]> git.proxmox.com Git - qemu.git/blob - hw/strongarm.c
sysbus: apic: ioapic: convert to QEMU Object Model
[qemu.git] / hw / strongarm.c
1 /*
2 * StrongARM SA-1100/SA-1110 emulation
3 *
4 * Copyright (C) 2011 Dmitry Eremin-Solenikov
5 *
6 * Largely based on StrongARM emulation:
7 * Copyright (c) 2006 Openedhand Ltd.
8 * Written by Andrzej Zaborowski <balrog@zabor.org>
9 *
10 * UART code based on QEMU 16550A UART emulation
11 * Copyright (c) 2003-2004 Fabrice Bellard
12 * Copyright (c) 2008 Citrix Systems, Inc.
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License along
24 * with this program; if not, see <http://www.gnu.org/licenses/>.
25 *
26 * Contributions after 2012-01-13 are licensed under the terms of the
27 * GNU GPL, version 2 or (at your option) any later version.
28 */
29 #include "sysbus.h"
30 #include "strongarm.h"
31 #include "qemu-error.h"
32 #include "arm-misc.h"
33 #include "sysemu.h"
34 #include "ssi.h"
35
36 //#define DEBUG
37
38 /*
39 TODO
40 - Implement cp15, c14 ?
41 - Implement cp15, c15 !!! (idle used in L)
42 - Implement idle mode handling/DIM
43 - Implement sleep mode/Wake sources
44 - Implement reset control
45 - Implement memory control regs
46 - PCMCIA handling
47 - Maybe support MBGNT/MBREQ
48 - DMA channels
49 - GPCLK
50 - IrDA
51 - MCP
52 - Enhance UART with modem signals
53 */
54
55 #ifdef DEBUG
56 # define DPRINTF(format, ...) printf(format , ## __VA_ARGS__)
57 #else
58 # define DPRINTF(format, ...) do { } while (0)
59 #endif
60
61 static struct {
62 target_phys_addr_t io_base;
63 int irq;
64 } sa_serial[] = {
65 { 0x80010000, SA_PIC_UART1 },
66 { 0x80030000, SA_PIC_UART2 },
67 { 0x80050000, SA_PIC_UART3 },
68 { 0, 0 }
69 };
70
71 /* Interrupt Controller */
72 typedef struct {
73 SysBusDevice busdev;
74 MemoryRegion iomem;
75 qemu_irq irq;
76 qemu_irq fiq;
77
78 uint32_t pending;
79 uint32_t enabled;
80 uint32_t is_fiq;
81 uint32_t int_idle;
82 } StrongARMPICState;
83
84 #define ICIP 0x00
85 #define ICMR 0x04
86 #define ICLR 0x08
87 #define ICFP 0x10
88 #define ICPR 0x20
89 #define ICCR 0x0c
90
91 #define SA_PIC_SRCS 32
92
93
94 static void strongarm_pic_update(void *opaque)
95 {
96 StrongARMPICState *s = opaque;
97
98 /* FIXME: reflect DIM */
99 qemu_set_irq(s->fiq, s->pending & s->enabled & s->is_fiq);
100 qemu_set_irq(s->irq, s->pending & s->enabled & ~s->is_fiq);
101 }
102
103 static void strongarm_pic_set_irq(void *opaque, int irq, int level)
104 {
105 StrongARMPICState *s = opaque;
106
107 if (level) {
108 s->pending |= 1 << irq;
109 } else {
110 s->pending &= ~(1 << irq);
111 }
112
113 strongarm_pic_update(s);
114 }
115
116 static uint64_t strongarm_pic_mem_read(void *opaque, target_phys_addr_t offset,
117 unsigned size)
118 {
119 StrongARMPICState *s = opaque;
120
121 switch (offset) {
122 case ICIP:
123 return s->pending & ~s->is_fiq & s->enabled;
124 case ICMR:
125 return s->enabled;
126 case ICLR:
127 return s->is_fiq;
128 case ICCR:
129 return s->int_idle == 0;
130 case ICFP:
131 return s->pending & s->is_fiq & s->enabled;
132 case ICPR:
133 return s->pending;
134 default:
135 printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
136 __func__, offset);
137 return 0;
138 }
139 }
140
141 static void strongarm_pic_mem_write(void *opaque, target_phys_addr_t offset,
142 uint64_t value, unsigned size)
143 {
144 StrongARMPICState *s = opaque;
145
146 switch (offset) {
147 case ICMR:
148 s->enabled = value;
149 break;
150 case ICLR:
151 s->is_fiq = value;
152 break;
153 case ICCR:
154 s->int_idle = (value & 1) ? 0 : ~0;
155 break;
156 default:
157 printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n",
158 __func__, offset);
159 break;
160 }
161 strongarm_pic_update(s);
162 }
163
164 static const MemoryRegionOps strongarm_pic_ops = {
165 .read = strongarm_pic_mem_read,
166 .write = strongarm_pic_mem_write,
167 .endianness = DEVICE_NATIVE_ENDIAN,
168 };
169
170 static int strongarm_pic_initfn(SysBusDevice *dev)
171 {
172 StrongARMPICState *s = FROM_SYSBUS(StrongARMPICState, dev);
173
174 qdev_init_gpio_in(&dev->qdev, strongarm_pic_set_irq, SA_PIC_SRCS);
175 memory_region_init_io(&s->iomem, &strongarm_pic_ops, s, "pic", 0x1000);
176 sysbus_init_mmio(dev, &s->iomem);
177 sysbus_init_irq(dev, &s->irq);
178 sysbus_init_irq(dev, &s->fiq);
179
180 return 0;
181 }
182
183 static int strongarm_pic_post_load(void *opaque, int version_id)
184 {
185 strongarm_pic_update(opaque);
186 return 0;
187 }
188
189 static VMStateDescription vmstate_strongarm_pic_regs = {
190 .name = "strongarm_pic",
191 .version_id = 0,
192 .minimum_version_id = 0,
193 .minimum_version_id_old = 0,
194 .post_load = strongarm_pic_post_load,
195 .fields = (VMStateField[]) {
196 VMSTATE_UINT32(pending, StrongARMPICState),
197 VMSTATE_UINT32(enabled, StrongARMPICState),
198 VMSTATE_UINT32(is_fiq, StrongARMPICState),
199 VMSTATE_UINT32(int_idle, StrongARMPICState),
200 VMSTATE_END_OF_LIST(),
201 },
202 };
203
204 static void strongarm_pic_class_init(ObjectClass *klass, void *data)
205 {
206 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
207
208 k->init = strongarm_pic_initfn;
209 }
210
211 static DeviceInfo strongarm_pic_info = {
212 .name = "strongarm_pic",
213 .desc = "StrongARM PIC",
214 .size = sizeof(StrongARMPICState),
215 .vmsd = &vmstate_strongarm_pic_regs,
216 .class_init = strongarm_pic_class_init,
217 };
218
219 /* Real-Time Clock */
220 #define RTAR 0x00 /* RTC Alarm register */
221 #define RCNR 0x04 /* RTC Counter register */
222 #define RTTR 0x08 /* RTC Timer Trim register */
223 #define RTSR 0x10 /* RTC Status register */
224
225 #define RTSR_AL (1 << 0) /* RTC Alarm detected */
226 #define RTSR_HZ (1 << 1) /* RTC 1Hz detected */
227 #define RTSR_ALE (1 << 2) /* RTC Alarm enable */
228 #define RTSR_HZE (1 << 3) /* RTC 1Hz enable */
229
230 /* 16 LSB of RTTR are clockdiv for internal trim logic,
231 * trim delete isn't emulated, so
232 * f = 32 768 / (RTTR_trim + 1) */
233
234 typedef struct {
235 SysBusDevice busdev;
236 MemoryRegion iomem;
237 uint32_t rttr;
238 uint32_t rtsr;
239 uint32_t rtar;
240 uint32_t last_rcnr;
241 int64_t last_hz;
242 QEMUTimer *rtc_alarm;
243 QEMUTimer *rtc_hz;
244 qemu_irq rtc_irq;
245 qemu_irq rtc_hz_irq;
246 } StrongARMRTCState;
247
248 static inline void strongarm_rtc_int_update(StrongARMRTCState *s)
249 {
250 qemu_set_irq(s->rtc_irq, s->rtsr & RTSR_AL);
251 qemu_set_irq(s->rtc_hz_irq, s->rtsr & RTSR_HZ);
252 }
253
254 static void strongarm_rtc_hzupdate(StrongARMRTCState *s)
255 {
256 int64_t rt = qemu_get_clock_ms(rt_clock);
257 s->last_rcnr += ((rt - s->last_hz) << 15) /
258 (1000 * ((s->rttr & 0xffff) + 1));
259 s->last_hz = rt;
260 }
261
262 static inline void strongarm_rtc_timer_update(StrongARMRTCState *s)
263 {
264 if ((s->rtsr & RTSR_HZE) && !(s->rtsr & RTSR_HZ)) {
265 qemu_mod_timer(s->rtc_hz, s->last_hz + 1000);
266 } else {
267 qemu_del_timer(s->rtc_hz);
268 }
269
270 if ((s->rtsr & RTSR_ALE) && !(s->rtsr & RTSR_AL)) {
271 qemu_mod_timer(s->rtc_alarm, s->last_hz +
272 (((s->rtar - s->last_rcnr) * 1000 *
273 ((s->rttr & 0xffff) + 1)) >> 15));
274 } else {
275 qemu_del_timer(s->rtc_alarm);
276 }
277 }
278
279 static inline void strongarm_rtc_alarm_tick(void *opaque)
280 {
281 StrongARMRTCState *s = opaque;
282 s->rtsr |= RTSR_AL;
283 strongarm_rtc_timer_update(s);
284 strongarm_rtc_int_update(s);
285 }
286
287 static inline void strongarm_rtc_hz_tick(void *opaque)
288 {
289 StrongARMRTCState *s = opaque;
290 s->rtsr |= RTSR_HZ;
291 strongarm_rtc_timer_update(s);
292 strongarm_rtc_int_update(s);
293 }
294
295 static uint64_t strongarm_rtc_read(void *opaque, target_phys_addr_t addr,
296 unsigned size)
297 {
298 StrongARMRTCState *s = opaque;
299
300 switch (addr) {
301 case RTTR:
302 return s->rttr;
303 case RTSR:
304 return s->rtsr;
305 case RTAR:
306 return s->rtar;
307 case RCNR:
308 return s->last_rcnr +
309 ((qemu_get_clock_ms(rt_clock) - s->last_hz) << 15) /
310 (1000 * ((s->rttr & 0xffff) + 1));
311 default:
312 printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
313 return 0;
314 }
315 }
316
317 static void strongarm_rtc_write(void *opaque, target_phys_addr_t addr,
318 uint64_t value, unsigned size)
319 {
320 StrongARMRTCState *s = opaque;
321 uint32_t old_rtsr;
322
323 switch (addr) {
324 case RTTR:
325 strongarm_rtc_hzupdate(s);
326 s->rttr = value;
327 strongarm_rtc_timer_update(s);
328 break;
329
330 case RTSR:
331 old_rtsr = s->rtsr;
332 s->rtsr = (value & (RTSR_ALE | RTSR_HZE)) |
333 (s->rtsr & ~(value & (RTSR_AL | RTSR_HZ)));
334
335 if (s->rtsr != old_rtsr) {
336 strongarm_rtc_timer_update(s);
337 }
338
339 strongarm_rtc_int_update(s);
340 break;
341
342 case RTAR:
343 s->rtar = value;
344 strongarm_rtc_timer_update(s);
345 break;
346
347 case RCNR:
348 strongarm_rtc_hzupdate(s);
349 s->last_rcnr = value;
350 strongarm_rtc_timer_update(s);
351 break;
352
353 default:
354 printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
355 }
356 }
357
358 static const MemoryRegionOps strongarm_rtc_ops = {
359 .read = strongarm_rtc_read,
360 .write = strongarm_rtc_write,
361 .endianness = DEVICE_NATIVE_ENDIAN,
362 };
363
364 static int strongarm_rtc_init(SysBusDevice *dev)
365 {
366 StrongARMRTCState *s = FROM_SYSBUS(StrongARMRTCState, dev);
367 struct tm tm;
368
369 s->rttr = 0x0;
370 s->rtsr = 0;
371
372 qemu_get_timedate(&tm, 0);
373
374 s->last_rcnr = (uint32_t) mktimegm(&tm);
375 s->last_hz = qemu_get_clock_ms(rt_clock);
376
377 s->rtc_alarm = qemu_new_timer_ms(rt_clock, strongarm_rtc_alarm_tick, s);
378 s->rtc_hz = qemu_new_timer_ms(rt_clock, strongarm_rtc_hz_tick, s);
379
380 sysbus_init_irq(dev, &s->rtc_irq);
381 sysbus_init_irq(dev, &s->rtc_hz_irq);
382
383 memory_region_init_io(&s->iomem, &strongarm_rtc_ops, s, "rtc", 0x10000);
384 sysbus_init_mmio(dev, &s->iomem);
385
386 return 0;
387 }
388
389 static void strongarm_rtc_pre_save(void *opaque)
390 {
391 StrongARMRTCState *s = opaque;
392
393 strongarm_rtc_hzupdate(s);
394 }
395
396 static int strongarm_rtc_post_load(void *opaque, int version_id)
397 {
398 StrongARMRTCState *s = opaque;
399
400 strongarm_rtc_timer_update(s);
401 strongarm_rtc_int_update(s);
402
403 return 0;
404 }
405
406 static const VMStateDescription vmstate_strongarm_rtc_regs = {
407 .name = "strongarm-rtc",
408 .version_id = 0,
409 .minimum_version_id = 0,
410 .minimum_version_id_old = 0,
411 .pre_save = strongarm_rtc_pre_save,
412 .post_load = strongarm_rtc_post_load,
413 .fields = (VMStateField[]) {
414 VMSTATE_UINT32(rttr, StrongARMRTCState),
415 VMSTATE_UINT32(rtsr, StrongARMRTCState),
416 VMSTATE_UINT32(rtar, StrongARMRTCState),
417 VMSTATE_UINT32(last_rcnr, StrongARMRTCState),
418 VMSTATE_INT64(last_hz, StrongARMRTCState),
419 VMSTATE_END_OF_LIST(),
420 },
421 };
422
423 static void strongarm_rtc_sysbus_class_init(ObjectClass *klass, void *data)
424 {
425 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
426
427 k->init = strongarm_rtc_init;
428 }
429
430 static DeviceInfo strongarm_rtc_sysbus_info = {
431 .name = "strongarm-rtc",
432 .desc = "StrongARM RTC Controller",
433 .size = sizeof(StrongARMRTCState),
434 .vmsd = &vmstate_strongarm_rtc_regs,
435 .class_init = strongarm_rtc_sysbus_class_init,
436 };
437
438 /* GPIO */
439 #define GPLR 0x00
440 #define GPDR 0x04
441 #define GPSR 0x08
442 #define GPCR 0x0c
443 #define GRER 0x10
444 #define GFER 0x14
445 #define GEDR 0x18
446 #define GAFR 0x1c
447
448 typedef struct StrongARMGPIOInfo StrongARMGPIOInfo;
449 struct StrongARMGPIOInfo {
450 SysBusDevice busdev;
451 MemoryRegion iomem;
452 qemu_irq handler[28];
453 qemu_irq irqs[11];
454 qemu_irq irqX;
455
456 uint32_t ilevel;
457 uint32_t olevel;
458 uint32_t dir;
459 uint32_t rising;
460 uint32_t falling;
461 uint32_t status;
462 uint32_t gpsr;
463 uint32_t gafr;
464
465 uint32_t prev_level;
466 };
467
468
469 static void strongarm_gpio_irq_update(StrongARMGPIOInfo *s)
470 {
471 int i;
472 for (i = 0; i < 11; i++) {
473 qemu_set_irq(s->irqs[i], s->status & (1 << i));
474 }
475
476 qemu_set_irq(s->irqX, (s->status & ~0x7ff));
477 }
478
479 static void strongarm_gpio_set(void *opaque, int line, int level)
480 {
481 StrongARMGPIOInfo *s = opaque;
482 uint32_t mask;
483
484 mask = 1 << line;
485
486 if (level) {
487 s->status |= s->rising & mask &
488 ~s->ilevel & ~s->dir;
489 s->ilevel |= mask;
490 } else {
491 s->status |= s->falling & mask &
492 s->ilevel & ~s->dir;
493 s->ilevel &= ~mask;
494 }
495
496 if (s->status & mask) {
497 strongarm_gpio_irq_update(s);
498 }
499 }
500
501 static void strongarm_gpio_handler_update(StrongARMGPIOInfo *s)
502 {
503 uint32_t level, diff;
504 int bit;
505
506 level = s->olevel & s->dir;
507
508 for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
509 bit = ffs(diff) - 1;
510 qemu_set_irq(s->handler[bit], (level >> bit) & 1);
511 }
512
513 s->prev_level = level;
514 }
515
516 static uint64_t strongarm_gpio_read(void *opaque, target_phys_addr_t offset,
517 unsigned size)
518 {
519 StrongARMGPIOInfo *s = opaque;
520
521 switch (offset) {
522 case GPDR: /* GPIO Pin-Direction registers */
523 return s->dir;
524
525 case GPSR: /* GPIO Pin-Output Set registers */
526 DPRINTF("%s: Read from a write-only register 0x" TARGET_FMT_plx "\n",
527 __func__, offset);
528 return s->gpsr; /* Return last written value. */
529
530 case GPCR: /* GPIO Pin-Output Clear registers */
531 DPRINTF("%s: Read from a write-only register 0x" TARGET_FMT_plx "\n",
532 __func__, offset);
533 return 31337; /* Specified as unpredictable in the docs. */
534
535 case GRER: /* GPIO Rising-Edge Detect Enable registers */
536 return s->rising;
537
538 case GFER: /* GPIO Falling-Edge Detect Enable registers */
539 return s->falling;
540
541 case GAFR: /* GPIO Alternate Function registers */
542 return s->gafr;
543
544 case GPLR: /* GPIO Pin-Level registers */
545 return (s->olevel & s->dir) |
546 (s->ilevel & ~s->dir);
547
548 case GEDR: /* GPIO Edge Detect Status registers */
549 return s->status;
550
551 default:
552 printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
553 }
554
555 return 0;
556 }
557
558 static void strongarm_gpio_write(void *opaque, target_phys_addr_t offset,
559 uint64_t value, unsigned size)
560 {
561 StrongARMGPIOInfo *s = opaque;
562
563 switch (offset) {
564 case GPDR: /* GPIO Pin-Direction registers */
565 s->dir = value;
566 strongarm_gpio_handler_update(s);
567 break;
568
569 case GPSR: /* GPIO Pin-Output Set registers */
570 s->olevel |= value;
571 strongarm_gpio_handler_update(s);
572 s->gpsr = value;
573 break;
574
575 case GPCR: /* GPIO Pin-Output Clear registers */
576 s->olevel &= ~value;
577 strongarm_gpio_handler_update(s);
578 break;
579
580 case GRER: /* GPIO Rising-Edge Detect Enable registers */
581 s->rising = value;
582 break;
583
584 case GFER: /* GPIO Falling-Edge Detect Enable registers */
585 s->falling = value;
586 break;
587
588 case GAFR: /* GPIO Alternate Function registers */
589 s->gafr = value;
590 break;
591
592 case GEDR: /* GPIO Edge Detect Status registers */
593 s->status &= ~value;
594 strongarm_gpio_irq_update(s);
595 break;
596
597 default:
598 printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
599 }
600 }
601
602 static const MemoryRegionOps strongarm_gpio_ops = {
603 .read = strongarm_gpio_read,
604 .write = strongarm_gpio_write,
605 .endianness = DEVICE_NATIVE_ENDIAN,
606 };
607
608 static DeviceState *strongarm_gpio_init(target_phys_addr_t base,
609 DeviceState *pic)
610 {
611 DeviceState *dev;
612 int i;
613
614 dev = qdev_create(NULL, "strongarm-gpio");
615 qdev_init_nofail(dev);
616
617 sysbus_mmio_map(sysbus_from_qdev(dev), 0, base);
618 for (i = 0; i < 12; i++)
619 sysbus_connect_irq(sysbus_from_qdev(dev), i,
620 qdev_get_gpio_in(pic, SA_PIC_GPIO0_EDGE + i));
621
622 return dev;
623 }
624
625 static int strongarm_gpio_initfn(SysBusDevice *dev)
626 {
627 StrongARMGPIOInfo *s;
628 int i;
629
630 s = FROM_SYSBUS(StrongARMGPIOInfo, dev);
631
632 qdev_init_gpio_in(&dev->qdev, strongarm_gpio_set, 28);
633 qdev_init_gpio_out(&dev->qdev, s->handler, 28);
634
635 memory_region_init_io(&s->iomem, &strongarm_gpio_ops, s, "gpio", 0x1000);
636
637 sysbus_init_mmio(dev, &s->iomem);
638 for (i = 0; i < 11; i++) {
639 sysbus_init_irq(dev, &s->irqs[i]);
640 }
641 sysbus_init_irq(dev, &s->irqX);
642
643 return 0;
644 }
645
646 static const VMStateDescription vmstate_strongarm_gpio_regs = {
647 .name = "strongarm-gpio",
648 .version_id = 0,
649 .minimum_version_id = 0,
650 .minimum_version_id_old = 0,
651 .fields = (VMStateField[]) {
652 VMSTATE_UINT32(ilevel, StrongARMGPIOInfo),
653 VMSTATE_UINT32(olevel, StrongARMGPIOInfo),
654 VMSTATE_UINT32(dir, StrongARMGPIOInfo),
655 VMSTATE_UINT32(rising, StrongARMGPIOInfo),
656 VMSTATE_UINT32(falling, StrongARMGPIOInfo),
657 VMSTATE_UINT32(status, StrongARMGPIOInfo),
658 VMSTATE_UINT32(gafr, StrongARMGPIOInfo),
659 VMSTATE_END_OF_LIST(),
660 },
661 };
662
663 static void strongarm_gpio_class_init(ObjectClass *klass, void *data)
664 {
665 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
666
667 k->init = strongarm_gpio_initfn;
668 }
669
670 static DeviceInfo strongarm_gpio_info = {
671 .name = "strongarm-gpio",
672 .desc = "StrongARM GPIO controller",
673 .size = sizeof(StrongARMGPIOInfo),
674 .class_init = strongarm_gpio_class_init,
675 };
676
677 /* Peripheral Pin Controller */
678 #define PPDR 0x00
679 #define PPSR 0x04
680 #define PPAR 0x08
681 #define PSDR 0x0c
682 #define PPFR 0x10
683
684 typedef struct StrongARMPPCInfo StrongARMPPCInfo;
685 struct StrongARMPPCInfo {
686 SysBusDevice busdev;
687 MemoryRegion iomem;
688 qemu_irq handler[28];
689
690 uint32_t ilevel;
691 uint32_t olevel;
692 uint32_t dir;
693 uint32_t ppar;
694 uint32_t psdr;
695 uint32_t ppfr;
696
697 uint32_t prev_level;
698 };
699
700 static void strongarm_ppc_set(void *opaque, int line, int level)
701 {
702 StrongARMPPCInfo *s = opaque;
703
704 if (level) {
705 s->ilevel |= 1 << line;
706 } else {
707 s->ilevel &= ~(1 << line);
708 }
709 }
710
711 static void strongarm_ppc_handler_update(StrongARMPPCInfo *s)
712 {
713 uint32_t level, diff;
714 int bit;
715
716 level = s->olevel & s->dir;
717
718 for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
719 bit = ffs(diff) - 1;
720 qemu_set_irq(s->handler[bit], (level >> bit) & 1);
721 }
722
723 s->prev_level = level;
724 }
725
726 static uint64_t strongarm_ppc_read(void *opaque, target_phys_addr_t offset,
727 unsigned size)
728 {
729 StrongARMPPCInfo *s = opaque;
730
731 switch (offset) {
732 case PPDR: /* PPC Pin Direction registers */
733 return s->dir | ~0x3fffff;
734
735 case PPSR: /* PPC Pin State registers */
736 return (s->olevel & s->dir) |
737 (s->ilevel & ~s->dir) |
738 ~0x3fffff;
739
740 case PPAR:
741 return s->ppar | ~0x41000;
742
743 case PSDR:
744 return s->psdr;
745
746 case PPFR:
747 return s->ppfr | ~0x7f001;
748
749 default:
750 printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
751 }
752
753 return 0;
754 }
755
756 static void strongarm_ppc_write(void *opaque, target_phys_addr_t offset,
757 uint64_t value, unsigned size)
758 {
759 StrongARMPPCInfo *s = opaque;
760
761 switch (offset) {
762 case PPDR: /* PPC Pin Direction registers */
763 s->dir = value & 0x3fffff;
764 strongarm_ppc_handler_update(s);
765 break;
766
767 case PPSR: /* PPC Pin State registers */
768 s->olevel = value & s->dir & 0x3fffff;
769 strongarm_ppc_handler_update(s);
770 break;
771
772 case PPAR:
773 s->ppar = value & 0x41000;
774 break;
775
776 case PSDR:
777 s->psdr = value & 0x3fffff;
778 break;
779
780 case PPFR:
781 s->ppfr = value & 0x7f001;
782 break;
783
784 default:
785 printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset);
786 }
787 }
788
789 static const MemoryRegionOps strongarm_ppc_ops = {
790 .read = strongarm_ppc_read,
791 .write = strongarm_ppc_write,
792 .endianness = DEVICE_NATIVE_ENDIAN,
793 };
794
795 static int strongarm_ppc_init(SysBusDevice *dev)
796 {
797 StrongARMPPCInfo *s;
798
799 s = FROM_SYSBUS(StrongARMPPCInfo, dev);
800
801 qdev_init_gpio_in(&dev->qdev, strongarm_ppc_set, 22);
802 qdev_init_gpio_out(&dev->qdev, s->handler, 22);
803
804 memory_region_init_io(&s->iomem, &strongarm_ppc_ops, s, "ppc", 0x1000);
805
806 sysbus_init_mmio(dev, &s->iomem);
807
808 return 0;
809 }
810
811 static const VMStateDescription vmstate_strongarm_ppc_regs = {
812 .name = "strongarm-ppc",
813 .version_id = 0,
814 .minimum_version_id = 0,
815 .minimum_version_id_old = 0,
816 .fields = (VMStateField[]) {
817 VMSTATE_UINT32(ilevel, StrongARMPPCInfo),
818 VMSTATE_UINT32(olevel, StrongARMPPCInfo),
819 VMSTATE_UINT32(dir, StrongARMPPCInfo),
820 VMSTATE_UINT32(ppar, StrongARMPPCInfo),
821 VMSTATE_UINT32(psdr, StrongARMPPCInfo),
822 VMSTATE_UINT32(ppfr, StrongARMPPCInfo),
823 VMSTATE_END_OF_LIST(),
824 },
825 };
826
827 static void strongarm_ppc_class_init(ObjectClass *klass, void *data)
828 {
829 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
830
831 k->init = strongarm_ppc_init;
832 }
833
834 static DeviceInfo strongarm_ppc_info = {
835 .name = "strongarm-ppc",
836 .desc = "StrongARM PPC controller",
837 .size = sizeof(StrongARMPPCInfo),
838 .class_init = strongarm_ppc_class_init,
839 };
840
841 /* UART Ports */
842 #define UTCR0 0x00
843 #define UTCR1 0x04
844 #define UTCR2 0x08
845 #define UTCR3 0x0c
846 #define UTDR 0x14
847 #define UTSR0 0x1c
848 #define UTSR1 0x20
849
850 #define UTCR0_PE (1 << 0) /* Parity enable */
851 #define UTCR0_OES (1 << 1) /* Even parity */
852 #define UTCR0_SBS (1 << 2) /* 2 stop bits */
853 #define UTCR0_DSS (1 << 3) /* 8-bit data */
854
855 #define UTCR3_RXE (1 << 0) /* Rx enable */
856 #define UTCR3_TXE (1 << 1) /* Tx enable */
857 #define UTCR3_BRK (1 << 2) /* Force Break */
858 #define UTCR3_RIE (1 << 3) /* Rx int enable */
859 #define UTCR3_TIE (1 << 4) /* Tx int enable */
860 #define UTCR3_LBM (1 << 5) /* Loopback */
861
862 #define UTSR0_TFS (1 << 0) /* Tx FIFO nearly empty */
863 #define UTSR0_RFS (1 << 1) /* Rx FIFO nearly full */
864 #define UTSR0_RID (1 << 2) /* Receiver Idle */
865 #define UTSR0_RBB (1 << 3) /* Receiver begin break */
866 #define UTSR0_REB (1 << 4) /* Receiver end break */
867 #define UTSR0_EIF (1 << 5) /* Error in FIFO */
868
869 #define UTSR1_RNE (1 << 1) /* Receive FIFO not empty */
870 #define UTSR1_TNF (1 << 2) /* Transmit FIFO not full */
871 #define UTSR1_PRE (1 << 3) /* Parity error */
872 #define UTSR1_FRE (1 << 4) /* Frame error */
873 #define UTSR1_ROR (1 << 5) /* Receive Over Run */
874
875 #define RX_FIFO_PRE (1 << 8)
876 #define RX_FIFO_FRE (1 << 9)
877 #define RX_FIFO_ROR (1 << 10)
878
879 typedef struct {
880 SysBusDevice busdev;
881 MemoryRegion iomem;
882 CharDriverState *chr;
883 qemu_irq irq;
884
885 uint8_t utcr0;
886 uint16_t brd;
887 uint8_t utcr3;
888 uint8_t utsr0;
889 uint8_t utsr1;
890
891 uint8_t tx_fifo[8];
892 uint8_t tx_start;
893 uint8_t tx_len;
894 uint16_t rx_fifo[12]; /* value + error flags in high bits */
895 uint8_t rx_start;
896 uint8_t rx_len;
897
898 uint64_t char_transmit_time; /* time to transmit a char in ticks*/
899 bool wait_break_end;
900 QEMUTimer *rx_timeout_timer;
901 QEMUTimer *tx_timer;
902 } StrongARMUARTState;
903
904 static void strongarm_uart_update_status(StrongARMUARTState *s)
905 {
906 uint16_t utsr1 = 0;
907
908 if (s->tx_len != 8) {
909 utsr1 |= UTSR1_TNF;
910 }
911
912 if (s->rx_len != 0) {
913 uint16_t ent = s->rx_fifo[s->rx_start];
914
915 utsr1 |= UTSR1_RNE;
916 if (ent & RX_FIFO_PRE) {
917 s->utsr1 |= UTSR1_PRE;
918 }
919 if (ent & RX_FIFO_FRE) {
920 s->utsr1 |= UTSR1_FRE;
921 }
922 if (ent & RX_FIFO_ROR) {
923 s->utsr1 |= UTSR1_ROR;
924 }
925 }
926
927 s->utsr1 = utsr1;
928 }
929
930 static void strongarm_uart_update_int_status(StrongARMUARTState *s)
931 {
932 uint16_t utsr0 = s->utsr0 &
933 (UTSR0_REB | UTSR0_RBB | UTSR0_RID);
934 int i;
935
936 if ((s->utcr3 & UTCR3_TXE) &&
937 (s->utcr3 & UTCR3_TIE) &&
938 s->tx_len <= 4) {
939 utsr0 |= UTSR0_TFS;
940 }
941
942 if ((s->utcr3 & UTCR3_RXE) &&
943 (s->utcr3 & UTCR3_RIE) &&
944 s->rx_len > 4) {
945 utsr0 |= UTSR0_RFS;
946 }
947
948 for (i = 0; i < s->rx_len && i < 4; i++)
949 if (s->rx_fifo[(s->rx_start + i) % 12] & ~0xff) {
950 utsr0 |= UTSR0_EIF;
951 break;
952 }
953
954 s->utsr0 = utsr0;
955 qemu_set_irq(s->irq, utsr0);
956 }
957
958 static void strongarm_uart_update_parameters(StrongARMUARTState *s)
959 {
960 int speed, parity, data_bits, stop_bits, frame_size;
961 QEMUSerialSetParams ssp;
962
963 /* Start bit. */
964 frame_size = 1;
965 if (s->utcr0 & UTCR0_PE) {
966 /* Parity bit. */
967 frame_size++;
968 if (s->utcr0 & UTCR0_OES) {
969 parity = 'E';
970 } else {
971 parity = 'O';
972 }
973 } else {
974 parity = 'N';
975 }
976 if (s->utcr0 & UTCR0_SBS) {
977 stop_bits = 2;
978 } else {
979 stop_bits = 1;
980 }
981
982 data_bits = (s->utcr0 & UTCR0_DSS) ? 8 : 7;
983 frame_size += data_bits + stop_bits;
984 speed = 3686400 / 16 / (s->brd + 1);
985 ssp.speed = speed;
986 ssp.parity = parity;
987 ssp.data_bits = data_bits;
988 ssp.stop_bits = stop_bits;
989 s->char_transmit_time = (get_ticks_per_sec() / speed) * frame_size;
990 if (s->chr) {
991 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
992 }
993
994 DPRINTF(stderr, "%s speed=%d parity=%c data=%d stop=%d\n", s->chr->label,
995 speed, parity, data_bits, stop_bits);
996 }
997
998 static void strongarm_uart_rx_to(void *opaque)
999 {
1000 StrongARMUARTState *s = opaque;
1001
1002 if (s->rx_len) {
1003 s->utsr0 |= UTSR0_RID;
1004 strongarm_uart_update_int_status(s);
1005 }
1006 }
1007
1008 static void strongarm_uart_rx_push(StrongARMUARTState *s, uint16_t c)
1009 {
1010 if ((s->utcr3 & UTCR3_RXE) == 0) {
1011 /* rx disabled */
1012 return;
1013 }
1014
1015 if (s->wait_break_end) {
1016 s->utsr0 |= UTSR0_REB;
1017 s->wait_break_end = false;
1018 }
1019
1020 if (s->rx_len < 12) {
1021 s->rx_fifo[(s->rx_start + s->rx_len) % 12] = c;
1022 s->rx_len++;
1023 } else
1024 s->rx_fifo[(s->rx_start + 11) % 12] |= RX_FIFO_ROR;
1025 }
1026
1027 static int strongarm_uart_can_receive(void *opaque)
1028 {
1029 StrongARMUARTState *s = opaque;
1030
1031 if (s->rx_len == 12) {
1032 return 0;
1033 }
1034 /* It's best not to get more than 2/3 of RX FIFO, so advertise that much */
1035 if (s->rx_len < 8) {
1036 return 8 - s->rx_len;
1037 }
1038 return 1;
1039 }
1040
1041 static void strongarm_uart_receive(void *opaque, const uint8_t *buf, int size)
1042 {
1043 StrongARMUARTState *s = opaque;
1044 int i;
1045
1046 for (i = 0; i < size; i++) {
1047 strongarm_uart_rx_push(s, buf[i]);
1048 }
1049
1050 /* call the timeout receive callback in 3 char transmit time */
1051 qemu_mod_timer(s->rx_timeout_timer,
1052 qemu_get_clock_ns(vm_clock) + s->char_transmit_time * 3);
1053
1054 strongarm_uart_update_status(s);
1055 strongarm_uart_update_int_status(s);
1056 }
1057
1058 static void strongarm_uart_event(void *opaque, int event)
1059 {
1060 StrongARMUARTState *s = opaque;
1061 if (event == CHR_EVENT_BREAK) {
1062 s->utsr0 |= UTSR0_RBB;
1063 strongarm_uart_rx_push(s, RX_FIFO_FRE);
1064 s->wait_break_end = true;
1065 strongarm_uart_update_status(s);
1066 strongarm_uart_update_int_status(s);
1067 }
1068 }
1069
1070 static void strongarm_uart_tx(void *opaque)
1071 {
1072 StrongARMUARTState *s = opaque;
1073 uint64_t new_xmit_ts = qemu_get_clock_ns(vm_clock);
1074
1075 if (s->utcr3 & UTCR3_LBM) /* loopback */ {
1076 strongarm_uart_receive(s, &s->tx_fifo[s->tx_start], 1);
1077 } else if (s->chr) {
1078 qemu_chr_fe_write(s->chr, &s->tx_fifo[s->tx_start], 1);
1079 }
1080
1081 s->tx_start = (s->tx_start + 1) % 8;
1082 s->tx_len--;
1083 if (s->tx_len) {
1084 qemu_mod_timer(s->tx_timer, new_xmit_ts + s->char_transmit_time);
1085 }
1086 strongarm_uart_update_status(s);
1087 strongarm_uart_update_int_status(s);
1088 }
1089
1090 static uint64_t strongarm_uart_read(void *opaque, target_phys_addr_t addr,
1091 unsigned size)
1092 {
1093 StrongARMUARTState *s = opaque;
1094 uint16_t ret;
1095
1096 switch (addr) {
1097 case UTCR0:
1098 return s->utcr0;
1099
1100 case UTCR1:
1101 return s->brd >> 8;
1102
1103 case UTCR2:
1104 return s->brd & 0xff;
1105
1106 case UTCR3:
1107 return s->utcr3;
1108
1109 case UTDR:
1110 if (s->rx_len != 0) {
1111 ret = s->rx_fifo[s->rx_start];
1112 s->rx_start = (s->rx_start + 1) % 12;
1113 s->rx_len--;
1114 strongarm_uart_update_status(s);
1115 strongarm_uart_update_int_status(s);
1116 return ret;
1117 }
1118 return 0;
1119
1120 case UTSR0:
1121 return s->utsr0;
1122
1123 case UTSR1:
1124 return s->utsr1;
1125
1126 default:
1127 printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1128 return 0;
1129 }
1130 }
1131
1132 static void strongarm_uart_write(void *opaque, target_phys_addr_t addr,
1133 uint64_t value, unsigned size)
1134 {
1135 StrongARMUARTState *s = opaque;
1136
1137 switch (addr) {
1138 case UTCR0:
1139 s->utcr0 = value & 0x7f;
1140 strongarm_uart_update_parameters(s);
1141 break;
1142
1143 case UTCR1:
1144 s->brd = (s->brd & 0xff) | ((value & 0xf) << 8);
1145 strongarm_uart_update_parameters(s);
1146 break;
1147
1148 case UTCR2:
1149 s->brd = (s->brd & 0xf00) | (value & 0xff);
1150 strongarm_uart_update_parameters(s);
1151 break;
1152
1153 case UTCR3:
1154 s->utcr3 = value & 0x3f;
1155 if ((s->utcr3 & UTCR3_RXE) == 0) {
1156 s->rx_len = 0;
1157 }
1158 if ((s->utcr3 & UTCR3_TXE) == 0) {
1159 s->tx_len = 0;
1160 }
1161 strongarm_uart_update_status(s);
1162 strongarm_uart_update_int_status(s);
1163 break;
1164
1165 case UTDR:
1166 if ((s->utcr3 & UTCR3_TXE) && s->tx_len != 8) {
1167 s->tx_fifo[(s->tx_start + s->tx_len) % 8] = value;
1168 s->tx_len++;
1169 strongarm_uart_update_status(s);
1170 strongarm_uart_update_int_status(s);
1171 if (s->tx_len == 1) {
1172 strongarm_uart_tx(s);
1173 }
1174 }
1175 break;
1176
1177 case UTSR0:
1178 s->utsr0 = s->utsr0 & ~(value &
1179 (UTSR0_REB | UTSR0_RBB | UTSR0_RID));
1180 strongarm_uart_update_int_status(s);
1181 break;
1182
1183 default:
1184 printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1185 }
1186 }
1187
1188 static const MemoryRegionOps strongarm_uart_ops = {
1189 .read = strongarm_uart_read,
1190 .write = strongarm_uart_write,
1191 .endianness = DEVICE_NATIVE_ENDIAN,
1192 };
1193
1194 static int strongarm_uart_init(SysBusDevice *dev)
1195 {
1196 StrongARMUARTState *s = FROM_SYSBUS(StrongARMUARTState, dev);
1197
1198 memory_region_init_io(&s->iomem, &strongarm_uart_ops, s, "uart", 0x10000);
1199 sysbus_init_mmio(dev, &s->iomem);
1200 sysbus_init_irq(dev, &s->irq);
1201
1202 s->rx_timeout_timer = qemu_new_timer_ns(vm_clock, strongarm_uart_rx_to, s);
1203 s->tx_timer = qemu_new_timer_ns(vm_clock, strongarm_uart_tx, s);
1204
1205 if (s->chr) {
1206 qemu_chr_add_handlers(s->chr,
1207 strongarm_uart_can_receive,
1208 strongarm_uart_receive,
1209 strongarm_uart_event,
1210 s);
1211 }
1212
1213 return 0;
1214 }
1215
1216 static void strongarm_uart_reset(DeviceState *dev)
1217 {
1218 StrongARMUARTState *s = DO_UPCAST(StrongARMUARTState, busdev.qdev, dev);
1219
1220 s->utcr0 = UTCR0_DSS; /* 8 data, no parity */
1221 s->brd = 23; /* 9600 */
1222 /* enable send & recv - this actually violates spec */
1223 s->utcr3 = UTCR3_TXE | UTCR3_RXE;
1224
1225 s->rx_len = s->tx_len = 0;
1226
1227 strongarm_uart_update_parameters(s);
1228 strongarm_uart_update_status(s);
1229 strongarm_uart_update_int_status(s);
1230 }
1231
1232 static int strongarm_uart_post_load(void *opaque, int version_id)
1233 {
1234 StrongARMUARTState *s = opaque;
1235
1236 strongarm_uart_update_parameters(s);
1237 strongarm_uart_update_status(s);
1238 strongarm_uart_update_int_status(s);
1239
1240 /* tx and restart timer */
1241 if (s->tx_len) {
1242 strongarm_uart_tx(s);
1243 }
1244
1245 /* restart rx timeout timer */
1246 if (s->rx_len) {
1247 qemu_mod_timer(s->rx_timeout_timer,
1248 qemu_get_clock_ns(vm_clock) + s->char_transmit_time * 3);
1249 }
1250
1251 return 0;
1252 }
1253
1254 static const VMStateDescription vmstate_strongarm_uart_regs = {
1255 .name = "strongarm-uart",
1256 .version_id = 0,
1257 .minimum_version_id = 0,
1258 .minimum_version_id_old = 0,
1259 .post_load = strongarm_uart_post_load,
1260 .fields = (VMStateField[]) {
1261 VMSTATE_UINT8(utcr0, StrongARMUARTState),
1262 VMSTATE_UINT16(brd, StrongARMUARTState),
1263 VMSTATE_UINT8(utcr3, StrongARMUARTState),
1264 VMSTATE_UINT8(utsr0, StrongARMUARTState),
1265 VMSTATE_UINT8_ARRAY(tx_fifo, StrongARMUARTState, 8),
1266 VMSTATE_UINT8(tx_start, StrongARMUARTState),
1267 VMSTATE_UINT8(tx_len, StrongARMUARTState),
1268 VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMUARTState, 12),
1269 VMSTATE_UINT8(rx_start, StrongARMUARTState),
1270 VMSTATE_UINT8(rx_len, StrongARMUARTState),
1271 VMSTATE_BOOL(wait_break_end, StrongARMUARTState),
1272 VMSTATE_END_OF_LIST(),
1273 },
1274 };
1275
1276 static Property strongarm_uart_properties[] = {
1277 DEFINE_PROP_CHR("chardev", StrongARMUARTState, chr),
1278 DEFINE_PROP_END_OF_LIST(),
1279 };
1280
1281 static void strongarm_uart_class_init(ObjectClass *klass, void *data)
1282 {
1283 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1284
1285 k->init = strongarm_uart_init;
1286 }
1287
1288 static DeviceInfo strongarm_uart_info = {
1289 .name = "strongarm-uart",
1290 .desc = "StrongARM UART controller",
1291 .size = sizeof(StrongARMUARTState),
1292 .reset = strongarm_uart_reset,
1293 .vmsd = &vmstate_strongarm_uart_regs,
1294 .props = strongarm_uart_properties,
1295 .class_init = strongarm_uart_class_init,
1296 };
1297
1298 /* Synchronous Serial Ports */
1299 typedef struct {
1300 SysBusDevice busdev;
1301 MemoryRegion iomem;
1302 qemu_irq irq;
1303 SSIBus *bus;
1304
1305 uint16_t sscr[2];
1306 uint16_t sssr;
1307
1308 uint16_t rx_fifo[8];
1309 uint8_t rx_level;
1310 uint8_t rx_start;
1311 } StrongARMSSPState;
1312
1313 #define SSCR0 0x60 /* SSP Control register 0 */
1314 #define SSCR1 0x64 /* SSP Control register 1 */
1315 #define SSDR 0x6c /* SSP Data register */
1316 #define SSSR 0x74 /* SSP Status register */
1317
1318 /* Bitfields for above registers */
1319 #define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
1320 #define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
1321 #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
1322 #define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
1323 #define SSCR0_SSE (1 << 7)
1324 #define SSCR0_DSS(x) (((x) & 0xf) + 1)
1325 #define SSCR1_RIE (1 << 0)
1326 #define SSCR1_TIE (1 << 1)
1327 #define SSCR1_LBM (1 << 2)
1328 #define SSSR_TNF (1 << 2)
1329 #define SSSR_RNE (1 << 3)
1330 #define SSSR_TFS (1 << 5)
1331 #define SSSR_RFS (1 << 6)
1332 #define SSSR_ROR (1 << 7)
1333 #define SSSR_RW 0x0080
1334
1335 static void strongarm_ssp_int_update(StrongARMSSPState *s)
1336 {
1337 int level = 0;
1338
1339 level |= (s->sssr & SSSR_ROR);
1340 level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
1341 level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
1342 qemu_set_irq(s->irq, level);
1343 }
1344
1345 static void strongarm_ssp_fifo_update(StrongARMSSPState *s)
1346 {
1347 s->sssr &= ~SSSR_TFS;
1348 s->sssr &= ~SSSR_TNF;
1349 if (s->sscr[0] & SSCR0_SSE) {
1350 if (s->rx_level >= 4) {
1351 s->sssr |= SSSR_RFS;
1352 } else {
1353 s->sssr &= ~SSSR_RFS;
1354 }
1355 if (s->rx_level) {
1356 s->sssr |= SSSR_RNE;
1357 } else {
1358 s->sssr &= ~SSSR_RNE;
1359 }
1360 /* TX FIFO is never filled, so it is always in underrun
1361 condition if SSP is enabled */
1362 s->sssr |= SSSR_TFS;
1363 s->sssr |= SSSR_TNF;
1364 }
1365
1366 strongarm_ssp_int_update(s);
1367 }
1368
1369 static uint64_t strongarm_ssp_read(void *opaque, target_phys_addr_t addr,
1370 unsigned size)
1371 {
1372 StrongARMSSPState *s = opaque;
1373 uint32_t retval;
1374
1375 switch (addr) {
1376 case SSCR0:
1377 return s->sscr[0];
1378 case SSCR1:
1379 return s->sscr[1];
1380 case SSSR:
1381 return s->sssr;
1382 case SSDR:
1383 if (~s->sscr[0] & SSCR0_SSE) {
1384 return 0xffffffff;
1385 }
1386 if (s->rx_level < 1) {
1387 printf("%s: SSP Rx Underrun\n", __func__);
1388 return 0xffffffff;
1389 }
1390 s->rx_level--;
1391 retval = s->rx_fifo[s->rx_start++];
1392 s->rx_start &= 0x7;
1393 strongarm_ssp_fifo_update(s);
1394 return retval;
1395 default:
1396 printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1397 break;
1398 }
1399 return 0;
1400 }
1401
1402 static void strongarm_ssp_write(void *opaque, target_phys_addr_t addr,
1403 uint64_t value, unsigned size)
1404 {
1405 StrongARMSSPState *s = opaque;
1406
1407 switch (addr) {
1408 case SSCR0:
1409 s->sscr[0] = value & 0xffbf;
1410 if ((s->sscr[0] & SSCR0_SSE) && SSCR0_DSS(value) < 4) {
1411 printf("%s: Wrong data size: %i bits\n", __func__,
1412 (int)SSCR0_DSS(value));
1413 }
1414 if (!(value & SSCR0_SSE)) {
1415 s->sssr = 0;
1416 s->rx_level = 0;
1417 }
1418 strongarm_ssp_fifo_update(s);
1419 break;
1420
1421 case SSCR1:
1422 s->sscr[1] = value & 0x2f;
1423 if (value & SSCR1_LBM) {
1424 printf("%s: Attempt to use SSP LBM mode\n", __func__);
1425 }
1426 strongarm_ssp_fifo_update(s);
1427 break;
1428
1429 case SSSR:
1430 s->sssr &= ~(value & SSSR_RW);
1431 strongarm_ssp_int_update(s);
1432 break;
1433
1434 case SSDR:
1435 if (SSCR0_UWIRE(s->sscr[0])) {
1436 value &= 0xff;
1437 } else
1438 /* Note how 32bits overflow does no harm here */
1439 value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
1440
1441 /* Data goes from here to the Tx FIFO and is shifted out from
1442 * there directly to the slave, no need to buffer it.
1443 */
1444 if (s->sscr[0] & SSCR0_SSE) {
1445 uint32_t readval;
1446 if (s->sscr[1] & SSCR1_LBM) {
1447 readval = value;
1448 } else {
1449 readval = ssi_transfer(s->bus, value);
1450 }
1451
1452 if (s->rx_level < 0x08) {
1453 s->rx_fifo[(s->rx_start + s->rx_level++) & 0x7] = readval;
1454 } else {
1455 s->sssr |= SSSR_ROR;
1456 }
1457 }
1458 strongarm_ssp_fifo_update(s);
1459 break;
1460
1461 default:
1462 printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr);
1463 break;
1464 }
1465 }
1466
1467 static const MemoryRegionOps strongarm_ssp_ops = {
1468 .read = strongarm_ssp_read,
1469 .write = strongarm_ssp_write,
1470 .endianness = DEVICE_NATIVE_ENDIAN,
1471 };
1472
1473 static int strongarm_ssp_post_load(void *opaque, int version_id)
1474 {
1475 StrongARMSSPState *s = opaque;
1476
1477 strongarm_ssp_fifo_update(s);
1478
1479 return 0;
1480 }
1481
1482 static int strongarm_ssp_init(SysBusDevice *dev)
1483 {
1484 StrongARMSSPState *s = FROM_SYSBUS(StrongARMSSPState, dev);
1485
1486 sysbus_init_irq(dev, &s->irq);
1487
1488 memory_region_init_io(&s->iomem, &strongarm_ssp_ops, s, "ssp", 0x1000);
1489 sysbus_init_mmio(dev, &s->iomem);
1490
1491 s->bus = ssi_create_bus(&dev->qdev, "ssi");
1492 return 0;
1493 }
1494
1495 static void strongarm_ssp_reset(DeviceState *dev)
1496 {
1497 StrongARMSSPState *s = DO_UPCAST(StrongARMSSPState, busdev.qdev, dev);
1498 s->sssr = 0x03; /* 3 bit data, SPI, disabled */
1499 s->rx_start = 0;
1500 s->rx_level = 0;
1501 }
1502
1503 static const VMStateDescription vmstate_strongarm_ssp_regs = {
1504 .name = "strongarm-ssp",
1505 .version_id = 0,
1506 .minimum_version_id = 0,
1507 .minimum_version_id_old = 0,
1508 .post_load = strongarm_ssp_post_load,
1509 .fields = (VMStateField[]) {
1510 VMSTATE_UINT16_ARRAY(sscr, StrongARMSSPState, 2),
1511 VMSTATE_UINT16(sssr, StrongARMSSPState),
1512 VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMSSPState, 8),
1513 VMSTATE_UINT8(rx_start, StrongARMSSPState),
1514 VMSTATE_UINT8(rx_level, StrongARMSSPState),
1515 VMSTATE_END_OF_LIST(),
1516 },
1517 };
1518
1519 static void strongarm_ssp_class_init(ObjectClass *klass, void *data)
1520 {
1521 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1522
1523 k->init = strongarm_ssp_init;
1524 }
1525
1526 static DeviceInfo strongarm_ssp_info = {
1527 .name = "strongarm-ssp",
1528 .desc = "StrongARM SSP controller",
1529 .size = sizeof(StrongARMSSPState),
1530 .reset = strongarm_ssp_reset,
1531 .vmsd = &vmstate_strongarm_ssp_regs,
1532 .class_init = strongarm_ssp_class_init,
1533 };
1534
1535 /* Main CPU functions */
1536 StrongARMState *sa1110_init(MemoryRegion *sysmem,
1537 unsigned int sdram_size, const char *rev)
1538 {
1539 StrongARMState *s;
1540 qemu_irq *pic;
1541 int i;
1542
1543 s = g_malloc0(sizeof(StrongARMState));
1544
1545 if (!rev) {
1546 rev = "sa1110-b5";
1547 }
1548
1549 if (strncmp(rev, "sa1110", 6)) {
1550 error_report("Machine requires a SA1110 processor.");
1551 exit(1);
1552 }
1553
1554 s->env = cpu_init(rev);
1555
1556 if (!s->env) {
1557 error_report("Unable to find CPU definition");
1558 exit(1);
1559 }
1560
1561 memory_region_init_ram(&s->sdram, "strongarm.sdram", sdram_size);
1562 vmstate_register_ram_global(&s->sdram);
1563 memory_region_add_subregion(sysmem, SA_SDCS0, &s->sdram);
1564
1565 pic = arm_pic_init_cpu(s->env);
1566 s->pic = sysbus_create_varargs("strongarm_pic", 0x90050000,
1567 pic[ARM_PIC_CPU_IRQ], pic[ARM_PIC_CPU_FIQ], NULL);
1568
1569 sysbus_create_varargs("pxa25x-timer", 0x90000000,
1570 qdev_get_gpio_in(s->pic, SA_PIC_OSTC0),
1571 qdev_get_gpio_in(s->pic, SA_PIC_OSTC1),
1572 qdev_get_gpio_in(s->pic, SA_PIC_OSTC2),
1573 qdev_get_gpio_in(s->pic, SA_PIC_OSTC3),
1574 NULL);
1575
1576 sysbus_create_simple("strongarm-rtc", 0x90010000,
1577 qdev_get_gpio_in(s->pic, SA_PIC_RTC_ALARM));
1578
1579 s->gpio = strongarm_gpio_init(0x90040000, s->pic);
1580
1581 s->ppc = sysbus_create_varargs("strongarm-ppc", 0x90060000, NULL);
1582
1583 for (i = 0; sa_serial[i].io_base; i++) {
1584 DeviceState *dev = qdev_create(NULL, "strongarm-uart");
1585 qdev_prop_set_chr(dev, "chardev", serial_hds[i]);
1586 qdev_init_nofail(dev);
1587 sysbus_mmio_map(sysbus_from_qdev(dev), 0,
1588 sa_serial[i].io_base);
1589 sysbus_connect_irq(sysbus_from_qdev(dev), 0,
1590 qdev_get_gpio_in(s->pic, sa_serial[i].irq));
1591 }
1592
1593 s->ssp = sysbus_create_varargs("strongarm-ssp", 0x80070000,
1594 qdev_get_gpio_in(s->pic, SA_PIC_SSP), NULL);
1595 s->ssp_bus = (SSIBus *)qdev_get_child_bus(s->ssp, "ssi");
1596
1597 return s;
1598 }
1599
1600 static void strongarm_register_devices(void)
1601 {
1602 sysbus_register_withprop(&strongarm_pic_info);
1603 sysbus_register_withprop(&strongarm_rtc_sysbus_info);
1604 sysbus_register_withprop(&strongarm_gpio_info);
1605 sysbus_register_withprop(&strongarm_ppc_info);
1606 sysbus_register_withprop(&strongarm_uart_info);
1607 sysbus_register_withprop(&strongarm_ssp_info);
1608 }
1609 device_init(strongarm_register_devices)