]> git.proxmox.com Git - mirror_qemu.git/blob - hw/xtensa/xtfpga.c
xtensa: Clean up includes
[mirror_qemu.git] / hw / xtensa / xtfpga.c
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include "qemu/osdep.h"
29 #include "sysemu/sysemu.h"
30 #include "hw/boards.h"
31 #include "hw/loader.h"
32 #include "elf.h"
33 #include "exec/memory.h"
34 #include "exec/address-spaces.h"
35 #include "hw/char/serial.h"
36 #include "net/net.h"
37 #include "hw/sysbus.h"
38 #include "hw/block/flash.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/char.h"
41 #include "sysemu/device_tree.h"
42 #include "qemu/error-report.h"
43 #include "bootparam.h"
44
45 typedef struct LxBoardDesc {
46 hwaddr flash_base;
47 size_t flash_size;
48 size_t flash_boot_base;
49 size_t flash_sector_size;
50 size_t sram_size;
51 } LxBoardDesc;
52
53 typedef struct Lx60FpgaState {
54 MemoryRegion iomem;
55 uint32_t leds;
56 uint32_t switches;
57 } Lx60FpgaState;
58
59 static void lx60_fpga_reset(void *opaque)
60 {
61 Lx60FpgaState *s = opaque;
62
63 s->leds = 0;
64 s->switches = 0;
65 }
66
67 static uint64_t lx60_fpga_read(void *opaque, hwaddr addr,
68 unsigned size)
69 {
70 Lx60FpgaState *s = opaque;
71
72 switch (addr) {
73 case 0x0: /*build date code*/
74 return 0x09272011;
75
76 case 0x4: /*processor clock frequency, Hz*/
77 return 10000000;
78
79 case 0x8: /*LEDs (off = 0, on = 1)*/
80 return s->leds;
81
82 case 0xc: /*DIP switches (off = 0, on = 1)*/
83 return s->switches;
84 }
85 return 0;
86 }
87
88 static void lx60_fpga_write(void *opaque, hwaddr addr,
89 uint64_t val, unsigned size)
90 {
91 Lx60FpgaState *s = opaque;
92
93 switch (addr) {
94 case 0x8: /*LEDs (off = 0, on = 1)*/
95 s->leds = val;
96 break;
97
98 case 0x10: /*board reset*/
99 if (val == 0xdead) {
100 qemu_system_reset_request();
101 }
102 break;
103 }
104 }
105
106 static const MemoryRegionOps lx60_fpga_ops = {
107 .read = lx60_fpga_read,
108 .write = lx60_fpga_write,
109 .endianness = DEVICE_NATIVE_ENDIAN,
110 };
111
112 static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space,
113 hwaddr base)
114 {
115 Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState));
116
117 memory_region_init_io(&s->iomem, NULL, &lx60_fpga_ops, s,
118 "lx60.fpga", 0x10000);
119 memory_region_add_subregion(address_space, base, &s->iomem);
120 lx60_fpga_reset(s);
121 qemu_register_reset(lx60_fpga_reset, s);
122 return s;
123 }
124
125 static void lx60_net_init(MemoryRegion *address_space,
126 hwaddr base,
127 hwaddr descriptors,
128 hwaddr buffers,
129 qemu_irq irq, NICInfo *nd)
130 {
131 DeviceState *dev;
132 SysBusDevice *s;
133 MemoryRegion *ram;
134
135 dev = qdev_create(NULL, "open_eth");
136 qdev_set_nic_properties(dev, nd);
137 qdev_init_nofail(dev);
138
139 s = SYS_BUS_DEVICE(dev);
140 sysbus_connect_irq(s, 0, irq);
141 memory_region_add_subregion(address_space, base,
142 sysbus_mmio_get_region(s, 0));
143 memory_region_add_subregion(address_space, descriptors,
144 sysbus_mmio_get_region(s, 1));
145
146 ram = g_malloc(sizeof(*ram));
147 memory_region_init_ram(ram, OBJECT(s), "open_eth.ram", 16384,
148 &error_fatal);
149 vmstate_register_ram_global(ram);
150 memory_region_add_subregion(address_space, buffers, ram);
151 }
152
153 static pflash_t *xtfpga_flash_init(MemoryRegion *address_space,
154 const LxBoardDesc *board,
155 DriveInfo *dinfo, int be)
156 {
157 SysBusDevice *s;
158 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
159
160 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
161 &error_abort);
162 qdev_prop_set_uint32(dev, "num-blocks",
163 board->flash_size / board->flash_sector_size);
164 qdev_prop_set_uint64(dev, "sector-length", board->flash_sector_size);
165 qdev_prop_set_uint8(dev, "width", 4);
166 qdev_prop_set_bit(dev, "big-endian", be);
167 qdev_prop_set_string(dev, "name", "lx60.io.flash");
168 qdev_init_nofail(dev);
169 s = SYS_BUS_DEVICE(dev);
170 memory_region_add_subregion(address_space, board->flash_base,
171 sysbus_mmio_get_region(s, 0));
172 return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01");
173 }
174
175 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
176 {
177 XtensaCPU *cpu = opaque;
178
179 return cpu_get_phys_page_debug(CPU(cpu), addr);
180 }
181
182 static void lx60_reset(void *opaque)
183 {
184 XtensaCPU *cpu = opaque;
185
186 cpu_reset(CPU(cpu));
187 }
188
189 static uint64_t lx60_io_read(void *opaque, hwaddr addr,
190 unsigned size)
191 {
192 return 0;
193 }
194
195 static void lx60_io_write(void *opaque, hwaddr addr,
196 uint64_t val, unsigned size)
197 {
198 }
199
200 static const MemoryRegionOps lx60_io_ops = {
201 .read = lx60_io_read,
202 .write = lx60_io_write,
203 .endianness = DEVICE_NATIVE_ENDIAN,
204 };
205
206 static void lx_init(const LxBoardDesc *board, MachineState *machine)
207 {
208 #ifdef TARGET_WORDS_BIGENDIAN
209 int be = 1;
210 #else
211 int be = 0;
212 #endif
213 MemoryRegion *system_memory = get_system_memory();
214 XtensaCPU *cpu = NULL;
215 CPUXtensaState *env = NULL;
216 MemoryRegion *ram, *rom, *system_io;
217 DriveInfo *dinfo;
218 pflash_t *flash = NULL;
219 QemuOpts *machine_opts = qemu_get_machine_opts();
220 const char *cpu_model = machine->cpu_model;
221 const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
222 const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
223 const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
224 const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
225 int n;
226
227 if (!cpu_model) {
228 cpu_model = XTENSA_DEFAULT_CPU_MODEL;
229 }
230
231 for (n = 0; n < smp_cpus; n++) {
232 cpu = cpu_xtensa_init(cpu_model);
233 if (cpu == NULL) {
234 error_report("unable to find CPU definition '%s'",
235 cpu_model);
236 exit(EXIT_FAILURE);
237 }
238 env = &cpu->env;
239
240 env->sregs[PRID] = n;
241 qemu_register_reset(lx60_reset, cpu);
242 /* Need MMU initialized prior to ELF loading,
243 * so that ELF gets loaded into virtual addresses
244 */
245 cpu_reset(CPU(cpu));
246 }
247
248 ram = g_malloc(sizeof(*ram));
249 memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size,
250 &error_fatal);
251 vmstate_register_ram_global(ram);
252 memory_region_add_subregion(system_memory, 0, ram);
253
254 system_io = g_malloc(sizeof(*system_io));
255 memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io",
256 224 * 1024 * 1024);
257 memory_region_add_subregion(system_memory, 0xf0000000, system_io);
258 lx60_fpga_init(system_io, 0x0d020000);
259 if (nd_table[0].used) {
260 lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
261 xtensa_get_extint(env, 1), nd_table);
262 }
263
264 if (!serial_hds[0]) {
265 serial_hds[0] = qemu_chr_new("serial0", "null", NULL);
266 }
267
268 serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
269 115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);
270
271 dinfo = drive_get(IF_PFLASH, 0, 0);
272 if (dinfo) {
273 flash = xtfpga_flash_init(system_io, board, dinfo, be);
274 }
275
276 /* Use presence of kernel file name as 'boot from SRAM' switch. */
277 if (kernel_filename) {
278 uint32_t entry_point = env->pc;
279 size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
280 uint32_t tagptr = 0xfe000000 + board->sram_size;
281 uint32_t cur_tagptr;
282 BpMemInfo memory_location = {
283 .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
284 .start = tswap32(0),
285 .end = tswap32(machine->ram_size),
286 };
287 uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
288 machine->ram_size : 0x08000000;
289 uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
290
291 rom = g_malloc(sizeof(*rom));
292 memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size,
293 &error_fatal);
294 vmstate_register_ram_global(rom);
295 memory_region_add_subregion(system_memory, 0xfe000000, rom);
296
297 if (kernel_cmdline) {
298 bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
299 }
300 if (dtb_filename) {
301 bp_size += get_tag_size(sizeof(uint32_t));
302 }
303 if (initrd_filename) {
304 bp_size += get_tag_size(sizeof(BpMemInfo));
305 }
306
307 /* Put kernel bootparameters to the end of that SRAM */
308 tagptr = (tagptr - bp_size) & ~0xff;
309 cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
310 cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
311 sizeof(memory_location), &memory_location);
312
313 if (kernel_cmdline) {
314 cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
315 strlen(kernel_cmdline) + 1, kernel_cmdline);
316 }
317 if (dtb_filename) {
318 int fdt_size;
319 void *fdt = load_device_tree(dtb_filename, &fdt_size);
320 uint32_t dtb_addr = tswap32(cur_lowmem);
321
322 if (!fdt) {
323 error_report("could not load DTB '%s'", dtb_filename);
324 exit(EXIT_FAILURE);
325 }
326
327 cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
328 cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
329 sizeof(dtb_addr), &dtb_addr);
330 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
331 }
332 if (initrd_filename) {
333 BpMemInfo initrd_location = { 0 };
334 int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
335 lowmem_end - cur_lowmem);
336
337 if (initrd_size < 0) {
338 initrd_size = load_image_targphys(initrd_filename,
339 cur_lowmem,
340 lowmem_end - cur_lowmem);
341 }
342 if (initrd_size < 0) {
343 error_report("could not load initrd '%s'", initrd_filename);
344 exit(EXIT_FAILURE);
345 }
346 initrd_location.start = tswap32(cur_lowmem);
347 initrd_location.end = tswap32(cur_lowmem + initrd_size);
348 cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
349 sizeof(initrd_location), &initrd_location);
350 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
351 }
352 cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
353 env->regs[2] = tagptr;
354
355 uint64_t elf_entry;
356 uint64_t elf_lowaddr;
357 int success = load_elf(kernel_filename, translate_phys_addr, cpu,
358 &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0);
359 if (success > 0) {
360 entry_point = elf_entry;
361 } else {
362 hwaddr ep;
363 int is_linux;
364 success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
365 translate_phys_addr, cpu);
366 if (success > 0 && is_linux) {
367 entry_point = ep;
368 } else {
369 error_report("could not load kernel '%s'",
370 kernel_filename);
371 exit(EXIT_FAILURE);
372 }
373 }
374 if (entry_point != env->pc) {
375 static const uint8_t jx_a0[] = {
376 #ifdef TARGET_WORDS_BIGENDIAN
377 0x0a, 0, 0,
378 #else
379 0xa0, 0, 0,
380 #endif
381 };
382 env->regs[0] = entry_point;
383 cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0));
384 }
385 } else {
386 if (flash) {
387 MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
388 MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
389
390 memory_region_init_alias(flash_io, NULL, "lx60.flash",
391 flash_mr, board->flash_boot_base,
392 board->flash_size - board->flash_boot_base < 0x02000000 ?
393 board->flash_size - board->flash_boot_base : 0x02000000);
394 memory_region_add_subregion(system_memory, 0xfe000000,
395 flash_io);
396 }
397 }
398 }
399
400 static void xtensa_lx60_init(MachineState *machine)
401 {
402 static const LxBoardDesc lx60_board = {
403 .flash_base = 0x08000000,
404 .flash_size = 0x00400000,
405 .flash_sector_size = 0x10000,
406 .sram_size = 0x20000,
407 };
408 lx_init(&lx60_board, machine);
409 }
410
411 static void xtensa_lx200_init(MachineState *machine)
412 {
413 static const LxBoardDesc lx200_board = {
414 .flash_base = 0x08000000,
415 .flash_size = 0x01000000,
416 .flash_sector_size = 0x20000,
417 .sram_size = 0x2000000,
418 };
419 lx_init(&lx200_board, machine);
420 }
421
422 static void xtensa_ml605_init(MachineState *machine)
423 {
424 static const LxBoardDesc ml605_board = {
425 .flash_base = 0x08000000,
426 .flash_size = 0x01000000,
427 .flash_sector_size = 0x20000,
428 .sram_size = 0x2000000,
429 };
430 lx_init(&ml605_board, machine);
431 }
432
433 static void xtensa_kc705_init(MachineState *machine)
434 {
435 static const LxBoardDesc kc705_board = {
436 .flash_base = 0x00000000,
437 .flash_size = 0x08000000,
438 .flash_boot_base = 0x06000000,
439 .flash_sector_size = 0x20000,
440 .sram_size = 0x2000000,
441 };
442 lx_init(&kc705_board, machine);
443 }
444
445 static void xtensa_lx60_class_init(ObjectClass *oc, void *data)
446 {
447 MachineClass *mc = MACHINE_CLASS(oc);
448
449 mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
450 mc->init = xtensa_lx60_init;
451 mc->max_cpus = 4;
452 }
453
454 static const TypeInfo xtensa_lx60_type = {
455 .name = MACHINE_TYPE_NAME("lx60"),
456 .parent = TYPE_MACHINE,
457 .class_init = xtensa_lx60_class_init,
458 };
459
460 static void xtensa_lx200_class_init(ObjectClass *oc, void *data)
461 {
462 MachineClass *mc = MACHINE_CLASS(oc);
463
464 mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
465 mc->init = xtensa_lx200_init;
466 mc->max_cpus = 4;
467 }
468
469 static const TypeInfo xtensa_lx200_type = {
470 .name = MACHINE_TYPE_NAME("lx200"),
471 .parent = TYPE_MACHINE,
472 .class_init = xtensa_lx200_class_init,
473 };
474
475 static void xtensa_ml605_class_init(ObjectClass *oc, void *data)
476 {
477 MachineClass *mc = MACHINE_CLASS(oc);
478
479 mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
480 mc->init = xtensa_ml605_init;
481 mc->max_cpus = 4;
482 }
483
484 static const TypeInfo xtensa_ml605_type = {
485 .name = MACHINE_TYPE_NAME("ml605"),
486 .parent = TYPE_MACHINE,
487 .class_init = xtensa_ml605_class_init,
488 };
489
490 static void xtensa_kc705_class_init(ObjectClass *oc, void *data)
491 {
492 MachineClass *mc = MACHINE_CLASS(oc);
493
494 mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
495 mc->init = xtensa_kc705_init;
496 mc->max_cpus = 4;
497 }
498
499 static const TypeInfo xtensa_kc705_type = {
500 .name = MACHINE_TYPE_NAME("kc705"),
501 .parent = TYPE_MACHINE,
502 .class_init = xtensa_kc705_class_init,
503 };
504
505 static void xtensa_lx_machines_init(void)
506 {
507 type_register_static(&xtensa_lx60_type);
508 type_register_static(&xtensa_lx200_type);
509 type_register_static(&xtensa_ml605_type);
510 type_register_static(&xtensa_kc705_type);
511 }
512
513 machine_init(xtensa_lx_machines_init)