]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/memcontrol.h
mm: vmscan: consolidate shrinker_maps handling code
[mirror_ubuntu-jammy-kernel.git] / include / linux / memcontrol.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 MEMCG_SOCK,
35 MEMCG_PERCPU_B,
36 MEMCG_NR_STAT,
37 };
38
39 enum memcg_memory_event {
40 MEMCG_LOW,
41 MEMCG_HIGH,
42 MEMCG_MAX,
43 MEMCG_OOM,
44 MEMCG_OOM_KILL,
45 MEMCG_SWAP_HIGH,
46 MEMCG_SWAP_MAX,
47 MEMCG_SWAP_FAIL,
48 MEMCG_NR_MEMORY_EVENTS,
49 };
50
51 struct mem_cgroup_reclaim_cookie {
52 pg_data_t *pgdat;
53 unsigned int generation;
54 };
55
56 #ifdef CONFIG_MEMCG
57
58 #define MEM_CGROUP_ID_SHIFT 16
59 #define MEM_CGROUP_ID_MAX USHRT_MAX
60
61 struct mem_cgroup_id {
62 int id;
63 refcount_t ref;
64 };
65
66 /*
67 * Per memcg event counter is incremented at every pagein/pageout. With THP,
68 * it will be incremented by the number of pages. This counter is used
69 * to trigger some periodic events. This is straightforward and better
70 * than using jiffies etc. to handle periodic memcg event.
71 */
72 enum mem_cgroup_events_target {
73 MEM_CGROUP_TARGET_THRESH,
74 MEM_CGROUP_TARGET_SOFTLIMIT,
75 MEM_CGROUP_NTARGETS,
76 };
77
78 struct memcg_vmstats_percpu {
79 /* Local (CPU and cgroup) page state & events */
80 long state[MEMCG_NR_STAT];
81 unsigned long events[NR_VM_EVENT_ITEMS];
82
83 /* Delta calculation for lockless upward propagation */
84 long state_prev[MEMCG_NR_STAT];
85 unsigned long events_prev[NR_VM_EVENT_ITEMS];
86
87 /* Cgroup1: threshold notifications & softlimit tree updates */
88 unsigned long nr_page_events;
89 unsigned long targets[MEM_CGROUP_NTARGETS];
90 };
91
92 struct memcg_vmstats {
93 /* Aggregated (CPU and subtree) page state & events */
94 long state[MEMCG_NR_STAT];
95 unsigned long events[NR_VM_EVENT_ITEMS];
96
97 /* Pending child counts during tree propagation */
98 long state_pending[MEMCG_NR_STAT];
99 unsigned long events_pending[NR_VM_EVENT_ITEMS];
100 };
101
102 struct mem_cgroup_reclaim_iter {
103 struct mem_cgroup *position;
104 /* scan generation, increased every round-trip */
105 unsigned int generation;
106 };
107
108 struct lruvec_stat {
109 long count[NR_VM_NODE_STAT_ITEMS];
110 };
111
112 struct batched_lruvec_stat {
113 s32 count[NR_VM_NODE_STAT_ITEMS];
114 };
115
116 /*
117 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
118 * which have elements charged to this memcg.
119 */
120 struct memcg_shrinker_map {
121 struct rcu_head rcu;
122 unsigned long map[];
123 };
124
125 /*
126 * per-node information in memory controller.
127 */
128 struct mem_cgroup_per_node {
129 struct lruvec lruvec;
130
131 /*
132 * Legacy local VM stats. This should be struct lruvec_stat and
133 * cannot be optimized to struct batched_lruvec_stat. Because
134 * the threshold of the lruvec_stat_cpu can be as big as
135 * MEMCG_CHARGE_BATCH * PAGE_SIZE. It can fit into s32. But this
136 * filed has no upper limit.
137 */
138 struct lruvec_stat __percpu *lruvec_stat_local;
139
140 /* Subtree VM stats (batched updates) */
141 struct batched_lruvec_stat __percpu *lruvec_stat_cpu;
142 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
143
144 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
145
146 struct mem_cgroup_reclaim_iter iter;
147
148 struct memcg_shrinker_map __rcu *shrinker_map;
149
150 struct rb_node tree_node; /* RB tree node */
151 unsigned long usage_in_excess;/* Set to the value by which */
152 /* the soft limit is exceeded*/
153 bool on_tree;
154 struct mem_cgroup *memcg; /* Back pointer, we cannot */
155 /* use container_of */
156 };
157
158 struct mem_cgroup_threshold {
159 struct eventfd_ctx *eventfd;
160 unsigned long threshold;
161 };
162
163 /* For threshold */
164 struct mem_cgroup_threshold_ary {
165 /* An array index points to threshold just below or equal to usage. */
166 int current_threshold;
167 /* Size of entries[] */
168 unsigned int size;
169 /* Array of thresholds */
170 struct mem_cgroup_threshold entries[];
171 };
172
173 struct mem_cgroup_thresholds {
174 /* Primary thresholds array */
175 struct mem_cgroup_threshold_ary *primary;
176 /*
177 * Spare threshold array.
178 * This is needed to make mem_cgroup_unregister_event() "never fail".
179 * It must be able to store at least primary->size - 1 entries.
180 */
181 struct mem_cgroup_threshold_ary *spare;
182 };
183
184 enum memcg_kmem_state {
185 KMEM_NONE,
186 KMEM_ALLOCATED,
187 KMEM_ONLINE,
188 };
189
190 #if defined(CONFIG_SMP)
191 struct memcg_padding {
192 char x[0];
193 } ____cacheline_internodealigned_in_smp;
194 #define MEMCG_PADDING(name) struct memcg_padding name;
195 #else
196 #define MEMCG_PADDING(name)
197 #endif
198
199 /*
200 * Remember four most recent foreign writebacks with dirty pages in this
201 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
202 * one in a given round, we're likely to catch it later if it keeps
203 * foreign-dirtying, so a fairly low count should be enough.
204 *
205 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
206 */
207 #define MEMCG_CGWB_FRN_CNT 4
208
209 struct memcg_cgwb_frn {
210 u64 bdi_id; /* bdi->id of the foreign inode */
211 int memcg_id; /* memcg->css.id of foreign inode */
212 u64 at; /* jiffies_64 at the time of dirtying */
213 struct wb_completion done; /* tracks in-flight foreign writebacks */
214 };
215
216 /*
217 * Bucket for arbitrarily byte-sized objects charged to a memory
218 * cgroup. The bucket can be reparented in one piece when the cgroup
219 * is destroyed, without having to round up the individual references
220 * of all live memory objects in the wild.
221 */
222 struct obj_cgroup {
223 struct percpu_ref refcnt;
224 struct mem_cgroup *memcg;
225 atomic_t nr_charged_bytes;
226 union {
227 struct list_head list;
228 struct rcu_head rcu;
229 };
230 };
231
232 /*
233 * The memory controller data structure. The memory controller controls both
234 * page cache and RSS per cgroup. We would eventually like to provide
235 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
236 * to help the administrator determine what knobs to tune.
237 */
238 struct mem_cgroup {
239 struct cgroup_subsys_state css;
240
241 /* Private memcg ID. Used to ID objects that outlive the cgroup */
242 struct mem_cgroup_id id;
243
244 /* Accounted resources */
245 struct page_counter memory; /* Both v1 & v2 */
246
247 union {
248 struct page_counter swap; /* v2 only */
249 struct page_counter memsw; /* v1 only */
250 };
251
252 /* Legacy consumer-oriented counters */
253 struct page_counter kmem; /* v1 only */
254 struct page_counter tcpmem; /* v1 only */
255
256 /* Range enforcement for interrupt charges */
257 struct work_struct high_work;
258
259 unsigned long soft_limit;
260
261 /* vmpressure notifications */
262 struct vmpressure vmpressure;
263
264 /*
265 * Should the OOM killer kill all belonging tasks, had it kill one?
266 */
267 bool oom_group;
268
269 /* protected by memcg_oom_lock */
270 bool oom_lock;
271 int under_oom;
272
273 int swappiness;
274 /* OOM-Killer disable */
275 int oom_kill_disable;
276
277 /* memory.events and memory.events.local */
278 struct cgroup_file events_file;
279 struct cgroup_file events_local_file;
280
281 /* handle for "memory.swap.events" */
282 struct cgroup_file swap_events_file;
283
284 /* protect arrays of thresholds */
285 struct mutex thresholds_lock;
286
287 /* thresholds for memory usage. RCU-protected */
288 struct mem_cgroup_thresholds thresholds;
289
290 /* thresholds for mem+swap usage. RCU-protected */
291 struct mem_cgroup_thresholds memsw_thresholds;
292
293 /* For oom notifier event fd */
294 struct list_head oom_notify;
295
296 /*
297 * Should we move charges of a task when a task is moved into this
298 * mem_cgroup ? And what type of charges should we move ?
299 */
300 unsigned long move_charge_at_immigrate;
301 /* taken only while moving_account > 0 */
302 spinlock_t move_lock;
303 unsigned long move_lock_flags;
304
305 MEMCG_PADDING(_pad1_);
306
307 /* memory.stat */
308 struct memcg_vmstats vmstats;
309
310 /* memory.events */
311 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
312 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
313
314 unsigned long socket_pressure;
315
316 /* Legacy tcp memory accounting */
317 bool tcpmem_active;
318 int tcpmem_pressure;
319
320 #ifdef CONFIG_MEMCG_KMEM
321 int kmemcg_id;
322 enum memcg_kmem_state kmem_state;
323 struct obj_cgroup __rcu *objcg;
324 struct list_head objcg_list; /* list of inherited objcgs */
325 #endif
326
327 MEMCG_PADDING(_pad2_);
328
329 /*
330 * set > 0 if pages under this cgroup are moving to other cgroup.
331 */
332 atomic_t moving_account;
333 struct task_struct *move_lock_task;
334
335 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
336
337 #ifdef CONFIG_CGROUP_WRITEBACK
338 struct list_head cgwb_list;
339 struct wb_domain cgwb_domain;
340 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
341 #endif
342
343 /* List of events which userspace want to receive */
344 struct list_head event_list;
345 spinlock_t event_list_lock;
346
347 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
348 struct deferred_split deferred_split_queue;
349 #endif
350
351 struct mem_cgroup_per_node *nodeinfo[0];
352 /* WARNING: nodeinfo must be the last member here */
353 };
354
355 /*
356 * size of first charge trial. "32" comes from vmscan.c's magic value.
357 * TODO: maybe necessary to use big numbers in big irons.
358 */
359 #define MEMCG_CHARGE_BATCH 32U
360
361 extern struct mem_cgroup *root_mem_cgroup;
362
363 enum page_memcg_data_flags {
364 /* page->memcg_data is a pointer to an objcgs vector */
365 MEMCG_DATA_OBJCGS = (1UL << 0),
366 /* page has been accounted as a non-slab kernel page */
367 MEMCG_DATA_KMEM = (1UL << 1),
368 /* the next bit after the last actual flag */
369 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
370 };
371
372 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
373
374 static inline bool PageMemcgKmem(struct page *page);
375
376 /*
377 * After the initialization objcg->memcg is always pointing at
378 * a valid memcg, but can be atomically swapped to the parent memcg.
379 *
380 * The caller must ensure that the returned memcg won't be released:
381 * e.g. acquire the rcu_read_lock or css_set_lock.
382 */
383 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
384 {
385 return READ_ONCE(objcg->memcg);
386 }
387
388 /*
389 * __page_memcg - get the memory cgroup associated with a non-kmem page
390 * @page: a pointer to the page struct
391 *
392 * Returns a pointer to the memory cgroup associated with the page,
393 * or NULL. This function assumes that the page is known to have a
394 * proper memory cgroup pointer. It's not safe to call this function
395 * against some type of pages, e.g. slab pages or ex-slab pages or
396 * kmem pages.
397 */
398 static inline struct mem_cgroup *__page_memcg(struct page *page)
399 {
400 unsigned long memcg_data = page->memcg_data;
401
402 VM_BUG_ON_PAGE(PageSlab(page), page);
403 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
404 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
405
406 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
407 }
408
409 /*
410 * __page_objcg - get the object cgroup associated with a kmem page
411 * @page: a pointer to the page struct
412 *
413 * Returns a pointer to the object cgroup associated with the page,
414 * or NULL. This function assumes that the page is known to have a
415 * proper object cgroup pointer. It's not safe to call this function
416 * against some type of pages, e.g. slab pages or ex-slab pages or
417 * LRU pages.
418 */
419 static inline struct obj_cgroup *__page_objcg(struct page *page)
420 {
421 unsigned long memcg_data = page->memcg_data;
422
423 VM_BUG_ON_PAGE(PageSlab(page), page);
424 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
425 VM_BUG_ON_PAGE(!(memcg_data & MEMCG_DATA_KMEM), page);
426
427 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
428 }
429
430 /*
431 * page_memcg - get the memory cgroup associated with a page
432 * @page: a pointer to the page struct
433 *
434 * Returns a pointer to the memory cgroup associated with the page,
435 * or NULL. This function assumes that the page is known to have a
436 * proper memory cgroup pointer. It's not safe to call this function
437 * against some type of pages, e.g. slab pages or ex-slab pages.
438 *
439 * For a non-kmem page any of the following ensures page and memcg binding
440 * stability:
441 *
442 * - the page lock
443 * - LRU isolation
444 * - lock_page_memcg()
445 * - exclusive reference
446 *
447 * For a kmem page a caller should hold an rcu read lock to protect memcg
448 * associated with a kmem page from being released.
449 */
450 static inline struct mem_cgroup *page_memcg(struct page *page)
451 {
452 if (PageMemcgKmem(page))
453 return obj_cgroup_memcg(__page_objcg(page));
454 else
455 return __page_memcg(page);
456 }
457
458 /*
459 * page_memcg_rcu - locklessly get the memory cgroup associated with a page
460 * @page: a pointer to the page struct
461 *
462 * Returns a pointer to the memory cgroup associated with the page,
463 * or NULL. This function assumes that the page is known to have a
464 * proper memory cgroup pointer. It's not safe to call this function
465 * against some type of pages, e.g. slab pages or ex-slab pages.
466 */
467 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
468 {
469 unsigned long memcg_data = READ_ONCE(page->memcg_data);
470
471 VM_BUG_ON_PAGE(PageSlab(page), page);
472 WARN_ON_ONCE(!rcu_read_lock_held());
473
474 if (memcg_data & MEMCG_DATA_KMEM) {
475 struct obj_cgroup *objcg;
476
477 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
478 return obj_cgroup_memcg(objcg);
479 }
480
481 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
482 }
483
484 /*
485 * page_memcg_check - get the memory cgroup associated with a page
486 * @page: a pointer to the page struct
487 *
488 * Returns a pointer to the memory cgroup associated with the page,
489 * or NULL. This function unlike page_memcg() can take any page
490 * as an argument. It has to be used in cases when it's not known if a page
491 * has an associated memory cgroup pointer or an object cgroups vector or
492 * an object cgroup.
493 *
494 * For a non-kmem page any of the following ensures page and memcg binding
495 * stability:
496 *
497 * - the page lock
498 * - LRU isolation
499 * - lock_page_memcg()
500 * - exclusive reference
501 *
502 * For a kmem page a caller should hold an rcu read lock to protect memcg
503 * associated with a kmem page from being released.
504 */
505 static inline struct mem_cgroup *page_memcg_check(struct page *page)
506 {
507 /*
508 * Because page->memcg_data might be changed asynchronously
509 * for slab pages, READ_ONCE() should be used here.
510 */
511 unsigned long memcg_data = READ_ONCE(page->memcg_data);
512
513 if (memcg_data & MEMCG_DATA_OBJCGS)
514 return NULL;
515
516 if (memcg_data & MEMCG_DATA_KMEM) {
517 struct obj_cgroup *objcg;
518
519 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
520 return obj_cgroup_memcg(objcg);
521 }
522
523 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
524 }
525
526 #ifdef CONFIG_MEMCG_KMEM
527 /*
528 * PageMemcgKmem - check if the page has MemcgKmem flag set
529 * @page: a pointer to the page struct
530 *
531 * Checks if the page has MemcgKmem flag set. The caller must ensure that
532 * the page has an associated memory cgroup. It's not safe to call this function
533 * against some types of pages, e.g. slab pages.
534 */
535 static inline bool PageMemcgKmem(struct page *page)
536 {
537 VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page);
538 return page->memcg_data & MEMCG_DATA_KMEM;
539 }
540
541 /*
542 * page_objcgs - get the object cgroups vector associated with a page
543 * @page: a pointer to the page struct
544 *
545 * Returns a pointer to the object cgroups vector associated with the page,
546 * or NULL. This function assumes that the page is known to have an
547 * associated object cgroups vector. It's not safe to call this function
548 * against pages, which might have an associated memory cgroup: e.g.
549 * kernel stack pages.
550 */
551 static inline struct obj_cgroup **page_objcgs(struct page *page)
552 {
553 unsigned long memcg_data = READ_ONCE(page->memcg_data);
554
555 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
556 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
557
558 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
559 }
560
561 /*
562 * page_objcgs_check - get the object cgroups vector associated with a page
563 * @page: a pointer to the page struct
564 *
565 * Returns a pointer to the object cgroups vector associated with the page,
566 * or NULL. This function is safe to use if the page can be directly associated
567 * with a memory cgroup.
568 */
569 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
570 {
571 unsigned long memcg_data = READ_ONCE(page->memcg_data);
572
573 if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
574 return NULL;
575
576 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
577
578 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
579 }
580
581 #else
582 static inline bool PageMemcgKmem(struct page *page)
583 {
584 return false;
585 }
586
587 static inline struct obj_cgroup **page_objcgs(struct page *page)
588 {
589 return NULL;
590 }
591
592 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
593 {
594 return NULL;
595 }
596 #endif
597
598 static __always_inline bool memcg_stat_item_in_bytes(int idx)
599 {
600 if (idx == MEMCG_PERCPU_B)
601 return true;
602 return vmstat_item_in_bytes(idx);
603 }
604
605 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
606 {
607 return (memcg == root_mem_cgroup);
608 }
609
610 static inline bool mem_cgroup_disabled(void)
611 {
612 return !cgroup_subsys_enabled(memory_cgrp_subsys);
613 }
614
615 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
616 struct mem_cgroup *memcg,
617 bool in_low_reclaim)
618 {
619 if (mem_cgroup_disabled())
620 return 0;
621
622 /*
623 * There is no reclaim protection applied to a targeted reclaim.
624 * We are special casing this specific case here because
625 * mem_cgroup_protected calculation is not robust enough to keep
626 * the protection invariant for calculated effective values for
627 * parallel reclaimers with different reclaim target. This is
628 * especially a problem for tail memcgs (as they have pages on LRU)
629 * which would want to have effective values 0 for targeted reclaim
630 * but a different value for external reclaim.
631 *
632 * Example
633 * Let's have global and A's reclaim in parallel:
634 * |
635 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
636 * |\
637 * | C (low = 1G, usage = 2.5G)
638 * B (low = 1G, usage = 0.5G)
639 *
640 * For the global reclaim
641 * A.elow = A.low
642 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
643 * C.elow = min(C.usage, C.low)
644 *
645 * With the effective values resetting we have A reclaim
646 * A.elow = 0
647 * B.elow = B.low
648 * C.elow = C.low
649 *
650 * If the global reclaim races with A's reclaim then
651 * B.elow = C.elow = 0 because children_low_usage > A.elow)
652 * is possible and reclaiming B would be violating the protection.
653 *
654 */
655 if (root == memcg)
656 return 0;
657
658 if (in_low_reclaim)
659 return READ_ONCE(memcg->memory.emin);
660
661 return max(READ_ONCE(memcg->memory.emin),
662 READ_ONCE(memcg->memory.elow));
663 }
664
665 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
666 struct mem_cgroup *memcg);
667
668 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
669 {
670 /*
671 * The root memcg doesn't account charges, and doesn't support
672 * protection.
673 */
674 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
675
676 }
677
678 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
679 {
680 if (!mem_cgroup_supports_protection(memcg))
681 return false;
682
683 return READ_ONCE(memcg->memory.elow) >=
684 page_counter_read(&memcg->memory);
685 }
686
687 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
688 {
689 if (!mem_cgroup_supports_protection(memcg))
690 return false;
691
692 return READ_ONCE(memcg->memory.emin) >=
693 page_counter_read(&memcg->memory);
694 }
695
696 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
697 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
698 gfp_t gfp, swp_entry_t entry);
699 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
700
701 void mem_cgroup_uncharge(struct page *page);
702 void mem_cgroup_uncharge_list(struct list_head *page_list);
703
704 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
705
706 /**
707 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
708 * @memcg: memcg of the wanted lruvec
709 * @pgdat: pglist_data
710 *
711 * Returns the lru list vector holding pages for a given @memcg &
712 * @pgdat combination. This can be the node lruvec, if the memory
713 * controller is disabled.
714 */
715 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
716 struct pglist_data *pgdat)
717 {
718 struct mem_cgroup_per_node *mz;
719 struct lruvec *lruvec;
720
721 if (mem_cgroup_disabled()) {
722 lruvec = &pgdat->__lruvec;
723 goto out;
724 }
725
726 if (!memcg)
727 memcg = root_mem_cgroup;
728
729 mz = memcg->nodeinfo[pgdat->node_id];
730 lruvec = &mz->lruvec;
731 out:
732 /*
733 * Since a node can be onlined after the mem_cgroup was created,
734 * we have to be prepared to initialize lruvec->pgdat here;
735 * and if offlined then reonlined, we need to reinitialize it.
736 */
737 if (unlikely(lruvec->pgdat != pgdat))
738 lruvec->pgdat = pgdat;
739 return lruvec;
740 }
741
742 /**
743 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
744 * @page: the page
745 * @pgdat: pgdat of the page
746 *
747 * This function relies on page->mem_cgroup being stable.
748 */
749 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
750 struct pglist_data *pgdat)
751 {
752 struct mem_cgroup *memcg = page_memcg(page);
753
754 VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page);
755 return mem_cgroup_lruvec(memcg, pgdat);
756 }
757
758 static inline bool lruvec_holds_page_lru_lock(struct page *page,
759 struct lruvec *lruvec)
760 {
761 pg_data_t *pgdat = page_pgdat(page);
762 const struct mem_cgroup *memcg;
763 struct mem_cgroup_per_node *mz;
764
765 if (mem_cgroup_disabled())
766 return lruvec == &pgdat->__lruvec;
767
768 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
769 memcg = page_memcg(page) ? : root_mem_cgroup;
770
771 return lruvec->pgdat == pgdat && mz->memcg == memcg;
772 }
773
774 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
775
776 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
777
778 struct lruvec *lock_page_lruvec(struct page *page);
779 struct lruvec *lock_page_lruvec_irq(struct page *page);
780 struct lruvec *lock_page_lruvec_irqsave(struct page *page,
781 unsigned long *flags);
782
783 #ifdef CONFIG_DEBUG_VM
784 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page);
785 #else
786 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
787 {
788 }
789 #endif
790
791 static inline
792 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
793 return css ? container_of(css, struct mem_cgroup, css) : NULL;
794 }
795
796 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
797 {
798 return percpu_ref_tryget(&objcg->refcnt);
799 }
800
801 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
802 {
803 percpu_ref_get(&objcg->refcnt);
804 }
805
806 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
807 unsigned long nr)
808 {
809 percpu_ref_get_many(&objcg->refcnt, nr);
810 }
811
812 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
813 {
814 percpu_ref_put(&objcg->refcnt);
815 }
816
817 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
818 {
819 if (memcg)
820 css_put(&memcg->css);
821 }
822
823 #define mem_cgroup_from_counter(counter, member) \
824 container_of(counter, struct mem_cgroup, member)
825
826 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
827 struct mem_cgroup *,
828 struct mem_cgroup_reclaim_cookie *);
829 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
830 int mem_cgroup_scan_tasks(struct mem_cgroup *,
831 int (*)(struct task_struct *, void *), void *);
832
833 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
834 {
835 if (mem_cgroup_disabled())
836 return 0;
837
838 return memcg->id.id;
839 }
840 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
841
842 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
843 {
844 return mem_cgroup_from_css(seq_css(m));
845 }
846
847 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
848 {
849 struct mem_cgroup_per_node *mz;
850
851 if (mem_cgroup_disabled())
852 return NULL;
853
854 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
855 return mz->memcg;
856 }
857
858 /**
859 * parent_mem_cgroup - find the accounting parent of a memcg
860 * @memcg: memcg whose parent to find
861 *
862 * Returns the parent memcg, or NULL if this is the root or the memory
863 * controller is in legacy no-hierarchy mode.
864 */
865 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
866 {
867 if (!memcg->memory.parent)
868 return NULL;
869 return mem_cgroup_from_counter(memcg->memory.parent, memory);
870 }
871
872 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
873 struct mem_cgroup *root)
874 {
875 if (root == memcg)
876 return true;
877 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
878 }
879
880 static inline bool mm_match_cgroup(struct mm_struct *mm,
881 struct mem_cgroup *memcg)
882 {
883 struct mem_cgroup *task_memcg;
884 bool match = false;
885
886 rcu_read_lock();
887 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
888 if (task_memcg)
889 match = mem_cgroup_is_descendant(task_memcg, memcg);
890 rcu_read_unlock();
891 return match;
892 }
893
894 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
895 ino_t page_cgroup_ino(struct page *page);
896
897 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
898 {
899 if (mem_cgroup_disabled())
900 return true;
901 return !!(memcg->css.flags & CSS_ONLINE);
902 }
903
904 /*
905 * For memory reclaim.
906 */
907 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
908
909 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
910 int zid, int nr_pages);
911
912 static inline
913 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
914 enum lru_list lru, int zone_idx)
915 {
916 struct mem_cgroup_per_node *mz;
917
918 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
919 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
920 }
921
922 void mem_cgroup_handle_over_high(void);
923
924 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
925
926 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
927
928 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
929 struct task_struct *p);
930
931 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
932
933 static inline void mem_cgroup_enter_user_fault(void)
934 {
935 WARN_ON(current->in_user_fault);
936 current->in_user_fault = 1;
937 }
938
939 static inline void mem_cgroup_exit_user_fault(void)
940 {
941 WARN_ON(!current->in_user_fault);
942 current->in_user_fault = 0;
943 }
944
945 static inline bool task_in_memcg_oom(struct task_struct *p)
946 {
947 return p->memcg_in_oom;
948 }
949
950 bool mem_cgroup_oom_synchronize(bool wait);
951 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
952 struct mem_cgroup *oom_domain);
953 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
954
955 #ifdef CONFIG_MEMCG_SWAP
956 extern bool cgroup_memory_noswap;
957 #endif
958
959 void lock_page_memcg(struct page *page);
960 void unlock_page_memcg(struct page *page);
961
962 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
963
964 /* idx can be of type enum memcg_stat_item or node_stat_item */
965 static inline void mod_memcg_state(struct mem_cgroup *memcg,
966 int idx, int val)
967 {
968 unsigned long flags;
969
970 local_irq_save(flags);
971 __mod_memcg_state(memcg, idx, val);
972 local_irq_restore(flags);
973 }
974
975 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
976 enum node_stat_item idx)
977 {
978 struct mem_cgroup_per_node *pn;
979 long x;
980
981 if (mem_cgroup_disabled())
982 return node_page_state(lruvec_pgdat(lruvec), idx);
983
984 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
985 x = atomic_long_read(&pn->lruvec_stat[idx]);
986 #ifdef CONFIG_SMP
987 if (x < 0)
988 x = 0;
989 #endif
990 return x;
991 }
992
993 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
994 enum node_stat_item idx)
995 {
996 struct mem_cgroup_per_node *pn;
997 long x = 0;
998 int cpu;
999
1000 if (mem_cgroup_disabled())
1001 return node_page_state(lruvec_pgdat(lruvec), idx);
1002
1003 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1004 for_each_possible_cpu(cpu)
1005 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
1006 #ifdef CONFIG_SMP
1007 if (x < 0)
1008 x = 0;
1009 #endif
1010 return x;
1011 }
1012
1013 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1014 int val);
1015 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1016
1017 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1018 int val)
1019 {
1020 unsigned long flags;
1021
1022 local_irq_save(flags);
1023 __mod_lruvec_kmem_state(p, idx, val);
1024 local_irq_restore(flags);
1025 }
1026
1027 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1028 enum node_stat_item idx, int val)
1029 {
1030 unsigned long flags;
1031
1032 local_irq_save(flags);
1033 __mod_memcg_lruvec_state(lruvec, idx, val);
1034 local_irq_restore(flags);
1035 }
1036
1037 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1038 unsigned long count);
1039
1040 static inline void count_memcg_events(struct mem_cgroup *memcg,
1041 enum vm_event_item idx,
1042 unsigned long count)
1043 {
1044 unsigned long flags;
1045
1046 local_irq_save(flags);
1047 __count_memcg_events(memcg, idx, count);
1048 local_irq_restore(flags);
1049 }
1050
1051 static inline void count_memcg_page_event(struct page *page,
1052 enum vm_event_item idx)
1053 {
1054 struct mem_cgroup *memcg = page_memcg(page);
1055
1056 if (memcg)
1057 count_memcg_events(memcg, idx, 1);
1058 }
1059
1060 static inline void count_memcg_event_mm(struct mm_struct *mm,
1061 enum vm_event_item idx)
1062 {
1063 struct mem_cgroup *memcg;
1064
1065 if (mem_cgroup_disabled())
1066 return;
1067
1068 rcu_read_lock();
1069 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1070 if (likely(memcg))
1071 count_memcg_events(memcg, idx, 1);
1072 rcu_read_unlock();
1073 }
1074
1075 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1076 enum memcg_memory_event event)
1077 {
1078 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1079 event == MEMCG_SWAP_FAIL;
1080
1081 atomic_long_inc(&memcg->memory_events_local[event]);
1082 if (!swap_event)
1083 cgroup_file_notify(&memcg->events_local_file);
1084
1085 do {
1086 atomic_long_inc(&memcg->memory_events[event]);
1087 if (swap_event)
1088 cgroup_file_notify(&memcg->swap_events_file);
1089 else
1090 cgroup_file_notify(&memcg->events_file);
1091
1092 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1093 break;
1094 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1095 break;
1096 } while ((memcg = parent_mem_cgroup(memcg)) &&
1097 !mem_cgroup_is_root(memcg));
1098 }
1099
1100 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1101 enum memcg_memory_event event)
1102 {
1103 struct mem_cgroup *memcg;
1104
1105 if (mem_cgroup_disabled())
1106 return;
1107
1108 rcu_read_lock();
1109 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1110 if (likely(memcg))
1111 memcg_memory_event(memcg, event);
1112 rcu_read_unlock();
1113 }
1114
1115 void split_page_memcg(struct page *head, unsigned int nr);
1116
1117 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1118 gfp_t gfp_mask,
1119 unsigned long *total_scanned);
1120
1121 #else /* CONFIG_MEMCG */
1122
1123 #define MEM_CGROUP_ID_SHIFT 0
1124 #define MEM_CGROUP_ID_MAX 0
1125
1126 static inline struct mem_cgroup *page_memcg(struct page *page)
1127 {
1128 return NULL;
1129 }
1130
1131 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1132 {
1133 WARN_ON_ONCE(!rcu_read_lock_held());
1134 return NULL;
1135 }
1136
1137 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1138 {
1139 return NULL;
1140 }
1141
1142 static inline bool PageMemcgKmem(struct page *page)
1143 {
1144 return false;
1145 }
1146
1147 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1148 {
1149 return true;
1150 }
1151
1152 static inline bool mem_cgroup_disabled(void)
1153 {
1154 return true;
1155 }
1156
1157 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1158 enum memcg_memory_event event)
1159 {
1160 }
1161
1162 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1163 enum memcg_memory_event event)
1164 {
1165 }
1166
1167 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
1168 struct mem_cgroup *memcg,
1169 bool in_low_reclaim)
1170 {
1171 return 0;
1172 }
1173
1174 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1175 struct mem_cgroup *memcg)
1176 {
1177 }
1178
1179 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1180 {
1181 return false;
1182 }
1183
1184 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1185 {
1186 return false;
1187 }
1188
1189 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
1190 gfp_t gfp_mask)
1191 {
1192 return 0;
1193 }
1194
1195 static inline int mem_cgroup_swapin_charge_page(struct page *page,
1196 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1197 {
1198 return 0;
1199 }
1200
1201 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1202 {
1203 }
1204
1205 static inline void mem_cgroup_uncharge(struct page *page)
1206 {
1207 }
1208
1209 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1210 {
1211 }
1212
1213 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
1214 {
1215 }
1216
1217 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1218 struct pglist_data *pgdat)
1219 {
1220 return &pgdat->__lruvec;
1221 }
1222
1223 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
1224 struct pglist_data *pgdat)
1225 {
1226 return &pgdat->__lruvec;
1227 }
1228
1229 static inline bool lruvec_holds_page_lru_lock(struct page *page,
1230 struct lruvec *lruvec)
1231 {
1232 pg_data_t *pgdat = page_pgdat(page);
1233
1234 return lruvec == &pgdat->__lruvec;
1235 }
1236
1237 static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1238 {
1239 }
1240
1241 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1242 {
1243 return NULL;
1244 }
1245
1246 static inline bool mm_match_cgroup(struct mm_struct *mm,
1247 struct mem_cgroup *memcg)
1248 {
1249 return true;
1250 }
1251
1252 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1253 {
1254 return NULL;
1255 }
1256
1257 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1258 {
1259 }
1260
1261 static inline struct lruvec *lock_page_lruvec(struct page *page)
1262 {
1263 struct pglist_data *pgdat = page_pgdat(page);
1264
1265 spin_lock(&pgdat->__lruvec.lru_lock);
1266 return &pgdat->__lruvec;
1267 }
1268
1269 static inline struct lruvec *lock_page_lruvec_irq(struct page *page)
1270 {
1271 struct pglist_data *pgdat = page_pgdat(page);
1272
1273 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1274 return &pgdat->__lruvec;
1275 }
1276
1277 static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page,
1278 unsigned long *flagsp)
1279 {
1280 struct pglist_data *pgdat = page_pgdat(page);
1281
1282 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1283 return &pgdat->__lruvec;
1284 }
1285
1286 static inline struct mem_cgroup *
1287 mem_cgroup_iter(struct mem_cgroup *root,
1288 struct mem_cgroup *prev,
1289 struct mem_cgroup_reclaim_cookie *reclaim)
1290 {
1291 return NULL;
1292 }
1293
1294 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1295 struct mem_cgroup *prev)
1296 {
1297 }
1298
1299 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1300 int (*fn)(struct task_struct *, void *), void *arg)
1301 {
1302 return 0;
1303 }
1304
1305 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1306 {
1307 return 0;
1308 }
1309
1310 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1311 {
1312 WARN_ON_ONCE(id);
1313 /* XXX: This should always return root_mem_cgroup */
1314 return NULL;
1315 }
1316
1317 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1318 {
1319 return NULL;
1320 }
1321
1322 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1323 {
1324 return NULL;
1325 }
1326
1327 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1328 {
1329 return true;
1330 }
1331
1332 static inline
1333 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1334 enum lru_list lru, int zone_idx)
1335 {
1336 return 0;
1337 }
1338
1339 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1340 {
1341 return 0;
1342 }
1343
1344 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1345 {
1346 return 0;
1347 }
1348
1349 static inline void
1350 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1351 {
1352 }
1353
1354 static inline void
1355 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1356 {
1357 }
1358
1359 static inline void lock_page_memcg(struct page *page)
1360 {
1361 }
1362
1363 static inline void unlock_page_memcg(struct page *page)
1364 {
1365 }
1366
1367 static inline void mem_cgroup_handle_over_high(void)
1368 {
1369 }
1370
1371 static inline void mem_cgroup_enter_user_fault(void)
1372 {
1373 }
1374
1375 static inline void mem_cgroup_exit_user_fault(void)
1376 {
1377 }
1378
1379 static inline bool task_in_memcg_oom(struct task_struct *p)
1380 {
1381 return false;
1382 }
1383
1384 static inline bool mem_cgroup_oom_synchronize(bool wait)
1385 {
1386 return false;
1387 }
1388
1389 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1390 struct task_struct *victim, struct mem_cgroup *oom_domain)
1391 {
1392 return NULL;
1393 }
1394
1395 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1396 {
1397 }
1398
1399 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1400 int idx,
1401 int nr)
1402 {
1403 }
1404
1405 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1406 int idx,
1407 int nr)
1408 {
1409 }
1410
1411 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1412 enum node_stat_item idx)
1413 {
1414 return node_page_state(lruvec_pgdat(lruvec), idx);
1415 }
1416
1417 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1418 enum node_stat_item idx)
1419 {
1420 return node_page_state(lruvec_pgdat(lruvec), idx);
1421 }
1422
1423 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1424 enum node_stat_item idx, int val)
1425 {
1426 }
1427
1428 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1429 int val)
1430 {
1431 struct page *page = virt_to_head_page(p);
1432
1433 __mod_node_page_state(page_pgdat(page), idx, val);
1434 }
1435
1436 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1437 int val)
1438 {
1439 struct page *page = virt_to_head_page(p);
1440
1441 mod_node_page_state(page_pgdat(page), idx, val);
1442 }
1443
1444 static inline void count_memcg_events(struct mem_cgroup *memcg,
1445 enum vm_event_item idx,
1446 unsigned long count)
1447 {
1448 }
1449
1450 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1451 enum vm_event_item idx,
1452 unsigned long count)
1453 {
1454 }
1455
1456 static inline void count_memcg_page_event(struct page *page,
1457 int idx)
1458 {
1459 }
1460
1461 static inline
1462 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1463 {
1464 }
1465
1466 static inline void split_page_memcg(struct page *head, unsigned int nr)
1467 {
1468 }
1469
1470 static inline
1471 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1472 gfp_t gfp_mask,
1473 unsigned long *total_scanned)
1474 {
1475 return 0;
1476 }
1477 #endif /* CONFIG_MEMCG */
1478
1479 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1480 {
1481 __mod_lruvec_kmem_state(p, idx, 1);
1482 }
1483
1484 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1485 {
1486 __mod_lruvec_kmem_state(p, idx, -1);
1487 }
1488
1489 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1490 {
1491 struct mem_cgroup *memcg;
1492
1493 memcg = lruvec_memcg(lruvec);
1494 if (!memcg)
1495 return NULL;
1496 memcg = parent_mem_cgroup(memcg);
1497 if (!memcg)
1498 return NULL;
1499 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1500 }
1501
1502 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1503 {
1504 spin_unlock(&lruvec->lru_lock);
1505 }
1506
1507 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1508 {
1509 spin_unlock_irq(&lruvec->lru_lock);
1510 }
1511
1512 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1513 unsigned long flags)
1514 {
1515 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1516 }
1517
1518 /* Don't lock again iff page's lruvec locked */
1519 static inline struct lruvec *relock_page_lruvec_irq(struct page *page,
1520 struct lruvec *locked_lruvec)
1521 {
1522 if (locked_lruvec) {
1523 if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1524 return locked_lruvec;
1525
1526 unlock_page_lruvec_irq(locked_lruvec);
1527 }
1528
1529 return lock_page_lruvec_irq(page);
1530 }
1531
1532 /* Don't lock again iff page's lruvec locked */
1533 static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page,
1534 struct lruvec *locked_lruvec, unsigned long *flags)
1535 {
1536 if (locked_lruvec) {
1537 if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1538 return locked_lruvec;
1539
1540 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1541 }
1542
1543 return lock_page_lruvec_irqsave(page, flags);
1544 }
1545
1546 #ifdef CONFIG_CGROUP_WRITEBACK
1547
1548 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1549 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1550 unsigned long *pheadroom, unsigned long *pdirty,
1551 unsigned long *pwriteback);
1552
1553 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1554 struct bdi_writeback *wb);
1555
1556 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1557 struct bdi_writeback *wb)
1558 {
1559 if (mem_cgroup_disabled())
1560 return;
1561
1562 if (unlikely(&page_memcg(page)->css != wb->memcg_css))
1563 mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1564 }
1565
1566 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1567
1568 #else /* CONFIG_CGROUP_WRITEBACK */
1569
1570 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1571 {
1572 return NULL;
1573 }
1574
1575 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1576 unsigned long *pfilepages,
1577 unsigned long *pheadroom,
1578 unsigned long *pdirty,
1579 unsigned long *pwriteback)
1580 {
1581 }
1582
1583 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1584 struct bdi_writeback *wb)
1585 {
1586 }
1587
1588 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1589 {
1590 }
1591
1592 #endif /* CONFIG_CGROUP_WRITEBACK */
1593
1594 struct sock;
1595 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1596 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1597 #ifdef CONFIG_MEMCG
1598 extern struct static_key_false memcg_sockets_enabled_key;
1599 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1600 void mem_cgroup_sk_alloc(struct sock *sk);
1601 void mem_cgroup_sk_free(struct sock *sk);
1602 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1603 {
1604 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1605 return true;
1606 do {
1607 if (time_before(jiffies, memcg->socket_pressure))
1608 return true;
1609 } while ((memcg = parent_mem_cgroup(memcg)));
1610 return false;
1611 }
1612
1613 int alloc_shrinker_maps(struct mem_cgroup *memcg);
1614 void free_shrinker_maps(struct mem_cgroup *memcg);
1615 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1616 #else
1617 #define mem_cgroup_sockets_enabled 0
1618 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1619 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1620 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1621 {
1622 return false;
1623 }
1624
1625 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1626 int nid, int shrinker_id)
1627 {
1628 }
1629 #endif
1630
1631 #ifdef CONFIG_MEMCG_KMEM
1632 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1633 void __memcg_kmem_uncharge_page(struct page *page, int order);
1634
1635 struct obj_cgroup *get_obj_cgroup_from_current(void);
1636
1637 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1638 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1639
1640 extern struct static_key_false memcg_kmem_enabled_key;
1641
1642 extern int memcg_nr_cache_ids;
1643 void memcg_get_cache_ids(void);
1644 void memcg_put_cache_ids(void);
1645
1646 /*
1647 * Helper macro to loop through all memcg-specific caches. Callers must still
1648 * check if the cache is valid (it is either valid or NULL).
1649 * the slab_mutex must be held when looping through those caches
1650 */
1651 #define for_each_memcg_cache_index(_idx) \
1652 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1653
1654 static inline bool memcg_kmem_enabled(void)
1655 {
1656 return static_branch_likely(&memcg_kmem_enabled_key);
1657 }
1658
1659 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1660 int order)
1661 {
1662 if (memcg_kmem_enabled())
1663 return __memcg_kmem_charge_page(page, gfp, order);
1664 return 0;
1665 }
1666
1667 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1668 {
1669 if (memcg_kmem_enabled())
1670 __memcg_kmem_uncharge_page(page, order);
1671 }
1672
1673 /*
1674 * A helper for accessing memcg's kmem_id, used for getting
1675 * corresponding LRU lists.
1676 */
1677 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1678 {
1679 return memcg ? memcg->kmemcg_id : -1;
1680 }
1681
1682 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1683
1684 #else
1685
1686 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1687 int order)
1688 {
1689 return 0;
1690 }
1691
1692 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1693 {
1694 }
1695
1696 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1697 int order)
1698 {
1699 return 0;
1700 }
1701
1702 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1703 {
1704 }
1705
1706 #define for_each_memcg_cache_index(_idx) \
1707 for (; NULL; )
1708
1709 static inline bool memcg_kmem_enabled(void)
1710 {
1711 return false;
1712 }
1713
1714 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1715 {
1716 return -1;
1717 }
1718
1719 static inline void memcg_get_cache_ids(void)
1720 {
1721 }
1722
1723 static inline void memcg_put_cache_ids(void)
1724 {
1725 }
1726
1727 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1728 {
1729 return NULL;
1730 }
1731
1732 #endif /* CONFIG_MEMCG_KMEM */
1733
1734 #endif /* _LINUX_MEMCONTROL_H */