffffull)
892
893 static void pnv_chip_power8_instance_init(Object *obj)
894 {
895 Pnv8Chip *chip8 = PNV8_CHIP(obj);
896
897 object_initialize_child(obj, "psi", &chip8->psi, sizeof(chip8->psi),
898 TYPE_PNV8_PSI, &error_abort, NULL);
899 object_property_add_const_link(OBJECT(&chip8->psi), "xics",
900 OBJECT(qdev_get_machine()), &error_abort);
901
902 object_initialize_child(obj, "lpc", &chip8->lpc, sizeof(chip8->lpc),
903 TYPE_PNV8_LPC, &error_abort, NULL);
904
905 object_initialize_child(obj, "occ", &chip8->occ, sizeof(chip8->occ),
906 TYPE_PNV8_OCC, &error_abort, NULL);
907 object_property_add_const_link(OBJECT(&chip8->occ), "psi",
908 OBJECT(&chip8->psi), &error_abort);
909
910 object_initialize_child(obj, "homer", &chip8->homer, sizeof(chip8->homer),
911 TYPE_PNV8_HOMER, &error_abort, NULL);
912 object_property_add_const_link(OBJECT(&chip8->homer), "chip", obj,
913 &error_abort);
914 }
915
916 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
917 {
918 PnvChip *chip = PNV_CHIP(chip8);
919 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
920 const char *typename = pnv_chip_core_typename(chip);
921 size_t typesize = object_type_get_instance_size(typename);
922 int i, j;
923 char *name;
924 XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
925
926 name = g_strdup_printf("icp-%x", chip->chip_id);
927 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
928 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
929 g_free(name);
930
931 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
932
933 /* Map the ICP registers for each thread */
934 for (i = 0; i < chip->nr_cores; i++) {
935 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
936 int core_hwid = CPU_CORE(pnv_core)->core_id;
937
938 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
939 uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
940 PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
941
942 memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
943 &icp->mmio);
944 }
945 }
946 }
947
948 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
949 {
950 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
951 PnvChip *chip = PNV_CHIP(dev);
952 Pnv8Chip *chip8 = PNV8_CHIP(dev);
953 Pnv8Psi *psi8 = &chip8->psi;
954 Error *local_err = NULL;
955
956 /* XSCOM bridge is first */
957 pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
958 if (local_err) {
959 error_propagate(errp, local_err);
960 return;
961 }
962 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
963
964 pcc->parent_realize(dev, &local_err);
965 if (local_err) {
966 error_propagate(errp, local_err);
967 return;
968 }
969
970 /* Processor Service Interface (PSI) Host Bridge */
971 object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
972 "bar", &error_fatal);
973 object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
974 if (local_err) {
975 error_propagate(errp, local_err);
976 return;
977 }
978 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
979 &PNV_PSI(psi8)->xscom_regs);
980
981 /* Create LPC controller */
982 object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
983 &error_abort);
984 object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
985 &error_fatal);
986 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
987
988 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
989 (uint64_t) PNV_XSCOM_BASE(chip),
990 PNV_XSCOM_LPC_BASE);
991
992 /*
993 * Interrupt Management Area. This is the memory region holding
994 * all the Interrupt Control Presenter (ICP) registers
995 */
996 pnv_chip_icp_realize(chip8, &local_err);
997 if (local_err) {
998 error_propagate(errp, local_err);
999 return;
1000 }
1001
1002 /* Create the simplified OCC model */
1003 object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1004 if (local_err) {
1005 error_propagate(errp, local_err);
1006 return;
1007 }
1008 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1009
1010 /* OCC SRAM model */
1011 memory_region_add_subregion(get_system_memory(), PNV_OCC_COMMON_AREA(chip),
1012 &chip8->occ.sram_regs);
1013
1014 /* HOMER */
1015 object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1016 &local_err);
1017 if (local_err) {
1018 error_propagate(errp, local_err);
1019 return;
1020 }
1021 memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1022 &chip8->homer.regs);
1023 }
1024
1025 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1026 {
1027 DeviceClass *dc = DEVICE_CLASS(klass);
1028 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1029
1030 k->chip_type = PNV_CHIP_POWER8E;
1031 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
1032 k->cores_mask = POWER8E_CORE_MASK;
1033 k->core_pir = pnv_chip_core_pir_p8;
1034 k->intc_create = pnv_chip_power8_intc_create;
1035 k->intc_reset = pnv_chip_power8_intc_reset;
1036 k->intc_destroy = pnv_chip_power8_intc_destroy;
1037 k->isa_create = pnv_chip_power8_isa_create;
1038 k->dt_populate = pnv_chip_power8_dt_populate;
1039 k->pic_print_info = pnv_chip_power8_pic_print_info;
1040 dc->desc = "PowerNV Chip POWER8E";
1041
1042 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1043 &k->parent_realize);
1044 }
1045
1046 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1047 {
1048 DeviceClass *dc = DEVICE_CLASS(klass);
1049 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1050
1051 k->chip_type = PNV_CHIP_POWER8;
1052 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1053 k->cores_mask = POWER8_CORE_MASK;
1054 k->core_pir = pnv_chip_core_pir_p8;
1055 k->intc_create = pnv_chip_power8_intc_create;
1056 k->intc_reset = pnv_chip_power8_intc_reset;
1057 k->intc_destroy = pnv_chip_power8_intc_destroy;
1058 k->isa_create = pnv_chip_power8_isa_create;
1059 k->dt_populate = pnv_chip_power8_dt_populate;
1060 k->pic_print_info = pnv_chip_power8_pic_print_info;
1061 dc->desc = "PowerNV Chip POWER8";
1062
1063 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1064 &k->parent_realize);
1065 }
1066
1067 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1068 {
1069 DeviceClass *dc = DEVICE_CLASS(klass);
1070 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1071
1072 k->chip_type = PNV_CHIP_POWER8NVL;
1073 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
1074 k->cores_mask = POWER8_CORE_MASK;
1075 k->core_pir = pnv_chip_core_pir_p8;
1076 k->intc_create = pnv_chip_power8_intc_create;
1077 k->intc_reset = pnv_chip_power8_intc_reset;
1078 k->intc_destroy = pnv_chip_power8_intc_destroy;
1079 k->isa_create = pnv_chip_power8nvl_isa_create;
1080 k->dt_populate = pnv_chip_power8_dt_populate;
1081 k->pic_print_info = pnv_chip_power8_pic_print_info;
1082 dc->desc = "PowerNV Chip POWER8NVL";
1083
1084 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1085 &k->parent_realize);
1086 }
1087
1088 static void pnv_chip_power9_instance_init(Object *obj)
1089 {
1090 Pnv9Chip *chip9 = PNV9_CHIP(obj);
1091
1092 object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1093 TYPE_PNV_XIVE, &error_abort, NULL);
1094 object_property_add_const_link(OBJECT(&chip9->xive), "chip", obj,
1095 &error_abort);
1096
1097 object_initialize_child(obj, "psi", &chip9->psi, sizeof(chip9->psi),
1098 TYPE_PNV9_PSI, &error_abort, NULL);
1099
1100 object_initialize_child(obj, "lpc", &chip9->lpc, sizeof(chip9->lpc),
1101 TYPE_PNV9_LPC, &error_abort, NULL);
1102
1103 object_initialize_child(obj, "occ", &chip9->occ, sizeof(chip9->occ),
1104 TYPE_PNV9_OCC, &error_abort, NULL);
1105 object_property_add_const_link(OBJECT(&chip9->occ), "psi",
1106 OBJECT(&chip9->psi), &error_abort);
1107
1108 object_initialize_child(obj, "homer", &chip9->homer, sizeof(chip9->homer),
1109 TYPE_PNV9_HOMER, &error_abort, NULL);
1110 object_property_add_const_link(OBJECT(&chip9->homer), "chip", obj,
1111 &error_abort);
1112 }
1113
1114 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1115 {
1116 PnvChip *chip = PNV_CHIP(chip9);
1117 const char *typename = pnv_chip_core_typename(chip);
1118 size_t typesize = object_type_get_instance_size(typename);
1119 int i;
1120
1121 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1122 chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1123
1124 for (i = 0; i < chip9->nr_quads; i++) {
1125 char eq_name[32];
1126 PnvQuad *eq = &chip9->quads[i];
1127 PnvCore *pnv_core = PNV_CORE(chip->cores + (i * 4) * typesize);
1128 int core_id = CPU_CORE(pnv_core)->core_id;
1129
1130 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1131 object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1132 TYPE_PNV_QUAD, &error_fatal, NULL);
1133
1134 object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1135 object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1136
1137 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1138 &eq->xscom_regs);
1139 }
1140 }
1141
1142 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1143 {
1144 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1145 Pnv9Chip *chip9 = PNV9_CHIP(dev);
1146 PnvChip *chip = PNV_CHIP(dev);
1147 Pnv9Psi *psi9 = &chip9->psi;
1148 Error *local_err = NULL;
1149
1150 /* XSCOM bridge is first */
1151 pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1152 if (local_err) {
1153 error_propagate(errp, local_err);
1154 return;
1155 }
1156 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1157
1158 pcc->parent_realize(dev, &local_err);
1159 if (local_err) {
1160 error_propagate(errp, local_err);
1161 return;
1162 }
1163
1164 pnv_chip_quad_realize(chip9, &local_err);
1165 if (local_err) {
1166 error_propagate(errp, local_err);
1167 return;
1168 }
1169
1170 /* XIVE interrupt controller (POWER9) */
1171 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1172 "ic-bar", &error_fatal);
1173 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1174 "vc-bar", &error_fatal);
1175 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1176 "pc-bar", &error_fatal);
1177 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1178 "tm-bar", &error_fatal);
1179 object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1180 &local_err);
1181 if (local_err) {
1182 error_propagate(errp, local_err);
1183 return;
1184 }
1185 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1186 &chip9->xive.xscom_regs);
1187
1188 /* Processor Service Interface (PSI) Host Bridge */
1189 object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1190 "bar", &error_fatal);
1191 object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1192 if (local_err) {
1193 error_propagate(errp, local_err);
1194 return;
1195 }
1196 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1197 &PNV_PSI(psi9)->xscom_regs);
1198
1199 /* LPC */
1200 object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1201 &error_abort);
1202 object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1203 if (local_err) {
1204 error_propagate(errp, local_err);
1205 return;
1206 }
1207 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1208 &chip9->lpc.xscom_regs);
1209
1210 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1211 (uint64_t) PNV9_LPCM_BASE(chip));
1212
1213 /* Create the simplified OCC model */
1214 object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1215 if (local_err) {
1216 error_propagate(errp, local_err);
1217 return;
1218 }
1219 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1220
1221 /* OCC SRAM model */
1222 memory_region_add_subregion(get_system_memory(), PNV9_OCC_COMMON_AREA(chip),
1223 &chip9->occ.sram_regs);
1224
1225 /* HOMER */
1226 object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1227 &local_err);
1228 if (local_err) {
1229 error_propagate(errp, local_err);
1230 return;
1231 }
1232 memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1233 &chip9->homer.regs);
1234 }
1235
1236 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1237 {
1238 DeviceClass *dc = DEVICE_CLASS(klass);
1239 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1240
1241 k->chip_type = PNV_CHIP_POWER9;
1242 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1243 k->cores_mask = POWER9_CORE_MASK;
1244 k->core_pir = pnv_chip_core_pir_p9;
1245 k->intc_create = pnv_chip_power9_intc_create;
1246 k->intc_reset = pnv_chip_power9_intc_reset;
1247 k->intc_destroy = pnv_chip_power9_intc_destroy;
1248 k->isa_create = pnv_chip_power9_isa_create;
1249 k->dt_populate = pnv_chip_power9_dt_populate;
1250 k->pic_print_info = pnv_chip_power9_pic_print_info;
1251 dc->desc = "PowerNV Chip POWER9";
1252
1253 device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1254 &k->parent_realize);
1255 }
1256
1257 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1258 {
1259 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1260 int cores_max;
1261
1262 /*
1263 * No custom mask for this chip, let's use the default one from *
1264 * the chip class
1265 */
1266 if (!chip->cores_mask) {
1267 chip->cores_mask = pcc->cores_mask;
1268 }
1269
1270 /* filter alien core ids ! some are reserved */
1271 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1272 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1273 chip->cores_mask);
1274 return;
1275 }
1276 chip->cores_mask &= pcc->cores_mask;
1277
1278 /* now that we have a sane layout, let check the number of cores */
1279 cores_max = ctpop64(chip->cores_mask);
1280 if (chip->nr_cores > cores_max) {
1281 error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1282 cores_max);
1283 return;
1284 }
1285 }
1286
1287 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1288 {
1289 MachineState *ms = MACHINE(qdev_get_machine());
1290 Error *error = NULL;
1291 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1292 const char *typename = pnv_chip_core_typename(chip);
1293 size_t typesize = object_type_get_instance_size(typename);
1294 int i, core_hwid;
1295
1296 if (!object_class_by_name(typename)) {
1297 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1298 return;
1299 }
1300
1301 /* Cores */
1302 pnv_chip_core_sanitize(chip, &error);
1303 if (error) {
1304 error_propagate(errp, error);
1305 return;
1306 }
1307
1308 chip->cores = g_malloc0(typesize * chip->nr_cores);
1309
1310 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1311 && (i < chip->nr_cores); core_hwid++) {
1312 char core_name[32];
1313 void *pnv_core = chip->cores + i * typesize;
1314 uint64_t xscom_core_base;
1315
1316 if (!(chip->cores_mask & (1ull << core_hwid))) {
1317 continue;
1318 }
1319
1320 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1321 object_initialize_child(OBJECT(chip), core_name, pnv_core, typesize,
1322 typename, &error_fatal, NULL);
1323 object_property_set_int(OBJECT(pnv_core), ms->smp.threads, "nr-threads",
1324 &error_fatal);
1325 object_property_set_int(OBJECT(pnv_core), core_hwid,
1326 CPU_CORE_PROP_CORE_ID, &error_fatal);
1327 object_property_set_int(OBJECT(pnv_core),
1328 pcc->core_pir(chip, core_hwid),
1329 "pir", &error_fatal);
1330 object_property_add_const_link(OBJECT(pnv_core), "chip",
1331 OBJECT(chip), &error_fatal);
1332 object_property_set_bool(OBJECT(pnv_core), true, "realized",
1333 &error_fatal);
1334
1335 /* Each core has an XSCOM MMIO region */
1336 if (!pnv_chip_is_power9(chip)) {
1337 xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid);
1338 } else {
1339 xscom_core_base = PNV9_XSCOM_EC_BASE(core_hwid);
1340 }
1341
1342 pnv_xscom_add_subregion(chip, xscom_core_base,
1343 &PNV_CORE(pnv_core)->xscom_regs);
1344 i++;
1345 }
1346 }
1347
1348 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1349 {
1350 PnvChip *chip = PNV_CHIP(dev);
1351 Error *error = NULL;
1352
1353 /* Cores */
1354 pnv_chip_core_realize(chip, &error);
1355 if (error) {
1356 error_propagate(errp, error);
1357 return;
1358 }
1359 }
1360
1361 static Property pnv_chip_properties[] = {
1362 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1363 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1364 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1365 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1366 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1367 DEFINE_PROP_END_OF_LIST(),
1368 };
1369
1370 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1371 {
1372 DeviceClass *dc = DEVICE_CLASS(klass);
1373
1374 set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1375 dc->realize = pnv_chip_realize;
1376 dc->props = pnv_chip_properties;
1377 dc->desc = "PowerNV Chip";
1378 }
1379
1380 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1381 {
1382 PnvMachineState *pnv = PNV_MACHINE(xi);
1383 int i;
1384
1385 for (i = 0; i < pnv->num_chips; i++) {
1386 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1387
1388 if (ics_valid_irq(&chip8->psi.ics, irq)) {
1389 return &chip8->psi.ics;
1390 }
1391 }
1392 return NULL;
1393 }
1394
1395 static void pnv_ics_resend(XICSFabric *xi)
1396 {
1397 PnvMachineState *pnv = PNV_MACHINE(xi);
1398 int i;
1399
1400 for (i = 0; i < pnv->num_chips; i++) {
1401 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1402 ics_resend(&chip8->psi.ics);
1403 }
1404 }
1405
1406 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1407 {
1408 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1409
1410 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1411 }
1412
1413 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1414 Monitor *mon)
1415 {
1416 PnvMachineState *pnv = PNV_MACHINE(obj);
1417 int i;
1418 CPUState *cs;
1419
1420 CPU_FOREACH(cs) {
1421 PowerPCCPU *cpu = POWERPC_CPU(cs);
1422
1423 if (pnv_chip_is_power9(pnv->chips[0])) {
1424 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1425 } else {
1426 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1427 }
1428 }
1429
1430 for (i = 0; i < pnv->num_chips; i++) {
1431 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1432 }
1433 }
1434
1435 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
1436 void *opaque, Error **errp)
1437 {
1438 visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp);
1439 }
1440
1441 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
1442 void *opaque, Error **errp)
1443 {
1444 PnvMachineState *pnv = PNV_MACHINE(obj);
1445 uint32_t num_chips;
1446 Error *local_err = NULL;
1447
1448 visit_type_uint32(v, name, &num_chips, &local_err);
1449 if (local_err) {
1450 error_propagate(errp, local_err);
1451 return;
1452 }
1453
1454 /*
1455 * TODO: should we decide on how many chips we can create based
1456 * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1457 */
1458 if (!is_power_of_2(num_chips) || num_chips > 4) {
1459 error_setg(errp, "invalid number of chips: '%d'", num_chips);
1460 return;
1461 }
1462
1463 pnv->num_chips = num_chips;
1464 }
1465
1466 static void pnv_machine_instance_init(Object *obj)
1467 {
1468 PnvMachineState *pnv = PNV_MACHINE(obj);
1469 pnv->num_chips = 1;
1470 }
1471
1472 static void pnv_machine_class_props_init(ObjectClass *oc)
1473 {
1474 object_class_property_add(oc, "num-chips", "uint32",
1475 pnv_get_num_chips, pnv_set_num_chips,
1476 NULL, NULL, NULL);
1477 object_class_property_set_description(oc, "num-chips",
1478 "Specifies the number of processor chips",
1479 NULL);
1480 }
1481
1482 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1483 {
1484 MachineClass *mc = MACHINE_CLASS(oc);
1485 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1486
1487 mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1488 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1489
1490 xic->icp_get = pnv_icp_get;
1491 xic->ics_get = pnv_ics_get;
1492 xic->ics_resend = pnv_ics_resend;
1493 }
1494
1495 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1496 {
1497 MachineClass *mc = MACHINE_CLASS(oc);
1498
1499 mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1500 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1501
1502 mc->alias = "powernv";
1503 }
1504
1505 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1506 {
1507 MachineClass *mc = MACHINE_CLASS(oc);
1508 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1509
1510 mc->desc = "IBM PowerNV (Non-Virtualized)";
1511 mc->init = pnv_init;
1512 mc->reset = pnv_reset;
1513 mc->max_cpus = MAX_CPUS;
1514 /* Pnv provides a AHCI device for storage */
1515 mc->block_default_type = IF_IDE;
1516 mc->no_parallel = 1;
1517 mc->default_boot_order = NULL;
1518 /*
1519 * RAM defaults to less than 2048 for 32-bit hosts, and large
1520 * enough to fit the maximum initrd size at it's load address
1521 */
1522 mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1523 ispc->print_info = pnv_pic_print_info;
1524
1525 pnv_machine_class_props_init(oc);
1526 }
1527
1528 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1529 { \
1530 .name = type, \
1531 .class_init = class_initfn, \
1532 .parent = TYPE_PNV8_CHIP, \
1533 }
1534
1535 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1536 { \
1537 .name = type, \
1538 .class_init = class_initfn, \
1539 .parent = TYPE_PNV9_CHIP, \
1540 }
1541
1542 static const TypeInfo types[] = {
1543 {
1544 .name = MACHINE_TYPE_NAME("powernv9"),
1545 .parent = TYPE_PNV_MACHINE,
1546 .class_init = pnv_machine_power9_class_init,
1547 },
1548 {
1549 .name = MACHINE_TYPE_NAME("powernv8"),
1550 .parent = TYPE_PNV_MACHINE,
1551 .class_init = pnv_machine_power8_class_init,
1552 .interfaces = (InterfaceInfo[]) {
1553 { TYPE_XICS_FABRIC },
1554 { },
1555 },
1556 },
1557 {
1558 .name = TYPE_PNV_MACHINE,
1559 .parent = TYPE_MACHINE,
1560 .abstract = true,
1561 .instance_size = sizeof(PnvMachineState),
1562 .instance_init = pnv_machine_instance_init,
1563 .class_init = pnv_machine_class_init,
1564 .interfaces = (InterfaceInfo[]) {
1565 { TYPE_INTERRUPT_STATS_PROVIDER },
1566 { },
1567 },
1568 },
1569 {
1570 .name = TYPE_PNV_CHIP,
1571 .parent = TYPE_SYS_BUS_DEVICE,
1572 .class_init = pnv_chip_class_init,
1573 .instance_size = sizeof(PnvChip),
1574 .class_size = sizeof(PnvChipClass),
1575 .abstract = true,
1576 },
1577
1578 /*
1579 * P9 chip and variants
1580 */
1581 {
1582 .name = TYPE_PNV9_CHIP,
1583 .parent = TYPE_PNV_CHIP,
1584 .instance_init = pnv_chip_power9_instance_init,
1585 .instance_size = sizeof(Pnv9Chip),
1586 },
1587 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1588
1589 /*
1590 * P8 chip and variants
1591 */
1592 {
1593 .name = TYPE_PNV8_CHIP,
1594 .parent = TYPE_PNV_CHIP,
1595 .instance_init = pnv_chip_power8_instance_init,
1596 .instance_size = sizeof(Pnv8Chip),
1597 },
1598 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1599 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1600 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1601 pnv_chip_power8nvl_class_init),
1602 };
1603
1604 DEFINE_TYPES(types)