]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/linux/mmzone.h
mm: remove dummy struct bootmem_data/bootmem_data_t
[mirror_ubuntu-jammy-kernel.git] / include / linux / mmzone.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <asm/page.h>
24
25 /* Free memory management - zoned buddy allocator. */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
27 #define MAX_ORDER 11
28 #else
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30 #endif
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32
33 /*
34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35 * costly to service. That is between allocation orders which should
36 * coalesce naturally under reasonable reclaim pressure and those which
37 * will not.
38 */
39 #define PAGE_ALLOC_COSTLY_ORDER 3
40
41 enum migratetype {
42 MIGRATE_UNMOVABLE,
43 MIGRATE_MOVABLE,
44 MIGRATE_RECLAIMABLE,
45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47 #ifdef CONFIG_CMA
48 /*
49 * MIGRATE_CMA migration type is designed to mimic the way
50 * ZONE_MOVABLE works. Only movable pages can be allocated
51 * from MIGRATE_CMA pageblocks and page allocator never
52 * implicitly change migration type of MIGRATE_CMA pageblock.
53 *
54 * The way to use it is to change migratetype of a range of
55 * pageblocks to MIGRATE_CMA which can be done by
56 * __free_pageblock_cma() function. What is important though
57 * is that a range of pageblocks must be aligned to
58 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 * a single pageblock.
60 */
61 MIGRATE_CMA,
62 #endif
63 #ifdef CONFIG_MEMORY_ISOLATION
64 MIGRATE_ISOLATE, /* can't allocate from here */
65 #endif
66 MIGRATE_TYPES
67 };
68
69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70 extern const char * const migratetype_names[MIGRATE_TYPES];
71
72 #ifdef CONFIG_CMA
73 # define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74 # define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75 #else
76 # define is_migrate_cma(migratetype) false
77 # define is_migrate_cma_page(_page) false
78 #endif
79
80 static inline bool is_migrate_movable(int mt)
81 {
82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83 }
84
85 #define for_each_migratetype_order(order, type) \
86 for (order = 0; order < MAX_ORDER; order++) \
87 for (type = 0; type < MIGRATE_TYPES; type++)
88
89 extern int page_group_by_mobility_disabled;
90
91 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
92 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
93
94 #define get_pageblock_migratetype(page) \
95 get_pfnblock_flags_mask(page, page_to_pfn(page), \
96 PB_migrate_end, MIGRATETYPE_MASK)
97
98 struct free_area {
99 struct list_head free_list[MIGRATE_TYPES];
100 unsigned long nr_free;
101 };
102
103 static inline struct page *get_page_from_free_area(struct free_area *area,
104 int migratetype)
105 {
106 return list_first_entry_or_null(&area->free_list[migratetype],
107 struct page, lru);
108 }
109
110 static inline bool free_area_empty(struct free_area *area, int migratetype)
111 {
112 return list_empty(&area->free_list[migratetype]);
113 }
114
115 struct pglist_data;
116
117 /*
118 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
119 * So add a wild amount of padding here to ensure that they fall into separate
120 * cachelines. There are very few zone structures in the machine, so space
121 * consumption is not a concern here.
122 */
123 #if defined(CONFIG_SMP)
124 struct zone_padding {
125 char x[0];
126 } ____cacheline_internodealigned_in_smp;
127 #define ZONE_PADDING(name) struct zone_padding name;
128 #else
129 #define ZONE_PADDING(name)
130 #endif
131
132 #ifdef CONFIG_NUMA
133 enum numa_stat_item {
134 NUMA_HIT, /* allocated in intended node */
135 NUMA_MISS, /* allocated in non intended node */
136 NUMA_FOREIGN, /* was intended here, hit elsewhere */
137 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
138 NUMA_LOCAL, /* allocation from local node */
139 NUMA_OTHER, /* allocation from other node */
140 NR_VM_NUMA_STAT_ITEMS
141 };
142 #else
143 #define NR_VM_NUMA_STAT_ITEMS 0
144 #endif
145
146 enum zone_stat_item {
147 /* First 128 byte cacheline (assuming 64 bit words) */
148 NR_FREE_PAGES,
149 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
150 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
151 NR_ZONE_ACTIVE_ANON,
152 NR_ZONE_INACTIVE_FILE,
153 NR_ZONE_ACTIVE_FILE,
154 NR_ZONE_UNEVICTABLE,
155 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
156 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
157 NR_PAGETABLE, /* used for pagetables */
158 NR_KERNEL_STACK_KB, /* measured in KiB */
159 /* Second 128 byte cacheline */
160 NR_BOUNCE,
161 #if IS_ENABLED(CONFIG_ZSMALLOC)
162 NR_ZSPAGES, /* allocated in zsmalloc */
163 #endif
164 NR_FREE_CMA_PAGES,
165 NR_VM_ZONE_STAT_ITEMS };
166
167 enum node_stat_item {
168 NR_LRU_BASE,
169 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
170 NR_ACTIVE_ANON, /* " " " " " */
171 NR_INACTIVE_FILE, /* " " " " " */
172 NR_ACTIVE_FILE, /* " " " " " */
173 NR_UNEVICTABLE, /* " " " " " */
174 NR_SLAB_RECLAIMABLE,
175 NR_SLAB_UNRECLAIMABLE,
176 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
177 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
178 WORKINGSET_NODES,
179 WORKINGSET_REFAULT,
180 WORKINGSET_ACTIVATE,
181 WORKINGSET_RESTORE,
182 WORKINGSET_NODERECLAIM,
183 NR_ANON_MAPPED, /* Mapped anonymous pages */
184 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
185 only modified from process context */
186 NR_FILE_PAGES,
187 NR_FILE_DIRTY,
188 NR_WRITEBACK,
189 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
190 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
191 NR_SHMEM_THPS,
192 NR_SHMEM_PMDMAPPED,
193 NR_FILE_THPS,
194 NR_FILE_PMDMAPPED,
195 NR_ANON_THPS,
196 NR_UNSTABLE_NFS, /* NFS unstable pages */
197 NR_VMSCAN_WRITE,
198 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
199 NR_DIRTIED, /* page dirtyings since bootup */
200 NR_WRITTEN, /* page writings since bootup */
201 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
202 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */
203 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */
204 NR_VM_NODE_STAT_ITEMS
205 };
206
207 /*
208 * We do arithmetic on the LRU lists in various places in the code,
209 * so it is important to keep the active lists LRU_ACTIVE higher in
210 * the array than the corresponding inactive lists, and to keep
211 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
212 *
213 * This has to be kept in sync with the statistics in zone_stat_item
214 * above and the descriptions in vmstat_text in mm/vmstat.c
215 */
216 #define LRU_BASE 0
217 #define LRU_ACTIVE 1
218 #define LRU_FILE 2
219
220 enum lru_list {
221 LRU_INACTIVE_ANON = LRU_BASE,
222 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
223 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
224 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
225 LRU_UNEVICTABLE,
226 NR_LRU_LISTS
227 };
228
229 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
230
231 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
232
233 static inline bool is_file_lru(enum lru_list lru)
234 {
235 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
236 }
237
238 static inline bool is_active_lru(enum lru_list lru)
239 {
240 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
241 }
242
243 struct zone_reclaim_stat {
244 /*
245 * The pageout code in vmscan.c keeps track of how many of the
246 * mem/swap backed and file backed pages are referenced.
247 * The higher the rotated/scanned ratio, the more valuable
248 * that cache is.
249 *
250 * The anon LRU stats live in [0], file LRU stats in [1]
251 */
252 unsigned long recent_rotated[2];
253 unsigned long recent_scanned[2];
254 };
255
256 enum lruvec_flags {
257 LRUVEC_CONGESTED, /* lruvec has many dirty pages
258 * backed by a congested BDI
259 */
260 };
261
262 struct lruvec {
263 struct list_head lists[NR_LRU_LISTS];
264 struct zone_reclaim_stat reclaim_stat;
265 /* Evictions & activations on the inactive file list */
266 atomic_long_t inactive_age;
267 /* Refaults at the time of last reclaim cycle */
268 unsigned long refaults;
269 /* Various lruvec state flags (enum lruvec_flags) */
270 unsigned long flags;
271 #ifdef CONFIG_MEMCG
272 struct pglist_data *pgdat;
273 #endif
274 };
275
276 /* Isolate unmapped pages */
277 #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
278 /* Isolate for asynchronous migration */
279 #define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
280 /* Isolate unevictable pages */
281 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
282
283 /* LRU Isolation modes. */
284 typedef unsigned __bitwise isolate_mode_t;
285
286 enum zone_watermarks {
287 WMARK_MIN,
288 WMARK_LOW,
289 WMARK_HIGH,
290 NR_WMARK
291 };
292
293 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
294 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
295 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
296 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
297
298 struct per_cpu_pages {
299 int count; /* number of pages in the list */
300 int high; /* high watermark, emptying needed */
301 int batch; /* chunk size for buddy add/remove */
302
303 /* Lists of pages, one per migrate type stored on the pcp-lists */
304 struct list_head lists[MIGRATE_PCPTYPES];
305 };
306
307 struct per_cpu_pageset {
308 struct per_cpu_pages pcp;
309 #ifdef CONFIG_NUMA
310 s8 expire;
311 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
312 #endif
313 #ifdef CONFIG_SMP
314 s8 stat_threshold;
315 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
316 #endif
317 };
318
319 struct per_cpu_nodestat {
320 s8 stat_threshold;
321 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
322 };
323
324 #endif /* !__GENERATING_BOUNDS.H */
325
326 enum zone_type {
327 /*
328 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
329 * to DMA to all of the addressable memory (ZONE_NORMAL).
330 * On architectures where this area covers the whole 32 bit address
331 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
332 * DMA addressing constraints. This distinction is important as a 32bit
333 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
334 * platforms may need both zones as they support peripherals with
335 * different DMA addressing limitations.
336 *
337 * Some examples:
338 *
339 * - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the
340 * rest of the lower 4G.
341 *
342 * - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on
343 * the specific device.
344 *
345 * - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the
346 * lower 4G.
347 *
348 * - powerpc only uses ZONE_DMA, the size, up to 2G, may vary
349 * depending on the specific device.
350 *
351 * - s390 uses ZONE_DMA fixed to the lower 2G.
352 *
353 * - ia64 and riscv only use ZONE_DMA32.
354 *
355 * - parisc uses neither.
356 */
357 #ifdef CONFIG_ZONE_DMA
358 ZONE_DMA,
359 #endif
360 #ifdef CONFIG_ZONE_DMA32
361 ZONE_DMA32,
362 #endif
363 /*
364 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
365 * performed on pages in ZONE_NORMAL if the DMA devices support
366 * transfers to all addressable memory.
367 */
368 ZONE_NORMAL,
369 #ifdef CONFIG_HIGHMEM
370 /*
371 * A memory area that is only addressable by the kernel through
372 * mapping portions into its own address space. This is for example
373 * used by i386 to allow the kernel to address the memory beyond
374 * 900MB. The kernel will set up special mappings (page
375 * table entries on i386) for each page that the kernel needs to
376 * access.
377 */
378 ZONE_HIGHMEM,
379 #endif
380 ZONE_MOVABLE,
381 #ifdef CONFIG_ZONE_DEVICE
382 ZONE_DEVICE,
383 #endif
384 __MAX_NR_ZONES
385
386 };
387
388 #ifndef __GENERATING_BOUNDS_H
389
390 struct zone {
391 /* Read-mostly fields */
392
393 /* zone watermarks, access with *_wmark_pages(zone) macros */
394 unsigned long _watermark[NR_WMARK];
395 unsigned long watermark_boost;
396
397 unsigned long nr_reserved_highatomic;
398
399 /*
400 * We don't know if the memory that we're going to allocate will be
401 * freeable or/and it will be released eventually, so to avoid totally
402 * wasting several GB of ram we must reserve some of the lower zone
403 * memory (otherwise we risk to run OOM on the lower zones despite
404 * there being tons of freeable ram on the higher zones). This array is
405 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
406 * changes.
407 */
408 long lowmem_reserve[MAX_NR_ZONES];
409
410 #ifdef CONFIG_NUMA
411 int node;
412 #endif
413 struct pglist_data *zone_pgdat;
414 struct per_cpu_pageset __percpu *pageset;
415
416 #ifndef CONFIG_SPARSEMEM
417 /*
418 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
419 * In SPARSEMEM, this map is stored in struct mem_section
420 */
421 unsigned long *pageblock_flags;
422 #endif /* CONFIG_SPARSEMEM */
423
424 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
425 unsigned long zone_start_pfn;
426
427 /*
428 * spanned_pages is the total pages spanned by the zone, including
429 * holes, which is calculated as:
430 * spanned_pages = zone_end_pfn - zone_start_pfn;
431 *
432 * present_pages is physical pages existing within the zone, which
433 * is calculated as:
434 * present_pages = spanned_pages - absent_pages(pages in holes);
435 *
436 * managed_pages is present pages managed by the buddy system, which
437 * is calculated as (reserved_pages includes pages allocated by the
438 * bootmem allocator):
439 * managed_pages = present_pages - reserved_pages;
440 *
441 * So present_pages may be used by memory hotplug or memory power
442 * management logic to figure out unmanaged pages by checking
443 * (present_pages - managed_pages). And managed_pages should be used
444 * by page allocator and vm scanner to calculate all kinds of watermarks
445 * and thresholds.
446 *
447 * Locking rules:
448 *
449 * zone_start_pfn and spanned_pages are protected by span_seqlock.
450 * It is a seqlock because it has to be read outside of zone->lock,
451 * and it is done in the main allocator path. But, it is written
452 * quite infrequently.
453 *
454 * The span_seq lock is declared along with zone->lock because it is
455 * frequently read in proximity to zone->lock. It's good to
456 * give them a chance of being in the same cacheline.
457 *
458 * Write access to present_pages at runtime should be protected by
459 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
460 * present_pages should get_online_mems() to get a stable value.
461 */
462 atomic_long_t managed_pages;
463 unsigned long spanned_pages;
464 unsigned long present_pages;
465
466 const char *name;
467
468 #ifdef CONFIG_MEMORY_ISOLATION
469 /*
470 * Number of isolated pageblock. It is used to solve incorrect
471 * freepage counting problem due to racy retrieving migratetype
472 * of pageblock. Protected by zone->lock.
473 */
474 unsigned long nr_isolate_pageblock;
475 #endif
476
477 #ifdef CONFIG_MEMORY_HOTPLUG
478 /* see spanned/present_pages for more description */
479 seqlock_t span_seqlock;
480 #endif
481
482 int initialized;
483
484 /* Write-intensive fields used from the page allocator */
485 ZONE_PADDING(_pad1_)
486
487 /* free areas of different sizes */
488 struct free_area free_area[MAX_ORDER];
489
490 /* zone flags, see below */
491 unsigned long flags;
492
493 /* Primarily protects free_area */
494 spinlock_t lock;
495
496 /* Write-intensive fields used by compaction and vmstats. */
497 ZONE_PADDING(_pad2_)
498
499 /*
500 * When free pages are below this point, additional steps are taken
501 * when reading the number of free pages to avoid per-cpu counter
502 * drift allowing watermarks to be breached
503 */
504 unsigned long percpu_drift_mark;
505
506 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
507 /* pfn where compaction free scanner should start */
508 unsigned long compact_cached_free_pfn;
509 /* pfn where async and sync compaction migration scanner should start */
510 unsigned long compact_cached_migrate_pfn[2];
511 unsigned long compact_init_migrate_pfn;
512 unsigned long compact_init_free_pfn;
513 #endif
514
515 #ifdef CONFIG_COMPACTION
516 /*
517 * On compaction failure, 1<<compact_defer_shift compactions
518 * are skipped before trying again. The number attempted since
519 * last failure is tracked with compact_considered.
520 */
521 unsigned int compact_considered;
522 unsigned int compact_defer_shift;
523 int compact_order_failed;
524 #endif
525
526 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
527 /* Set to true when the PG_migrate_skip bits should be cleared */
528 bool compact_blockskip_flush;
529 #endif
530
531 bool contiguous;
532
533 ZONE_PADDING(_pad3_)
534 /* Zone statistics */
535 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
536 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
537 } ____cacheline_internodealigned_in_smp;
538
539 enum pgdat_flags {
540 PGDAT_DIRTY, /* reclaim scanning has recently found
541 * many dirty file pages at the tail
542 * of the LRU.
543 */
544 PGDAT_WRITEBACK, /* reclaim scanning has recently found
545 * many pages under writeback
546 */
547 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
548 };
549
550 enum zone_flags {
551 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
552 * Cleared when kswapd is woken.
553 */
554 };
555
556 static inline unsigned long zone_managed_pages(struct zone *zone)
557 {
558 return (unsigned long)atomic_long_read(&zone->managed_pages);
559 }
560
561 static inline unsigned long zone_end_pfn(const struct zone *zone)
562 {
563 return zone->zone_start_pfn + zone->spanned_pages;
564 }
565
566 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
567 {
568 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
569 }
570
571 static inline bool zone_is_initialized(struct zone *zone)
572 {
573 return zone->initialized;
574 }
575
576 static inline bool zone_is_empty(struct zone *zone)
577 {
578 return zone->spanned_pages == 0;
579 }
580
581 /*
582 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
583 * intersection with the given zone
584 */
585 static inline bool zone_intersects(struct zone *zone,
586 unsigned long start_pfn, unsigned long nr_pages)
587 {
588 if (zone_is_empty(zone))
589 return false;
590 if (start_pfn >= zone_end_pfn(zone) ||
591 start_pfn + nr_pages <= zone->zone_start_pfn)
592 return false;
593
594 return true;
595 }
596
597 /*
598 * The "priority" of VM scanning is how much of the queues we will scan in one
599 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
600 * queues ("queue_length >> 12") during an aging round.
601 */
602 #define DEF_PRIORITY 12
603
604 /* Maximum number of zones on a zonelist */
605 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
606
607 enum {
608 ZONELIST_FALLBACK, /* zonelist with fallback */
609 #ifdef CONFIG_NUMA
610 /*
611 * The NUMA zonelists are doubled because we need zonelists that
612 * restrict the allocations to a single node for __GFP_THISNODE.
613 */
614 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
615 #endif
616 MAX_ZONELISTS
617 };
618
619 /*
620 * This struct contains information about a zone in a zonelist. It is stored
621 * here to avoid dereferences into large structures and lookups of tables
622 */
623 struct zoneref {
624 struct zone *zone; /* Pointer to actual zone */
625 int zone_idx; /* zone_idx(zoneref->zone) */
626 };
627
628 /*
629 * One allocation request operates on a zonelist. A zonelist
630 * is a list of zones, the first one is the 'goal' of the
631 * allocation, the other zones are fallback zones, in decreasing
632 * priority.
633 *
634 * To speed the reading of the zonelist, the zonerefs contain the zone index
635 * of the entry being read. Helper functions to access information given
636 * a struct zoneref are
637 *
638 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
639 * zonelist_zone_idx() - Return the index of the zone for an entry
640 * zonelist_node_idx() - Return the index of the node for an entry
641 */
642 struct zonelist {
643 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
644 };
645
646 #ifndef CONFIG_DISCONTIGMEM
647 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
648 extern struct page *mem_map;
649 #endif
650
651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
652 struct deferred_split {
653 spinlock_t split_queue_lock;
654 struct list_head split_queue;
655 unsigned long split_queue_len;
656 };
657 #endif
658
659 /*
660 * On NUMA machines, each NUMA node would have a pg_data_t to describe
661 * it's memory layout. On UMA machines there is a single pglist_data which
662 * describes the whole memory.
663 *
664 * Memory statistics and page replacement data structures are maintained on a
665 * per-zone basis.
666 */
667 typedef struct pglist_data {
668 struct zone node_zones[MAX_NR_ZONES];
669 struct zonelist node_zonelists[MAX_ZONELISTS];
670 int nr_zones;
671 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
672 struct page *node_mem_map;
673 #ifdef CONFIG_PAGE_EXTENSION
674 struct page_ext *node_page_ext;
675 #endif
676 #endif
677 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
678 /*
679 * Must be held any time you expect node_start_pfn,
680 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
681 *
682 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
683 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
684 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
685 *
686 * Nests above zone->lock and zone->span_seqlock
687 */
688 spinlock_t node_size_lock;
689 #endif
690 unsigned long node_start_pfn;
691 unsigned long node_present_pages; /* total number of physical pages */
692 unsigned long node_spanned_pages; /* total size of physical page
693 range, including holes */
694 int node_id;
695 wait_queue_head_t kswapd_wait;
696 wait_queue_head_t pfmemalloc_wait;
697 struct task_struct *kswapd; /* Protected by
698 mem_hotplug_begin/end() */
699 int kswapd_order;
700 enum zone_type kswapd_classzone_idx;
701
702 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
703
704 #ifdef CONFIG_COMPACTION
705 int kcompactd_max_order;
706 enum zone_type kcompactd_classzone_idx;
707 wait_queue_head_t kcompactd_wait;
708 struct task_struct *kcompactd;
709 #endif
710 /*
711 * This is a per-node reserve of pages that are not available
712 * to userspace allocations.
713 */
714 unsigned long totalreserve_pages;
715
716 #ifdef CONFIG_NUMA
717 /*
718 * node reclaim becomes active if more unmapped pages exist.
719 */
720 unsigned long min_unmapped_pages;
721 unsigned long min_slab_pages;
722 #endif /* CONFIG_NUMA */
723
724 /* Write-intensive fields used by page reclaim */
725 ZONE_PADDING(_pad1_)
726 spinlock_t lru_lock;
727
728 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
729 /*
730 * If memory initialisation on large machines is deferred then this
731 * is the first PFN that needs to be initialised.
732 */
733 unsigned long first_deferred_pfn;
734 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
735
736 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
737 struct deferred_split deferred_split_queue;
738 #endif
739
740 /* Fields commonly accessed by the page reclaim scanner */
741
742 /*
743 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
744 *
745 * Use mem_cgroup_lruvec() to look up lruvecs.
746 */
747 struct lruvec __lruvec;
748
749 unsigned long flags;
750
751 ZONE_PADDING(_pad2_)
752
753 /* Per-node vmstats */
754 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
755 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
756 } pg_data_t;
757
758 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
759 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
760 #ifdef CONFIG_FLAT_NODE_MEM_MAP
761 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
762 #else
763 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
764 #endif
765 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
766
767 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
768 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
769
770 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
771 {
772 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
773 }
774
775 static inline bool pgdat_is_empty(pg_data_t *pgdat)
776 {
777 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
778 }
779
780 #include <linux/memory_hotplug.h>
781
782 void build_all_zonelists(pg_data_t *pgdat);
783 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
784 enum zone_type classzone_idx);
785 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
786 int classzone_idx, unsigned int alloc_flags,
787 long free_pages);
788 bool zone_watermark_ok(struct zone *z, unsigned int order,
789 unsigned long mark, int classzone_idx,
790 unsigned int alloc_flags);
791 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
792 unsigned long mark, int classzone_idx);
793 enum memmap_context {
794 MEMMAP_EARLY,
795 MEMMAP_HOTPLUG,
796 };
797 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
798 unsigned long size);
799
800 extern void lruvec_init(struct lruvec *lruvec);
801
802 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
803 {
804 #ifdef CONFIG_MEMCG
805 return lruvec->pgdat;
806 #else
807 return container_of(lruvec, struct pglist_data, __lruvec);
808 #endif
809 }
810
811 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
812
813 #ifdef CONFIG_HAVE_MEMORY_PRESENT
814 void memory_present(int nid, unsigned long start, unsigned long end);
815 #else
816 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
817 #endif
818
819 #if defined(CONFIG_SPARSEMEM)
820 void memblocks_present(void);
821 #else
822 static inline void memblocks_present(void) {}
823 #endif
824
825 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
826 int local_memory_node(int node_id);
827 #else
828 static inline int local_memory_node(int node_id) { return node_id; };
829 #endif
830
831 /*
832 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
833 */
834 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
835
836 /*
837 * Returns true if a zone has pages managed by the buddy allocator.
838 * All the reclaim decisions have to use this function rather than
839 * populated_zone(). If the whole zone is reserved then we can easily
840 * end up with populated_zone() && !managed_zone().
841 */
842 static inline bool managed_zone(struct zone *zone)
843 {
844 return zone_managed_pages(zone);
845 }
846
847 /* Returns true if a zone has memory */
848 static inline bool populated_zone(struct zone *zone)
849 {
850 return zone->present_pages;
851 }
852
853 #ifdef CONFIG_NUMA
854 static inline int zone_to_nid(struct zone *zone)
855 {
856 return zone->node;
857 }
858
859 static inline void zone_set_nid(struct zone *zone, int nid)
860 {
861 zone->node = nid;
862 }
863 #else
864 static inline int zone_to_nid(struct zone *zone)
865 {
866 return 0;
867 }
868
869 static inline void zone_set_nid(struct zone *zone, int nid) {}
870 #endif
871
872 extern int movable_zone;
873
874 #ifdef CONFIG_HIGHMEM
875 static inline int zone_movable_is_highmem(void)
876 {
877 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
878 return movable_zone == ZONE_HIGHMEM;
879 #else
880 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
881 #endif
882 }
883 #endif
884
885 static inline int is_highmem_idx(enum zone_type idx)
886 {
887 #ifdef CONFIG_HIGHMEM
888 return (idx == ZONE_HIGHMEM ||
889 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
890 #else
891 return 0;
892 #endif
893 }
894
895 /**
896 * is_highmem - helper function to quickly check if a struct zone is a
897 * highmem zone or not. This is an attempt to keep references
898 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
899 * @zone - pointer to struct zone variable
900 */
901 static inline int is_highmem(struct zone *zone)
902 {
903 #ifdef CONFIG_HIGHMEM
904 return is_highmem_idx(zone_idx(zone));
905 #else
906 return 0;
907 #endif
908 }
909
910 /* These two functions are used to setup the per zone pages min values */
911 struct ctl_table;
912 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
913 void __user *, size_t *, loff_t *);
914 int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
915 void __user *, size_t *, loff_t *);
916 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
917 void __user *, size_t *, loff_t *);
918 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
919 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
920 void __user *, size_t *, loff_t *);
921 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
922 void __user *, size_t *, loff_t *);
923 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
924 void __user *, size_t *, loff_t *);
925 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
926 void __user *, size_t *, loff_t *);
927
928 extern int numa_zonelist_order_handler(struct ctl_table *, int,
929 void __user *, size_t *, loff_t *);
930 extern char numa_zonelist_order[];
931 #define NUMA_ZONELIST_ORDER_LEN 16
932
933 #ifndef CONFIG_NEED_MULTIPLE_NODES
934
935 extern struct pglist_data contig_page_data;
936 #define NODE_DATA(nid) (&contig_page_data)
937 #define NODE_MEM_MAP(nid) mem_map
938
939 #else /* CONFIG_NEED_MULTIPLE_NODES */
940
941 #include <asm/mmzone.h>
942
943 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
944
945 extern struct pglist_data *first_online_pgdat(void);
946 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
947 extern struct zone *next_zone(struct zone *zone);
948
949 /**
950 * for_each_online_pgdat - helper macro to iterate over all online nodes
951 * @pgdat - pointer to a pg_data_t variable
952 */
953 #define for_each_online_pgdat(pgdat) \
954 for (pgdat = first_online_pgdat(); \
955 pgdat; \
956 pgdat = next_online_pgdat(pgdat))
957 /**
958 * for_each_zone - helper macro to iterate over all memory zones
959 * @zone - pointer to struct zone variable
960 *
961 * The user only needs to declare the zone variable, for_each_zone
962 * fills it in.
963 */
964 #define for_each_zone(zone) \
965 for (zone = (first_online_pgdat())->node_zones; \
966 zone; \
967 zone = next_zone(zone))
968
969 #define for_each_populated_zone(zone) \
970 for (zone = (first_online_pgdat())->node_zones; \
971 zone; \
972 zone = next_zone(zone)) \
973 if (!populated_zone(zone)) \
974 ; /* do nothing */ \
975 else
976
977 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
978 {
979 return zoneref->zone;
980 }
981
982 static inline int zonelist_zone_idx(struct zoneref *zoneref)
983 {
984 return zoneref->zone_idx;
985 }
986
987 static inline int zonelist_node_idx(struct zoneref *zoneref)
988 {
989 return zone_to_nid(zoneref->zone);
990 }
991
992 struct zoneref *__next_zones_zonelist(struct zoneref *z,
993 enum zone_type highest_zoneidx,
994 nodemask_t *nodes);
995
996 /**
997 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
998 * @z - The cursor used as a starting point for the search
999 * @highest_zoneidx - The zone index of the highest zone to return
1000 * @nodes - An optional nodemask to filter the zonelist with
1001 *
1002 * This function returns the next zone at or below a given zone index that is
1003 * within the allowed nodemask using a cursor as the starting point for the
1004 * search. The zoneref returned is a cursor that represents the current zone
1005 * being examined. It should be advanced by one before calling
1006 * next_zones_zonelist again.
1007 */
1008 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1009 enum zone_type highest_zoneidx,
1010 nodemask_t *nodes)
1011 {
1012 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1013 return z;
1014 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1015 }
1016
1017 /**
1018 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1019 * @zonelist - The zonelist to search for a suitable zone
1020 * @highest_zoneidx - The zone index of the highest zone to return
1021 * @nodes - An optional nodemask to filter the zonelist with
1022 * @return - Zoneref pointer for the first suitable zone found (see below)
1023 *
1024 * This function returns the first zone at or below a given zone index that is
1025 * within the allowed nodemask. The zoneref returned is a cursor that can be
1026 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1027 * one before calling.
1028 *
1029 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1030 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1031 * update due to cpuset modification.
1032 */
1033 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1034 enum zone_type highest_zoneidx,
1035 nodemask_t *nodes)
1036 {
1037 return next_zones_zonelist(zonelist->_zonerefs,
1038 highest_zoneidx, nodes);
1039 }
1040
1041 /**
1042 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1043 * @zone - The current zone in the iterator
1044 * @z - The current pointer within zonelist->_zonerefs being iterated
1045 * @zlist - The zonelist being iterated
1046 * @highidx - The zone index of the highest zone to return
1047 * @nodemask - Nodemask allowed by the allocator
1048 *
1049 * This iterator iterates though all zones at or below a given zone index and
1050 * within a given nodemask
1051 */
1052 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1053 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1054 zone; \
1055 z = next_zones_zonelist(++z, highidx, nodemask), \
1056 zone = zonelist_zone(z))
1057
1058 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1059 for (zone = z->zone; \
1060 zone; \
1061 z = next_zones_zonelist(++z, highidx, nodemask), \
1062 zone = zonelist_zone(z))
1063
1064
1065 /**
1066 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1067 * @zone - The current zone in the iterator
1068 * @z - The current pointer within zonelist->zones being iterated
1069 * @zlist - The zonelist being iterated
1070 * @highidx - The zone index of the highest zone to return
1071 *
1072 * This iterator iterates though all zones at or below a given zone index.
1073 */
1074 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1075 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1076
1077 #ifdef CONFIG_SPARSEMEM
1078 #include <asm/sparsemem.h>
1079 #endif
1080
1081 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1082 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1083 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1084 {
1085 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1086 return 0;
1087 }
1088 #endif
1089
1090 #ifdef CONFIG_FLATMEM
1091 #define pfn_to_nid(pfn) (0)
1092 #endif
1093
1094 #ifdef CONFIG_SPARSEMEM
1095
1096 /*
1097 * SECTION_SHIFT #bits space required to store a section #
1098 *
1099 * PA_SECTION_SHIFT physical address to/from section number
1100 * PFN_SECTION_SHIFT pfn to/from section number
1101 */
1102 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1103 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1104
1105 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1106
1107 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1108 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1109
1110 #define SECTION_BLOCKFLAGS_BITS \
1111 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1112
1113 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1114 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1115 #endif
1116
1117 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1118 {
1119 return pfn >> PFN_SECTION_SHIFT;
1120 }
1121 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1122 {
1123 return sec << PFN_SECTION_SHIFT;
1124 }
1125
1126 #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1127 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1128
1129 #define SUBSECTION_SHIFT 21
1130
1131 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1132 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1133 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1134
1135 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1136 #error Subsection size exceeds section size
1137 #else
1138 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1139 #endif
1140
1141 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1142 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1143
1144 struct mem_section_usage {
1145 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1146 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1147 #endif
1148 /* See declaration of similar field in struct zone */
1149 unsigned long pageblock_flags[0];
1150 };
1151
1152 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1153
1154 struct page;
1155 struct page_ext;
1156 struct mem_section {
1157 /*
1158 * This is, logically, a pointer to an array of struct
1159 * pages. However, it is stored with some other magic.
1160 * (see sparse.c::sparse_init_one_section())
1161 *
1162 * Additionally during early boot we encode node id of
1163 * the location of the section here to guide allocation.
1164 * (see sparse.c::memory_present())
1165 *
1166 * Making it a UL at least makes someone do a cast
1167 * before using it wrong.
1168 */
1169 unsigned long section_mem_map;
1170
1171 struct mem_section_usage *usage;
1172 #ifdef CONFIG_PAGE_EXTENSION
1173 /*
1174 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1175 * section. (see page_ext.h about this.)
1176 */
1177 struct page_ext *page_ext;
1178 unsigned long pad;
1179 #endif
1180 /*
1181 * WARNING: mem_section must be a power-of-2 in size for the
1182 * calculation and use of SECTION_ROOT_MASK to make sense.
1183 */
1184 };
1185
1186 #ifdef CONFIG_SPARSEMEM_EXTREME
1187 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1188 #else
1189 #define SECTIONS_PER_ROOT 1
1190 #endif
1191
1192 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1193 #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1194 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1195
1196 #ifdef CONFIG_SPARSEMEM_EXTREME
1197 extern struct mem_section **mem_section;
1198 #else
1199 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1200 #endif
1201
1202 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1203 {
1204 return ms->usage->pageblock_flags;
1205 }
1206
1207 static inline struct mem_section *__nr_to_section(unsigned long nr)
1208 {
1209 #ifdef CONFIG_SPARSEMEM_EXTREME
1210 if (!mem_section)
1211 return NULL;
1212 #endif
1213 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1214 return NULL;
1215 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1216 }
1217 extern unsigned long __section_nr(struct mem_section *ms);
1218 extern size_t mem_section_usage_size(void);
1219
1220 /*
1221 * We use the lower bits of the mem_map pointer to store
1222 * a little bit of information. The pointer is calculated
1223 * as mem_map - section_nr_to_pfn(pnum). The result is
1224 * aligned to the minimum alignment of the two values:
1225 * 1. All mem_map arrays are page-aligned.
1226 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1227 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1228 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1229 * worst combination is powerpc with 256k pages,
1230 * which results in PFN_SECTION_SHIFT equal 6.
1231 * To sum it up, at least 6 bits are available.
1232 */
1233 #define SECTION_MARKED_PRESENT (1UL<<0)
1234 #define SECTION_HAS_MEM_MAP (1UL<<1)
1235 #define SECTION_IS_ONLINE (1UL<<2)
1236 #define SECTION_IS_EARLY (1UL<<3)
1237 #define SECTION_MAP_LAST_BIT (1UL<<4)
1238 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1239 #define SECTION_NID_SHIFT 3
1240
1241 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1242 {
1243 unsigned long map = section->section_mem_map;
1244 map &= SECTION_MAP_MASK;
1245 return (struct page *)map;
1246 }
1247
1248 static inline int present_section(struct mem_section *section)
1249 {
1250 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1251 }
1252
1253 static inline int present_section_nr(unsigned long nr)
1254 {
1255 return present_section(__nr_to_section(nr));
1256 }
1257
1258 static inline int valid_section(struct mem_section *section)
1259 {
1260 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1261 }
1262
1263 static inline int early_section(struct mem_section *section)
1264 {
1265 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1266 }
1267
1268 static inline int valid_section_nr(unsigned long nr)
1269 {
1270 return valid_section(__nr_to_section(nr));
1271 }
1272
1273 static inline int online_section(struct mem_section *section)
1274 {
1275 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1276 }
1277
1278 static inline int online_section_nr(unsigned long nr)
1279 {
1280 return online_section(__nr_to_section(nr));
1281 }
1282
1283 #ifdef CONFIG_MEMORY_HOTPLUG
1284 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1285 #ifdef CONFIG_MEMORY_HOTREMOVE
1286 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1287 #endif
1288 #endif
1289
1290 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1291 {
1292 return __nr_to_section(pfn_to_section_nr(pfn));
1293 }
1294
1295 extern unsigned long __highest_present_section_nr;
1296
1297 static inline int subsection_map_index(unsigned long pfn)
1298 {
1299 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1300 }
1301
1302 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1303 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1304 {
1305 int idx = subsection_map_index(pfn);
1306
1307 return test_bit(idx, ms->usage->subsection_map);
1308 }
1309 #else
1310 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1311 {
1312 return 1;
1313 }
1314 #endif
1315
1316 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1317 static inline int pfn_valid(unsigned long pfn)
1318 {
1319 struct mem_section *ms;
1320
1321 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1322 return 0;
1323 ms = __nr_to_section(pfn_to_section_nr(pfn));
1324 if (!valid_section(ms))
1325 return 0;
1326 /*
1327 * Traditionally early sections always returned pfn_valid() for
1328 * the entire section-sized span.
1329 */
1330 return early_section(ms) || pfn_section_valid(ms, pfn);
1331 }
1332 #endif
1333
1334 static inline int pfn_in_present_section(unsigned long pfn)
1335 {
1336 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1337 return 0;
1338 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1339 }
1340
1341 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1342 {
1343 while (++section_nr <= __highest_present_section_nr) {
1344 if (present_section_nr(section_nr))
1345 return section_nr;
1346 }
1347
1348 return -1;
1349 }
1350
1351 /*
1352 * These are _only_ used during initialisation, therefore they
1353 * can use __initdata ... They could have names to indicate
1354 * this restriction.
1355 */
1356 #ifdef CONFIG_NUMA
1357 #define pfn_to_nid(pfn) \
1358 ({ \
1359 unsigned long __pfn_to_nid_pfn = (pfn); \
1360 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1361 })
1362 #else
1363 #define pfn_to_nid(pfn) (0)
1364 #endif
1365
1366 #define early_pfn_valid(pfn) pfn_valid(pfn)
1367 void sparse_init(void);
1368 #else
1369 #define sparse_init() do {} while (0)
1370 #define sparse_index_init(_sec, _nid) do {} while (0)
1371 #define pfn_in_present_section pfn_valid
1372 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1373 #endif /* CONFIG_SPARSEMEM */
1374
1375 /*
1376 * During memory init memblocks map pfns to nids. The search is expensive and
1377 * this caches recent lookups. The implementation of __early_pfn_to_nid
1378 * may treat start/end as pfns or sections.
1379 */
1380 struct mminit_pfnnid_cache {
1381 unsigned long last_start;
1382 unsigned long last_end;
1383 int last_nid;
1384 };
1385
1386 #ifndef early_pfn_valid
1387 #define early_pfn_valid(pfn) (1)
1388 #endif
1389
1390 void memory_present(int nid, unsigned long start, unsigned long end);
1391
1392 /*
1393 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1394 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1395 * pfn_valid_within() should be used in this case; we optimise this away
1396 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1397 */
1398 #ifdef CONFIG_HOLES_IN_ZONE
1399 #define pfn_valid_within(pfn) pfn_valid(pfn)
1400 #else
1401 #define pfn_valid_within(pfn) (1)
1402 #endif
1403
1404 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1405 /*
1406 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1407 * associated with it or not. This means that a struct page exists for this
1408 * pfn. The caller cannot assume the page is fully initialized in general.
1409 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1410 * will ensure the struct page is fully online and initialized. Special pages
1411 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1412 *
1413 * In FLATMEM, it is expected that holes always have valid memmap as long as
1414 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1415 * that a valid section has a memmap for the entire section.
1416 *
1417 * However, an ARM, and maybe other embedded architectures in the future
1418 * free memmap backing holes to save memory on the assumption the memmap is
1419 * never used. The page_zone linkages are then broken even though pfn_valid()
1420 * returns true. A walker of the full memmap must then do this additional
1421 * check to ensure the memmap they are looking at is sane by making sure
1422 * the zone and PFN linkages are still valid. This is expensive, but walkers
1423 * of the full memmap are extremely rare.
1424 */
1425 bool memmap_valid_within(unsigned long pfn,
1426 struct page *page, struct zone *zone);
1427 #else
1428 static inline bool memmap_valid_within(unsigned long pfn,
1429 struct page *page, struct zone *zone)
1430 {
1431 return true;
1432 }
1433 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1434
1435 #endif /* !__GENERATING_BOUNDS.H */
1436 #endif /* !__ASSEMBLY__ */
1437 #endif /* _LINUX_MMZONE_H */