]> git.proxmox.com Git - mirror_qemu.git/blob - include/exec/exec-all.h
Merge tag 'pull-riscv-to-apply-20230224' of github.com:palmer-dabbelt/qemu into staging
[mirror_qemu.git] / include / exec / exec-all.h
1 /*
2 * internal execution defines for qemu
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22
23 #include "cpu.h"
24 #ifdef CONFIG_TCG
25 #include "exec/cpu_ldst.h"
26 #endif
27 #include "qemu/interval-tree.h"
28 #include "qemu/clang-tsa.h"
29
30 /* allow to see translation results - the slowdown should be negligible, so we leave it */
31 #define DEBUG_DISAS
32
33 /* Page tracking code uses ram addresses in system mode, and virtual
34 addresses in userspace mode. Define tb_page_addr_t to be an appropriate
35 type. */
36 #if defined(CONFIG_USER_ONLY)
37 typedef abi_ulong tb_page_addr_t;
38 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
39 #else
40 typedef ram_addr_t tb_page_addr_t;
41 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
42 #endif
43
44 /**
45 * cpu_unwind_state_data:
46 * @cpu: the cpu context
47 * @host_pc: the host pc within the translation
48 * @data: output data
49 *
50 * Attempt to load the the unwind state for a host pc occurring in
51 * translated code. If @host_pc is not in translated code, the
52 * function returns false; otherwise @data is loaded.
53 * This is the same unwind info as given to restore_state_to_opc.
54 */
55 bool cpu_unwind_state_data(CPUState *cpu, uintptr_t host_pc, uint64_t *data);
56
57 /**
58 * cpu_restore_state:
59 * @cpu: the cpu context
60 * @host_pc: the host pc within the translation
61 * @return: true if state was restored, false otherwise
62 *
63 * Attempt to restore the state for a fault occurring in translated
64 * code. If @host_pc is not in translated code no state is
65 * restored and the function returns false.
66 */
67 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc);
68
69 G_NORETURN void cpu_loop_exit_noexc(CPUState *cpu);
70 G_NORETURN void cpu_loop_exit(CPUState *cpu);
71 G_NORETURN void cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
72 G_NORETURN void cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
73
74 /**
75 * cpu_loop_exit_requested:
76 * @cpu: The CPU state to be tested
77 *
78 * Indicate if somebody asked for a return of the CPU to the main loop
79 * (e.g., via cpu_exit() or cpu_interrupt()).
80 *
81 * This is helpful for architectures that support interruptible
82 * instructions. After writing back all state to registers/memory, this
83 * call can be used to check if it makes sense to return to the main loop
84 * or to continue executing the interruptible instruction.
85 */
86 static inline bool cpu_loop_exit_requested(CPUState *cpu)
87 {
88 return (int32_t)qatomic_read(&cpu_neg(cpu)->icount_decr.u32) < 0;
89 }
90
91 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
92 /* cputlb.c */
93 /**
94 * tlb_init - initialize a CPU's TLB
95 * @cpu: CPU whose TLB should be initialized
96 */
97 void tlb_init(CPUState *cpu);
98 /**
99 * tlb_destroy - destroy a CPU's TLB
100 * @cpu: CPU whose TLB should be destroyed
101 */
102 void tlb_destroy(CPUState *cpu);
103 /**
104 * tlb_flush_page:
105 * @cpu: CPU whose TLB should be flushed
106 * @addr: virtual address of page to be flushed
107 *
108 * Flush one page from the TLB of the specified CPU, for all
109 * MMU indexes.
110 */
111 void tlb_flush_page(CPUState *cpu, target_ulong addr);
112 /**
113 * tlb_flush_page_all_cpus:
114 * @cpu: src CPU of the flush
115 * @addr: virtual address of page to be flushed
116 *
117 * Flush one page from the TLB of the specified CPU, for all
118 * MMU indexes.
119 */
120 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
121 /**
122 * tlb_flush_page_all_cpus_synced:
123 * @cpu: src CPU of the flush
124 * @addr: virtual address of page to be flushed
125 *
126 * Flush one page from the TLB of the specified CPU, for all MMU
127 * indexes like tlb_flush_page_all_cpus except the source vCPUs work
128 * is scheduled as safe work meaning all flushes will be complete once
129 * the source vCPUs safe work is complete. This will depend on when
130 * the guests translation ends the TB.
131 */
132 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
133 /**
134 * tlb_flush:
135 * @cpu: CPU whose TLB should be flushed
136 *
137 * Flush the entire TLB for the specified CPU. Most CPU architectures
138 * allow the implementation to drop entries from the TLB at any time
139 * so this is generally safe. If more selective flushing is required
140 * use one of the other functions for efficiency.
141 */
142 void tlb_flush(CPUState *cpu);
143 /**
144 * tlb_flush_all_cpus:
145 * @cpu: src CPU of the flush
146 */
147 void tlb_flush_all_cpus(CPUState *src_cpu);
148 /**
149 * tlb_flush_all_cpus_synced:
150 * @cpu: src CPU of the flush
151 *
152 * Like tlb_flush_all_cpus except this except the source vCPUs work is
153 * scheduled as safe work meaning all flushes will be complete once
154 * the source vCPUs safe work is complete. This will depend on when
155 * the guests translation ends the TB.
156 */
157 void tlb_flush_all_cpus_synced(CPUState *src_cpu);
158 /**
159 * tlb_flush_page_by_mmuidx:
160 * @cpu: CPU whose TLB should be flushed
161 * @addr: virtual address of page to be flushed
162 * @idxmap: bitmap of MMU indexes to flush
163 *
164 * Flush one page from the TLB of the specified CPU, for the specified
165 * MMU indexes.
166 */
167 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
168 uint16_t idxmap);
169 /**
170 * tlb_flush_page_by_mmuidx_all_cpus:
171 * @cpu: Originating CPU of the flush
172 * @addr: virtual address of page to be flushed
173 * @idxmap: bitmap of MMU indexes to flush
174 *
175 * Flush one page from the TLB of all CPUs, for the specified
176 * MMU indexes.
177 */
178 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
179 uint16_t idxmap);
180 /**
181 * tlb_flush_page_by_mmuidx_all_cpus_synced:
182 * @cpu: Originating CPU of the flush
183 * @addr: virtual address of page to be flushed
184 * @idxmap: bitmap of MMU indexes to flush
185 *
186 * Flush one page from the TLB of all CPUs, for the specified MMU
187 * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
188 * vCPUs work is scheduled as safe work meaning all flushes will be
189 * complete once the source vCPUs safe work is complete. This will
190 * depend on when the guests translation ends the TB.
191 */
192 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
193 uint16_t idxmap);
194 /**
195 * tlb_flush_by_mmuidx:
196 * @cpu: CPU whose TLB should be flushed
197 * @wait: If true ensure synchronisation by exiting the cpu_loop
198 * @idxmap: bitmap of MMU indexes to flush
199 *
200 * Flush all entries from the TLB of the specified CPU, for the specified
201 * MMU indexes.
202 */
203 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
204 /**
205 * tlb_flush_by_mmuidx_all_cpus:
206 * @cpu: Originating CPU of the flush
207 * @idxmap: bitmap of MMU indexes to flush
208 *
209 * Flush all entries from all TLBs of all CPUs, for the specified
210 * MMU indexes.
211 */
212 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
213 /**
214 * tlb_flush_by_mmuidx_all_cpus_synced:
215 * @cpu: Originating CPU of the flush
216 * @idxmap: bitmap of MMU indexes to flush
217 *
218 * Flush all entries from all TLBs of all CPUs, for the specified
219 * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
220 * vCPUs work is scheduled as safe work meaning all flushes will be
221 * complete once the source vCPUs safe work is complete. This will
222 * depend on when the guests translation ends the TB.
223 */
224 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
225
226 /**
227 * tlb_flush_page_bits_by_mmuidx
228 * @cpu: CPU whose TLB should be flushed
229 * @addr: virtual address of page to be flushed
230 * @idxmap: bitmap of mmu indexes to flush
231 * @bits: number of significant bits in address
232 *
233 * Similar to tlb_flush_page_mask, but with a bitmap of indexes.
234 */
235 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
236 uint16_t idxmap, unsigned bits);
237
238 /* Similarly, with broadcast and syncing. */
239 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
240 uint16_t idxmap, unsigned bits);
241 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced
242 (CPUState *cpu, target_ulong addr, uint16_t idxmap, unsigned bits);
243
244 /**
245 * tlb_flush_range_by_mmuidx
246 * @cpu: CPU whose TLB should be flushed
247 * @addr: virtual address of the start of the range to be flushed
248 * @len: length of range to be flushed
249 * @idxmap: bitmap of mmu indexes to flush
250 * @bits: number of significant bits in address
251 *
252 * For each mmuidx in @idxmap, flush all pages within [@addr,@addr+@len),
253 * comparing only the low @bits worth of each virtual page.
254 */
255 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
256 target_ulong len, uint16_t idxmap,
257 unsigned bits);
258
259 /* Similarly, with broadcast and syncing. */
260 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
261 target_ulong len, uint16_t idxmap,
262 unsigned bits);
263 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *cpu,
264 target_ulong addr,
265 target_ulong len,
266 uint16_t idxmap,
267 unsigned bits);
268
269 /**
270 * tlb_set_page_full:
271 * @cpu: CPU context
272 * @mmu_idx: mmu index of the tlb to modify
273 * @vaddr: virtual address of the entry to add
274 * @full: the details of the tlb entry
275 *
276 * Add an entry to @cpu tlb index @mmu_idx. All of the fields of
277 * @full must be filled, except for xlat_section, and constitute
278 * the complete description of the translated page.
279 *
280 * This is generally called by the target tlb_fill function after
281 * having performed a successful page table walk to find the physical
282 * address and attributes for the translation.
283 *
284 * At most one entry for a given virtual address is permitted. Only a
285 * single TARGET_PAGE_SIZE region is mapped; @full->lg_page_size is only
286 * used by tlb_flush_page.
287 */
288 void tlb_set_page_full(CPUState *cpu, int mmu_idx, target_ulong vaddr,
289 CPUTLBEntryFull *full);
290
291 /**
292 * tlb_set_page_with_attrs:
293 * @cpu: CPU to add this TLB entry for
294 * @vaddr: virtual address of page to add entry for
295 * @paddr: physical address of the page
296 * @attrs: memory transaction attributes
297 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
298 * @mmu_idx: MMU index to insert TLB entry for
299 * @size: size of the page in bytes
300 *
301 * Add an entry to this CPU's TLB (a mapping from virtual address
302 * @vaddr to physical address @paddr) with the specified memory
303 * transaction attributes. This is generally called by the target CPU
304 * specific code after it has been called through the tlb_fill()
305 * entry point and performed a successful page table walk to find
306 * the physical address and attributes for the virtual address
307 * which provoked the TLB miss.
308 *
309 * At most one entry for a given virtual address is permitted. Only a
310 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
311 * used by tlb_flush_page.
312 */
313 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
314 hwaddr paddr, MemTxAttrs attrs,
315 int prot, int mmu_idx, target_ulong size);
316 /* tlb_set_page:
317 *
318 * This function is equivalent to calling tlb_set_page_with_attrs()
319 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
320 * as a convenience for CPUs which don't use memory transaction attributes.
321 */
322 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
323 hwaddr paddr, int prot,
324 int mmu_idx, target_ulong size);
325 #else
326 static inline void tlb_init(CPUState *cpu)
327 {
328 }
329 static inline void tlb_destroy(CPUState *cpu)
330 {
331 }
332 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
333 {
334 }
335 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
336 {
337 }
338 static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
339 target_ulong addr)
340 {
341 }
342 static inline void tlb_flush(CPUState *cpu)
343 {
344 }
345 static inline void tlb_flush_all_cpus(CPUState *src_cpu)
346 {
347 }
348 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
349 {
350 }
351 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
352 target_ulong addr, uint16_t idxmap)
353 {
354 }
355
356 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
357 {
358 }
359 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
360 target_ulong addr,
361 uint16_t idxmap)
362 {
363 }
364 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
365 target_ulong addr,
366 uint16_t idxmap)
367 {
368 }
369 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
370 {
371 }
372
373 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
374 uint16_t idxmap)
375 {
376 }
377 static inline void tlb_flush_page_bits_by_mmuidx(CPUState *cpu,
378 target_ulong addr,
379 uint16_t idxmap,
380 unsigned bits)
381 {
382 }
383 static inline void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *cpu,
384 target_ulong addr,
385 uint16_t idxmap,
386 unsigned bits)
387 {
388 }
389 static inline void
390 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
391 uint16_t idxmap, unsigned bits)
392 {
393 }
394 static inline void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
395 target_ulong len, uint16_t idxmap,
396 unsigned bits)
397 {
398 }
399 static inline void tlb_flush_range_by_mmuidx_all_cpus(CPUState *cpu,
400 target_ulong addr,
401 target_ulong len,
402 uint16_t idxmap,
403 unsigned bits)
404 {
405 }
406 static inline void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *cpu,
407 target_ulong addr,
408 target_long len,
409 uint16_t idxmap,
410 unsigned bits)
411 {
412 }
413 #endif
414 /**
415 * probe_access:
416 * @env: CPUArchState
417 * @addr: guest virtual address to look up
418 * @size: size of the access
419 * @access_type: read, write or execute permission
420 * @mmu_idx: MMU index to use for lookup
421 * @retaddr: return address for unwinding
422 *
423 * Look up the guest virtual address @addr. Raise an exception if the
424 * page does not satisfy @access_type. Raise an exception if the
425 * access (@addr, @size) hits a watchpoint. For writes, mark a clean
426 * page as dirty.
427 *
428 * Finally, return the host address for a page that is backed by RAM,
429 * or NULL if the page requires I/O.
430 */
431 void *probe_access(CPUArchState *env, target_ulong addr, int size,
432 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr);
433
434 static inline void *probe_write(CPUArchState *env, target_ulong addr, int size,
435 int mmu_idx, uintptr_t retaddr)
436 {
437 return probe_access(env, addr, size, MMU_DATA_STORE, mmu_idx, retaddr);
438 }
439
440 static inline void *probe_read(CPUArchState *env, target_ulong addr, int size,
441 int mmu_idx, uintptr_t retaddr)
442 {
443 return probe_access(env, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
444 }
445
446 /**
447 * probe_access_flags:
448 * @env: CPUArchState
449 * @addr: guest virtual address to look up
450 * @access_type: read, write or execute permission
451 * @mmu_idx: MMU index to use for lookup
452 * @nonfault: suppress the fault
453 * @phost: return value for host address
454 * @retaddr: return address for unwinding
455 *
456 * Similar to probe_access, loosely returning the TLB_FLAGS_MASK for
457 * the page, and storing the host address for RAM in @phost.
458 *
459 * If @nonfault is set, do not raise an exception but return TLB_INVALID_MASK.
460 * Do not handle watchpoints, but include TLB_WATCHPOINT in the returned flags.
461 * Do handle clean pages, so exclude TLB_NOTDIRY from the returned flags.
462 * For simplicity, all "mmio-like" flags are folded to TLB_MMIO.
463 */
464 int probe_access_flags(CPUArchState *env, target_ulong addr,
465 MMUAccessType access_type, int mmu_idx,
466 bool nonfault, void **phost, uintptr_t retaddr);
467
468 #ifndef CONFIG_USER_ONLY
469 /**
470 * probe_access_full:
471 * Like probe_access_flags, except also return into @pfull.
472 *
473 * The CPUTLBEntryFull structure returned via @pfull is transient
474 * and must be consumed or copied immediately, before any further
475 * access or changes to TLB @mmu_idx.
476 */
477 int probe_access_full(CPUArchState *env, target_ulong addr,
478 MMUAccessType access_type, int mmu_idx,
479 bool nonfault, void **phost,
480 CPUTLBEntryFull **pfull, uintptr_t retaddr);
481 #endif
482
483 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
484
485 /* Estimated block size for TB allocation. */
486 /* ??? The following is based on a 2015 survey of x86_64 host output.
487 Better would seem to be some sort of dynamically sized TB array,
488 adapting to the block sizes actually being produced. */
489 #if defined(CONFIG_SOFTMMU)
490 #define CODE_GEN_AVG_BLOCK_SIZE 400
491 #else
492 #define CODE_GEN_AVG_BLOCK_SIZE 150
493 #endif
494
495 /*
496 * Translation Cache-related fields of a TB.
497 * This struct exists just for convenience; we keep track of TB's in a binary
498 * search tree, and the only fields needed to compare TB's in the tree are
499 * @ptr and @size.
500 * Note: the address of search data can be obtained by adding @size to @ptr.
501 */
502 struct tb_tc {
503 const void *ptr; /* pointer to the translated code */
504 size_t size;
505 };
506
507 struct TranslationBlock {
508 #if !TARGET_TB_PCREL
509 /*
510 * Guest PC corresponding to this block. This must be the true
511 * virtual address. Therefore e.g. x86 stores EIP + CS_BASE, and
512 * targets like Arm, MIPS, HP-PA, which reuse low bits for ISA or
513 * privilege, must store those bits elsewhere.
514 *
515 * If TARGET_TB_PCREL, the opcodes for the TranslationBlock are
516 * written such that the TB is associated only with the physical
517 * page and may be run in any virtual address context. In this case,
518 * PC must always be taken from ENV in a target-specific manner.
519 * Unwind information is taken as offsets from the page, to be
520 * deposited into the "current" PC.
521 */
522 target_ulong pc;
523 #endif
524
525 /*
526 * Target-specific data associated with the TranslationBlock, e.g.:
527 * x86: the original user, the Code Segment virtual base,
528 * arm: an extension of tb->flags,
529 * s390x: instruction data for EXECUTE,
530 * sparc: the next pc of the instruction queue (for delay slots).
531 */
532 target_ulong cs_base;
533
534 uint32_t flags; /* flags defining in which context the code was generated */
535 uint32_t cflags; /* compile flags */
536
537 /* Note that TCG_MAX_INSNS is 512; we validate this match elsewhere. */
538 #define CF_COUNT_MASK 0x000001ff
539 #define CF_NO_GOTO_TB 0x00000200 /* Do not chain with goto_tb */
540 #define CF_NO_GOTO_PTR 0x00000400 /* Do not chain with goto_ptr */
541 #define CF_SINGLE_STEP 0x00000800 /* gdbstub single-step in effect */
542 #define CF_LAST_IO 0x00008000 /* Last insn may be an IO access. */
543 #define CF_MEMI_ONLY 0x00010000 /* Only instrument memory ops */
544 #define CF_USE_ICOUNT 0x00020000
545 #define CF_INVALID 0x00040000 /* TB is stale. Set with @jmp_lock held */
546 #define CF_PARALLEL 0x00080000 /* Generate code for a parallel context */
547 #define CF_NOIRQ 0x00100000 /* Generate an uninterruptible TB */
548 #define CF_CLUSTER_MASK 0xff000000 /* Top 8 bits are cluster ID */
549 #define CF_CLUSTER_SHIFT 24
550
551 /* Per-vCPU dynamic tracing state used to generate this TB */
552 uint32_t trace_vcpu_dstate;
553
554 /*
555 * Above fields used for comparing
556 */
557
558 /* size of target code for this block (1 <= size <= TARGET_PAGE_SIZE) */
559 uint16_t size;
560 uint16_t icount;
561
562 struct tb_tc tc;
563
564 /*
565 * Track tb_page_addr_t intervals that intersect this TB.
566 * For user-only, the virtual addresses are always contiguous,
567 * and we use a unified interval tree. For system, we use a
568 * linked list headed in each PageDesc. Within the list, the lsb
569 * of the previous pointer tells the index of page_next[], and the
570 * list is protected by the PageDesc lock(s).
571 */
572 #ifdef CONFIG_USER_ONLY
573 IntervalTreeNode itree;
574 #else
575 uintptr_t page_next[2];
576 tb_page_addr_t page_addr[2];
577 #endif
578
579 /* jmp_lock placed here to fill a 4-byte hole. Its documentation is below */
580 QemuSpin jmp_lock;
581
582 /* The following data are used to directly call another TB from
583 * the code of this one. This can be done either by emitting direct or
584 * indirect native jump instructions. These jumps are reset so that the TB
585 * just continues its execution. The TB can be linked to another one by
586 * setting one of the jump targets (or patching the jump instruction). Only
587 * two of such jumps are supported.
588 */
589 #define TB_JMP_OFFSET_INVALID 0xffff /* indicates no jump generated */
590 uint16_t jmp_reset_offset[2]; /* offset of original jump target */
591 uint16_t jmp_insn_offset[2]; /* offset of direct jump insn */
592 uintptr_t jmp_target_addr[2]; /* target address */
593
594 /*
595 * Each TB has a NULL-terminated list (jmp_list_head) of incoming jumps.
596 * Each TB can have two outgoing jumps, and therefore can participate
597 * in two lists. The list entries are kept in jmp_list_next[2]. The least
598 * significant bit (LSB) of the pointers in these lists is used to encode
599 * which of the two list entries is to be used in the pointed TB.
600 *
601 * List traversals are protected by jmp_lock. The destination TB of each
602 * outgoing jump is kept in jmp_dest[] so that the appropriate jmp_lock
603 * can be acquired from any origin TB.
604 *
605 * jmp_dest[] are tagged pointers as well. The LSB is set when the TB is
606 * being invalidated, so that no further outgoing jumps from it can be set.
607 *
608 * jmp_lock also protects the CF_INVALID cflag; a jump must not be chained
609 * to a destination TB that has CF_INVALID set.
610 */
611 uintptr_t jmp_list_head;
612 uintptr_t jmp_list_next[2];
613 uintptr_t jmp_dest[2];
614 };
615
616 /* Hide the read to avoid ifdefs for TARGET_TB_PCREL. */
617 static inline target_ulong tb_pc(const TranslationBlock *tb)
618 {
619 #if TARGET_TB_PCREL
620 qemu_build_not_reached();
621 #else
622 return tb->pc;
623 #endif
624 }
625
626 /* Hide the qatomic_read to make code a little easier on the eyes */
627 static inline uint32_t tb_cflags(const TranslationBlock *tb)
628 {
629 return qatomic_read(&tb->cflags);
630 }
631
632 static inline tb_page_addr_t tb_page_addr0(const TranslationBlock *tb)
633 {
634 #ifdef CONFIG_USER_ONLY
635 return tb->itree.start;
636 #else
637 return tb->page_addr[0];
638 #endif
639 }
640
641 static inline tb_page_addr_t tb_page_addr1(const TranslationBlock *tb)
642 {
643 #ifdef CONFIG_USER_ONLY
644 tb_page_addr_t next = tb->itree.last & TARGET_PAGE_MASK;
645 return next == (tb->itree.start & TARGET_PAGE_MASK) ? -1 : next;
646 #else
647 return tb->page_addr[1];
648 #endif
649 }
650
651 static inline void tb_set_page_addr0(TranslationBlock *tb,
652 tb_page_addr_t addr)
653 {
654 #ifdef CONFIG_USER_ONLY
655 tb->itree.start = addr;
656 /*
657 * To begin, we record an interval of one byte. When the translation
658 * loop encounters a second page, the interval will be extended to
659 * include the first byte of the second page, which is sufficient to
660 * allow tb_page_addr1() above to work properly. The final corrected
661 * interval will be set by tb_page_add() from tb->size before the
662 * node is added to the interval tree.
663 */
664 tb->itree.last = addr;
665 #else
666 tb->page_addr[0] = addr;
667 #endif
668 }
669
670 static inline void tb_set_page_addr1(TranslationBlock *tb,
671 tb_page_addr_t addr)
672 {
673 #ifdef CONFIG_USER_ONLY
674 /* Extend the interval to the first byte of the second page. See above. */
675 tb->itree.last = addr;
676 #else
677 tb->page_addr[1] = addr;
678 #endif
679 }
680
681 /* current cflags for hashing/comparison */
682 uint32_t curr_cflags(CPUState *cpu);
683
684 /* TranslationBlock invalidate API */
685 #if defined(CONFIG_USER_ONLY)
686 void tb_invalidate_phys_addr(target_ulong addr);
687 #else
688 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs);
689 #endif
690 void tb_flush(CPUState *cpu);
691 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
692 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end);
693 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
694
695 /* GETPC is the true target of the return instruction that we'll execute. */
696 #if defined(CONFIG_TCG_INTERPRETER)
697 extern __thread uintptr_t tci_tb_ptr;
698 # define GETPC() tci_tb_ptr
699 #else
700 # define GETPC() \
701 ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
702 #endif
703
704 /* The true return address will often point to a host insn that is part of
705 the next translated guest insn. Adjust the address backward to point to
706 the middle of the call insn. Subtracting one would do the job except for
707 several compressed mode architectures (arm, mips) which set the low bit
708 to indicate the compressed mode; subtracting two works around that. It
709 is also the case that there are no host isas that contain a call insn
710 smaller than 4 bytes, so we don't worry about special-casing this. */
711 #define GETPC_ADJ 2
712
713 #if !defined(CONFIG_USER_ONLY)
714
715 /**
716 * iotlb_to_section:
717 * @cpu: CPU performing the access
718 * @index: TCG CPU IOTLB entry
719 *
720 * Given a TCG CPU IOTLB entry, return the MemoryRegionSection that
721 * it refers to. @index will have been initially created and returned
722 * by memory_region_section_get_iotlb().
723 */
724 struct MemoryRegionSection *iotlb_to_section(CPUState *cpu,
725 hwaddr index, MemTxAttrs attrs);
726 #endif
727
728 /**
729 * get_page_addr_code_hostp()
730 * @env: CPUArchState
731 * @addr: guest virtual address of guest code
732 *
733 * See get_page_addr_code() (full-system version) for documentation on the
734 * return value.
735 *
736 * Sets *@hostp (when @hostp is non-NULL) as follows.
737 * If the return value is -1, sets *@hostp to NULL. Otherwise, sets *@hostp
738 * to the host address where @addr's content is kept.
739 *
740 * Note: this function can trigger an exception.
741 */
742 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
743 void **hostp);
744
745 /**
746 * get_page_addr_code()
747 * @env: CPUArchState
748 * @addr: guest virtual address of guest code
749 *
750 * If we cannot translate and execute from the entire RAM page, or if
751 * the region is not backed by RAM, returns -1. Otherwise, returns the
752 * ram_addr_t corresponding to the guest code at @addr.
753 *
754 * Note: this function can trigger an exception.
755 */
756 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env,
757 target_ulong addr)
758 {
759 return get_page_addr_code_hostp(env, addr, NULL);
760 }
761
762 #if defined(CONFIG_USER_ONLY)
763 void TSA_NO_TSA mmap_lock(void);
764 void TSA_NO_TSA mmap_unlock(void);
765 bool have_mmap_lock(void);
766
767 /**
768 * adjust_signal_pc:
769 * @pc: raw pc from the host signal ucontext_t.
770 * @is_write: host memory operation was write, or read-modify-write.
771 *
772 * Alter @pc as required for unwinding. Return the type of the
773 * guest memory access -- host reads may be for guest execution.
774 */
775 MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write);
776
777 /**
778 * handle_sigsegv_accerr_write:
779 * @cpu: the cpu context
780 * @old_set: the sigset_t from the signal ucontext_t
781 * @host_pc: the host pc, adjusted for the signal
782 * @host_addr: the host address of the fault
783 *
784 * Return true if the write fault has been handled, and should be re-tried.
785 */
786 bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
787 uintptr_t host_pc, abi_ptr guest_addr);
788
789 /**
790 * cpu_loop_exit_sigsegv:
791 * @cpu: the cpu context
792 * @addr: the guest address of the fault
793 * @access_type: access was read/write/execute
794 * @maperr: true for invalid page, false for permission fault
795 * @ra: host pc for unwinding
796 *
797 * Use the TCGCPUOps hook to record cpu state, do guest operating system
798 * specific things to raise SIGSEGV, and jump to the main cpu loop.
799 */
800 G_NORETURN void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
801 MMUAccessType access_type,
802 bool maperr, uintptr_t ra);
803
804 /**
805 * cpu_loop_exit_sigbus:
806 * @cpu: the cpu context
807 * @addr: the guest address of the alignment fault
808 * @access_type: access was read/write/execute
809 * @ra: host pc for unwinding
810 *
811 * Use the TCGCPUOps hook to record cpu state, do guest operating system
812 * specific things to raise SIGBUS, and jump to the main cpu loop.
813 */
814 G_NORETURN void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
815 MMUAccessType access_type,
816 uintptr_t ra);
817
818 #else
819 static inline void mmap_lock(void) {}
820 static inline void mmap_unlock(void) {}
821
822 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
823 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
824
825 MemoryRegionSection *
826 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
827 hwaddr *xlat, hwaddr *plen,
828 MemTxAttrs attrs, int *prot);
829 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
830 MemoryRegionSection *section);
831 #endif
832
833 #endif