]> git.proxmox.com Git - mirror_qemu.git/blob - hw/sparc32_dma.c
Remove address masking
[mirror_qemu.git] / hw / sparc32_dma.c
1 /*
2 * QEMU Sparc32 DMA controller emulation
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "sparc32_dma.h"
26 #include "sun4m.h"
27
28 /* debug DMA */
29 //#define DEBUG_DMA
30
31 /*
32 * This is the DMA controller part of chip STP2000 (Master I/O), also
33 * produced as NCR89C100. See
34 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
35 * and
36 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
37 */
38
39 #ifdef DEBUG_DMA
40 #define DPRINTF(fmt, args...) \
41 do { printf("DMA: " fmt , ##args); } while (0)
42 #else
43 #define DPRINTF(fmt, args...)
44 #endif
45
46 #define DMA_REGS 4
47 #define DMA_SIZE (4 * sizeof(uint32_t))
48
49 #define DMA_VER 0xa0000000
50 #define DMA_INTR 1
51 #define DMA_INTREN 0x10
52 #define DMA_WRITE_MEM 0x100
53 #define DMA_LOADED 0x04000000
54 #define DMA_DRAIN_FIFO 0x40
55 #define DMA_RESET 0x80
56
57 typedef struct DMAState DMAState;
58
59 struct DMAState {
60 uint32_t dmaregs[DMA_REGS];
61 qemu_irq irq;
62 void *iommu;
63 qemu_irq dev_reset;
64 };
65
66 /* Note: on sparc, the lance 16 bit bus is swapped */
67 void ledma_memory_read(void *opaque, target_phys_addr_t addr,
68 uint8_t *buf, int len, int do_bswap)
69 {
70 DMAState *s = opaque;
71 int i;
72
73 DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
74 s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
75 addr |= s->dmaregs[3];
76 if (do_bswap) {
77 sparc_iommu_memory_read(s->iommu, addr, buf, len);
78 } else {
79 addr &= ~1;
80 len &= ~1;
81 sparc_iommu_memory_read(s->iommu, addr, buf, len);
82 for(i = 0; i < len; i += 2) {
83 bswap16s((uint16_t *)(buf + i));
84 }
85 }
86 }
87
88 void ledma_memory_write(void *opaque, target_phys_addr_t addr,
89 uint8_t *buf, int len, int do_bswap)
90 {
91 DMAState *s = opaque;
92 int l, i;
93 uint16_t tmp_buf[32];
94
95 DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
96 s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
97 addr |= s->dmaregs[3];
98 if (do_bswap) {
99 sparc_iommu_memory_write(s->iommu, addr, buf, len);
100 } else {
101 addr &= ~1;
102 len &= ~1;
103 while (len > 0) {
104 l = len;
105 if (l > sizeof(tmp_buf))
106 l = sizeof(tmp_buf);
107 for(i = 0; i < l; i += 2) {
108 tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
109 }
110 sparc_iommu_memory_write(s->iommu, addr, (uint8_t *)tmp_buf, l);
111 len -= l;
112 buf += l;
113 addr += l;
114 }
115 }
116 }
117
118 static void dma_set_irq(void *opaque, int irq, int level)
119 {
120 DMAState *s = opaque;
121 if (level) {
122 DPRINTF("Raise IRQ\n");
123 s->dmaregs[0] |= DMA_INTR;
124 qemu_irq_raise(s->irq);
125 } else {
126 s->dmaregs[0] &= ~DMA_INTR;
127 DPRINTF("Lower IRQ\n");
128 qemu_irq_lower(s->irq);
129 }
130 }
131
132 void espdma_memory_read(void *opaque, uint8_t *buf, int len)
133 {
134 DMAState *s = opaque;
135
136 DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
137 s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
138 sparc_iommu_memory_read(s->iommu, s->dmaregs[1], buf, len);
139 s->dmaregs[0] |= DMA_INTR;
140 s->dmaregs[1] += len;
141 }
142
143 void espdma_memory_write(void *opaque, uint8_t *buf, int len)
144 {
145 DMAState *s = opaque;
146
147 DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
148 s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
149 sparc_iommu_memory_write(s->iommu, s->dmaregs[1], buf, len);
150 s->dmaregs[0] |= DMA_INTR;
151 s->dmaregs[1] += len;
152 }
153
154 static uint32_t dma_mem_readl(void *opaque, target_phys_addr_t addr)
155 {
156 DMAState *s = opaque;
157 uint32_t saddr;
158
159 saddr = addr >> 2;
160 DPRINTF("read dmareg " TARGET_FMT_plx ": 0x%8.8x\n", addr,
161 s->dmaregs[saddr]);
162
163 return s->dmaregs[saddr];
164 }
165
166 static void dma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
167 {
168 DMAState *s = opaque;
169 uint32_t saddr;
170
171 saddr = addr >> 2;
172 DPRINTF("write dmareg " TARGET_FMT_plx ": 0x%8.8x -> 0x%8.8x\n", addr,
173 s->dmaregs[saddr], val);
174 switch (saddr) {
175 case 0:
176 if (!(val & DMA_INTREN)) {
177 DPRINTF("Lower IRQ\n");
178 qemu_irq_lower(s->irq);
179 }
180 if (val & DMA_RESET) {
181 qemu_irq_raise(s->dev_reset);
182 qemu_irq_lower(s->dev_reset);
183 } else if (val & DMA_DRAIN_FIFO) {
184 val &= ~DMA_DRAIN_FIFO;
185 } else if (val == 0)
186 val = DMA_DRAIN_FIFO;
187 val &= 0x0fffffff;
188 val |= DMA_VER;
189 break;
190 case 1:
191 s->dmaregs[0] |= DMA_LOADED;
192 break;
193 default:
194 break;
195 }
196 s->dmaregs[saddr] = val;
197 }
198
199 static CPUReadMemoryFunc *dma_mem_read[3] = {
200 NULL,
201 NULL,
202 dma_mem_readl,
203 };
204
205 static CPUWriteMemoryFunc *dma_mem_write[3] = {
206 NULL,
207 NULL,
208 dma_mem_writel,
209 };
210
211 static void dma_reset(void *opaque)
212 {
213 DMAState *s = opaque;
214
215 memset(s->dmaregs, 0, DMA_SIZE);
216 s->dmaregs[0] = DMA_VER;
217 }
218
219 static void dma_save(QEMUFile *f, void *opaque)
220 {
221 DMAState *s = opaque;
222 unsigned int i;
223
224 for (i = 0; i < DMA_REGS; i++)
225 qemu_put_be32s(f, &s->dmaregs[i]);
226 }
227
228 static int dma_load(QEMUFile *f, void *opaque, int version_id)
229 {
230 DMAState *s = opaque;
231 unsigned int i;
232
233 if (version_id != 2)
234 return -EINVAL;
235 for (i = 0; i < DMA_REGS; i++)
236 qemu_get_be32s(f, &s->dmaregs[i]);
237
238 return 0;
239 }
240
241 void *sparc32_dma_init(target_phys_addr_t daddr, qemu_irq parent_irq,
242 void *iommu, qemu_irq **dev_irq, qemu_irq **reset)
243 {
244 DMAState *s;
245 int dma_io_memory;
246
247 s = qemu_mallocz(sizeof(DMAState));
248 if (!s)
249 return NULL;
250
251 s->irq = parent_irq;
252 s->iommu = iommu;
253
254 dma_io_memory = cpu_register_io_memory(0, dma_mem_read, dma_mem_write, s);
255 cpu_register_physical_memory(daddr, DMA_SIZE, dma_io_memory);
256
257 register_savevm("sparc32_dma", daddr, 2, dma_save, dma_load, s);
258 qemu_register_reset(dma_reset, s);
259 *dev_irq = qemu_allocate_irqs(dma_set_irq, s, 1);
260
261 *reset = &s->dev_reset;
262
263 return s;
264 }