]> git.proxmox.com Git - qemu.git/blob - hw/ppc.c
Code provision for hypervisor timers resources,
[qemu.git] / hw / ppc.c
1 /*
2 * QEMU generic PowerPC hardware System Emulator
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "vl.h"
25 #include "m48t59.h"
26
27 //#define PPC_DEBUG_IRQ
28 //#define PPC_DEBUG_TB
29
30 extern FILE *logfile;
31 extern int loglevel;
32
33 void ppc_set_irq (CPUState *env, int n_IRQ, int level)
34 {
35 if (level) {
36 env->pending_interrupts |= 1 << n_IRQ;
37 cpu_interrupt(env, CPU_INTERRUPT_HARD);
38 } else {
39 env->pending_interrupts &= ~(1 << n_IRQ);
40 if (env->pending_interrupts == 0)
41 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
42 }
43 #if defined(PPC_DEBUG_IRQ)
44 if (loglevel & CPU_LOG_INT) {
45 fprintf(logfile, "%s: %p n_IRQ %d level %d => pending %08x req %08x\n",
46 __func__, env, n_IRQ, level,
47 env->pending_interrupts, env->interrupt_request);
48 }
49 #endif
50 }
51
52 /* PowerPC 6xx / 7xx internal IRQ controller */
53 static void ppc6xx_set_irq (void *opaque, int pin, int level)
54 {
55 CPUState *env = opaque;
56 int cur_level;
57
58 #if defined(PPC_DEBUG_IRQ)
59 if (loglevel & CPU_LOG_INT) {
60 fprintf(logfile, "%s: env %p pin %d level %d\n", __func__,
61 env, pin, level);
62 }
63 #endif
64 cur_level = (env->irq_input_state >> pin) & 1;
65 /* Don't generate spurious events */
66 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
67 switch (pin) {
68 case PPC6xx_INPUT_INT:
69 /* Level sensitive - active high */
70 #if defined(PPC_DEBUG_IRQ)
71 if (loglevel & CPU_LOG_INT) {
72 fprintf(logfile, "%s: set the external IRQ state to %d\n",
73 __func__, level);
74 }
75 #endif
76 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
77 break;
78 case PPC6xx_INPUT_SMI:
79 /* Level sensitive - active high */
80 #if defined(PPC_DEBUG_IRQ)
81 if (loglevel & CPU_LOG_INT) {
82 fprintf(logfile, "%s: set the SMI IRQ state to %d\n",
83 __func__, level);
84 }
85 #endif
86 ppc_set_irq(env, PPC_INTERRUPT_SMI, level);
87 break;
88 case PPC6xx_INPUT_MCP:
89 /* Negative edge sensitive */
90 /* XXX: TODO: actual reaction may depends on HID0 status
91 * 603/604/740/750: check HID0[EMCP]
92 */
93 if (cur_level == 1 && level == 0) {
94 #if defined(PPC_DEBUG_IRQ)
95 if (loglevel & CPU_LOG_INT) {
96 fprintf(logfile, "%s: raise machine check state\n",
97 __func__);
98 }
99 #endif
100 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
101 }
102 break;
103 case PPC6xx_INPUT_CKSTP_IN:
104 /* Level sensitive - active low */
105 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
106 if (level) {
107 #if defined(PPC_DEBUG_IRQ)
108 if (loglevel & CPU_LOG_INT) {
109 fprintf(logfile, "%s: stop the CPU\n", __func__);
110 }
111 #endif
112 env->halted = 1;
113 } else {
114 #if defined(PPC_DEBUG_IRQ)
115 if (loglevel & CPU_LOG_INT) {
116 fprintf(logfile, "%s: restart the CPU\n", __func__);
117 }
118 #endif
119 env->halted = 0;
120 }
121 break;
122 case PPC6xx_INPUT_HRESET:
123 /* Level sensitive - active low */
124 if (level) {
125 #if 0 // XXX: TOFIX
126 #if defined(PPC_DEBUG_IRQ)
127 if (loglevel & CPU_LOG_INT) {
128 fprintf(logfile, "%s: reset the CPU\n", __func__);
129 }
130 #endif
131 cpu_reset(env);
132 #endif
133 }
134 break;
135 case PPC6xx_INPUT_SRESET:
136 #if defined(PPC_DEBUG_IRQ)
137 if (loglevel & CPU_LOG_INT) {
138 fprintf(logfile, "%s: set the RESET IRQ state to %d\n",
139 __func__, level);
140 }
141 #endif
142 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
143 break;
144 default:
145 /* Unknown pin - do nothing */
146 #if defined(PPC_DEBUG_IRQ)
147 if (loglevel & CPU_LOG_INT) {
148 fprintf(logfile, "%s: unknown IRQ pin %d\n", __func__, pin);
149 }
150 #endif
151 return;
152 }
153 if (level)
154 env->irq_input_state |= 1 << pin;
155 else
156 env->irq_input_state &= ~(1 << pin);
157 }
158 }
159
160 void ppc6xx_irq_init (CPUState *env)
161 {
162 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, env, 6);
163 }
164
165 /* PowerPC 970 internal IRQ controller */
166 static void ppc970_set_irq (void *opaque, int pin, int level)
167 {
168 CPUState *env = opaque;
169 int cur_level;
170
171 #if defined(PPC_DEBUG_IRQ)
172 if (loglevel & CPU_LOG_INT) {
173 fprintf(logfile, "%s: env %p pin %d level %d\n", __func__,
174 env, pin, level);
175 }
176 #endif
177 cur_level = (env->irq_input_state >> pin) & 1;
178 /* Don't generate spurious events */
179 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
180 switch (pin) {
181 case PPC970_INPUT_INT:
182 /* Level sensitive - active high */
183 #if defined(PPC_DEBUG_IRQ)
184 if (loglevel & CPU_LOG_INT) {
185 fprintf(logfile, "%s: set the external IRQ state to %d\n",
186 __func__, level);
187 }
188 #endif
189 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
190 break;
191 case PPC970_INPUT_THINT:
192 /* Level sensitive - active high */
193 #if defined(PPC_DEBUG_IRQ)
194 if (loglevel & CPU_LOG_INT) {
195 fprintf(logfile, "%s: set the SMI IRQ state to %d\n", __func__,
196 level);
197 }
198 #endif
199 ppc_set_irq(env, PPC_INTERRUPT_THERM, level);
200 break;
201 case PPC970_INPUT_MCP:
202 /* Negative edge sensitive */
203 /* XXX: TODO: actual reaction may depends on HID0 status
204 * 603/604/740/750: check HID0[EMCP]
205 */
206 if (cur_level == 1 && level == 0) {
207 #if defined(PPC_DEBUG_IRQ)
208 if (loglevel & CPU_LOG_INT) {
209 fprintf(logfile, "%s: raise machine check state\n",
210 __func__);
211 }
212 #endif
213 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
214 }
215 break;
216 case PPC970_INPUT_CKSTP:
217 /* Level sensitive - active low */
218 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
219 if (level) {
220 #if defined(PPC_DEBUG_IRQ)
221 if (loglevel & CPU_LOG_INT) {
222 fprintf(logfile, "%s: stop the CPU\n", __func__);
223 }
224 #endif
225 env->halted = 1;
226 } else {
227 #if defined(PPC_DEBUG_IRQ)
228 if (loglevel & CPU_LOG_INT) {
229 fprintf(logfile, "%s: restart the CPU\n", __func__);
230 }
231 #endif
232 env->halted = 0;
233 }
234 break;
235 case PPC970_INPUT_HRESET:
236 /* Level sensitive - active low */
237 if (level) {
238 #if 0 // XXX: TOFIX
239 #if defined(PPC_DEBUG_IRQ)
240 if (loglevel & CPU_LOG_INT) {
241 fprintf(logfile, "%s: reset the CPU\n", __func__);
242 }
243 #endif
244 cpu_reset(env);
245 #endif
246 }
247 break;
248 case PPC970_INPUT_SRESET:
249 #if defined(PPC_DEBUG_IRQ)
250 if (loglevel & CPU_LOG_INT) {
251 fprintf(logfile, "%s: set the RESET IRQ state to %d\n",
252 __func__, level);
253 }
254 #endif
255 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
256 break;
257 case PPC970_INPUT_TBEN:
258 #if defined(PPC_DEBUG_IRQ)
259 if (loglevel & CPU_LOG_INT) {
260 fprintf(logfile, "%s: set the TBEN state to %d\n", __func__,
261 level);
262 }
263 #endif
264 /* XXX: TODO */
265 break;
266 default:
267 /* Unknown pin - do nothing */
268 #if defined(PPC_DEBUG_IRQ)
269 if (loglevel & CPU_LOG_INT) {
270 fprintf(logfile, "%s: unknown IRQ pin %d\n", __func__, pin);
271 }
272 #endif
273 return;
274 }
275 if (level)
276 env->irq_input_state |= 1 << pin;
277 else
278 env->irq_input_state &= ~(1 << pin);
279 }
280 }
281
282 void ppc970_irq_init (CPUState *env)
283 {
284 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, env, 7);
285 }
286
287 /* PowerPC 405 internal IRQ controller */
288 static void ppc405_set_irq (void *opaque, int pin, int level)
289 {
290 CPUState *env = opaque;
291 int cur_level;
292
293 #if defined(PPC_DEBUG_IRQ)
294 if (loglevel & CPU_LOG_INT) {
295 fprintf(logfile, "%s: env %p pin %d level %d\n", __func__,
296 env, pin, level);
297 }
298 #endif
299 cur_level = (env->irq_input_state >> pin) & 1;
300 /* Don't generate spurious events */
301 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
302 switch (pin) {
303 case PPC405_INPUT_RESET_SYS:
304 if (level) {
305 #if defined(PPC_DEBUG_IRQ)
306 if (loglevel & CPU_LOG_INT) {
307 fprintf(logfile, "%s: reset the PowerPC system\n",
308 __func__);
309 }
310 #endif
311 ppc40x_system_reset(env);
312 }
313 break;
314 case PPC405_INPUT_RESET_CHIP:
315 if (level) {
316 #if defined(PPC_DEBUG_IRQ)
317 if (loglevel & CPU_LOG_INT) {
318 fprintf(logfile, "%s: reset the PowerPC chip\n", __func__);
319 }
320 #endif
321 ppc40x_chip_reset(env);
322 }
323 break;
324 /* No break here */
325 case PPC405_INPUT_RESET_CORE:
326 /* XXX: TODO: update DBSR[MRR] */
327 if (level) {
328 #if defined(PPC_DEBUG_IRQ)
329 if (loglevel & CPU_LOG_INT) {
330 fprintf(logfile, "%s: reset the PowerPC core\n", __func__);
331 }
332 #endif
333 ppc40x_core_reset(env);
334 }
335 break;
336 case PPC405_INPUT_CINT:
337 /* Level sensitive - active high */
338 #if defined(PPC_DEBUG_IRQ)
339 if (loglevel & CPU_LOG_INT) {
340 fprintf(logfile, "%s: set the critical IRQ state to %d\n",
341 __func__, level);
342 }
343 #endif
344 /* XXX: TOFIX */
345 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
346 break;
347 case PPC405_INPUT_INT:
348 /* Level sensitive - active high */
349 #if defined(PPC_DEBUG_IRQ)
350 if (loglevel & CPU_LOG_INT) {
351 fprintf(logfile, "%s: set the external IRQ state to %d\n",
352 __func__, level);
353 }
354 #endif
355 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
356 break;
357 case PPC405_INPUT_HALT:
358 /* Level sensitive - active low */
359 if (level) {
360 #if defined(PPC_DEBUG_IRQ)
361 if (loglevel & CPU_LOG_INT) {
362 fprintf(logfile, "%s: stop the CPU\n", __func__);
363 }
364 #endif
365 env->halted = 1;
366 } else {
367 #if defined(PPC_DEBUG_IRQ)
368 if (loglevel & CPU_LOG_INT) {
369 fprintf(logfile, "%s: restart the CPU\n", __func__);
370 }
371 #endif
372 env->halted = 0;
373 }
374 break;
375 case PPC405_INPUT_DEBUG:
376 /* Level sensitive - active high */
377 #if defined(PPC_DEBUG_IRQ)
378 if (loglevel & CPU_LOG_INT) {
379 fprintf(logfile, "%s: set the debug pin state to %d\n",
380 __func__, level);
381 }
382 #endif
383 ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
384 break;
385 default:
386 /* Unknown pin - do nothing */
387 #if defined(PPC_DEBUG_IRQ)
388 if (loglevel & CPU_LOG_INT) {
389 fprintf(logfile, "%s: unknown IRQ pin %d\n", __func__, pin);
390 }
391 #endif
392 return;
393 }
394 if (level)
395 env->irq_input_state |= 1 << pin;
396 else
397 env->irq_input_state &= ~(1 << pin);
398 }
399 }
400
401 void ppc405_irq_init (CPUState *env)
402 {
403 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc405_set_irq, env, 7);
404 }
405
406 /*****************************************************************************/
407 /* PowerPC time base and decrementer emulation */
408 struct ppc_tb_t {
409 /* Time base management */
410 int64_t tb_offset; /* Compensation */
411 uint32_t tb_freq; /* TB frequency */
412 /* Decrementer management */
413 uint64_t decr_next; /* Tick for next decr interrupt */
414 struct QEMUTimer *decr_timer;
415 #if defined(TARGET_PPC64H)
416 /* Hypervisor decrementer management */
417 uint64_t hdecr_next; /* Tick for next hdecr interrupt */
418 struct QEMUTimer *hdecr_timer;
419 uint64_t purr_load;
420 uint64_t purr_start;
421 #endif
422 void *opaque;
423 };
424
425 static inline uint64_t cpu_ppc_get_tb (ppc_tb_t *tb_env)
426 {
427 /* TB time in tb periods */
428 return muldiv64(qemu_get_clock(vm_clock) + tb_env->tb_offset,
429 tb_env->tb_freq, ticks_per_sec);
430 }
431
432 uint32_t cpu_ppc_load_tbl (CPUState *env)
433 {
434 ppc_tb_t *tb_env = env->tb_env;
435 uint64_t tb;
436
437 tb = cpu_ppc_get_tb(tb_env);
438 #ifdef PPC_DEBUG_TB
439 {
440 static int last_time;
441 int now;
442 now = time(NULL);
443 if (last_time != now) {
444 last_time = now;
445 if (loglevel != 0) {
446 fprintf(logfile, "%s: tb=0x%016lx %d %08lx\n",
447 __func__, tb, now, tb_env->tb_offset);
448 }
449 }
450 }
451 #endif
452
453 return tb & 0xFFFFFFFF;
454 }
455
456 uint32_t cpu_ppc_load_tbu (CPUState *env)
457 {
458 ppc_tb_t *tb_env = env->tb_env;
459 uint64_t tb;
460
461 tb = cpu_ppc_get_tb(tb_env);
462 #if defined(PPC_DEBUG_TB)
463 if (loglevel != 0) {
464 fprintf(logfile, "%s: tb=0x%016lx\n", __func__, tb);
465 }
466 #endif
467
468 return tb >> 32;
469 }
470
471 static void cpu_ppc_store_tb (ppc_tb_t *tb_env, uint64_t value)
472 {
473 tb_env->tb_offset = muldiv64(value, ticks_per_sec, tb_env->tb_freq)
474 - qemu_get_clock(vm_clock);
475 #ifdef PPC_DEBUG_TB
476 if (loglevel != 0) {
477 fprintf(logfile, "%s: tb=0x%016lx offset=%08lx\n", __func__, value,
478 tb_env->tb_offset);
479 }
480 #endif
481 }
482
483 void cpu_ppc_store_tbu (CPUState *env, uint32_t value)
484 {
485 ppc_tb_t *tb_env = env->tb_env;
486
487 cpu_ppc_store_tb(tb_env,
488 ((uint64_t)value << 32) | cpu_ppc_load_tbl(env));
489 }
490
491 void cpu_ppc_store_tbl (CPUState *env, uint32_t value)
492 {
493 ppc_tb_t *tb_env = env->tb_env;
494
495 cpu_ppc_store_tb(tb_env,
496 ((uint64_t)cpu_ppc_load_tbu(env) << 32) | value);
497 }
498
499 static inline uint32_t _cpu_ppc_load_decr (CPUState *env, uint64_t *next)
500 {
501 ppc_tb_t *tb_env = env->tb_env;
502 uint32_t decr;
503 int64_t diff;
504
505 diff = tb_env->decr_next - qemu_get_clock(vm_clock);
506 if (diff >= 0)
507 decr = muldiv64(diff, tb_env->tb_freq, ticks_per_sec);
508 else
509 decr = -muldiv64(-diff, tb_env->tb_freq, ticks_per_sec);
510 #if defined(PPC_DEBUG_TB)
511 if (loglevel != 0) {
512 fprintf(logfile, "%s: 0x%08x\n", __func__, decr);
513 }
514 #endif
515
516 return decr;
517 }
518
519 uint32_t cpu_ppc_load_decr (CPUState *env)
520 {
521 ppc_tb_t *tb_env = env->tb_env;
522
523 return _cpu_ppc_load_decr(env, &tb_env->decr_next);
524 }
525
526 #if defined(TARGET_PPC64H)
527 uint32_t cpu_ppc_load_hdecr (CPUState *env)
528 {
529 ppc_tb_t *tb_env = env->tb_env;
530
531 return _cpu_ppc_load_decr(env, &tb_env->hdecr_next);
532 }
533
534 uint64_t cpu_ppc_load_purr (CPUState *env)
535 {
536 ppc_tb_t *tb_env = env->tb_env;
537 uint64_t diff;
538
539 diff = qemu_get_clock(vm_clock) - tb_env->purr_start;
540
541 return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, ticks_per_sec);
542 }
543 #endif /* defined(TARGET_PPC64H) */
544
545 /* When decrementer expires,
546 * all we need to do is generate or queue a CPU exception
547 */
548 static inline void cpu_ppc_decr_excp (CPUState *env)
549 {
550 /* Raise it */
551 #ifdef PPC_DEBUG_TB
552 if (loglevel != 0) {
553 fprintf(logfile, "raise decrementer exception\n");
554 }
555 #endif
556 ppc_set_irq(env, PPC_INTERRUPT_DECR, 1);
557 }
558
559 static inline void cpu_ppc_hdecr_excp (CPUState *env)
560 {
561 /* Raise it */
562 #ifdef PPC_DEBUG_TB
563 if (loglevel != 0) {
564 fprintf(logfile, "raise decrementer exception\n");
565 }
566 #endif
567 ppc_set_irq(env, PPC_INTERRUPT_HDECR, 1);
568 }
569
570 static void __cpu_ppc_store_decr (CPUState *env, uint64_t *nextp,
571 struct QEMUTimer *timer,
572 void (*raise_excp)(CPUState *),
573 uint32_t decr, uint32_t value,
574 int is_excp)
575 {
576 ppc_tb_t *tb_env = env->tb_env;
577 uint64_t now, next;
578
579 #ifdef PPC_DEBUG_TB
580 if (loglevel != 0) {
581 fprintf(logfile, "%s: 0x%08x => 0x%08x\n", __func__, decr, value);
582 }
583 #endif
584 now = qemu_get_clock(vm_clock);
585 next = now + muldiv64(value, ticks_per_sec, tb_env->tb_freq);
586 if (is_excp)
587 next += *nextp - now;
588 if (next == now)
589 next++;
590 *nextp = next;
591 /* Adjust timer */
592 qemu_mod_timer(timer, next);
593 /* If we set a negative value and the decrementer was positive,
594 * raise an exception.
595 */
596 if ((value & 0x80000000) && !(decr & 0x80000000))
597 (*raise_excp)(env);
598 }
599
600
601 static inline void _cpu_ppc_store_decr (CPUState *env, uint32_t decr,
602 uint32_t value, int is_excp)
603 {
604 ppc_tb_t *tb_env = env->tb_env;
605
606 __cpu_ppc_store_decr(env, &tb_env->decr_next, tb_env->decr_timer,
607 &cpu_ppc_decr_excp, decr, value, is_excp);
608 }
609
610 void cpu_ppc_store_decr (CPUState *env, uint32_t value)
611 {
612 _cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0);
613 }
614
615 static void cpu_ppc_decr_cb (void *opaque)
616 {
617 _cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1);
618 }
619
620 #if defined(TARGET_PPC64H)
621 static inline void _cpu_ppc_store_hdecr (CPUState *env, uint32_t hdecr,
622 uint32_t value, int is_excp)
623 {
624 ppc_tb_t *tb_env = env->tb_env;
625
626 __cpu_ppc_store_decr(env, &tb_env->hdecr_next, tb_env->hdecr_timer,
627 &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
628 }
629
630 void cpu_ppc_store_hdecr (CPUState *env, uint32_t value)
631 {
632 _cpu_ppc_store_hdecr(env, cpu_ppc_load_hdecr(env), value, 0);
633 }
634
635 static void cpu_ppc_hdecr_cb (void *opaque)
636 {
637 _cpu_ppc_store_hdecr(opaque, 0x00000000, 0xFFFFFFFF, 1);
638 }
639
640 void cpu_ppc_store_purr (CPUState *env, uint64_t value)
641 {
642 ppc_tb_t *tb_env = env->tb_env;
643
644 tb_env->purr_load = value;
645 tb_env->purr_start = qemu_get_clock(vm_clock);
646 }
647 #endif /* defined(TARGET_PPC64H) */
648
649 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
650 {
651 CPUState *env = opaque;
652 ppc_tb_t *tb_env = env->tb_env;
653
654 tb_env->tb_freq = freq;
655 /* There is a bug in Linux 2.4 kernels:
656 * if a decrementer exception is pending when it enables msr_ee at startup,
657 * it's not ready to handle it...
658 */
659 _cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
660 #if defined(TARGET_PPC64H)
661 _cpu_ppc_store_hdecr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
662 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
663 #endif /* defined(TARGET_PPC64H) */
664 }
665
666 /* Set up (once) timebase frequency (in Hz) */
667 clk_setup_cb cpu_ppc_tb_init (CPUState *env, uint32_t freq)
668 {
669 ppc_tb_t *tb_env;
670
671 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
672 if (tb_env == NULL)
673 return NULL;
674 env->tb_env = tb_env;
675 /* Create new timer */
676 tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_ppc_decr_cb, env);
677 #if defined(TARGET_PPC64H)
678 tb_env->hdecr_timer = qemu_new_timer(vm_clock, &cpu_ppc_hdecr_cb, env);
679 #endif /* defined(TARGET_PPC64H) */
680 cpu_ppc_set_tb_clk(env, freq);
681
682 return &cpu_ppc_set_tb_clk;
683 }
684
685 /* Specific helpers for POWER & PowerPC 601 RTC */
686 clk_setup_cb cpu_ppc601_rtc_init (CPUState *env)
687 {
688 return cpu_ppc_tb_init(env, 7812500);
689 }
690
691 void cpu_ppc601_store_rtcu (CPUState *env, uint32_t value)
692 __attribute__ (( alias ("cpu_ppc_store_tbu") ));
693
694 uint32_t cpu_ppc601_load_rtcu (CPUState *env)
695 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
696
697 void cpu_ppc601_store_rtcl (CPUState *env, uint32_t value)
698 {
699 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
700 }
701
702 uint32_t cpu_ppc601_load_rtcl (CPUState *env)
703 {
704 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
705 }
706
707 /*****************************************************************************/
708 /* Embedded PowerPC timers */
709
710 /* PIT, FIT & WDT */
711 typedef struct ppcemb_timer_t ppcemb_timer_t;
712 struct ppcemb_timer_t {
713 uint64_t pit_reload; /* PIT auto-reload value */
714 uint64_t fit_next; /* Tick for next FIT interrupt */
715 struct QEMUTimer *fit_timer;
716 uint64_t wdt_next; /* Tick for next WDT interrupt */
717 struct QEMUTimer *wdt_timer;
718 };
719
720 /* Fixed interval timer */
721 static void cpu_4xx_fit_cb (void *opaque)
722 {
723 CPUState *env;
724 ppc_tb_t *tb_env;
725 ppcemb_timer_t *ppcemb_timer;
726 uint64_t now, next;
727
728 env = opaque;
729 tb_env = env->tb_env;
730 ppcemb_timer = tb_env->opaque;
731 now = qemu_get_clock(vm_clock);
732 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
733 case 0:
734 next = 1 << 9;
735 break;
736 case 1:
737 next = 1 << 13;
738 break;
739 case 2:
740 next = 1 << 17;
741 break;
742 case 3:
743 next = 1 << 21;
744 break;
745 default:
746 /* Cannot occur, but makes gcc happy */
747 return;
748 }
749 next = now + muldiv64(next, ticks_per_sec, tb_env->tb_freq);
750 if (next == now)
751 next++;
752 qemu_mod_timer(ppcemb_timer->fit_timer, next);
753 env->spr[SPR_40x_TSR] |= 1 << 26;
754 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1)
755 ppc_set_irq(env, PPC_INTERRUPT_FIT, 1);
756 #ifdef PPC_DEBUG_TB
757 if (loglevel != 0) {
758 fprintf(logfile, "%s: ir %d TCR " ADDRX " TSR " ADDRX "\n", __func__,
759 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
760 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
761 }
762 #endif
763 }
764
765 /* Programmable interval timer */
766 static void start_stop_pit (CPUState *env, ppc_tb_t *tb_env, int is_excp)
767 {
768 ppcemb_timer_t *ppcemb_timer;
769 uint64_t now, next;
770
771 ppcemb_timer = tb_env->opaque;
772 if (ppcemb_timer->pit_reload <= 1 ||
773 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
774 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
775 /* Stop PIT */
776 #ifdef PPC_DEBUG_TB
777 if (loglevel != 0) {
778 fprintf(logfile, "%s: stop PIT\n", __func__);
779 }
780 #endif
781 qemu_del_timer(tb_env->decr_timer);
782 } else {
783 #ifdef PPC_DEBUG_TB
784 if (loglevel != 0) {
785 fprintf(logfile, "%s: start PIT 0x" REGX "\n",
786 __func__, ppcemb_timer->pit_reload);
787 }
788 #endif
789 now = qemu_get_clock(vm_clock);
790 next = now + muldiv64(ppcemb_timer->pit_reload,
791 ticks_per_sec, tb_env->tb_freq);
792 if (is_excp)
793 next += tb_env->decr_next - now;
794 if (next == now)
795 next++;
796 qemu_mod_timer(tb_env->decr_timer, next);
797 tb_env->decr_next = next;
798 }
799 }
800
801 static void cpu_4xx_pit_cb (void *opaque)
802 {
803 CPUState *env;
804 ppc_tb_t *tb_env;
805 ppcemb_timer_t *ppcemb_timer;
806
807 env = opaque;
808 tb_env = env->tb_env;
809 ppcemb_timer = tb_env->opaque;
810 env->spr[SPR_40x_TSR] |= 1 << 27;
811 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1)
812 ppc_set_irq(env, PPC_INTERRUPT_PIT, 1);
813 start_stop_pit(env, tb_env, 1);
814 #ifdef PPC_DEBUG_TB
815 if (loglevel != 0) {
816 fprintf(logfile, "%s: ar %d ir %d TCR " ADDRX " TSR " ADDRX " "
817 "%016" PRIx64 "\n", __func__,
818 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
819 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
820 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
821 ppcemb_timer->pit_reload);
822 }
823 #endif
824 }
825
826 /* Watchdog timer */
827 static void cpu_4xx_wdt_cb (void *opaque)
828 {
829 CPUState *env;
830 ppc_tb_t *tb_env;
831 ppcemb_timer_t *ppcemb_timer;
832 uint64_t now, next;
833
834 env = opaque;
835 tb_env = env->tb_env;
836 ppcemb_timer = tb_env->opaque;
837 now = qemu_get_clock(vm_clock);
838 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
839 case 0:
840 next = 1 << 17;
841 break;
842 case 1:
843 next = 1 << 21;
844 break;
845 case 2:
846 next = 1 << 25;
847 break;
848 case 3:
849 next = 1 << 29;
850 break;
851 default:
852 /* Cannot occur, but makes gcc happy */
853 return;
854 }
855 next = now + muldiv64(next, ticks_per_sec, tb_env->tb_freq);
856 if (next == now)
857 next++;
858 #ifdef PPC_DEBUG_TB
859 if (loglevel != 0) {
860 fprintf(logfile, "%s: TCR " ADDRX " TSR " ADDRX "\n", __func__,
861 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
862 }
863 #endif
864 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
865 case 0x0:
866 case 0x1:
867 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
868 ppcemb_timer->wdt_next = next;
869 env->spr[SPR_40x_TSR] |= 1 << 31;
870 break;
871 case 0x2:
872 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
873 ppcemb_timer->wdt_next = next;
874 env->spr[SPR_40x_TSR] |= 1 << 30;
875 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1)
876 ppc_set_irq(env, PPC_INTERRUPT_WDT, 1);
877 break;
878 case 0x3:
879 env->spr[SPR_40x_TSR] &= ~0x30000000;
880 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
881 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
882 case 0x0:
883 /* No reset */
884 break;
885 case 0x1: /* Core reset */
886 ppc40x_core_reset(env);
887 break;
888 case 0x2: /* Chip reset */
889 ppc40x_chip_reset(env);
890 break;
891 case 0x3: /* System reset */
892 ppc40x_system_reset(env);
893 break;
894 }
895 }
896 }
897
898 void store_40x_pit (CPUState *env, target_ulong val)
899 {
900 ppc_tb_t *tb_env;
901 ppcemb_timer_t *ppcemb_timer;
902
903 tb_env = env->tb_env;
904 ppcemb_timer = tb_env->opaque;
905 #ifdef PPC_DEBUG_TB
906 if (loglevel != 0) {
907 fprintf(logfile, "%s %p %p\n", __func__, tb_env, ppcemb_timer);
908 }
909 #endif
910 ppcemb_timer->pit_reload = val;
911 start_stop_pit(env, tb_env, 0);
912 }
913
914 target_ulong load_40x_pit (CPUState *env)
915 {
916 return cpu_ppc_load_decr(env);
917 }
918
919 void store_booke_tsr (CPUState *env, target_ulong val)
920 {
921 #ifdef PPC_DEBUG_TB
922 if (loglevel != 0) {
923 fprintf(logfile, "%s: val=" ADDRX "\n", __func__, val);
924 }
925 #endif
926 env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
927 if (val & 0x80000000)
928 ppc_set_irq(env, PPC_INTERRUPT_PIT, 0);
929 }
930
931 void store_booke_tcr (CPUState *env, target_ulong val)
932 {
933 ppc_tb_t *tb_env;
934
935 tb_env = env->tb_env;
936 #ifdef PPC_DEBUG_TB
937 if (loglevel != 0) {
938 fprintf(logfile, "%s: val=" ADDRX "\n", __func__, val);
939 }
940 #endif
941 env->spr[SPR_40x_TCR] = val & 0xFFC00000;
942 start_stop_pit(env, tb_env, 1);
943 cpu_4xx_wdt_cb(env);
944 }
945
946 static void ppc_emb_set_tb_clk (void *opaque, uint32_t freq)
947 {
948 CPUState *env = opaque;
949 ppc_tb_t *tb_env = env->tb_env;
950
951 #ifdef PPC_DEBUG_TB
952 if (loglevel != 0) {
953 fprintf(logfile, "%s set new frequency to %u\n", __func__, freq);
954 }
955 #endif
956 tb_env->tb_freq = freq;
957 /* XXX: we should also update all timers */
958 }
959
960 clk_setup_cb ppc_emb_timers_init (CPUState *env, uint32_t freq)
961 {
962 ppc_tb_t *tb_env;
963 ppcemb_timer_t *ppcemb_timer;
964
965 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
966 if (tb_env == NULL) {
967 return NULL;
968 }
969 env->tb_env = tb_env;
970 ppcemb_timer = qemu_mallocz(sizeof(ppcemb_timer_t));
971 tb_env->tb_freq = freq;
972 tb_env->opaque = ppcemb_timer;
973 #ifdef PPC_DEBUG_TB
974 if (loglevel != 0) {
975 fprintf(logfile, "%s %p %p %p\n", __func__, tb_env, ppcemb_timer,
976 &ppc_emb_set_tb_clk);
977 }
978 #endif
979 if (ppcemb_timer != NULL) {
980 /* We use decr timer for PIT */
981 tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_4xx_pit_cb, env);
982 ppcemb_timer->fit_timer =
983 qemu_new_timer(vm_clock, &cpu_4xx_fit_cb, env);
984 ppcemb_timer->wdt_timer =
985 qemu_new_timer(vm_clock, &cpu_4xx_wdt_cb, env);
986 }
987
988 return &ppc_emb_set_tb_clk;
989 }
990
991 /*****************************************************************************/
992 /* Embedded PowerPC Device Control Registers */
993 typedef struct ppc_dcrn_t ppc_dcrn_t;
994 struct ppc_dcrn_t {
995 dcr_read_cb dcr_read;
996 dcr_write_cb dcr_write;
997 void *opaque;
998 };
999
1000 /* XXX: on 460, DCR addresses are 32 bits wide,
1001 * using DCRIPR to get the 22 upper bits of the DCR address
1002 */
1003 #define DCRN_NB 1024
1004 struct ppc_dcr_t {
1005 ppc_dcrn_t dcrn[DCRN_NB];
1006 int (*read_error)(int dcrn);
1007 int (*write_error)(int dcrn);
1008 };
1009
1010 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, target_ulong *valp)
1011 {
1012 ppc_dcrn_t *dcr;
1013
1014 if (dcrn < 0 || dcrn >= DCRN_NB)
1015 goto error;
1016 dcr = &dcr_env->dcrn[dcrn];
1017 if (dcr->dcr_read == NULL)
1018 goto error;
1019 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1020
1021 return 0;
1022
1023 error:
1024 if (dcr_env->read_error != NULL)
1025 return (*dcr_env->read_error)(dcrn);
1026
1027 return -1;
1028 }
1029
1030 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, target_ulong val)
1031 {
1032 ppc_dcrn_t *dcr;
1033
1034 if (dcrn < 0 || dcrn >= DCRN_NB)
1035 goto error;
1036 dcr = &dcr_env->dcrn[dcrn];
1037 if (dcr->dcr_write == NULL)
1038 goto error;
1039 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1040
1041 return 0;
1042
1043 error:
1044 if (dcr_env->write_error != NULL)
1045 return (*dcr_env->write_error)(dcrn);
1046
1047 return -1;
1048 }
1049
1050 int ppc_dcr_register (CPUState *env, int dcrn, void *opaque,
1051 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1052 {
1053 ppc_dcr_t *dcr_env;
1054 ppc_dcrn_t *dcr;
1055
1056 dcr_env = env->dcr_env;
1057 if (dcr_env == NULL)
1058 return -1;
1059 if (dcrn < 0 || dcrn >= DCRN_NB)
1060 return -1;
1061 dcr = &dcr_env->dcrn[dcrn];
1062 if (dcr->opaque != NULL ||
1063 dcr->dcr_read != NULL ||
1064 dcr->dcr_write != NULL)
1065 return -1;
1066 dcr->opaque = opaque;
1067 dcr->dcr_read = dcr_read;
1068 dcr->dcr_write = dcr_write;
1069
1070 return 0;
1071 }
1072
1073 int ppc_dcr_init (CPUState *env, int (*read_error)(int dcrn),
1074 int (*write_error)(int dcrn))
1075 {
1076 ppc_dcr_t *dcr_env;
1077
1078 dcr_env = qemu_mallocz(sizeof(ppc_dcr_t));
1079 if (dcr_env == NULL)
1080 return -1;
1081 dcr_env->read_error = read_error;
1082 dcr_env->write_error = write_error;
1083 env->dcr_env = dcr_env;
1084
1085 return 0;
1086 }
1087
1088
1089 #if 0
1090 /*****************************************************************************/
1091 /* Handle system reset (for now, just stop emulation) */
1092 void cpu_ppc_reset (CPUState *env)
1093 {
1094 printf("Reset asked... Stop emulation\n");
1095 abort();
1096 }
1097 #endif
1098
1099 /*****************************************************************************/
1100 /* Debug port */
1101 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1102 {
1103 addr &= 0xF;
1104 switch (addr) {
1105 case 0:
1106 printf("%c", val);
1107 break;
1108 case 1:
1109 printf("\n");
1110 fflush(stdout);
1111 break;
1112 case 2:
1113 printf("Set loglevel to %04x\n", val);
1114 cpu_set_log(val | 0x100);
1115 break;
1116 }
1117 }
1118
1119 /*****************************************************************************/
1120 /* NVRAM helpers */
1121 void NVRAM_set_byte (m48t59_t *nvram, uint32_t addr, uint8_t value)
1122 {
1123 m48t59_write(nvram, addr, value);
1124 }
1125
1126 uint8_t NVRAM_get_byte (m48t59_t *nvram, uint32_t addr)
1127 {
1128 return m48t59_read(nvram, addr);
1129 }
1130
1131 void NVRAM_set_word (m48t59_t *nvram, uint32_t addr, uint16_t value)
1132 {
1133 m48t59_write(nvram, addr, value >> 8);
1134 m48t59_write(nvram, addr + 1, value & 0xFF);
1135 }
1136
1137 uint16_t NVRAM_get_word (m48t59_t *nvram, uint32_t addr)
1138 {
1139 uint16_t tmp;
1140
1141 tmp = m48t59_read(nvram, addr) << 8;
1142 tmp |= m48t59_read(nvram, addr + 1);
1143 return tmp;
1144 }
1145
1146 void NVRAM_set_lword (m48t59_t *nvram, uint32_t addr, uint32_t value)
1147 {
1148 m48t59_write(nvram, addr, value >> 24);
1149 m48t59_write(nvram, addr + 1, (value >> 16) & 0xFF);
1150 m48t59_write(nvram, addr + 2, (value >> 8) & 0xFF);
1151 m48t59_write(nvram, addr + 3, value & 0xFF);
1152 }
1153
1154 uint32_t NVRAM_get_lword (m48t59_t *nvram, uint32_t addr)
1155 {
1156 uint32_t tmp;
1157
1158 tmp = m48t59_read(nvram, addr) << 24;
1159 tmp |= m48t59_read(nvram, addr + 1) << 16;
1160 tmp |= m48t59_read(nvram, addr + 2) << 8;
1161 tmp |= m48t59_read(nvram, addr + 3);
1162
1163 return tmp;
1164 }
1165
1166 void NVRAM_set_string (m48t59_t *nvram, uint32_t addr,
1167 const unsigned char *str, uint32_t max)
1168 {
1169 int i;
1170
1171 for (i = 0; i < max && str[i] != '\0'; i++) {
1172 m48t59_write(nvram, addr + i, str[i]);
1173 }
1174 m48t59_write(nvram, addr + max - 1, '\0');
1175 }
1176
1177 int NVRAM_get_string (m48t59_t *nvram, uint8_t *dst, uint16_t addr, int max)
1178 {
1179 int i;
1180
1181 memset(dst, 0, max);
1182 for (i = 0; i < max; i++) {
1183 dst[i] = NVRAM_get_byte(nvram, addr + i);
1184 if (dst[i] == '\0')
1185 break;
1186 }
1187
1188 return i;
1189 }
1190
1191 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1192 {
1193 uint16_t tmp;
1194 uint16_t pd, pd1, pd2;
1195
1196 tmp = prev >> 8;
1197 pd = prev ^ value;
1198 pd1 = pd & 0x000F;
1199 pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1200 tmp ^= (pd1 << 3) | (pd1 << 8);
1201 tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1202
1203 return tmp;
1204 }
1205
1206 uint16_t NVRAM_compute_crc (m48t59_t *nvram, uint32_t start, uint32_t count)
1207 {
1208 uint32_t i;
1209 uint16_t crc = 0xFFFF;
1210 int odd;
1211
1212 odd = count & 1;
1213 count &= ~1;
1214 for (i = 0; i != count; i++) {
1215 crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1216 }
1217 if (odd) {
1218 crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1219 }
1220
1221 return crc;
1222 }
1223
1224 #define CMDLINE_ADDR 0x017ff000
1225
1226 int PPC_NVRAM_set_params (m48t59_t *nvram, uint16_t NVRAM_size,
1227 const unsigned char *arch,
1228 uint32_t RAM_size, int boot_device,
1229 uint32_t kernel_image, uint32_t kernel_size,
1230 const char *cmdline,
1231 uint32_t initrd_image, uint32_t initrd_size,
1232 uint32_t NVRAM_image,
1233 int width, int height, int depth)
1234 {
1235 uint16_t crc;
1236
1237 /* Set parameters for Open Hack'Ware BIOS */
1238 NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1239 NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */
1240 NVRAM_set_word(nvram, 0x14, NVRAM_size);
1241 NVRAM_set_string(nvram, 0x20, arch, 16);
1242 NVRAM_set_lword(nvram, 0x30, RAM_size);
1243 NVRAM_set_byte(nvram, 0x34, boot_device);
1244 NVRAM_set_lword(nvram, 0x38, kernel_image);
1245 NVRAM_set_lword(nvram, 0x3C, kernel_size);
1246 if (cmdline) {
1247 /* XXX: put the cmdline in NVRAM too ? */
1248 strcpy(phys_ram_base + CMDLINE_ADDR, cmdline);
1249 NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR);
1250 NVRAM_set_lword(nvram, 0x44, strlen(cmdline));
1251 } else {
1252 NVRAM_set_lword(nvram, 0x40, 0);
1253 NVRAM_set_lword(nvram, 0x44, 0);
1254 }
1255 NVRAM_set_lword(nvram, 0x48, initrd_image);
1256 NVRAM_set_lword(nvram, 0x4C, initrd_size);
1257 NVRAM_set_lword(nvram, 0x50, NVRAM_image);
1258
1259 NVRAM_set_word(nvram, 0x54, width);
1260 NVRAM_set_word(nvram, 0x56, height);
1261 NVRAM_set_word(nvram, 0x58, depth);
1262 crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1263 NVRAM_set_word(nvram, 0xFC, crc);
1264
1265 return 0;
1266 }