]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/blkdev.h
PM / OPP: Support updating performance state of device's power domain
[mirror_ubuntu-bionic-kernel.git] / include / linux / blkdev.h
1 #ifndef _LINUX_BLKDEV_H
2 #define _LINUX_BLKDEV_H
3
4 #include <linux/sched.h>
5 #include <linux/sched/clock.h>
6
7 #ifdef CONFIG_BLOCK
8
9 #include <linux/major.h>
10 #include <linux/genhd.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/timer.h>
14 #include <linux/workqueue.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev-defs.h>
17 #include <linux/wait.h>
18 #include <linux/mempool.h>
19 #include <linux/pfn.h>
20 #include <linux/bio.h>
21 #include <linux/stringify.h>
22 #include <linux/gfp.h>
23 #include <linux/bsg.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate.h>
26 #include <linux/percpu-refcount.h>
27 #include <linux/scatterlist.h>
28 #include <linux/blkzoned.h>
29
30 struct module;
31 struct scsi_ioctl_command;
32
33 struct request_queue;
34 struct elevator_queue;
35 struct blk_trace;
36 struct request;
37 struct sg_io_hdr;
38 struct bsg_job;
39 struct blkcg_gq;
40 struct blk_flush_queue;
41 struct pr_ops;
42 struct rq_wb;
43 struct blk_queue_stats;
44 struct blk_stat_callback;
45
46 #define BLKDEV_MIN_RQ 4
47 #define BLKDEV_MAX_RQ 128 /* Default maximum */
48
49 /* Must be consisitent with blk_mq_poll_stats_bkt() */
50 #define BLK_MQ_POLL_STATS_BKTS 16
51
52 /*
53 * Maximum number of blkcg policies allowed to be registered concurrently.
54 * Defined here to simplify include dependency.
55 */
56 #define BLKCG_MAX_POLS 3
57
58 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
59
60 #define BLK_RL_SYNCFULL (1U << 0)
61 #define BLK_RL_ASYNCFULL (1U << 1)
62
63 struct request_list {
64 struct request_queue *q; /* the queue this rl belongs to */
65 #ifdef CONFIG_BLK_CGROUP
66 struct blkcg_gq *blkg; /* blkg this request pool belongs to */
67 #endif
68 /*
69 * count[], starved[], and wait[] are indexed by
70 * BLK_RW_SYNC/BLK_RW_ASYNC
71 */
72 int count[2];
73 int starved[2];
74 mempool_t *rq_pool;
75 wait_queue_head_t wait[2];
76 unsigned int flags;
77 };
78
79 /*
80 * request flags */
81 typedef __u32 __bitwise req_flags_t;
82
83 /* elevator knows about this request */
84 #define RQF_SORTED ((__force req_flags_t)(1 << 0))
85 /* drive already may have started this one */
86 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
87 /* uses tagged queueing */
88 #define RQF_QUEUED ((__force req_flags_t)(1 << 2))
89 /* may not be passed by ioscheduler */
90 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
91 /* request for flush sequence */
92 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
93 /* merge of different types, fail separately */
94 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
95 /* track inflight for MQ */
96 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
97 /* don't call prep for this one */
98 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
99 /* set for "ide_preempt" requests and also for requests for which the SCSI
100 "quiesce" state must be ignored. */
101 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8))
102 /* contains copies of user pages */
103 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9))
104 /* vaguely specified driver internal error. Ignored by the block layer */
105 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
106 /* don't warn about errors */
107 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
108 /* elevator private data attached */
109 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
110 /* account I/O stat */
111 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
112 /* request came from our alloc pool */
113 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14))
114 /* runtime pm request */
115 #define RQF_PM ((__force req_flags_t)(1 << 15))
116 /* on IO scheduler merge hash */
117 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
118 /* IO stats tracking on */
119 #define RQF_STATS ((__force req_flags_t)(1 << 17))
120 /* Look at ->special_vec for the actual data payload instead of the
121 bio chain. */
122 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
123
124 /* flags that prevent us from merging requests: */
125 #define RQF_NOMERGE_FLAGS \
126 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
127
128 /*
129 * Try to put the fields that are referenced together in the same cacheline.
130 *
131 * If you modify this structure, make sure to update blk_rq_init() and
132 * especially blk_mq_rq_ctx_init() to take care of the added fields.
133 */
134 struct request {
135 struct list_head queuelist;
136 union {
137 call_single_data_t csd;
138 u64 fifo_time;
139 };
140
141 struct request_queue *q;
142 struct blk_mq_ctx *mq_ctx;
143
144 int cpu;
145 unsigned int cmd_flags; /* op and common flags */
146 req_flags_t rq_flags;
147
148 int internal_tag;
149
150 unsigned long atomic_flags;
151
152 /* the following two fields are internal, NEVER access directly */
153 unsigned int __data_len; /* total data len */
154 int tag;
155 sector_t __sector; /* sector cursor */
156
157 struct bio *bio;
158 struct bio *biotail;
159
160 /*
161 * The hash is used inside the scheduler, and killed once the
162 * request reaches the dispatch list. The ipi_list is only used
163 * to queue the request for softirq completion, which is long
164 * after the request has been unhashed (and even removed from
165 * the dispatch list).
166 */
167 union {
168 struct hlist_node hash; /* merge hash */
169 struct list_head ipi_list;
170 };
171
172 /*
173 * The rb_node is only used inside the io scheduler, requests
174 * are pruned when moved to the dispatch queue. So let the
175 * completion_data share space with the rb_node.
176 */
177 union {
178 struct rb_node rb_node; /* sort/lookup */
179 struct bio_vec special_vec;
180 void *completion_data;
181 int error_count; /* for legacy drivers, don't use */
182 };
183
184 /*
185 * Three pointers are available for the IO schedulers, if they need
186 * more they have to dynamically allocate it. Flush requests are
187 * never put on the IO scheduler. So let the flush fields share
188 * space with the elevator data.
189 */
190 union {
191 struct {
192 struct io_cq *icq;
193 void *priv[2];
194 } elv;
195
196 struct {
197 unsigned int seq;
198 struct list_head list;
199 rq_end_io_fn *saved_end_io;
200 } flush;
201 };
202
203 struct gendisk *rq_disk;
204 struct hd_struct *part;
205 unsigned long start_time;
206 struct blk_issue_stat issue_stat;
207 #ifdef CONFIG_BLK_CGROUP
208 struct request_list *rl; /* rl this rq is alloced from */
209 unsigned long long start_time_ns;
210 unsigned long long io_start_time_ns; /* when passed to hardware */
211 #endif
212 /* Number of scatter-gather DMA addr+len pairs after
213 * physical address coalescing is performed.
214 */
215 unsigned short nr_phys_segments;
216 #if defined(CONFIG_BLK_DEV_INTEGRITY)
217 unsigned short nr_integrity_segments;
218 #endif
219
220 unsigned short ioprio;
221
222 unsigned int timeout;
223
224 void *special; /* opaque pointer available for LLD use */
225
226 unsigned int extra_len; /* length of alignment and padding */
227
228 unsigned short write_hint;
229
230 unsigned long deadline;
231 struct list_head timeout_list;
232
233 /*
234 * completion callback.
235 */
236 rq_end_io_fn *end_io;
237 void *end_io_data;
238
239 /* for bidi */
240 struct request *next_rq;
241 };
242
243 static inline bool blk_rq_is_scsi(struct request *rq)
244 {
245 return req_op(rq) == REQ_OP_SCSI_IN || req_op(rq) == REQ_OP_SCSI_OUT;
246 }
247
248 static inline bool blk_rq_is_private(struct request *rq)
249 {
250 return req_op(rq) == REQ_OP_DRV_IN || req_op(rq) == REQ_OP_DRV_OUT;
251 }
252
253 static inline bool blk_rq_is_passthrough(struct request *rq)
254 {
255 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
256 }
257
258 static inline unsigned short req_get_ioprio(struct request *req)
259 {
260 return req->ioprio;
261 }
262
263 #include <linux/elevator.h>
264
265 struct blk_queue_ctx;
266
267 typedef void (request_fn_proc) (struct request_queue *q);
268 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
269 typedef int (prep_rq_fn) (struct request_queue *, struct request *);
270 typedef void (unprep_rq_fn) (struct request_queue *, struct request *);
271
272 struct bio_vec;
273 typedef void (softirq_done_fn)(struct request *);
274 typedef int (dma_drain_needed_fn)(struct request *);
275 typedef int (lld_busy_fn) (struct request_queue *q);
276 typedef int (bsg_job_fn) (struct bsg_job *);
277 typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t);
278 typedef void (exit_rq_fn)(struct request_queue *, struct request *);
279
280 enum blk_eh_timer_return {
281 BLK_EH_NOT_HANDLED,
282 BLK_EH_HANDLED,
283 BLK_EH_RESET_TIMER,
284 };
285
286 typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *);
287
288 enum blk_queue_state {
289 Queue_down,
290 Queue_up,
291 };
292
293 struct blk_queue_tag {
294 struct request **tag_index; /* map of busy tags */
295 unsigned long *tag_map; /* bit map of free/busy tags */
296 int max_depth; /* what we will send to device */
297 int real_max_depth; /* what the array can hold */
298 atomic_t refcnt; /* map can be shared */
299 int alloc_policy; /* tag allocation policy */
300 int next_tag; /* next tag */
301 };
302 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
303 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
304
305 #define BLK_SCSI_MAX_CMDS (256)
306 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
307
308 /*
309 * Zoned block device models (zoned limit).
310 */
311 enum blk_zoned_model {
312 BLK_ZONED_NONE, /* Regular block device */
313 BLK_ZONED_HA, /* Host-aware zoned block device */
314 BLK_ZONED_HM, /* Host-managed zoned block device */
315 };
316
317 struct queue_limits {
318 unsigned long bounce_pfn;
319 unsigned long seg_boundary_mask;
320 unsigned long virt_boundary_mask;
321
322 unsigned int max_hw_sectors;
323 unsigned int max_dev_sectors;
324 unsigned int chunk_sectors;
325 unsigned int max_sectors;
326 unsigned int max_segment_size;
327 unsigned int physical_block_size;
328 unsigned int alignment_offset;
329 unsigned int io_min;
330 unsigned int io_opt;
331 unsigned int max_discard_sectors;
332 unsigned int max_hw_discard_sectors;
333 unsigned int max_write_same_sectors;
334 unsigned int max_write_zeroes_sectors;
335 unsigned int discard_granularity;
336 unsigned int discard_alignment;
337
338 unsigned short logical_block_size;
339 unsigned short max_segments;
340 unsigned short max_integrity_segments;
341 unsigned short max_discard_segments;
342
343 unsigned char misaligned;
344 unsigned char discard_misaligned;
345 unsigned char cluster;
346 unsigned char raid_partial_stripes_expensive;
347 enum blk_zoned_model zoned;
348 };
349
350 #ifdef CONFIG_BLK_DEV_ZONED
351
352 struct blk_zone_report_hdr {
353 unsigned int nr_zones;
354 u8 padding[60];
355 };
356
357 extern int blkdev_report_zones(struct block_device *bdev,
358 sector_t sector, struct blk_zone *zones,
359 unsigned int *nr_zones, gfp_t gfp_mask);
360 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
361 sector_t nr_sectors, gfp_t gfp_mask);
362
363 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
364 unsigned int cmd, unsigned long arg);
365 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
366 unsigned int cmd, unsigned long arg);
367
368 #else /* CONFIG_BLK_DEV_ZONED */
369
370 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
371 fmode_t mode, unsigned int cmd,
372 unsigned long arg)
373 {
374 return -ENOTTY;
375 }
376
377 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
378 fmode_t mode, unsigned int cmd,
379 unsigned long arg)
380 {
381 return -ENOTTY;
382 }
383
384 #endif /* CONFIG_BLK_DEV_ZONED */
385
386 struct request_queue {
387 /*
388 * Together with queue_head for cacheline sharing
389 */
390 struct list_head queue_head;
391 struct request *last_merge;
392 struct elevator_queue *elevator;
393 int nr_rqs[2]; /* # allocated [a]sync rqs */
394 int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */
395
396 atomic_t shared_hctx_restart;
397
398 struct blk_queue_stats *stats;
399 struct rq_wb *rq_wb;
400
401 /*
402 * If blkcg is not used, @q->root_rl serves all requests. If blkcg
403 * is used, root blkg allocates from @q->root_rl and all other
404 * blkgs from their own blkg->rl. Which one to use should be
405 * determined using bio_request_list().
406 */
407 struct request_list root_rl;
408
409 request_fn_proc *request_fn;
410 make_request_fn *make_request_fn;
411 prep_rq_fn *prep_rq_fn;
412 unprep_rq_fn *unprep_rq_fn;
413 softirq_done_fn *softirq_done_fn;
414 rq_timed_out_fn *rq_timed_out_fn;
415 dma_drain_needed_fn *dma_drain_needed;
416 lld_busy_fn *lld_busy_fn;
417 /* Called just after a request is allocated */
418 init_rq_fn *init_rq_fn;
419 /* Called just before a request is freed */
420 exit_rq_fn *exit_rq_fn;
421 /* Called from inside blk_get_request() */
422 void (*initialize_rq_fn)(struct request *rq);
423
424 const struct blk_mq_ops *mq_ops;
425
426 unsigned int *mq_map;
427
428 /* sw queues */
429 struct blk_mq_ctx __percpu *queue_ctx;
430 unsigned int nr_queues;
431
432 unsigned int queue_depth;
433
434 /* hw dispatch queues */
435 struct blk_mq_hw_ctx **queue_hw_ctx;
436 unsigned int nr_hw_queues;
437
438 /*
439 * Dispatch queue sorting
440 */
441 sector_t end_sector;
442 struct request *boundary_rq;
443
444 /*
445 * Delayed queue handling
446 */
447 struct delayed_work delay_work;
448
449 struct backing_dev_info *backing_dev_info;
450
451 /*
452 * The queue owner gets to use this for whatever they like.
453 * ll_rw_blk doesn't touch it.
454 */
455 void *queuedata;
456
457 /*
458 * various queue flags, see QUEUE_* below
459 */
460 unsigned long queue_flags;
461
462 /*
463 * ida allocated id for this queue. Used to index queues from
464 * ioctx.
465 */
466 int id;
467
468 /*
469 * queue needs bounce pages for pages above this limit
470 */
471 gfp_t bounce_gfp;
472
473 /*
474 * protects queue structures from reentrancy. ->__queue_lock should
475 * _never_ be used directly, it is queue private. always use
476 * ->queue_lock.
477 */
478 spinlock_t __queue_lock;
479 spinlock_t *queue_lock;
480
481 /*
482 * queue kobject
483 */
484 struct kobject kobj;
485
486 /*
487 * mq queue kobject
488 */
489 struct kobject mq_kobj;
490
491 #ifdef CONFIG_BLK_DEV_INTEGRITY
492 struct blk_integrity integrity;
493 #endif /* CONFIG_BLK_DEV_INTEGRITY */
494
495 #ifdef CONFIG_PM
496 struct device *dev;
497 int rpm_status;
498 unsigned int nr_pending;
499 #endif
500
501 /*
502 * queue settings
503 */
504 unsigned long nr_requests; /* Max # of requests */
505 unsigned int nr_congestion_on;
506 unsigned int nr_congestion_off;
507 unsigned int nr_batching;
508
509 unsigned int dma_drain_size;
510 void *dma_drain_buffer;
511 unsigned int dma_pad_mask;
512 unsigned int dma_alignment;
513
514 struct blk_queue_tag *queue_tags;
515 struct list_head tag_busy_list;
516
517 unsigned int nr_sorted;
518 unsigned int in_flight[2];
519
520 /*
521 * Number of active block driver functions for which blk_drain_queue()
522 * must wait. Must be incremented around functions that unlock the
523 * queue_lock internally, e.g. scsi_request_fn().
524 */
525 unsigned int request_fn_active;
526
527 unsigned int rq_timeout;
528 int poll_nsec;
529
530 struct blk_stat_callback *poll_cb;
531 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
532
533 struct timer_list timeout;
534 struct work_struct timeout_work;
535 struct list_head timeout_list;
536
537 struct list_head icq_list;
538 #ifdef CONFIG_BLK_CGROUP
539 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
540 struct blkcg_gq *root_blkg;
541 struct list_head blkg_list;
542 #endif
543
544 struct queue_limits limits;
545
546 /*
547 * sg stuff
548 */
549 unsigned int sg_timeout;
550 unsigned int sg_reserved_size;
551 int node;
552 #ifdef CONFIG_BLK_DEV_IO_TRACE
553 struct blk_trace *blk_trace;
554 struct mutex blk_trace_mutex;
555 #endif
556 /*
557 * for flush operations
558 */
559 struct blk_flush_queue *fq;
560
561 struct list_head requeue_list;
562 spinlock_t requeue_lock;
563 struct delayed_work requeue_work;
564
565 struct mutex sysfs_lock;
566
567 int bypass_depth;
568 atomic_t mq_freeze_depth;
569
570 #if defined(CONFIG_BLK_DEV_BSG)
571 bsg_job_fn *bsg_job_fn;
572 struct bsg_class_device bsg_dev;
573 #endif
574
575 #ifdef CONFIG_BLK_DEV_THROTTLING
576 /* Throttle data */
577 struct throtl_data *td;
578 #endif
579 struct rcu_head rcu_head;
580 wait_queue_head_t mq_freeze_wq;
581 struct percpu_ref q_usage_counter;
582 struct list_head all_q_node;
583
584 struct blk_mq_tag_set *tag_set;
585 struct list_head tag_set_list;
586 struct bio_set *bio_split;
587
588 #ifdef CONFIG_BLK_DEBUG_FS
589 struct dentry *debugfs_dir;
590 struct dentry *sched_debugfs_dir;
591 #endif
592
593 bool mq_sysfs_init_done;
594
595 size_t cmd_size;
596 void *rq_alloc_data;
597
598 struct work_struct release_work;
599
600 #define BLK_MAX_WRITE_HINTS 5
601 u64 write_hints[BLK_MAX_WRITE_HINTS];
602 };
603
604 #define QUEUE_FLAG_QUEUED 0 /* uses generic tag queueing */
605 #define QUEUE_FLAG_STOPPED 1 /* queue is stopped */
606 #define QUEUE_FLAG_DYING 2 /* queue being torn down */
607 #define QUEUE_FLAG_BYPASS 3 /* act as dumb FIFO queue */
608 #define QUEUE_FLAG_BIDI 4 /* queue supports bidi requests */
609 #define QUEUE_FLAG_NOMERGES 5 /* disable merge attempts */
610 #define QUEUE_FLAG_SAME_COMP 6 /* complete on same CPU-group */
611 #define QUEUE_FLAG_FAIL_IO 7 /* fake timeout */
612 #define QUEUE_FLAG_STACKABLE 8 /* supports request stacking */
613 #define QUEUE_FLAG_NONROT 9 /* non-rotational device (SSD) */
614 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
615 #define QUEUE_FLAG_IO_STAT 10 /* do IO stats */
616 #define QUEUE_FLAG_DISCARD 11 /* supports DISCARD */
617 #define QUEUE_FLAG_NOXMERGES 12 /* No extended merges */
618 #define QUEUE_FLAG_ADD_RANDOM 13 /* Contributes to random pool */
619 #define QUEUE_FLAG_SECERASE 14 /* supports secure erase */
620 #define QUEUE_FLAG_SAME_FORCE 15 /* force complete on same CPU */
621 #define QUEUE_FLAG_DEAD 16 /* queue tear-down finished */
622 #define QUEUE_FLAG_INIT_DONE 17 /* queue is initialized */
623 #define QUEUE_FLAG_NO_SG_MERGE 18 /* don't attempt to merge SG segments*/
624 #define QUEUE_FLAG_POLL 19 /* IO polling enabled if set */
625 #define QUEUE_FLAG_WC 20 /* Write back caching */
626 #define QUEUE_FLAG_FUA 21 /* device supports FUA writes */
627 #define QUEUE_FLAG_FLUSH_NQ 22 /* flush not queueuable */
628 #define QUEUE_FLAG_DAX 23 /* device supports DAX */
629 #define QUEUE_FLAG_STATS 24 /* track rq completion times */
630 #define QUEUE_FLAG_POLL_STATS 25 /* collecting stats for hybrid polling */
631 #define QUEUE_FLAG_REGISTERED 26 /* queue has been registered to a disk */
632 #define QUEUE_FLAG_SCSI_PASSTHROUGH 27 /* queue supports SCSI commands */
633 #define QUEUE_FLAG_QUIESCED 28 /* queue has been quiesced */
634
635 #define QUEUE_FLAG_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
636 (1 << QUEUE_FLAG_STACKABLE) | \
637 (1 << QUEUE_FLAG_SAME_COMP) | \
638 (1 << QUEUE_FLAG_ADD_RANDOM))
639
640 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
641 (1 << QUEUE_FLAG_STACKABLE) | \
642 (1 << QUEUE_FLAG_SAME_COMP) | \
643 (1 << QUEUE_FLAG_POLL))
644
645 /*
646 * @q->queue_lock is set while a queue is being initialized. Since we know
647 * that no other threads access the queue object before @q->queue_lock has
648 * been set, it is safe to manipulate queue flags without holding the
649 * queue_lock if @q->queue_lock == NULL. See also blk_alloc_queue_node() and
650 * blk_init_allocated_queue().
651 */
652 static inline void queue_lockdep_assert_held(struct request_queue *q)
653 {
654 if (q->queue_lock)
655 lockdep_assert_held(q->queue_lock);
656 }
657
658 static inline void queue_flag_set_unlocked(unsigned int flag,
659 struct request_queue *q)
660 {
661 __set_bit(flag, &q->queue_flags);
662 }
663
664 static inline int queue_flag_test_and_clear(unsigned int flag,
665 struct request_queue *q)
666 {
667 queue_lockdep_assert_held(q);
668
669 if (test_bit(flag, &q->queue_flags)) {
670 __clear_bit(flag, &q->queue_flags);
671 return 1;
672 }
673
674 return 0;
675 }
676
677 static inline int queue_flag_test_and_set(unsigned int flag,
678 struct request_queue *q)
679 {
680 queue_lockdep_assert_held(q);
681
682 if (!test_bit(flag, &q->queue_flags)) {
683 __set_bit(flag, &q->queue_flags);
684 return 0;
685 }
686
687 return 1;
688 }
689
690 static inline void queue_flag_set(unsigned int flag, struct request_queue *q)
691 {
692 queue_lockdep_assert_held(q);
693 __set_bit(flag, &q->queue_flags);
694 }
695
696 static inline void queue_flag_clear_unlocked(unsigned int flag,
697 struct request_queue *q)
698 {
699 __clear_bit(flag, &q->queue_flags);
700 }
701
702 static inline int queue_in_flight(struct request_queue *q)
703 {
704 return q->in_flight[0] + q->in_flight[1];
705 }
706
707 static inline void queue_flag_clear(unsigned int flag, struct request_queue *q)
708 {
709 queue_lockdep_assert_held(q);
710 __clear_bit(flag, &q->queue_flags);
711 }
712
713 #define blk_queue_tagged(q) test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags)
714 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
715 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
716 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
717 #define blk_queue_bypass(q) test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags)
718 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
719 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
720 #define blk_queue_noxmerges(q) \
721 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
722 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
723 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
724 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
725 #define blk_queue_stackable(q) \
726 test_bit(QUEUE_FLAG_STACKABLE, &(q)->queue_flags)
727 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
728 #define blk_queue_secure_erase(q) \
729 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
730 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
731 #define blk_queue_scsi_passthrough(q) \
732 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
733
734 #define blk_noretry_request(rq) \
735 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
736 REQ_FAILFAST_DRIVER))
737 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
738
739 static inline bool blk_account_rq(struct request *rq)
740 {
741 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
742 }
743
744 #define blk_rq_cpu_valid(rq) ((rq)->cpu != -1)
745 #define blk_bidi_rq(rq) ((rq)->next_rq != NULL)
746 /* rq->queuelist of dequeued request must be list_empty() */
747 #define blk_queued_rq(rq) (!list_empty(&(rq)->queuelist))
748
749 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
750
751 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
752
753 /*
754 * Driver can handle struct request, if it either has an old style
755 * request_fn defined, or is blk-mq based.
756 */
757 static inline bool queue_is_rq_based(struct request_queue *q)
758 {
759 return q->request_fn || q->mq_ops;
760 }
761
762 static inline unsigned int blk_queue_cluster(struct request_queue *q)
763 {
764 return q->limits.cluster;
765 }
766
767 static inline enum blk_zoned_model
768 blk_queue_zoned_model(struct request_queue *q)
769 {
770 return q->limits.zoned;
771 }
772
773 static inline bool blk_queue_is_zoned(struct request_queue *q)
774 {
775 switch (blk_queue_zoned_model(q)) {
776 case BLK_ZONED_HA:
777 case BLK_ZONED_HM:
778 return true;
779 default:
780 return false;
781 }
782 }
783
784 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
785 {
786 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
787 }
788
789 static inline bool rq_is_sync(struct request *rq)
790 {
791 return op_is_sync(rq->cmd_flags);
792 }
793
794 static inline bool blk_rl_full(struct request_list *rl, bool sync)
795 {
796 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
797
798 return rl->flags & flag;
799 }
800
801 static inline void blk_set_rl_full(struct request_list *rl, bool sync)
802 {
803 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
804
805 rl->flags |= flag;
806 }
807
808 static inline void blk_clear_rl_full(struct request_list *rl, bool sync)
809 {
810 unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
811
812 rl->flags &= ~flag;
813 }
814
815 static inline bool rq_mergeable(struct request *rq)
816 {
817 if (blk_rq_is_passthrough(rq))
818 return false;
819
820 if (req_op(rq) == REQ_OP_FLUSH)
821 return false;
822
823 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
824 return false;
825
826 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
827 return false;
828 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
829 return false;
830
831 return true;
832 }
833
834 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
835 {
836 if (bio_page(a) == bio_page(b) &&
837 bio_offset(a) == bio_offset(b))
838 return true;
839
840 return false;
841 }
842
843 static inline unsigned int blk_queue_depth(struct request_queue *q)
844 {
845 if (q->queue_depth)
846 return q->queue_depth;
847
848 return q->nr_requests;
849 }
850
851 /*
852 * q->prep_rq_fn return values
853 */
854 enum {
855 BLKPREP_OK, /* serve it */
856 BLKPREP_KILL, /* fatal error, kill, return -EIO */
857 BLKPREP_DEFER, /* leave on queue */
858 BLKPREP_INVALID, /* invalid command, kill, return -EREMOTEIO */
859 };
860
861 extern unsigned long blk_max_low_pfn, blk_max_pfn;
862
863 /*
864 * standard bounce addresses:
865 *
866 * BLK_BOUNCE_HIGH : bounce all highmem pages
867 * BLK_BOUNCE_ANY : don't bounce anything
868 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
869 */
870
871 #if BITS_PER_LONG == 32
872 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
873 #else
874 #define BLK_BOUNCE_HIGH -1ULL
875 #endif
876 #define BLK_BOUNCE_ANY (-1ULL)
877 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
878
879 /*
880 * default timeout for SG_IO if none specified
881 */
882 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
883 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
884
885 struct rq_map_data {
886 struct page **pages;
887 int page_order;
888 int nr_entries;
889 unsigned long offset;
890 int null_mapped;
891 int from_user;
892 };
893
894 struct req_iterator {
895 struct bvec_iter iter;
896 struct bio *bio;
897 };
898
899 /* This should not be used directly - use rq_for_each_segment */
900 #define for_each_bio(_bio) \
901 for (; _bio; _bio = _bio->bi_next)
902 #define __rq_for_each_bio(_bio, rq) \
903 if ((rq->bio)) \
904 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
905
906 #define rq_for_each_segment(bvl, _rq, _iter) \
907 __rq_for_each_bio(_iter.bio, _rq) \
908 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
909
910 #define rq_iter_last(bvec, _iter) \
911 (_iter.bio->bi_next == NULL && \
912 bio_iter_last(bvec, _iter.iter))
913
914 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
915 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
916 #endif
917 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
918 extern void rq_flush_dcache_pages(struct request *rq);
919 #else
920 static inline void rq_flush_dcache_pages(struct request *rq)
921 {
922 }
923 #endif
924
925 #ifdef CONFIG_PRINTK
926 #define vfs_msg(sb, level, fmt, ...) \
927 __vfs_msg(sb, level, fmt, ##__VA_ARGS__)
928 #else
929 #define vfs_msg(sb, level, fmt, ...) \
930 do { \
931 no_printk(fmt, ##__VA_ARGS__); \
932 __vfs_msg(sb, "", " "); \
933 } while (0)
934 #endif
935
936 extern int blk_register_queue(struct gendisk *disk);
937 extern void blk_unregister_queue(struct gendisk *disk);
938 extern blk_qc_t generic_make_request(struct bio *bio);
939 extern void blk_rq_init(struct request_queue *q, struct request *rq);
940 extern void blk_init_request_from_bio(struct request *req, struct bio *bio);
941 extern void blk_put_request(struct request *);
942 extern void __blk_put_request(struct request_queue *, struct request *);
943 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
944 gfp_t gfp_mask);
945 extern void blk_requeue_request(struct request_queue *, struct request *);
946 extern int blk_lld_busy(struct request_queue *q);
947 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
948 struct bio_set *bs, gfp_t gfp_mask,
949 int (*bio_ctr)(struct bio *, struct bio *, void *),
950 void *data);
951 extern void blk_rq_unprep_clone(struct request *rq);
952 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
953 struct request *rq);
954 extern int blk_rq_append_bio(struct request *rq, struct bio *bio);
955 extern void blk_delay_queue(struct request_queue *, unsigned long);
956 extern void blk_queue_split(struct request_queue *, struct bio **);
957 extern void blk_recount_segments(struct request_queue *, struct bio *);
958 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
959 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
960 unsigned int, void __user *);
961 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
962 unsigned int, void __user *);
963 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
964 struct scsi_ioctl_command __user *);
965
966 extern int blk_queue_enter(struct request_queue *q, bool nowait);
967 extern void blk_queue_exit(struct request_queue *q);
968 extern void blk_start_queue(struct request_queue *q);
969 extern void blk_start_queue_async(struct request_queue *q);
970 extern void blk_stop_queue(struct request_queue *q);
971 extern void blk_sync_queue(struct request_queue *q);
972 extern void __blk_stop_queue(struct request_queue *q);
973 extern void __blk_run_queue(struct request_queue *q);
974 extern void __blk_run_queue_uncond(struct request_queue *q);
975 extern void blk_run_queue(struct request_queue *);
976 extern void blk_run_queue_async(struct request_queue *q);
977 extern int blk_rq_map_user(struct request_queue *, struct request *,
978 struct rq_map_data *, void __user *, unsigned long,
979 gfp_t);
980 extern int blk_rq_unmap_user(struct bio *);
981 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
982 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
983 struct rq_map_data *, const struct iov_iter *,
984 gfp_t);
985 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
986 struct request *, int);
987 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
988 struct request *, int, rq_end_io_fn *);
989
990 int blk_status_to_errno(blk_status_t status);
991 blk_status_t errno_to_blk_status(int errno);
992
993 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
994
995 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
996 {
997 return bdev->bd_disk->queue; /* this is never NULL */
998 }
999
1000 /*
1001 * blk_rq_pos() : the current sector
1002 * blk_rq_bytes() : bytes left in the entire request
1003 * blk_rq_cur_bytes() : bytes left in the current segment
1004 * blk_rq_err_bytes() : bytes left till the next error boundary
1005 * blk_rq_sectors() : sectors left in the entire request
1006 * blk_rq_cur_sectors() : sectors left in the current segment
1007 */
1008 static inline sector_t blk_rq_pos(const struct request *rq)
1009 {
1010 return rq->__sector;
1011 }
1012
1013 static inline unsigned int blk_rq_bytes(const struct request *rq)
1014 {
1015 return rq->__data_len;
1016 }
1017
1018 static inline int blk_rq_cur_bytes(const struct request *rq)
1019 {
1020 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
1021 }
1022
1023 extern unsigned int blk_rq_err_bytes(const struct request *rq);
1024
1025 static inline unsigned int blk_rq_sectors(const struct request *rq)
1026 {
1027 return blk_rq_bytes(rq) >> 9;
1028 }
1029
1030 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1031 {
1032 return blk_rq_cur_bytes(rq) >> 9;
1033 }
1034
1035 /*
1036 * Some commands like WRITE SAME have a payload or data transfer size which
1037 * is different from the size of the request. Any driver that supports such
1038 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1039 * calculate the data transfer size.
1040 */
1041 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1042 {
1043 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1044 return rq->special_vec.bv_len;
1045 return blk_rq_bytes(rq);
1046 }
1047
1048 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
1049 int op)
1050 {
1051 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
1052 return min(q->limits.max_discard_sectors, UINT_MAX >> 9);
1053
1054 if (unlikely(op == REQ_OP_WRITE_SAME))
1055 return q->limits.max_write_same_sectors;
1056
1057 if (unlikely(op == REQ_OP_WRITE_ZEROES))
1058 return q->limits.max_write_zeroes_sectors;
1059
1060 return q->limits.max_sectors;
1061 }
1062
1063 /*
1064 * Return maximum size of a request at given offset. Only valid for
1065 * file system requests.
1066 */
1067 static inline unsigned int blk_max_size_offset(struct request_queue *q,
1068 sector_t offset)
1069 {
1070 if (!q->limits.chunk_sectors)
1071 return q->limits.max_sectors;
1072
1073 return q->limits.chunk_sectors -
1074 (offset & (q->limits.chunk_sectors - 1));
1075 }
1076
1077 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
1078 sector_t offset)
1079 {
1080 struct request_queue *q = rq->q;
1081
1082 if (blk_rq_is_passthrough(rq))
1083 return q->limits.max_hw_sectors;
1084
1085 if (!q->limits.chunk_sectors ||
1086 req_op(rq) == REQ_OP_DISCARD ||
1087 req_op(rq) == REQ_OP_SECURE_ERASE)
1088 return blk_queue_get_max_sectors(q, req_op(rq));
1089
1090 return min(blk_max_size_offset(q, offset),
1091 blk_queue_get_max_sectors(q, req_op(rq)));
1092 }
1093
1094 static inline unsigned int blk_rq_count_bios(struct request *rq)
1095 {
1096 unsigned int nr_bios = 0;
1097 struct bio *bio;
1098
1099 __rq_for_each_bio(bio, rq)
1100 nr_bios++;
1101
1102 return nr_bios;
1103 }
1104
1105 /*
1106 * Request issue related functions.
1107 */
1108 extern struct request *blk_peek_request(struct request_queue *q);
1109 extern void blk_start_request(struct request *rq);
1110 extern struct request *blk_fetch_request(struct request_queue *q);
1111
1112 /*
1113 * Request completion related functions.
1114 *
1115 * blk_update_request() completes given number of bytes and updates
1116 * the request without completing it.
1117 *
1118 * blk_end_request() and friends. __blk_end_request() must be called
1119 * with the request queue spinlock acquired.
1120 *
1121 * Several drivers define their own end_request and call
1122 * blk_end_request() for parts of the original function.
1123 * This prevents code duplication in drivers.
1124 */
1125 extern bool blk_update_request(struct request *rq, blk_status_t error,
1126 unsigned int nr_bytes);
1127 extern void blk_finish_request(struct request *rq, blk_status_t error);
1128 extern bool blk_end_request(struct request *rq, blk_status_t error,
1129 unsigned int nr_bytes);
1130 extern void blk_end_request_all(struct request *rq, blk_status_t error);
1131 extern bool __blk_end_request(struct request *rq, blk_status_t error,
1132 unsigned int nr_bytes);
1133 extern void __blk_end_request_all(struct request *rq, blk_status_t error);
1134 extern bool __blk_end_request_cur(struct request *rq, blk_status_t error);
1135
1136 extern void blk_complete_request(struct request *);
1137 extern void __blk_complete_request(struct request *);
1138 extern void blk_abort_request(struct request *);
1139 extern void blk_unprep_request(struct request *);
1140
1141 /*
1142 * Access functions for manipulating queue properties
1143 */
1144 extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
1145 spinlock_t *lock, int node_id);
1146 extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
1147 extern int blk_init_allocated_queue(struct request_queue *);
1148 extern void blk_cleanup_queue(struct request_queue *);
1149 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1150 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1151 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1152 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1153 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1154 extern void blk_queue_max_discard_segments(struct request_queue *,
1155 unsigned short);
1156 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1157 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1158 unsigned int max_discard_sectors);
1159 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1160 unsigned int max_write_same_sectors);
1161 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1162 unsigned int max_write_same_sectors);
1163 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1164 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1165 extern void blk_queue_alignment_offset(struct request_queue *q,
1166 unsigned int alignment);
1167 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1168 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1169 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1170 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1171 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1172 extern void blk_set_default_limits(struct queue_limits *lim);
1173 extern void blk_set_stacking_limits(struct queue_limits *lim);
1174 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1175 sector_t offset);
1176 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1177 sector_t offset);
1178 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1179 sector_t offset);
1180 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1181 extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1182 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1183 extern int blk_queue_dma_drain(struct request_queue *q,
1184 dma_drain_needed_fn *dma_drain_needed,
1185 void *buf, unsigned int size);
1186 extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn);
1187 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1188 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1189 extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn);
1190 extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn);
1191 extern void blk_queue_dma_alignment(struct request_queue *, int);
1192 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1193 extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *);
1194 extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *);
1195 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1196 extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable);
1197 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1198
1199 /*
1200 * Number of physical segments as sent to the device.
1201 *
1202 * Normally this is the number of discontiguous data segments sent by the
1203 * submitter. But for data-less command like discard we might have no
1204 * actual data segments submitted, but the driver might have to add it's
1205 * own special payload. In that case we still return 1 here so that this
1206 * special payload will be mapped.
1207 */
1208 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1209 {
1210 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1211 return 1;
1212 return rq->nr_phys_segments;
1213 }
1214
1215 /*
1216 * Number of discard segments (or ranges) the driver needs to fill in.
1217 * Each discard bio merged into a request is counted as one segment.
1218 */
1219 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1220 {
1221 return max_t(unsigned short, rq->nr_phys_segments, 1);
1222 }
1223
1224 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1225 extern void blk_dump_rq_flags(struct request *, char *);
1226 extern long nr_blockdev_pages(void);
1227
1228 bool __must_check blk_get_queue(struct request_queue *);
1229 struct request_queue *blk_alloc_queue(gfp_t);
1230 struct request_queue *blk_alloc_queue_node(gfp_t, int);
1231 extern void blk_put_queue(struct request_queue *);
1232 extern void blk_set_queue_dying(struct request_queue *);
1233
1234 /*
1235 * block layer runtime pm functions
1236 */
1237 #ifdef CONFIG_PM
1238 extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev);
1239 extern int blk_pre_runtime_suspend(struct request_queue *q);
1240 extern void blk_post_runtime_suspend(struct request_queue *q, int err);
1241 extern void blk_pre_runtime_resume(struct request_queue *q);
1242 extern void blk_post_runtime_resume(struct request_queue *q, int err);
1243 extern void blk_set_runtime_active(struct request_queue *q);
1244 #else
1245 static inline void blk_pm_runtime_init(struct request_queue *q,
1246 struct device *dev) {}
1247 static inline int blk_pre_runtime_suspend(struct request_queue *q)
1248 {
1249 return -ENOSYS;
1250 }
1251 static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {}
1252 static inline void blk_pre_runtime_resume(struct request_queue *q) {}
1253 static inline void blk_post_runtime_resume(struct request_queue *q, int err) {}
1254 static inline void blk_set_runtime_active(struct request_queue *q) {}
1255 #endif
1256
1257 /*
1258 * blk_plug permits building a queue of related requests by holding the I/O
1259 * fragments for a short period. This allows merging of sequential requests
1260 * into single larger request. As the requests are moved from a per-task list to
1261 * the device's request_queue in a batch, this results in improved scalability
1262 * as the lock contention for request_queue lock is reduced.
1263 *
1264 * It is ok not to disable preemption when adding the request to the plug list
1265 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1266 * the plug list when the task sleeps by itself. For details, please see
1267 * schedule() where blk_schedule_flush_plug() is called.
1268 */
1269 struct blk_plug {
1270 struct list_head list; /* requests */
1271 struct list_head mq_list; /* blk-mq requests */
1272 struct list_head cb_list; /* md requires an unplug callback */
1273 };
1274 #define BLK_MAX_REQUEST_COUNT 16
1275 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1276
1277 struct blk_plug_cb;
1278 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1279 struct blk_plug_cb {
1280 struct list_head list;
1281 blk_plug_cb_fn callback;
1282 void *data;
1283 };
1284 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1285 void *data, int size);
1286 extern void blk_start_plug(struct blk_plug *);
1287 extern void blk_finish_plug(struct blk_plug *);
1288 extern void blk_flush_plug_list(struct blk_plug *, bool);
1289
1290 static inline void blk_flush_plug(struct task_struct *tsk)
1291 {
1292 struct blk_plug *plug = tsk->plug;
1293
1294 if (plug)
1295 blk_flush_plug_list(plug, false);
1296 }
1297
1298 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1299 {
1300 struct blk_plug *plug = tsk->plug;
1301
1302 if (plug)
1303 blk_flush_plug_list(plug, true);
1304 }
1305
1306 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1307 {
1308 struct blk_plug *plug = tsk->plug;
1309
1310 return plug &&
1311 (!list_empty(&plug->list) ||
1312 !list_empty(&plug->mq_list) ||
1313 !list_empty(&plug->cb_list));
1314 }
1315
1316 /*
1317 * tag stuff
1318 */
1319 extern int blk_queue_start_tag(struct request_queue *, struct request *);
1320 extern struct request *blk_queue_find_tag(struct request_queue *, int);
1321 extern void blk_queue_end_tag(struct request_queue *, struct request *);
1322 extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int);
1323 extern void blk_queue_free_tags(struct request_queue *);
1324 extern int blk_queue_resize_tags(struct request_queue *, int);
1325 extern void blk_queue_invalidate_tags(struct request_queue *);
1326 extern struct blk_queue_tag *blk_init_tags(int, int);
1327 extern void blk_free_tags(struct blk_queue_tag *);
1328
1329 static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt,
1330 int tag)
1331 {
1332 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
1333 return NULL;
1334 return bqt->tag_index[tag];
1335 }
1336
1337 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1338 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1339 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1340
1341 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1342
1343 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1344 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1345 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1346 sector_t nr_sects, gfp_t gfp_mask, int flags,
1347 struct bio **biop);
1348
1349 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1350 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1351
1352 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1353 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1354 unsigned flags);
1355 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1356 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1357
1358 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1359 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1360 {
1361 return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - 9),
1362 nr_blocks << (sb->s_blocksize_bits - 9),
1363 gfp_mask, flags);
1364 }
1365 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1366 sector_t nr_blocks, gfp_t gfp_mask)
1367 {
1368 return blkdev_issue_zeroout(sb->s_bdev,
1369 block << (sb->s_blocksize_bits - 9),
1370 nr_blocks << (sb->s_blocksize_bits - 9),
1371 gfp_mask, 0);
1372 }
1373
1374 extern int blk_verify_command(unsigned char *cmd, fmode_t has_write_perm);
1375
1376 enum blk_default_limits {
1377 BLK_MAX_SEGMENTS = 128,
1378 BLK_SAFE_MAX_SECTORS = 255,
1379 BLK_DEF_MAX_SECTORS = 2560,
1380 BLK_MAX_SEGMENT_SIZE = 65536,
1381 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1382 };
1383
1384 #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist)
1385
1386 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1387 {
1388 return q->limits.seg_boundary_mask;
1389 }
1390
1391 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1392 {
1393 return q->limits.virt_boundary_mask;
1394 }
1395
1396 static inline unsigned int queue_max_sectors(struct request_queue *q)
1397 {
1398 return q->limits.max_sectors;
1399 }
1400
1401 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1402 {
1403 return q->limits.max_hw_sectors;
1404 }
1405
1406 static inline unsigned short queue_max_segments(struct request_queue *q)
1407 {
1408 return q->limits.max_segments;
1409 }
1410
1411 static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1412 {
1413 return q->limits.max_discard_segments;
1414 }
1415
1416 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1417 {
1418 return q->limits.max_segment_size;
1419 }
1420
1421 static inline unsigned short queue_logical_block_size(struct request_queue *q)
1422 {
1423 int retval = 512;
1424
1425 if (q && q->limits.logical_block_size)
1426 retval = q->limits.logical_block_size;
1427
1428 return retval;
1429 }
1430
1431 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1432 {
1433 return queue_logical_block_size(bdev_get_queue(bdev));
1434 }
1435
1436 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1437 {
1438 return q->limits.physical_block_size;
1439 }
1440
1441 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1442 {
1443 return queue_physical_block_size(bdev_get_queue(bdev));
1444 }
1445
1446 static inline unsigned int queue_io_min(struct request_queue *q)
1447 {
1448 return q->limits.io_min;
1449 }
1450
1451 static inline int bdev_io_min(struct block_device *bdev)
1452 {
1453 return queue_io_min(bdev_get_queue(bdev));
1454 }
1455
1456 static inline unsigned int queue_io_opt(struct request_queue *q)
1457 {
1458 return q->limits.io_opt;
1459 }
1460
1461 static inline int bdev_io_opt(struct block_device *bdev)
1462 {
1463 return queue_io_opt(bdev_get_queue(bdev));
1464 }
1465
1466 static inline int queue_alignment_offset(struct request_queue *q)
1467 {
1468 if (q->limits.misaligned)
1469 return -1;
1470
1471 return q->limits.alignment_offset;
1472 }
1473
1474 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1475 {
1476 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1477 unsigned int alignment = sector_div(sector, granularity >> 9) << 9;
1478
1479 return (granularity + lim->alignment_offset - alignment) % granularity;
1480 }
1481
1482 static inline int bdev_alignment_offset(struct block_device *bdev)
1483 {
1484 struct request_queue *q = bdev_get_queue(bdev);
1485
1486 if (q->limits.misaligned)
1487 return -1;
1488
1489 if (bdev != bdev->bd_contains)
1490 return bdev->bd_part->alignment_offset;
1491
1492 return q->limits.alignment_offset;
1493 }
1494
1495 static inline int queue_discard_alignment(struct request_queue *q)
1496 {
1497 if (q->limits.discard_misaligned)
1498 return -1;
1499
1500 return q->limits.discard_alignment;
1501 }
1502
1503 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1504 {
1505 unsigned int alignment, granularity, offset;
1506
1507 if (!lim->max_discard_sectors)
1508 return 0;
1509
1510 /* Why are these in bytes, not sectors? */
1511 alignment = lim->discard_alignment >> 9;
1512 granularity = lim->discard_granularity >> 9;
1513 if (!granularity)
1514 return 0;
1515
1516 /* Offset of the partition start in 'granularity' sectors */
1517 offset = sector_div(sector, granularity);
1518
1519 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1520 offset = (granularity + alignment - offset) % granularity;
1521
1522 /* Turn it back into bytes, gaah */
1523 return offset << 9;
1524 }
1525
1526 static inline int bdev_discard_alignment(struct block_device *bdev)
1527 {
1528 struct request_queue *q = bdev_get_queue(bdev);
1529
1530 if (bdev != bdev->bd_contains)
1531 return bdev->bd_part->discard_alignment;
1532
1533 return q->limits.discard_alignment;
1534 }
1535
1536 static inline unsigned int bdev_write_same(struct block_device *bdev)
1537 {
1538 struct request_queue *q = bdev_get_queue(bdev);
1539
1540 if (q)
1541 return q->limits.max_write_same_sectors;
1542
1543 return 0;
1544 }
1545
1546 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1547 {
1548 struct request_queue *q = bdev_get_queue(bdev);
1549
1550 if (q)
1551 return q->limits.max_write_zeroes_sectors;
1552
1553 return 0;
1554 }
1555
1556 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1557 {
1558 struct request_queue *q = bdev_get_queue(bdev);
1559
1560 if (q)
1561 return blk_queue_zoned_model(q);
1562
1563 return BLK_ZONED_NONE;
1564 }
1565
1566 static inline bool bdev_is_zoned(struct block_device *bdev)
1567 {
1568 struct request_queue *q = bdev_get_queue(bdev);
1569
1570 if (q)
1571 return blk_queue_is_zoned(q);
1572
1573 return false;
1574 }
1575
1576 static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1577 {
1578 struct request_queue *q = bdev_get_queue(bdev);
1579
1580 if (q)
1581 return blk_queue_zone_sectors(q);
1582
1583 return 0;
1584 }
1585
1586 static inline int queue_dma_alignment(struct request_queue *q)
1587 {
1588 return q ? q->dma_alignment : 511;
1589 }
1590
1591 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1592 unsigned int len)
1593 {
1594 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1595 return !(addr & alignment) && !(len & alignment);
1596 }
1597
1598 /* assumes size > 256 */
1599 static inline unsigned int blksize_bits(unsigned int size)
1600 {
1601 unsigned int bits = 8;
1602 do {
1603 bits++;
1604 size >>= 1;
1605 } while (size > 256);
1606 return bits;
1607 }
1608
1609 static inline unsigned int block_size(struct block_device *bdev)
1610 {
1611 return bdev->bd_block_size;
1612 }
1613
1614 static inline bool queue_flush_queueable(struct request_queue *q)
1615 {
1616 return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
1617 }
1618
1619 typedef struct {struct page *v;} Sector;
1620
1621 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1622
1623 static inline void put_dev_sector(Sector p)
1624 {
1625 put_page(p.v);
1626 }
1627
1628 static inline bool __bvec_gap_to_prev(struct request_queue *q,
1629 struct bio_vec *bprv, unsigned int offset)
1630 {
1631 return offset ||
1632 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
1633 }
1634
1635 /*
1636 * Check if adding a bio_vec after bprv with offset would create a gap in
1637 * the SG list. Most drivers don't care about this, but some do.
1638 */
1639 static inline bool bvec_gap_to_prev(struct request_queue *q,
1640 struct bio_vec *bprv, unsigned int offset)
1641 {
1642 if (!queue_virt_boundary(q))
1643 return false;
1644 return __bvec_gap_to_prev(q, bprv, offset);
1645 }
1646
1647 /*
1648 * Check if the two bvecs from two bios can be merged to one segment.
1649 * If yes, no need to check gap between the two bios since the 1st bio
1650 * and the 1st bvec in the 2nd bio can be handled in one segment.
1651 */
1652 static inline bool bios_segs_mergeable(struct request_queue *q,
1653 struct bio *prev, struct bio_vec *prev_last_bv,
1654 struct bio_vec *next_first_bv)
1655 {
1656 if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv))
1657 return false;
1658 if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv))
1659 return false;
1660 if (prev->bi_seg_back_size + next_first_bv->bv_len >
1661 queue_max_segment_size(q))
1662 return false;
1663 return true;
1664 }
1665
1666 static inline bool bio_will_gap(struct request_queue *q,
1667 struct request *prev_rq,
1668 struct bio *prev,
1669 struct bio *next)
1670 {
1671 if (bio_has_data(prev) && queue_virt_boundary(q)) {
1672 struct bio_vec pb, nb;
1673
1674 /*
1675 * don't merge if the 1st bio starts with non-zero
1676 * offset, otherwise it is quite difficult to respect
1677 * sg gap limit. We work hard to merge a huge number of small
1678 * single bios in case of mkfs.
1679 */
1680 if (prev_rq)
1681 bio_get_first_bvec(prev_rq->bio, &pb);
1682 else
1683 bio_get_first_bvec(prev, &pb);
1684 if (pb.bv_offset)
1685 return true;
1686
1687 /*
1688 * We don't need to worry about the situation that the
1689 * merged segment ends in unaligned virt boundary:
1690 *
1691 * - if 'pb' ends aligned, the merged segment ends aligned
1692 * - if 'pb' ends unaligned, the next bio must include
1693 * one single bvec of 'nb', otherwise the 'nb' can't
1694 * merge with 'pb'
1695 */
1696 bio_get_last_bvec(prev, &pb);
1697 bio_get_first_bvec(next, &nb);
1698
1699 if (!bios_segs_mergeable(q, prev, &pb, &nb))
1700 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
1701 }
1702
1703 return false;
1704 }
1705
1706 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
1707 {
1708 return bio_will_gap(req->q, req, req->biotail, bio);
1709 }
1710
1711 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
1712 {
1713 return bio_will_gap(req->q, NULL, bio, req->bio);
1714 }
1715
1716 int kblockd_schedule_work(struct work_struct *work);
1717 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1718 int kblockd_schedule_delayed_work(struct delayed_work *dwork, unsigned long delay);
1719 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1720 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1721
1722 #ifdef CONFIG_BLK_CGROUP
1723 /*
1724 * This should not be using sched_clock(). A real patch is in progress
1725 * to fix this up, until that is in place we need to disable preemption
1726 * around sched_clock() in this function and set_io_start_time_ns().
1727 */
1728 static inline void set_start_time_ns(struct request *req)
1729 {
1730 preempt_disable();
1731 req->start_time_ns = sched_clock();
1732 preempt_enable();
1733 }
1734
1735 static inline void set_io_start_time_ns(struct request *req)
1736 {
1737 preempt_disable();
1738 req->io_start_time_ns = sched_clock();
1739 preempt_enable();
1740 }
1741
1742 static inline uint64_t rq_start_time_ns(struct request *req)
1743 {
1744 return req->start_time_ns;
1745 }
1746
1747 static inline uint64_t rq_io_start_time_ns(struct request *req)
1748 {
1749 return req->io_start_time_ns;
1750 }
1751 #else
1752 static inline void set_start_time_ns(struct request *req) {}
1753 static inline void set_io_start_time_ns(struct request *req) {}
1754 static inline uint64_t rq_start_time_ns(struct request *req)
1755 {
1756 return 0;
1757 }
1758 static inline uint64_t rq_io_start_time_ns(struct request *req)
1759 {
1760 return 0;
1761 }
1762 #endif
1763
1764 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1765 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1766 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1767 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1768
1769 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1770
1771 enum blk_integrity_flags {
1772 BLK_INTEGRITY_VERIFY = 1 << 0,
1773 BLK_INTEGRITY_GENERATE = 1 << 1,
1774 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1775 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1776 };
1777
1778 struct blk_integrity_iter {
1779 void *prot_buf;
1780 void *data_buf;
1781 sector_t seed;
1782 unsigned int data_size;
1783 unsigned short interval;
1784 const char *disk_name;
1785 };
1786
1787 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1788
1789 struct blk_integrity_profile {
1790 integrity_processing_fn *generate_fn;
1791 integrity_processing_fn *verify_fn;
1792 const char *name;
1793 };
1794
1795 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1796 extern void blk_integrity_unregister(struct gendisk *);
1797 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1798 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1799 struct scatterlist *);
1800 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1801 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1802 struct request *);
1803 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1804 struct bio *);
1805
1806 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1807 {
1808 struct blk_integrity *bi = &disk->queue->integrity;
1809
1810 if (!bi->profile)
1811 return NULL;
1812
1813 return bi;
1814 }
1815
1816 static inline
1817 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1818 {
1819 return blk_get_integrity(bdev->bd_disk);
1820 }
1821
1822 static inline bool blk_integrity_rq(struct request *rq)
1823 {
1824 return rq->cmd_flags & REQ_INTEGRITY;
1825 }
1826
1827 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1828 unsigned int segs)
1829 {
1830 q->limits.max_integrity_segments = segs;
1831 }
1832
1833 static inline unsigned short
1834 queue_max_integrity_segments(struct request_queue *q)
1835 {
1836 return q->limits.max_integrity_segments;
1837 }
1838
1839 static inline bool integrity_req_gap_back_merge(struct request *req,
1840 struct bio *next)
1841 {
1842 struct bio_integrity_payload *bip = bio_integrity(req->bio);
1843 struct bio_integrity_payload *bip_next = bio_integrity(next);
1844
1845 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1846 bip_next->bip_vec[0].bv_offset);
1847 }
1848
1849 static inline bool integrity_req_gap_front_merge(struct request *req,
1850 struct bio *bio)
1851 {
1852 struct bio_integrity_payload *bip = bio_integrity(bio);
1853 struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
1854
1855 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
1856 bip_next->bip_vec[0].bv_offset);
1857 }
1858
1859 #else /* CONFIG_BLK_DEV_INTEGRITY */
1860
1861 struct bio;
1862 struct block_device;
1863 struct gendisk;
1864 struct blk_integrity;
1865
1866 static inline int blk_integrity_rq(struct request *rq)
1867 {
1868 return 0;
1869 }
1870 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1871 struct bio *b)
1872 {
1873 return 0;
1874 }
1875 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1876 struct bio *b,
1877 struct scatterlist *s)
1878 {
1879 return 0;
1880 }
1881 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1882 {
1883 return NULL;
1884 }
1885 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1886 {
1887 return NULL;
1888 }
1889 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1890 {
1891 return 0;
1892 }
1893 static inline void blk_integrity_register(struct gendisk *d,
1894 struct blk_integrity *b)
1895 {
1896 }
1897 static inline void blk_integrity_unregister(struct gendisk *d)
1898 {
1899 }
1900 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1901 unsigned int segs)
1902 {
1903 }
1904 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1905 {
1906 return 0;
1907 }
1908 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1909 struct request *r1,
1910 struct request *r2)
1911 {
1912 return true;
1913 }
1914 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1915 struct request *r,
1916 struct bio *b)
1917 {
1918 return true;
1919 }
1920
1921 static inline bool integrity_req_gap_back_merge(struct request *req,
1922 struct bio *next)
1923 {
1924 return false;
1925 }
1926 static inline bool integrity_req_gap_front_merge(struct request *req,
1927 struct bio *bio)
1928 {
1929 return false;
1930 }
1931
1932 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1933
1934 struct block_device_operations {
1935 int (*open) (struct block_device *, fmode_t);
1936 void (*release) (struct gendisk *, fmode_t);
1937 int (*rw_page)(struct block_device *, sector_t, struct page *, bool);
1938 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1939 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1940 unsigned int (*check_events) (struct gendisk *disk,
1941 unsigned int clearing);
1942 /* ->media_changed() is DEPRECATED, use ->check_events() instead */
1943 int (*media_changed) (struct gendisk *);
1944 void (*unlock_native_capacity) (struct gendisk *);
1945 int (*revalidate_disk) (struct gendisk *);
1946 int (*getgeo)(struct block_device *, struct hd_geometry *);
1947 /* this callback is with swap_lock and sometimes page table lock held */
1948 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1949 struct module *owner;
1950 const struct pr_ops *pr_ops;
1951 };
1952
1953 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1954 unsigned long);
1955 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1956 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1957 struct writeback_control *);
1958 #else /* CONFIG_BLOCK */
1959
1960 struct block_device;
1961
1962 /*
1963 * stubs for when the block layer is configured out
1964 */
1965 #define buffer_heads_over_limit 0
1966
1967 static inline long nr_blockdev_pages(void)
1968 {
1969 return 0;
1970 }
1971
1972 struct blk_plug {
1973 };
1974
1975 static inline void blk_start_plug(struct blk_plug *plug)
1976 {
1977 }
1978
1979 static inline void blk_finish_plug(struct blk_plug *plug)
1980 {
1981 }
1982
1983 static inline void blk_flush_plug(struct task_struct *task)
1984 {
1985 }
1986
1987 static inline void blk_schedule_flush_plug(struct task_struct *task)
1988 {
1989 }
1990
1991
1992 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1993 {
1994 return false;
1995 }
1996
1997 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
1998 sector_t *error_sector)
1999 {
2000 return 0;
2001 }
2002
2003 #endif /* CONFIG_BLOCK */
2004
2005 #endif