]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/netdevice.h
Merge tag 'linux-can-next-for-3.20-20150204' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-artful-kernel.git] / include / linux / netdevice.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <linux/prefetch.h>
34 #include <asm/cache.h>
35 #include <asm/byteorder.h>
36
37 #include <linux/percpu.h>
38 #include <linux/rculist.h>
39 #include <linux/dmaengine.h>
40 #include <linux/workqueue.h>
41 #include <linux/dynamic_queue_limits.h>
42
43 #include <linux/ethtool.h>
44 #include <net/net_namespace.h>
45 #include <net/dsa.h>
46 #ifdef CONFIG_DCB
47 #include <net/dcbnl.h>
48 #endif
49 #include <net/netprio_cgroup.h>
50
51 #include <linux/netdev_features.h>
52 #include <linux/neighbour.h>
53 #include <uapi/linux/netdevice.h>
54 #include <uapi/linux/if_bonding.h>
55
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 /* 802.11 specific */
60 struct wireless_dev;
61 /* 802.15.4 specific */
62 struct wpan_dev;
63
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 const struct ethtool_ops *ops);
66
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
69 #define NET_RX_DROP 1 /* packet dropped */
70
71 /*
72 * Transmit return codes: transmit return codes originate from three different
73 * namespaces:
74 *
75 * - qdisc return codes
76 * - driver transmit return codes
77 * - errno values
78 *
79 * Drivers are allowed to return any one of those in their hard_start_xmit()
80 * function. Real network devices commonly used with qdiscs should only return
81 * the driver transmit return codes though - when qdiscs are used, the actual
82 * transmission happens asynchronously, so the value is not propagated to
83 * higher layers. Virtual network devices transmit synchronously, in this case
84 * the driver transmit return codes are consumed by dev_queue_xmit(), all
85 * others are propagated to higher layers.
86 */
87
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS 0x00
90 #define NET_XMIT_DROP 0x01 /* skb dropped */
91 #define NET_XMIT_CN 0x02 /* congestion notification */
92 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
93 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
94
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96 * indicates that the device will soon be dropping packets, or already drops
97 * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK 0xf0
103
104 enum netdev_tx {
105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
106 NETDEV_TX_OK = 0x00, /* driver took care of packet */
107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
109 };
110 typedef enum netdev_tx netdev_tx_t;
111
112 /*
113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115 */
116 static inline bool dev_xmit_complete(int rc)
117 {
118 /*
119 * Positive cases with an skb consumed by a driver:
120 * - successful transmission (rc == NETDEV_TX_OK)
121 * - error while transmitting (rc < 0)
122 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 */
124 if (likely(rc < NET_XMIT_MASK))
125 return true;
126
127 return false;
128 }
129
130 /*
131 * Compute the worst case header length according to the protocols
132 * used.
133 */
134
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 # define LL_MAX_HEADER 128
138 # else
139 # define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
144
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
151
152 /*
153 * Old network device statistics. Fields are native words
154 * (unsigned long) so they can be read and written atomically.
155 */
156
157 struct net_device_stats {
158 unsigned long rx_packets;
159 unsigned long tx_packets;
160 unsigned long rx_bytes;
161 unsigned long tx_bytes;
162 unsigned long rx_errors;
163 unsigned long tx_errors;
164 unsigned long rx_dropped;
165 unsigned long tx_dropped;
166 unsigned long multicast;
167 unsigned long collisions;
168 unsigned long rx_length_errors;
169 unsigned long rx_over_errors;
170 unsigned long rx_crc_errors;
171 unsigned long rx_frame_errors;
172 unsigned long rx_fifo_errors;
173 unsigned long rx_missed_errors;
174 unsigned long tx_aborted_errors;
175 unsigned long tx_carrier_errors;
176 unsigned long tx_fifo_errors;
177 unsigned long tx_heartbeat_errors;
178 unsigned long tx_window_errors;
179 unsigned long rx_compressed;
180 unsigned long tx_compressed;
181 };
182
183
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
186
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
191
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
195
196 struct netdev_hw_addr {
197 struct list_head list;
198 unsigned char addr[MAX_ADDR_LEN];
199 unsigned char type;
200 #define NETDEV_HW_ADDR_T_LAN 1
201 #define NETDEV_HW_ADDR_T_SAN 2
202 #define NETDEV_HW_ADDR_T_SLAVE 3
203 #define NETDEV_HW_ADDR_T_UNICAST 4
204 #define NETDEV_HW_ADDR_T_MULTICAST 5
205 bool global_use;
206 int sync_cnt;
207 int refcount;
208 int synced;
209 struct rcu_head rcu_head;
210 };
211
212 struct netdev_hw_addr_list {
213 struct list_head list;
214 int count;
215 };
216
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 list_for_each_entry(ha, &(l)->list, list)
221
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
226
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
231
232 struct hh_cache {
233 u16 hh_len;
234 u16 __pad;
235 seqlock_t hh_lock;
236
237 /* cached hardware header; allow for machine alignment needs. */
238 #define HH_DATA_MOD 16
239 #define HH_DATA_OFF(__len) \
240 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
244 };
245
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247 * Alternative is:
248 * dev->hard_header_len ? (dev->hard_header_len +
249 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
250 *
251 * We could use other alignment values, but we must maintain the
252 * relationship HH alignment <= LL alignment.
253 */
254 #define LL_RESERVED_SPACE(dev) \
255 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258
259 struct header_ops {
260 int (*create) (struct sk_buff *skb, struct net_device *dev,
261 unsigned short type, const void *daddr,
262 const void *saddr, unsigned int len);
263 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 int (*rebuild)(struct sk_buff *skb);
265 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
266 void (*cache_update)(struct hh_cache *hh,
267 const struct net_device *dev,
268 const unsigned char *haddr);
269 };
270
271 /* These flag bits are private to the generic network queueing
272 * layer, they may not be explicitly referenced by any other
273 * code.
274 */
275
276 enum netdev_state_t {
277 __LINK_STATE_START,
278 __LINK_STATE_PRESENT,
279 __LINK_STATE_NOCARRIER,
280 __LINK_STATE_LINKWATCH_PENDING,
281 __LINK_STATE_DORMANT,
282 };
283
284
285 /*
286 * This structure holds at boot time configured netdevice settings. They
287 * are then used in the device probing.
288 */
289 struct netdev_boot_setup {
290 char name[IFNAMSIZ];
291 struct ifmap map;
292 };
293 #define NETDEV_BOOT_SETUP_MAX 8
294
295 int __init netdev_boot_setup(char *str);
296
297 /*
298 * Structure for NAPI scheduling similar to tasklet but with weighting
299 */
300 struct napi_struct {
301 /* The poll_list must only be managed by the entity which
302 * changes the state of the NAPI_STATE_SCHED bit. This means
303 * whoever atomically sets that bit can add this napi_struct
304 * to the per-cpu poll_list, and whoever clears that bit
305 * can remove from the list right before clearing the bit.
306 */
307 struct list_head poll_list;
308
309 unsigned long state;
310 int weight;
311 unsigned int gro_count;
312 int (*poll)(struct napi_struct *, int);
313 #ifdef CONFIG_NETPOLL
314 spinlock_t poll_lock;
315 int poll_owner;
316 #endif
317 struct net_device *dev;
318 struct sk_buff *gro_list;
319 struct sk_buff *skb;
320 struct hrtimer timer;
321 struct list_head dev_list;
322 struct hlist_node napi_hash_node;
323 unsigned int napi_id;
324 };
325
326 enum {
327 NAPI_STATE_SCHED, /* Poll is scheduled */
328 NAPI_STATE_DISABLE, /* Disable pending */
329 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
330 NAPI_STATE_HASHED, /* In NAPI hash */
331 };
332
333 enum gro_result {
334 GRO_MERGED,
335 GRO_MERGED_FREE,
336 GRO_HELD,
337 GRO_NORMAL,
338 GRO_DROP,
339 };
340 typedef enum gro_result gro_result_t;
341
342 /*
343 * enum rx_handler_result - Possible return values for rx_handlers.
344 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
345 * further.
346 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
347 * case skb->dev was changed by rx_handler.
348 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
349 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
350 *
351 * rx_handlers are functions called from inside __netif_receive_skb(), to do
352 * special processing of the skb, prior to delivery to protocol handlers.
353 *
354 * Currently, a net_device can only have a single rx_handler registered. Trying
355 * to register a second rx_handler will return -EBUSY.
356 *
357 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
358 * To unregister a rx_handler on a net_device, use
359 * netdev_rx_handler_unregister().
360 *
361 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
362 * do with the skb.
363 *
364 * If the rx_handler consumed to skb in some way, it should return
365 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
366 * the skb to be delivered in some other ways.
367 *
368 * If the rx_handler changed skb->dev, to divert the skb to another
369 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
370 * new device will be called if it exists.
371 *
372 * If the rx_handler consider the skb should be ignored, it should return
373 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
374 * are registered on exact device (ptype->dev == skb->dev).
375 *
376 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
377 * delivered, it should return RX_HANDLER_PASS.
378 *
379 * A device without a registered rx_handler will behave as if rx_handler
380 * returned RX_HANDLER_PASS.
381 */
382
383 enum rx_handler_result {
384 RX_HANDLER_CONSUMED,
385 RX_HANDLER_ANOTHER,
386 RX_HANDLER_EXACT,
387 RX_HANDLER_PASS,
388 };
389 typedef enum rx_handler_result rx_handler_result_t;
390 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
391
392 void __napi_schedule(struct napi_struct *n);
393 void __napi_schedule_irqoff(struct napi_struct *n);
394
395 static inline bool napi_disable_pending(struct napi_struct *n)
396 {
397 return test_bit(NAPI_STATE_DISABLE, &n->state);
398 }
399
400 /**
401 * napi_schedule_prep - check if napi can be scheduled
402 * @n: napi context
403 *
404 * Test if NAPI routine is already running, and if not mark
405 * it as running. This is used as a condition variable
406 * insure only one NAPI poll instance runs. We also make
407 * sure there is no pending NAPI disable.
408 */
409 static inline bool napi_schedule_prep(struct napi_struct *n)
410 {
411 return !napi_disable_pending(n) &&
412 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
413 }
414
415 /**
416 * napi_schedule - schedule NAPI poll
417 * @n: napi context
418 *
419 * Schedule NAPI poll routine to be called if it is not already
420 * running.
421 */
422 static inline void napi_schedule(struct napi_struct *n)
423 {
424 if (napi_schedule_prep(n))
425 __napi_schedule(n);
426 }
427
428 /**
429 * napi_schedule_irqoff - schedule NAPI poll
430 * @n: napi context
431 *
432 * Variant of napi_schedule(), assuming hard irqs are masked.
433 */
434 static inline void napi_schedule_irqoff(struct napi_struct *n)
435 {
436 if (napi_schedule_prep(n))
437 __napi_schedule_irqoff(n);
438 }
439
440 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
441 static inline bool napi_reschedule(struct napi_struct *napi)
442 {
443 if (napi_schedule_prep(napi)) {
444 __napi_schedule(napi);
445 return true;
446 }
447 return false;
448 }
449
450 void __napi_complete(struct napi_struct *n);
451 void napi_complete_done(struct napi_struct *n, int work_done);
452 /**
453 * napi_complete - NAPI processing complete
454 * @n: napi context
455 *
456 * Mark NAPI processing as complete.
457 * Consider using napi_complete_done() instead.
458 */
459 static inline void napi_complete(struct napi_struct *n)
460 {
461 return napi_complete_done(n, 0);
462 }
463
464 /**
465 * napi_by_id - lookup a NAPI by napi_id
466 * @napi_id: hashed napi_id
467 *
468 * lookup @napi_id in napi_hash table
469 * must be called under rcu_read_lock()
470 */
471 struct napi_struct *napi_by_id(unsigned int napi_id);
472
473 /**
474 * napi_hash_add - add a NAPI to global hashtable
475 * @napi: napi context
476 *
477 * generate a new napi_id and store a @napi under it in napi_hash
478 */
479 void napi_hash_add(struct napi_struct *napi);
480
481 /**
482 * napi_hash_del - remove a NAPI from global table
483 * @napi: napi context
484 *
485 * Warning: caller must observe rcu grace period
486 * before freeing memory containing @napi
487 */
488 void napi_hash_del(struct napi_struct *napi);
489
490 /**
491 * napi_disable - prevent NAPI from scheduling
492 * @n: napi context
493 *
494 * Stop NAPI from being scheduled on this context.
495 * Waits till any outstanding processing completes.
496 */
497 void napi_disable(struct napi_struct *n);
498
499 /**
500 * napi_enable - enable NAPI scheduling
501 * @n: napi context
502 *
503 * Resume NAPI from being scheduled on this context.
504 * Must be paired with napi_disable.
505 */
506 static inline void napi_enable(struct napi_struct *n)
507 {
508 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
509 smp_mb__before_atomic();
510 clear_bit(NAPI_STATE_SCHED, &n->state);
511 }
512
513 #ifdef CONFIG_SMP
514 /**
515 * napi_synchronize - wait until NAPI is not running
516 * @n: napi context
517 *
518 * Wait until NAPI is done being scheduled on this context.
519 * Waits till any outstanding processing completes but
520 * does not disable future activations.
521 */
522 static inline void napi_synchronize(const struct napi_struct *n)
523 {
524 while (test_bit(NAPI_STATE_SCHED, &n->state))
525 msleep(1);
526 }
527 #else
528 # define napi_synchronize(n) barrier()
529 #endif
530
531 enum netdev_queue_state_t {
532 __QUEUE_STATE_DRV_XOFF,
533 __QUEUE_STATE_STACK_XOFF,
534 __QUEUE_STATE_FROZEN,
535 };
536
537 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
538 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
539 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
540
541 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
542 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
543 QUEUE_STATE_FROZEN)
544 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
545 QUEUE_STATE_FROZEN)
546
547 /*
548 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
549 * netif_tx_* functions below are used to manipulate this flag. The
550 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
551 * queue independently. The netif_xmit_*stopped functions below are called
552 * to check if the queue has been stopped by the driver or stack (either
553 * of the XOFF bits are set in the state). Drivers should not need to call
554 * netif_xmit*stopped functions, they should only be using netif_tx_*.
555 */
556
557 struct netdev_queue {
558 /*
559 * read mostly part
560 */
561 struct net_device *dev;
562 struct Qdisc __rcu *qdisc;
563 struct Qdisc *qdisc_sleeping;
564 #ifdef CONFIG_SYSFS
565 struct kobject kobj;
566 #endif
567 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
568 int numa_node;
569 #endif
570 /*
571 * write mostly part
572 */
573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
574 int xmit_lock_owner;
575 /*
576 * please use this field instead of dev->trans_start
577 */
578 unsigned long trans_start;
579
580 /*
581 * Number of TX timeouts for this queue
582 * (/sys/class/net/DEV/Q/trans_timeout)
583 */
584 unsigned long trans_timeout;
585
586 unsigned long state;
587
588 #ifdef CONFIG_BQL
589 struct dql dql;
590 #endif
591 } ____cacheline_aligned_in_smp;
592
593 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
594 {
595 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
596 return q->numa_node;
597 #else
598 return NUMA_NO_NODE;
599 #endif
600 }
601
602 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
603 {
604 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
605 q->numa_node = node;
606 #endif
607 }
608
609 #ifdef CONFIG_RPS
610 /*
611 * This structure holds an RPS map which can be of variable length. The
612 * map is an array of CPUs.
613 */
614 struct rps_map {
615 unsigned int len;
616 struct rcu_head rcu;
617 u16 cpus[0];
618 };
619 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
620
621 /*
622 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
623 * tail pointer for that CPU's input queue at the time of last enqueue, and
624 * a hardware filter index.
625 */
626 struct rps_dev_flow {
627 u16 cpu;
628 u16 filter;
629 unsigned int last_qtail;
630 };
631 #define RPS_NO_FILTER 0xffff
632
633 /*
634 * The rps_dev_flow_table structure contains a table of flow mappings.
635 */
636 struct rps_dev_flow_table {
637 unsigned int mask;
638 struct rcu_head rcu;
639 struct rps_dev_flow flows[0];
640 };
641 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
642 ((_num) * sizeof(struct rps_dev_flow)))
643
644 /*
645 * The rps_sock_flow_table contains mappings of flows to the last CPU
646 * on which they were processed by the application (set in recvmsg).
647 */
648 struct rps_sock_flow_table {
649 unsigned int mask;
650 u16 ents[0];
651 };
652 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
653 ((_num) * sizeof(u16)))
654
655 #define RPS_NO_CPU 0xffff
656
657 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
658 u32 hash)
659 {
660 if (table && hash) {
661 unsigned int cpu, index = hash & table->mask;
662
663 /* We only give a hint, preemption can change cpu under us */
664 cpu = raw_smp_processor_id();
665
666 if (table->ents[index] != cpu)
667 table->ents[index] = cpu;
668 }
669 }
670
671 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
672 u32 hash)
673 {
674 if (table && hash)
675 table->ents[hash & table->mask] = RPS_NO_CPU;
676 }
677
678 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
679
680 #ifdef CONFIG_RFS_ACCEL
681 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
682 u16 filter_id);
683 #endif
684 #endif /* CONFIG_RPS */
685
686 /* This structure contains an instance of an RX queue. */
687 struct netdev_rx_queue {
688 #ifdef CONFIG_RPS
689 struct rps_map __rcu *rps_map;
690 struct rps_dev_flow_table __rcu *rps_flow_table;
691 #endif
692 struct kobject kobj;
693 struct net_device *dev;
694 } ____cacheline_aligned_in_smp;
695
696 /*
697 * RX queue sysfs structures and functions.
698 */
699 struct rx_queue_attribute {
700 struct attribute attr;
701 ssize_t (*show)(struct netdev_rx_queue *queue,
702 struct rx_queue_attribute *attr, char *buf);
703 ssize_t (*store)(struct netdev_rx_queue *queue,
704 struct rx_queue_attribute *attr, const char *buf, size_t len);
705 };
706
707 #ifdef CONFIG_XPS
708 /*
709 * This structure holds an XPS map which can be of variable length. The
710 * map is an array of queues.
711 */
712 struct xps_map {
713 unsigned int len;
714 unsigned int alloc_len;
715 struct rcu_head rcu;
716 u16 queues[0];
717 };
718 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
719 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
720 / sizeof(u16))
721
722 /*
723 * This structure holds all XPS maps for device. Maps are indexed by CPU.
724 */
725 struct xps_dev_maps {
726 struct rcu_head rcu;
727 struct xps_map __rcu *cpu_map[0];
728 };
729 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
730 (nr_cpu_ids * sizeof(struct xps_map *)))
731 #endif /* CONFIG_XPS */
732
733 #define TC_MAX_QUEUE 16
734 #define TC_BITMASK 15
735 /* HW offloaded queuing disciplines txq count and offset maps */
736 struct netdev_tc_txq {
737 u16 count;
738 u16 offset;
739 };
740
741 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
742 /*
743 * This structure is to hold information about the device
744 * configured to run FCoE protocol stack.
745 */
746 struct netdev_fcoe_hbainfo {
747 char manufacturer[64];
748 char serial_number[64];
749 char hardware_version[64];
750 char driver_version[64];
751 char optionrom_version[64];
752 char firmware_version[64];
753 char model[256];
754 char model_description[256];
755 };
756 #endif
757
758 #define MAX_PHYS_ITEM_ID_LEN 32
759
760 /* This structure holds a unique identifier to identify some
761 * physical item (port for example) used by a netdevice.
762 */
763 struct netdev_phys_item_id {
764 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
765 unsigned char id_len;
766 };
767
768 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
769 struct sk_buff *skb);
770
771 /*
772 * This structure defines the management hooks for network devices.
773 * The following hooks can be defined; unless noted otherwise, they are
774 * optional and can be filled with a null pointer.
775 *
776 * int (*ndo_init)(struct net_device *dev);
777 * This function is called once when network device is registered.
778 * The network device can use this to any late stage initializaton
779 * or semantic validattion. It can fail with an error code which will
780 * be propogated back to register_netdev
781 *
782 * void (*ndo_uninit)(struct net_device *dev);
783 * This function is called when device is unregistered or when registration
784 * fails. It is not called if init fails.
785 *
786 * int (*ndo_open)(struct net_device *dev);
787 * This function is called when network device transistions to the up
788 * state.
789 *
790 * int (*ndo_stop)(struct net_device *dev);
791 * This function is called when network device transistions to the down
792 * state.
793 *
794 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
795 * struct net_device *dev);
796 * Called when a packet needs to be transmitted.
797 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
798 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
799 * Required can not be NULL.
800 *
801 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
802 * void *accel_priv, select_queue_fallback_t fallback);
803 * Called to decide which queue to when device supports multiple
804 * transmit queues.
805 *
806 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
807 * This function is called to allow device receiver to make
808 * changes to configuration when multicast or promiscious is enabled.
809 *
810 * void (*ndo_set_rx_mode)(struct net_device *dev);
811 * This function is called device changes address list filtering.
812 * If driver handles unicast address filtering, it should set
813 * IFF_UNICAST_FLT to its priv_flags.
814 *
815 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
816 * This function is called when the Media Access Control address
817 * needs to be changed. If this interface is not defined, the
818 * mac address can not be changed.
819 *
820 * int (*ndo_validate_addr)(struct net_device *dev);
821 * Test if Media Access Control address is valid for the device.
822 *
823 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
824 * Called when a user request an ioctl which can't be handled by
825 * the generic interface code. If not defined ioctl's return
826 * not supported error code.
827 *
828 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
829 * Used to set network devices bus interface parameters. This interface
830 * is retained for legacy reason, new devices should use the bus
831 * interface (PCI) for low level management.
832 *
833 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
834 * Called when a user wants to change the Maximum Transfer Unit
835 * of a device. If not defined, any request to change MTU will
836 * will return an error.
837 *
838 * void (*ndo_tx_timeout)(struct net_device *dev);
839 * Callback uses when the transmitter has not made any progress
840 * for dev->watchdog ticks.
841 *
842 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
843 * struct rtnl_link_stats64 *storage);
844 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
845 * Called when a user wants to get the network device usage
846 * statistics. Drivers must do one of the following:
847 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
848 * rtnl_link_stats64 structure passed by the caller.
849 * 2. Define @ndo_get_stats to update a net_device_stats structure
850 * (which should normally be dev->stats) and return a pointer to
851 * it. The structure may be changed asynchronously only if each
852 * field is written atomically.
853 * 3. Update dev->stats asynchronously and atomically, and define
854 * neither operation.
855 *
856 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
857 * If device support VLAN filtering this function is called when a
858 * VLAN id is registered.
859 *
860 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
861 * If device support VLAN filtering this function is called when a
862 * VLAN id is unregistered.
863 *
864 * void (*ndo_poll_controller)(struct net_device *dev);
865 *
866 * SR-IOV management functions.
867 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
868 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
869 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
870 * int max_tx_rate);
871 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
872 * int (*ndo_get_vf_config)(struct net_device *dev,
873 * int vf, struct ifla_vf_info *ivf);
874 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
875 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
876 * struct nlattr *port[]);
877 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
878 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
879 * Called to setup 'tc' number of traffic classes in the net device. This
880 * is always called from the stack with the rtnl lock held and netif tx
881 * queues stopped. This allows the netdevice to perform queue management
882 * safely.
883 *
884 * Fiber Channel over Ethernet (FCoE) offload functions.
885 * int (*ndo_fcoe_enable)(struct net_device *dev);
886 * Called when the FCoE protocol stack wants to start using LLD for FCoE
887 * so the underlying device can perform whatever needed configuration or
888 * initialization to support acceleration of FCoE traffic.
889 *
890 * int (*ndo_fcoe_disable)(struct net_device *dev);
891 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
892 * so the underlying device can perform whatever needed clean-ups to
893 * stop supporting acceleration of FCoE traffic.
894 *
895 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
896 * struct scatterlist *sgl, unsigned int sgc);
897 * Called when the FCoE Initiator wants to initialize an I/O that
898 * is a possible candidate for Direct Data Placement (DDP). The LLD can
899 * perform necessary setup and returns 1 to indicate the device is set up
900 * successfully to perform DDP on this I/O, otherwise this returns 0.
901 *
902 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
903 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
904 * indicated by the FC exchange id 'xid', so the underlying device can
905 * clean up and reuse resources for later DDP requests.
906 *
907 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
908 * struct scatterlist *sgl, unsigned int sgc);
909 * Called when the FCoE Target wants to initialize an I/O that
910 * is a possible candidate for Direct Data Placement (DDP). The LLD can
911 * perform necessary setup and returns 1 to indicate the device is set up
912 * successfully to perform DDP on this I/O, otherwise this returns 0.
913 *
914 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
915 * struct netdev_fcoe_hbainfo *hbainfo);
916 * Called when the FCoE Protocol stack wants information on the underlying
917 * device. This information is utilized by the FCoE protocol stack to
918 * register attributes with Fiber Channel management service as per the
919 * FC-GS Fabric Device Management Information(FDMI) specification.
920 *
921 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
922 * Called when the underlying device wants to override default World Wide
923 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
924 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
925 * protocol stack to use.
926 *
927 * RFS acceleration.
928 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
929 * u16 rxq_index, u32 flow_id);
930 * Set hardware filter for RFS. rxq_index is the target queue index;
931 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
932 * Return the filter ID on success, or a negative error code.
933 *
934 * Slave management functions (for bridge, bonding, etc).
935 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
936 * Called to make another netdev an underling.
937 *
938 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
939 * Called to release previously enslaved netdev.
940 *
941 * Feature/offload setting functions.
942 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
943 * netdev_features_t features);
944 * Adjusts the requested feature flags according to device-specific
945 * constraints, and returns the resulting flags. Must not modify
946 * the device state.
947 *
948 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
949 * Called to update device configuration to new features. Passed
950 * feature set might be less than what was returned by ndo_fix_features()).
951 * Must return >0 or -errno if it changed dev->features itself.
952 *
953 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
954 * struct net_device *dev,
955 * const unsigned char *addr, u16 vid, u16 flags)
956 * Adds an FDB entry to dev for addr.
957 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
958 * struct net_device *dev,
959 * const unsigned char *addr, u16 vid)
960 * Deletes the FDB entry from dev coresponding to addr.
961 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
962 * struct net_device *dev, struct net_device *filter_dev,
963 * int idx)
964 * Used to add FDB entries to dump requests. Implementers should add
965 * entries to skb and update idx with the number of entries.
966 *
967 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh)
968 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
969 * struct net_device *dev, u32 filter_mask)
970 *
971 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
972 * Called to change device carrier. Soft-devices (like dummy, team, etc)
973 * which do not represent real hardware may define this to allow their
974 * userspace components to manage their virtual carrier state. Devices
975 * that determine carrier state from physical hardware properties (eg
976 * network cables) or protocol-dependent mechanisms (eg
977 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
978 *
979 * int (*ndo_get_phys_port_id)(struct net_device *dev,
980 * struct netdev_phys_item_id *ppid);
981 * Called to get ID of physical port of this device. If driver does
982 * not implement this, it is assumed that the hw is not able to have
983 * multiple net devices on single physical port.
984 *
985 * void (*ndo_add_vxlan_port)(struct net_device *dev,
986 * sa_family_t sa_family, __be16 port);
987 * Called by vxlan to notiy a driver about the UDP port and socket
988 * address family that vxlan is listnening to. It is called only when
989 * a new port starts listening. The operation is protected by the
990 * vxlan_net->sock_lock.
991 *
992 * void (*ndo_del_vxlan_port)(struct net_device *dev,
993 * sa_family_t sa_family, __be16 port);
994 * Called by vxlan to notify the driver about a UDP port and socket
995 * address family that vxlan is not listening to anymore. The operation
996 * is protected by the vxlan_net->sock_lock.
997 *
998 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
999 * struct net_device *dev)
1000 * Called by upper layer devices to accelerate switching or other
1001 * station functionality into hardware. 'pdev is the lowerdev
1002 * to use for the offload and 'dev' is the net device that will
1003 * back the offload. Returns a pointer to the private structure
1004 * the upper layer will maintain.
1005 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1006 * Called by upper layer device to delete the station created
1007 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1008 * the station and priv is the structure returned by the add
1009 * operation.
1010 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1011 * struct net_device *dev,
1012 * void *priv);
1013 * Callback to use for xmit over the accelerated station. This
1014 * is used in place of ndo_start_xmit on accelerated net
1015 * devices.
1016 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1017 * struct net_device *dev
1018 * netdev_features_t features);
1019 * Called by core transmit path to determine if device is capable of
1020 * performing offload operations on a given packet. This is to give
1021 * the device an opportunity to implement any restrictions that cannot
1022 * be otherwise expressed by feature flags. The check is called with
1023 * the set of features that the stack has calculated and it returns
1024 * those the driver believes to be appropriate.
1025 *
1026 * int (*ndo_switch_parent_id_get)(struct net_device *dev,
1027 * struct netdev_phys_item_id *psid);
1028 * Called to get an ID of the switch chip this port is part of.
1029 * If driver implements this, it indicates that it represents a port
1030 * of a switch chip.
1031 * int (*ndo_switch_port_stp_update)(struct net_device *dev, u8 state);
1032 * Called to notify switch device port of bridge port STP
1033 * state change.
1034 */
1035 struct net_device_ops {
1036 int (*ndo_init)(struct net_device *dev);
1037 void (*ndo_uninit)(struct net_device *dev);
1038 int (*ndo_open)(struct net_device *dev);
1039 int (*ndo_stop)(struct net_device *dev);
1040 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
1041 struct net_device *dev);
1042 u16 (*ndo_select_queue)(struct net_device *dev,
1043 struct sk_buff *skb,
1044 void *accel_priv,
1045 select_queue_fallback_t fallback);
1046 void (*ndo_change_rx_flags)(struct net_device *dev,
1047 int flags);
1048 void (*ndo_set_rx_mode)(struct net_device *dev);
1049 int (*ndo_set_mac_address)(struct net_device *dev,
1050 void *addr);
1051 int (*ndo_validate_addr)(struct net_device *dev);
1052 int (*ndo_do_ioctl)(struct net_device *dev,
1053 struct ifreq *ifr, int cmd);
1054 int (*ndo_set_config)(struct net_device *dev,
1055 struct ifmap *map);
1056 int (*ndo_change_mtu)(struct net_device *dev,
1057 int new_mtu);
1058 int (*ndo_neigh_setup)(struct net_device *dev,
1059 struct neigh_parms *);
1060 void (*ndo_tx_timeout) (struct net_device *dev);
1061
1062 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1063 struct rtnl_link_stats64 *storage);
1064 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1065
1066 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1067 __be16 proto, u16 vid);
1068 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1069 __be16 proto, u16 vid);
1070 #ifdef CONFIG_NET_POLL_CONTROLLER
1071 void (*ndo_poll_controller)(struct net_device *dev);
1072 int (*ndo_netpoll_setup)(struct net_device *dev,
1073 struct netpoll_info *info);
1074 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1075 #endif
1076 #ifdef CONFIG_NET_RX_BUSY_POLL
1077 int (*ndo_busy_poll)(struct napi_struct *dev);
1078 #endif
1079 int (*ndo_set_vf_mac)(struct net_device *dev,
1080 int queue, u8 *mac);
1081 int (*ndo_set_vf_vlan)(struct net_device *dev,
1082 int queue, u16 vlan, u8 qos);
1083 int (*ndo_set_vf_rate)(struct net_device *dev,
1084 int vf, int min_tx_rate,
1085 int max_tx_rate);
1086 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1087 int vf, bool setting);
1088 int (*ndo_get_vf_config)(struct net_device *dev,
1089 int vf,
1090 struct ifla_vf_info *ivf);
1091 int (*ndo_set_vf_link_state)(struct net_device *dev,
1092 int vf, int link_state);
1093 int (*ndo_set_vf_port)(struct net_device *dev,
1094 int vf,
1095 struct nlattr *port[]);
1096 int (*ndo_get_vf_port)(struct net_device *dev,
1097 int vf, struct sk_buff *skb);
1098 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1099 #if IS_ENABLED(CONFIG_FCOE)
1100 int (*ndo_fcoe_enable)(struct net_device *dev);
1101 int (*ndo_fcoe_disable)(struct net_device *dev);
1102 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1103 u16 xid,
1104 struct scatterlist *sgl,
1105 unsigned int sgc);
1106 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1107 u16 xid);
1108 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1109 u16 xid,
1110 struct scatterlist *sgl,
1111 unsigned int sgc);
1112 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1113 struct netdev_fcoe_hbainfo *hbainfo);
1114 #endif
1115
1116 #if IS_ENABLED(CONFIG_LIBFCOE)
1117 #define NETDEV_FCOE_WWNN 0
1118 #define NETDEV_FCOE_WWPN 1
1119 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1120 u64 *wwn, int type);
1121 #endif
1122
1123 #ifdef CONFIG_RFS_ACCEL
1124 int (*ndo_rx_flow_steer)(struct net_device *dev,
1125 const struct sk_buff *skb,
1126 u16 rxq_index,
1127 u32 flow_id);
1128 #endif
1129 int (*ndo_add_slave)(struct net_device *dev,
1130 struct net_device *slave_dev);
1131 int (*ndo_del_slave)(struct net_device *dev,
1132 struct net_device *slave_dev);
1133 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1134 netdev_features_t features);
1135 int (*ndo_set_features)(struct net_device *dev,
1136 netdev_features_t features);
1137 int (*ndo_neigh_construct)(struct neighbour *n);
1138 void (*ndo_neigh_destroy)(struct neighbour *n);
1139
1140 int (*ndo_fdb_add)(struct ndmsg *ndm,
1141 struct nlattr *tb[],
1142 struct net_device *dev,
1143 const unsigned char *addr,
1144 u16 vid,
1145 u16 flags);
1146 int (*ndo_fdb_del)(struct ndmsg *ndm,
1147 struct nlattr *tb[],
1148 struct net_device *dev,
1149 const unsigned char *addr,
1150 u16 vid);
1151 int (*ndo_fdb_dump)(struct sk_buff *skb,
1152 struct netlink_callback *cb,
1153 struct net_device *dev,
1154 struct net_device *filter_dev,
1155 int idx);
1156
1157 int (*ndo_bridge_setlink)(struct net_device *dev,
1158 struct nlmsghdr *nlh,
1159 u16 flags);
1160 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1161 u32 pid, u32 seq,
1162 struct net_device *dev,
1163 u32 filter_mask);
1164 int (*ndo_bridge_dellink)(struct net_device *dev,
1165 struct nlmsghdr *nlh,
1166 u16 flags);
1167 int (*ndo_change_carrier)(struct net_device *dev,
1168 bool new_carrier);
1169 int (*ndo_get_phys_port_id)(struct net_device *dev,
1170 struct netdev_phys_item_id *ppid);
1171 void (*ndo_add_vxlan_port)(struct net_device *dev,
1172 sa_family_t sa_family,
1173 __be16 port);
1174 void (*ndo_del_vxlan_port)(struct net_device *dev,
1175 sa_family_t sa_family,
1176 __be16 port);
1177
1178 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1179 struct net_device *dev);
1180 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1181 void *priv);
1182
1183 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1184 struct net_device *dev,
1185 void *priv);
1186 int (*ndo_get_lock_subclass)(struct net_device *dev);
1187 netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1188 struct net_device *dev,
1189 netdev_features_t features);
1190 #ifdef CONFIG_NET_SWITCHDEV
1191 int (*ndo_switch_parent_id_get)(struct net_device *dev,
1192 struct netdev_phys_item_id *psid);
1193 int (*ndo_switch_port_stp_update)(struct net_device *dev,
1194 u8 state);
1195 #endif
1196 };
1197
1198 /**
1199 * enum net_device_priv_flags - &struct net_device priv_flags
1200 *
1201 * These are the &struct net_device, they are only set internally
1202 * by drivers and used in the kernel. These flags are invisible to
1203 * userspace, this means that the order of these flags can change
1204 * during any kernel release.
1205 *
1206 * You should have a pretty good reason to be extending these flags.
1207 *
1208 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1209 * @IFF_EBRIDGE: Ethernet bridging device
1210 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1211 * @IFF_MASTER_8023AD: bonding master, 802.3ad
1212 * @IFF_MASTER_ALB: bonding master, balance-alb
1213 * @IFF_BONDING: bonding master or slave
1214 * @IFF_SLAVE_NEEDARP: need ARPs for validation
1215 * @IFF_ISATAP: ISATAP interface (RFC4214)
1216 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1217 * @IFF_WAN_HDLC: WAN HDLC device
1218 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1219 * release skb->dst
1220 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1221 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1222 * @IFF_MACVLAN_PORT: device used as macvlan port
1223 * @IFF_BRIDGE_PORT: device used as bridge port
1224 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1225 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1226 * @IFF_UNICAST_FLT: Supports unicast filtering
1227 * @IFF_TEAM_PORT: device used as team port
1228 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1229 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1230 * change when it's running
1231 * @IFF_MACVLAN: Macvlan device
1232 */
1233 enum netdev_priv_flags {
1234 IFF_802_1Q_VLAN = 1<<0,
1235 IFF_EBRIDGE = 1<<1,
1236 IFF_SLAVE_INACTIVE = 1<<2,
1237 IFF_MASTER_8023AD = 1<<3,
1238 IFF_MASTER_ALB = 1<<4,
1239 IFF_BONDING = 1<<5,
1240 IFF_SLAVE_NEEDARP = 1<<6,
1241 IFF_ISATAP = 1<<7,
1242 IFF_MASTER_ARPMON = 1<<8,
1243 IFF_WAN_HDLC = 1<<9,
1244 IFF_XMIT_DST_RELEASE = 1<<10,
1245 IFF_DONT_BRIDGE = 1<<11,
1246 IFF_DISABLE_NETPOLL = 1<<12,
1247 IFF_MACVLAN_PORT = 1<<13,
1248 IFF_BRIDGE_PORT = 1<<14,
1249 IFF_OVS_DATAPATH = 1<<15,
1250 IFF_TX_SKB_SHARING = 1<<16,
1251 IFF_UNICAST_FLT = 1<<17,
1252 IFF_TEAM_PORT = 1<<18,
1253 IFF_SUPP_NOFCS = 1<<19,
1254 IFF_LIVE_ADDR_CHANGE = 1<<20,
1255 IFF_MACVLAN = 1<<21,
1256 IFF_XMIT_DST_RELEASE_PERM = 1<<22,
1257 IFF_IPVLAN_MASTER = 1<<23,
1258 IFF_IPVLAN_SLAVE = 1<<24,
1259 };
1260
1261 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1262 #define IFF_EBRIDGE IFF_EBRIDGE
1263 #define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE
1264 #define IFF_MASTER_8023AD IFF_MASTER_8023AD
1265 #define IFF_MASTER_ALB IFF_MASTER_ALB
1266 #define IFF_BONDING IFF_BONDING
1267 #define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP
1268 #define IFF_ISATAP IFF_ISATAP
1269 #define IFF_MASTER_ARPMON IFF_MASTER_ARPMON
1270 #define IFF_WAN_HDLC IFF_WAN_HDLC
1271 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1272 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1273 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1274 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1275 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1276 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1277 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1278 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1279 #define IFF_TEAM_PORT IFF_TEAM_PORT
1280 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1281 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1282 #define IFF_MACVLAN IFF_MACVLAN
1283 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1284 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1285 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1286
1287 /**
1288 * struct net_device - The DEVICE structure.
1289 * Actually, this whole structure is a big mistake. It mixes I/O
1290 * data with strictly "high-level" data, and it has to know about
1291 * almost every data structure used in the INET module.
1292 *
1293 * @name: This is the first field of the "visible" part of this structure
1294 * (i.e. as seen by users in the "Space.c" file). It is the name
1295 * of the interface.
1296 *
1297 * @name_hlist: Device name hash chain, please keep it close to name[]
1298 * @ifalias: SNMP alias
1299 * @mem_end: Shared memory end
1300 * @mem_start: Shared memory start
1301 * @base_addr: Device I/O address
1302 * @irq: Device IRQ number
1303 *
1304 * @state: Generic network queuing layer state, see netdev_state_t
1305 * @dev_list: The global list of network devices
1306 * @napi_list: List entry, that is used for polling napi devices
1307 * @unreg_list: List entry, that is used, when we are unregistering the
1308 * device, see the function unregister_netdev
1309 * @close_list: List entry, that is used, when we are closing the device
1310 *
1311 * @adj_list: Directly linked devices, like slaves for bonding
1312 * @all_adj_list: All linked devices, *including* neighbours
1313 * @features: Currently active device features
1314 * @hw_features: User-changeable features
1315 *
1316 * @wanted_features: User-requested features
1317 * @vlan_features: Mask of features inheritable by VLAN devices
1318 *
1319 * @hw_enc_features: Mask of features inherited by encapsulating devices
1320 * This field indicates what encapsulation
1321 * offloads the hardware is capable of doing,
1322 * and drivers will need to set them appropriately.
1323 *
1324 * @mpls_features: Mask of features inheritable by MPLS
1325 *
1326 * @ifindex: interface index
1327 * @iflink: unique device identifier
1328 *
1329 * @stats: Statistics struct, which was left as a legacy, use
1330 * rtnl_link_stats64 instead
1331 *
1332 * @rx_dropped: Dropped packets by core network,
1333 * do not use this in drivers
1334 * @tx_dropped: Dropped packets by core network,
1335 * do not use this in drivers
1336 *
1337 * @carrier_changes: Stats to monitor carrier on<->off transitions
1338 *
1339 * @wireless_handlers: List of functions to handle Wireless Extensions,
1340 * instead of ioctl,
1341 * see <net/iw_handler.h> for details.
1342 * @wireless_data: Instance data managed by the core of wireless extensions
1343 *
1344 * @netdev_ops: Includes several pointers to callbacks,
1345 * if one wants to override the ndo_*() functions
1346 * @ethtool_ops: Management operations
1347 * @fwd_ops: Management operations
1348 * @header_ops: Includes callbacks for creating,parsing,rebuilding,etc
1349 * of Layer 2 headers.
1350 *
1351 * @flags: Interface flags (a la BSD)
1352 * @priv_flags: Like 'flags' but invisible to userspace,
1353 * see if.h for the definitions
1354 * @gflags: Global flags ( kept as legacy )
1355 * @padded: How much padding added by alloc_netdev()
1356 * @operstate: RFC2863 operstate
1357 * @link_mode: Mapping policy to operstate
1358 * @if_port: Selectable AUI, TP, ...
1359 * @dma: DMA channel
1360 * @mtu: Interface MTU value
1361 * @type: Interface hardware type
1362 * @hard_header_len: Hardware header length
1363 *
1364 * @needed_headroom: Extra headroom the hardware may need, but not in all
1365 * cases can this be guaranteed
1366 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1367 * cases can this be guaranteed. Some cases also use
1368 * LL_MAX_HEADER instead to allocate the skb
1369 *
1370 * interface address info:
1371 *
1372 * @perm_addr: Permanent hw address
1373 * @addr_assign_type: Hw address assignment type
1374 * @addr_len: Hardware address length
1375 * @neigh_priv_len; Used in neigh_alloc(),
1376 * initialized only in atm/clip.c
1377 * @dev_id: Used to differentiate devices that share
1378 * the same link layer address
1379 * @dev_port: Used to differentiate devices that share
1380 * the same function
1381 * @addr_list_lock: XXX: need comments on this one
1382 * @uc: unicast mac addresses
1383 * @mc: multicast mac addresses
1384 * @dev_addrs: list of device hw addresses
1385 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1386 * @uc_promisc: Counter, that indicates, that promiscuous mode
1387 * has been enabled due to the need to listen to
1388 * additional unicast addresses in a device that
1389 * does not implement ndo_set_rx_mode()
1390 * @promiscuity: Number of times, the NIC is told to work in
1391 * Promiscuous mode, if it becomes 0 the NIC will
1392 * exit from working in Promiscuous mode
1393 * @allmulti: Counter, enables or disables allmulticast mode
1394 *
1395 * @vlan_info: VLAN info
1396 * @dsa_ptr: dsa specific data
1397 * @tipc_ptr: TIPC specific data
1398 * @atalk_ptr: AppleTalk link
1399 * @ip_ptr: IPv4 specific data
1400 * @dn_ptr: DECnet specific data
1401 * @ip6_ptr: IPv6 specific data
1402 * @ax25_ptr: AX.25 specific data
1403 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1404 *
1405 * @last_rx: Time of last Rx
1406 * @dev_addr: Hw address (before bcast,
1407 * because most packets are unicast)
1408 *
1409 * @_rx: Array of RX queues
1410 * @num_rx_queues: Number of RX queues
1411 * allocated at register_netdev() time
1412 * @real_num_rx_queues: Number of RX queues currently active in device
1413 *
1414 * @rx_handler: handler for received packets
1415 * @rx_handler_data: XXX: need comments on this one
1416 * @ingress_queue: XXX: need comments on this one
1417 * @broadcast: hw bcast address
1418 *
1419 * @_tx: Array of TX queues
1420 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1421 * @real_num_tx_queues: Number of TX queues currently active in device
1422 * @qdisc: Root qdisc from userspace point of view
1423 * @tx_queue_len: Max frames per queue allowed
1424 * @tx_global_lock: XXX: need comments on this one
1425 *
1426 * @xps_maps: XXX: need comments on this one
1427 *
1428 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1429 * indexed by RX queue number. Assigned by driver.
1430 * This must only be set if the ndo_rx_flow_steer
1431 * operation is defined
1432 *
1433 * @trans_start: Time (in jiffies) of last Tx
1434 * @watchdog_timeo: Represents the timeout that is used by
1435 * the watchdog ( see dev_watchdog() )
1436 * @watchdog_timer: List of timers
1437 *
1438 * @pcpu_refcnt: Number of references to this device
1439 * @todo_list: Delayed register/unregister
1440 * @index_hlist: Device index hash chain
1441 * @link_watch_list: XXX: need comments on this one
1442 *
1443 * @reg_state: Register/unregister state machine
1444 * @dismantle: Device is going to be freed
1445 * @rtnl_link_state: This enum represents the phases of creating
1446 * a new link
1447 *
1448 * @destructor: Called from unregister,
1449 * can be used to call free_netdev
1450 * @npinfo: XXX: need comments on this one
1451 * @nd_net: Network namespace this network device is inside
1452 *
1453 * @ml_priv: Mid-layer private
1454 * @lstats: Loopback statistics
1455 * @tstats: Tunnel statistics
1456 * @dstats: Dummy statistics
1457 * @vstats: Virtual ethernet statistics
1458 *
1459 * @garp_port: GARP
1460 * @mrp_port: MRP
1461 *
1462 * @dev: Class/net/name entry
1463 * @sysfs_groups: Space for optional device, statistics and wireless
1464 * sysfs groups
1465 *
1466 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1467 * @rtnl_link_ops: Rtnl_link_ops
1468 *
1469 * @gso_max_size: Maximum size of generic segmentation offload
1470 * @gso_max_segs: Maximum number of segments that can be passed to the
1471 * NIC for GSO
1472 * @gso_min_segs: Minimum number of segments that can be passed to the
1473 * NIC for GSO
1474 *
1475 * @dcbnl_ops: Data Center Bridging netlink ops
1476 * @num_tc: Number of traffic classes in the net device
1477 * @tc_to_txq: XXX: need comments on this one
1478 * @prio_tc_map XXX: need comments on this one
1479 *
1480 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1481 *
1482 * @priomap: XXX: need comments on this one
1483 * @phydev: Physical device may attach itself
1484 * for hardware timestamping
1485 *
1486 * @qdisc_tx_busylock: XXX: need comments on this one
1487 *
1488 * @group: The group, that the device belongs to
1489 * @pm_qos_req: Power Management QoS object
1490 *
1491 * FIXME: cleanup struct net_device such that network protocol info
1492 * moves out.
1493 */
1494
1495 struct net_device {
1496 char name[IFNAMSIZ];
1497 struct hlist_node name_hlist;
1498 char *ifalias;
1499 /*
1500 * I/O specific fields
1501 * FIXME: Merge these and struct ifmap into one
1502 */
1503 unsigned long mem_end;
1504 unsigned long mem_start;
1505 unsigned long base_addr;
1506 int irq;
1507
1508 /*
1509 * Some hardware also needs these fields (state,dev_list,
1510 * napi_list,unreg_list,close_list) but they are not
1511 * part of the usual set specified in Space.c.
1512 */
1513
1514 unsigned long state;
1515
1516 struct list_head dev_list;
1517 struct list_head napi_list;
1518 struct list_head unreg_list;
1519 struct list_head close_list;
1520 struct list_head ptype_all;
1521 struct list_head ptype_specific;
1522
1523 struct {
1524 struct list_head upper;
1525 struct list_head lower;
1526 } adj_list;
1527
1528 struct {
1529 struct list_head upper;
1530 struct list_head lower;
1531 } all_adj_list;
1532
1533 netdev_features_t features;
1534 netdev_features_t hw_features;
1535 netdev_features_t wanted_features;
1536 netdev_features_t vlan_features;
1537 netdev_features_t hw_enc_features;
1538 netdev_features_t mpls_features;
1539
1540 int ifindex;
1541 int iflink;
1542
1543 struct net_device_stats stats;
1544
1545 atomic_long_t rx_dropped;
1546 atomic_long_t tx_dropped;
1547
1548 atomic_t carrier_changes;
1549
1550 #ifdef CONFIG_WIRELESS_EXT
1551 const struct iw_handler_def * wireless_handlers;
1552 struct iw_public_data * wireless_data;
1553 #endif
1554 const struct net_device_ops *netdev_ops;
1555 const struct ethtool_ops *ethtool_ops;
1556 const struct forwarding_accel_ops *fwd_ops;
1557
1558 const struct header_ops *header_ops;
1559
1560 unsigned int flags;
1561 unsigned int priv_flags;
1562
1563 unsigned short gflags;
1564 unsigned short padded;
1565
1566 unsigned char operstate;
1567 unsigned char link_mode;
1568
1569 unsigned char if_port;
1570 unsigned char dma;
1571
1572 unsigned int mtu;
1573 unsigned short type;
1574 unsigned short hard_header_len;
1575
1576 unsigned short needed_headroom;
1577 unsigned short needed_tailroom;
1578
1579 /* Interface address info. */
1580 unsigned char perm_addr[MAX_ADDR_LEN];
1581 unsigned char addr_assign_type;
1582 unsigned char addr_len;
1583 unsigned short neigh_priv_len;
1584 unsigned short dev_id;
1585 unsigned short dev_port;
1586 spinlock_t addr_list_lock;
1587 struct netdev_hw_addr_list uc;
1588 struct netdev_hw_addr_list mc;
1589 struct netdev_hw_addr_list dev_addrs;
1590
1591 #ifdef CONFIG_SYSFS
1592 struct kset *queues_kset;
1593 #endif
1594
1595 unsigned char name_assign_type;
1596
1597 bool uc_promisc;
1598 unsigned int promiscuity;
1599 unsigned int allmulti;
1600
1601
1602 /* Protocol specific pointers */
1603
1604 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1605 struct vlan_info __rcu *vlan_info;
1606 #endif
1607 #if IS_ENABLED(CONFIG_NET_DSA)
1608 struct dsa_switch_tree *dsa_ptr;
1609 #endif
1610 #if IS_ENABLED(CONFIG_TIPC)
1611 struct tipc_bearer __rcu *tipc_ptr;
1612 #endif
1613 void *atalk_ptr;
1614 struct in_device __rcu *ip_ptr;
1615 struct dn_dev __rcu *dn_ptr;
1616 struct inet6_dev __rcu *ip6_ptr;
1617 void *ax25_ptr;
1618 struct wireless_dev *ieee80211_ptr;
1619 struct wpan_dev *ieee802154_ptr;
1620
1621 /*
1622 * Cache lines mostly used on receive path (including eth_type_trans())
1623 */
1624 unsigned long last_rx;
1625
1626 /* Interface address info used in eth_type_trans() */
1627 unsigned char *dev_addr;
1628
1629
1630 #ifdef CONFIG_SYSFS
1631 struct netdev_rx_queue *_rx;
1632
1633 unsigned int num_rx_queues;
1634 unsigned int real_num_rx_queues;
1635
1636 #endif
1637
1638 unsigned long gro_flush_timeout;
1639 rx_handler_func_t __rcu *rx_handler;
1640 void __rcu *rx_handler_data;
1641
1642 struct netdev_queue __rcu *ingress_queue;
1643 unsigned char broadcast[MAX_ADDR_LEN];
1644
1645
1646 /*
1647 * Cache lines mostly used on transmit path
1648 */
1649 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1650 unsigned int num_tx_queues;
1651 unsigned int real_num_tx_queues;
1652 struct Qdisc *qdisc;
1653 unsigned long tx_queue_len;
1654 spinlock_t tx_global_lock;
1655
1656 #ifdef CONFIG_XPS
1657 struct xps_dev_maps __rcu *xps_maps;
1658 #endif
1659 #ifdef CONFIG_RFS_ACCEL
1660 struct cpu_rmap *rx_cpu_rmap;
1661 #endif
1662
1663 /* These may be needed for future network-power-down code. */
1664
1665 /*
1666 * trans_start here is expensive for high speed devices on SMP,
1667 * please use netdev_queue->trans_start instead.
1668 */
1669 unsigned long trans_start;
1670
1671 int watchdog_timeo;
1672 struct timer_list watchdog_timer;
1673
1674 int __percpu *pcpu_refcnt;
1675 struct list_head todo_list;
1676
1677 struct hlist_node index_hlist;
1678 struct list_head link_watch_list;
1679
1680 enum { NETREG_UNINITIALIZED=0,
1681 NETREG_REGISTERED, /* completed register_netdevice */
1682 NETREG_UNREGISTERING, /* called unregister_netdevice */
1683 NETREG_UNREGISTERED, /* completed unregister todo */
1684 NETREG_RELEASED, /* called free_netdev */
1685 NETREG_DUMMY, /* dummy device for NAPI poll */
1686 } reg_state:8;
1687
1688 bool dismantle;
1689
1690 enum {
1691 RTNL_LINK_INITIALIZED,
1692 RTNL_LINK_INITIALIZING,
1693 } rtnl_link_state:16;
1694
1695 void (*destructor)(struct net_device *dev);
1696
1697 #ifdef CONFIG_NETPOLL
1698 struct netpoll_info __rcu *npinfo;
1699 #endif
1700
1701 #ifdef CONFIG_NET_NS
1702 struct net *nd_net;
1703 #endif
1704
1705 /* mid-layer private */
1706 union {
1707 void *ml_priv;
1708 struct pcpu_lstats __percpu *lstats;
1709 struct pcpu_sw_netstats __percpu *tstats;
1710 struct pcpu_dstats __percpu *dstats;
1711 struct pcpu_vstats __percpu *vstats;
1712 };
1713
1714 struct garp_port __rcu *garp_port;
1715 struct mrp_port __rcu *mrp_port;
1716
1717 struct device dev;
1718 const struct attribute_group *sysfs_groups[4];
1719 const struct attribute_group *sysfs_rx_queue_group;
1720
1721 const struct rtnl_link_ops *rtnl_link_ops;
1722
1723 /* for setting kernel sock attribute on TCP connection setup */
1724 #define GSO_MAX_SIZE 65536
1725 unsigned int gso_max_size;
1726 #define GSO_MAX_SEGS 65535
1727 u16 gso_max_segs;
1728 u16 gso_min_segs;
1729 #ifdef CONFIG_DCB
1730 const struct dcbnl_rtnl_ops *dcbnl_ops;
1731 #endif
1732 u8 num_tc;
1733 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1734 u8 prio_tc_map[TC_BITMASK + 1];
1735
1736 #if IS_ENABLED(CONFIG_FCOE)
1737 unsigned int fcoe_ddp_xid;
1738 #endif
1739 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1740 struct netprio_map __rcu *priomap;
1741 #endif
1742 struct phy_device *phydev;
1743 struct lock_class_key *qdisc_tx_busylock;
1744 int group;
1745 struct pm_qos_request pm_qos_req;
1746 };
1747 #define to_net_dev(d) container_of(d, struct net_device, dev)
1748
1749 #define NETDEV_ALIGN 32
1750
1751 static inline
1752 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1753 {
1754 return dev->prio_tc_map[prio & TC_BITMASK];
1755 }
1756
1757 static inline
1758 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1759 {
1760 if (tc >= dev->num_tc)
1761 return -EINVAL;
1762
1763 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1764 return 0;
1765 }
1766
1767 static inline
1768 void netdev_reset_tc(struct net_device *dev)
1769 {
1770 dev->num_tc = 0;
1771 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1772 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1773 }
1774
1775 static inline
1776 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1777 {
1778 if (tc >= dev->num_tc)
1779 return -EINVAL;
1780
1781 dev->tc_to_txq[tc].count = count;
1782 dev->tc_to_txq[tc].offset = offset;
1783 return 0;
1784 }
1785
1786 static inline
1787 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1788 {
1789 if (num_tc > TC_MAX_QUEUE)
1790 return -EINVAL;
1791
1792 dev->num_tc = num_tc;
1793 return 0;
1794 }
1795
1796 static inline
1797 int netdev_get_num_tc(struct net_device *dev)
1798 {
1799 return dev->num_tc;
1800 }
1801
1802 static inline
1803 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1804 unsigned int index)
1805 {
1806 return &dev->_tx[index];
1807 }
1808
1809 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1810 const struct sk_buff *skb)
1811 {
1812 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1813 }
1814
1815 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1816 void (*f)(struct net_device *,
1817 struct netdev_queue *,
1818 void *),
1819 void *arg)
1820 {
1821 unsigned int i;
1822
1823 for (i = 0; i < dev->num_tx_queues; i++)
1824 f(dev, &dev->_tx[i], arg);
1825 }
1826
1827 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1828 struct sk_buff *skb,
1829 void *accel_priv);
1830
1831 /*
1832 * Net namespace inlines
1833 */
1834 static inline
1835 struct net *dev_net(const struct net_device *dev)
1836 {
1837 return read_pnet(&dev->nd_net);
1838 }
1839
1840 static inline
1841 void dev_net_set(struct net_device *dev, struct net *net)
1842 {
1843 #ifdef CONFIG_NET_NS
1844 release_net(dev->nd_net);
1845 dev->nd_net = hold_net(net);
1846 #endif
1847 }
1848
1849 static inline bool netdev_uses_dsa(struct net_device *dev)
1850 {
1851 #if IS_ENABLED(CONFIG_NET_DSA)
1852 if (dev->dsa_ptr != NULL)
1853 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1854 #endif
1855 return false;
1856 }
1857
1858 /**
1859 * netdev_priv - access network device private data
1860 * @dev: network device
1861 *
1862 * Get network device private data
1863 */
1864 static inline void *netdev_priv(const struct net_device *dev)
1865 {
1866 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1867 }
1868
1869 /* Set the sysfs physical device reference for the network logical device
1870 * if set prior to registration will cause a symlink during initialization.
1871 */
1872 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1873
1874 /* Set the sysfs device type for the network logical device to allow
1875 * fine-grained identification of different network device types. For
1876 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1877 */
1878 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1879
1880 /* Default NAPI poll() weight
1881 * Device drivers are strongly advised to not use bigger value
1882 */
1883 #define NAPI_POLL_WEIGHT 64
1884
1885 /**
1886 * netif_napi_add - initialize a napi context
1887 * @dev: network device
1888 * @napi: napi context
1889 * @poll: polling function
1890 * @weight: default weight
1891 *
1892 * netif_napi_add() must be used to initialize a napi context prior to calling
1893 * *any* of the other napi related functions.
1894 */
1895 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1896 int (*poll)(struct napi_struct *, int), int weight);
1897
1898 /**
1899 * netif_napi_del - remove a napi context
1900 * @napi: napi context
1901 *
1902 * netif_napi_del() removes a napi context from the network device napi list
1903 */
1904 void netif_napi_del(struct napi_struct *napi);
1905
1906 struct napi_gro_cb {
1907 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1908 void *frag0;
1909
1910 /* Length of frag0. */
1911 unsigned int frag0_len;
1912
1913 /* This indicates where we are processing relative to skb->data. */
1914 int data_offset;
1915
1916 /* This is non-zero if the packet cannot be merged with the new skb. */
1917 u16 flush;
1918
1919 /* Save the IP ID here and check when we get to the transport layer */
1920 u16 flush_id;
1921
1922 /* Number of segments aggregated. */
1923 u16 count;
1924
1925 /* This is non-zero if the packet may be of the same flow. */
1926 u8 same_flow;
1927
1928 /* Free the skb? */
1929 u8 free;
1930 #define NAPI_GRO_FREE 1
1931 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1932
1933 /* jiffies when first packet was created/queued */
1934 unsigned long age;
1935
1936 /* Used in ipv6_gro_receive() and foo-over-udp */
1937 u16 proto;
1938
1939 /* Used in udp_gro_receive */
1940 u8 udp_mark:1;
1941
1942 /* GRO checksum is valid */
1943 u8 csum_valid:1;
1944
1945 /* Number of checksums via CHECKSUM_UNNECESSARY */
1946 u8 csum_cnt:3;
1947
1948 /* Used in foo-over-udp, set in udp[46]_gro_receive */
1949 u8 is_ipv6:1;
1950
1951 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
1952 __wsum csum;
1953
1954 /* used in skb_gro_receive() slow path */
1955 struct sk_buff *last;
1956 };
1957
1958 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1959
1960 struct packet_type {
1961 __be16 type; /* This is really htons(ether_type). */
1962 struct net_device *dev; /* NULL is wildcarded here */
1963 int (*func) (struct sk_buff *,
1964 struct net_device *,
1965 struct packet_type *,
1966 struct net_device *);
1967 bool (*id_match)(struct packet_type *ptype,
1968 struct sock *sk);
1969 void *af_packet_priv;
1970 struct list_head list;
1971 };
1972
1973 struct offload_callbacks {
1974 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1975 netdev_features_t features);
1976 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1977 struct sk_buff *skb);
1978 int (*gro_complete)(struct sk_buff *skb, int nhoff);
1979 };
1980
1981 struct packet_offload {
1982 __be16 type; /* This is really htons(ether_type). */
1983 struct offload_callbacks callbacks;
1984 struct list_head list;
1985 };
1986
1987 struct udp_offload;
1988
1989 struct udp_offload_callbacks {
1990 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1991 struct sk_buff *skb,
1992 struct udp_offload *uoff);
1993 int (*gro_complete)(struct sk_buff *skb,
1994 int nhoff,
1995 struct udp_offload *uoff);
1996 };
1997
1998 struct udp_offload {
1999 __be16 port;
2000 u8 ipproto;
2001 struct udp_offload_callbacks callbacks;
2002 };
2003
2004 /* often modified stats are per cpu, other are shared (netdev->stats) */
2005 struct pcpu_sw_netstats {
2006 u64 rx_packets;
2007 u64 rx_bytes;
2008 u64 tx_packets;
2009 u64 tx_bytes;
2010 struct u64_stats_sync syncp;
2011 };
2012
2013 #define netdev_alloc_pcpu_stats(type) \
2014 ({ \
2015 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2016 if (pcpu_stats) { \
2017 int i; \
2018 for_each_possible_cpu(i) { \
2019 typeof(type) *stat; \
2020 stat = per_cpu_ptr(pcpu_stats, i); \
2021 u64_stats_init(&stat->syncp); \
2022 } \
2023 } \
2024 pcpu_stats; \
2025 })
2026
2027 #include <linux/notifier.h>
2028
2029 /* netdevice notifier chain. Please remember to update the rtnetlink
2030 * notification exclusion list in rtnetlink_event() when adding new
2031 * types.
2032 */
2033 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2034 #define NETDEV_DOWN 0x0002
2035 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2036 detected a hardware crash and restarted
2037 - we can use this eg to kick tcp sessions
2038 once done */
2039 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2040 #define NETDEV_REGISTER 0x0005
2041 #define NETDEV_UNREGISTER 0x0006
2042 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2043 #define NETDEV_CHANGEADDR 0x0008
2044 #define NETDEV_GOING_DOWN 0x0009
2045 #define NETDEV_CHANGENAME 0x000A
2046 #define NETDEV_FEAT_CHANGE 0x000B
2047 #define NETDEV_BONDING_FAILOVER 0x000C
2048 #define NETDEV_PRE_UP 0x000D
2049 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2050 #define NETDEV_POST_TYPE_CHANGE 0x000F
2051 #define NETDEV_POST_INIT 0x0010
2052 #define NETDEV_UNREGISTER_FINAL 0x0011
2053 #define NETDEV_RELEASE 0x0012
2054 #define NETDEV_NOTIFY_PEERS 0x0013
2055 #define NETDEV_JOIN 0x0014
2056 #define NETDEV_CHANGEUPPER 0x0015
2057 #define NETDEV_RESEND_IGMP 0x0016
2058 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2059 #define NETDEV_CHANGEINFODATA 0x0018
2060 #define NETDEV_BONDING_INFO 0x0019
2061
2062 int register_netdevice_notifier(struct notifier_block *nb);
2063 int unregister_netdevice_notifier(struct notifier_block *nb);
2064
2065 struct netdev_notifier_info {
2066 struct net_device *dev;
2067 };
2068
2069 struct netdev_notifier_change_info {
2070 struct netdev_notifier_info info; /* must be first */
2071 unsigned int flags_changed;
2072 };
2073
2074 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2075 struct net_device *dev)
2076 {
2077 info->dev = dev;
2078 }
2079
2080 static inline struct net_device *
2081 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2082 {
2083 return info->dev;
2084 }
2085
2086 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2087
2088
2089 extern rwlock_t dev_base_lock; /* Device list lock */
2090
2091 #define for_each_netdev(net, d) \
2092 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2093 #define for_each_netdev_reverse(net, d) \
2094 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2095 #define for_each_netdev_rcu(net, d) \
2096 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2097 #define for_each_netdev_safe(net, d, n) \
2098 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2099 #define for_each_netdev_continue(net, d) \
2100 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2101 #define for_each_netdev_continue_rcu(net, d) \
2102 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2103 #define for_each_netdev_in_bond_rcu(bond, slave) \
2104 for_each_netdev_rcu(&init_net, slave) \
2105 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2106 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2107
2108 static inline struct net_device *next_net_device(struct net_device *dev)
2109 {
2110 struct list_head *lh;
2111 struct net *net;
2112
2113 net = dev_net(dev);
2114 lh = dev->dev_list.next;
2115 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2116 }
2117
2118 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2119 {
2120 struct list_head *lh;
2121 struct net *net;
2122
2123 net = dev_net(dev);
2124 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2125 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2126 }
2127
2128 static inline struct net_device *first_net_device(struct net *net)
2129 {
2130 return list_empty(&net->dev_base_head) ? NULL :
2131 net_device_entry(net->dev_base_head.next);
2132 }
2133
2134 static inline struct net_device *first_net_device_rcu(struct net *net)
2135 {
2136 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2137
2138 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2139 }
2140
2141 int netdev_boot_setup_check(struct net_device *dev);
2142 unsigned long netdev_boot_base(const char *prefix, int unit);
2143 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2144 const char *hwaddr);
2145 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2146 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2147 void dev_add_pack(struct packet_type *pt);
2148 void dev_remove_pack(struct packet_type *pt);
2149 void __dev_remove_pack(struct packet_type *pt);
2150 void dev_add_offload(struct packet_offload *po);
2151 void dev_remove_offload(struct packet_offload *po);
2152
2153 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2154 unsigned short mask);
2155 struct net_device *dev_get_by_name(struct net *net, const char *name);
2156 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2157 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2158 int dev_alloc_name(struct net_device *dev, const char *name);
2159 int dev_open(struct net_device *dev);
2160 int dev_close(struct net_device *dev);
2161 void dev_disable_lro(struct net_device *dev);
2162 int dev_loopback_xmit(struct sk_buff *newskb);
2163 int dev_queue_xmit(struct sk_buff *skb);
2164 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2165 int register_netdevice(struct net_device *dev);
2166 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2167 void unregister_netdevice_many(struct list_head *head);
2168 static inline void unregister_netdevice(struct net_device *dev)
2169 {
2170 unregister_netdevice_queue(dev, NULL);
2171 }
2172
2173 int netdev_refcnt_read(const struct net_device *dev);
2174 void free_netdev(struct net_device *dev);
2175 void netdev_freemem(struct net_device *dev);
2176 void synchronize_net(void);
2177 int init_dummy_netdev(struct net_device *dev);
2178
2179 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2180 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2181 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2182 int netdev_get_name(struct net *net, char *name, int ifindex);
2183 int dev_restart(struct net_device *dev);
2184 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2185
2186 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2187 {
2188 return NAPI_GRO_CB(skb)->data_offset;
2189 }
2190
2191 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2192 {
2193 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2194 }
2195
2196 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2197 {
2198 NAPI_GRO_CB(skb)->data_offset += len;
2199 }
2200
2201 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2202 unsigned int offset)
2203 {
2204 return NAPI_GRO_CB(skb)->frag0 + offset;
2205 }
2206
2207 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2208 {
2209 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2210 }
2211
2212 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2213 unsigned int offset)
2214 {
2215 if (!pskb_may_pull(skb, hlen))
2216 return NULL;
2217
2218 NAPI_GRO_CB(skb)->frag0 = NULL;
2219 NAPI_GRO_CB(skb)->frag0_len = 0;
2220 return skb->data + offset;
2221 }
2222
2223 static inline void *skb_gro_network_header(struct sk_buff *skb)
2224 {
2225 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2226 skb_network_offset(skb);
2227 }
2228
2229 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2230 const void *start, unsigned int len)
2231 {
2232 if (NAPI_GRO_CB(skb)->csum_valid)
2233 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2234 csum_partial(start, len, 0));
2235 }
2236
2237 /* GRO checksum functions. These are logical equivalents of the normal
2238 * checksum functions (in skbuff.h) except that they operate on the GRO
2239 * offsets and fields in sk_buff.
2240 */
2241
2242 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2243
2244 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2245 bool zero_okay,
2246 __sum16 check)
2247 {
2248 return (skb->ip_summed != CHECKSUM_PARTIAL &&
2249 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2250 (!zero_okay || check));
2251 }
2252
2253 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2254 __wsum psum)
2255 {
2256 if (NAPI_GRO_CB(skb)->csum_valid &&
2257 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2258 return 0;
2259
2260 NAPI_GRO_CB(skb)->csum = psum;
2261
2262 return __skb_gro_checksum_complete(skb);
2263 }
2264
2265 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2266 {
2267 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2268 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2269 NAPI_GRO_CB(skb)->csum_cnt--;
2270 } else {
2271 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2272 * verified a new top level checksum or an encapsulated one
2273 * during GRO. This saves work if we fallback to normal path.
2274 */
2275 __skb_incr_checksum_unnecessary(skb);
2276 }
2277 }
2278
2279 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2280 compute_pseudo) \
2281 ({ \
2282 __sum16 __ret = 0; \
2283 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2284 __ret = __skb_gro_checksum_validate_complete(skb, \
2285 compute_pseudo(skb, proto)); \
2286 if (__ret) \
2287 __skb_mark_checksum_bad(skb); \
2288 else \
2289 skb_gro_incr_csum_unnecessary(skb); \
2290 __ret; \
2291 })
2292
2293 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2294 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2295
2296 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2297 compute_pseudo) \
2298 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2299
2300 #define skb_gro_checksum_simple_validate(skb) \
2301 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2302
2303 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2304 {
2305 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2306 !NAPI_GRO_CB(skb)->csum_valid);
2307 }
2308
2309 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2310 __sum16 check, __wsum pseudo)
2311 {
2312 NAPI_GRO_CB(skb)->csum = ~pseudo;
2313 NAPI_GRO_CB(skb)->csum_valid = 1;
2314 }
2315
2316 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2317 do { \
2318 if (__skb_gro_checksum_convert_check(skb)) \
2319 __skb_gro_checksum_convert(skb, check, \
2320 compute_pseudo(skb, proto)); \
2321 } while (0)
2322
2323 static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2324 int start, int offset)
2325 {
2326 __wsum delta;
2327
2328 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2329
2330 delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset);
2331
2332 /* Adjust skb->csum since we changed the packet */
2333 skb->csum = csum_add(skb->csum, delta);
2334 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2335 }
2336
2337
2338 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2339 unsigned short type,
2340 const void *daddr, const void *saddr,
2341 unsigned int len)
2342 {
2343 if (!dev->header_ops || !dev->header_ops->create)
2344 return 0;
2345
2346 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2347 }
2348
2349 static inline int dev_parse_header(const struct sk_buff *skb,
2350 unsigned char *haddr)
2351 {
2352 const struct net_device *dev = skb->dev;
2353
2354 if (!dev->header_ops || !dev->header_ops->parse)
2355 return 0;
2356 return dev->header_ops->parse(skb, haddr);
2357 }
2358
2359 static inline int dev_rebuild_header(struct sk_buff *skb)
2360 {
2361 const struct net_device *dev = skb->dev;
2362
2363 if (!dev->header_ops || !dev->header_ops->rebuild)
2364 return 0;
2365 return dev->header_ops->rebuild(skb);
2366 }
2367
2368 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2369 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2370 static inline int unregister_gifconf(unsigned int family)
2371 {
2372 return register_gifconf(family, NULL);
2373 }
2374
2375 #ifdef CONFIG_NET_FLOW_LIMIT
2376 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2377 struct sd_flow_limit {
2378 u64 count;
2379 unsigned int num_buckets;
2380 unsigned int history_head;
2381 u16 history[FLOW_LIMIT_HISTORY];
2382 u8 buckets[];
2383 };
2384
2385 extern int netdev_flow_limit_table_len;
2386 #endif /* CONFIG_NET_FLOW_LIMIT */
2387
2388 /*
2389 * Incoming packets are placed on per-cpu queues
2390 */
2391 struct softnet_data {
2392 struct list_head poll_list;
2393 struct sk_buff_head process_queue;
2394
2395 /* stats */
2396 unsigned int processed;
2397 unsigned int time_squeeze;
2398 unsigned int cpu_collision;
2399 unsigned int received_rps;
2400 #ifdef CONFIG_RPS
2401 struct softnet_data *rps_ipi_list;
2402 #endif
2403 #ifdef CONFIG_NET_FLOW_LIMIT
2404 struct sd_flow_limit __rcu *flow_limit;
2405 #endif
2406 struct Qdisc *output_queue;
2407 struct Qdisc **output_queue_tailp;
2408 struct sk_buff *completion_queue;
2409
2410 #ifdef CONFIG_RPS
2411 /* Elements below can be accessed between CPUs for RPS */
2412 struct call_single_data csd ____cacheline_aligned_in_smp;
2413 struct softnet_data *rps_ipi_next;
2414 unsigned int cpu;
2415 unsigned int input_queue_head;
2416 unsigned int input_queue_tail;
2417 #endif
2418 unsigned int dropped;
2419 struct sk_buff_head input_pkt_queue;
2420 struct napi_struct backlog;
2421
2422 };
2423
2424 static inline void input_queue_head_incr(struct softnet_data *sd)
2425 {
2426 #ifdef CONFIG_RPS
2427 sd->input_queue_head++;
2428 #endif
2429 }
2430
2431 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2432 unsigned int *qtail)
2433 {
2434 #ifdef CONFIG_RPS
2435 *qtail = ++sd->input_queue_tail;
2436 #endif
2437 }
2438
2439 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2440
2441 void __netif_schedule(struct Qdisc *q);
2442 void netif_schedule_queue(struct netdev_queue *txq);
2443
2444 static inline void netif_tx_schedule_all(struct net_device *dev)
2445 {
2446 unsigned int i;
2447
2448 for (i = 0; i < dev->num_tx_queues; i++)
2449 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2450 }
2451
2452 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2453 {
2454 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2455 }
2456
2457 /**
2458 * netif_start_queue - allow transmit
2459 * @dev: network device
2460 *
2461 * Allow upper layers to call the device hard_start_xmit routine.
2462 */
2463 static inline void netif_start_queue(struct net_device *dev)
2464 {
2465 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2466 }
2467
2468 static inline void netif_tx_start_all_queues(struct net_device *dev)
2469 {
2470 unsigned int i;
2471
2472 for (i = 0; i < dev->num_tx_queues; i++) {
2473 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2474 netif_tx_start_queue(txq);
2475 }
2476 }
2477
2478 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2479
2480 /**
2481 * netif_wake_queue - restart transmit
2482 * @dev: network device
2483 *
2484 * Allow upper layers to call the device hard_start_xmit routine.
2485 * Used for flow control when transmit resources are available.
2486 */
2487 static inline void netif_wake_queue(struct net_device *dev)
2488 {
2489 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2490 }
2491
2492 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2493 {
2494 unsigned int i;
2495
2496 for (i = 0; i < dev->num_tx_queues; i++) {
2497 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2498 netif_tx_wake_queue(txq);
2499 }
2500 }
2501
2502 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2503 {
2504 if (WARN_ON(!dev_queue)) {
2505 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
2506 return;
2507 }
2508 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2509 }
2510
2511 /**
2512 * netif_stop_queue - stop transmitted packets
2513 * @dev: network device
2514 *
2515 * Stop upper layers calling the device hard_start_xmit routine.
2516 * Used for flow control when transmit resources are unavailable.
2517 */
2518 static inline void netif_stop_queue(struct net_device *dev)
2519 {
2520 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2521 }
2522
2523 static inline void netif_tx_stop_all_queues(struct net_device *dev)
2524 {
2525 unsigned int i;
2526
2527 for (i = 0; i < dev->num_tx_queues; i++) {
2528 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2529 netif_tx_stop_queue(txq);
2530 }
2531 }
2532
2533 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2534 {
2535 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2536 }
2537
2538 /**
2539 * netif_queue_stopped - test if transmit queue is flowblocked
2540 * @dev: network device
2541 *
2542 * Test if transmit queue on device is currently unable to send.
2543 */
2544 static inline bool netif_queue_stopped(const struct net_device *dev)
2545 {
2546 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2547 }
2548
2549 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2550 {
2551 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2552 }
2553
2554 static inline bool
2555 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2556 {
2557 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2558 }
2559
2560 static inline bool
2561 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2562 {
2563 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2564 }
2565
2566 /**
2567 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2568 * @dev_queue: pointer to transmit queue
2569 *
2570 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2571 * to give appropriate hint to the cpu.
2572 */
2573 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2574 {
2575 #ifdef CONFIG_BQL
2576 prefetchw(&dev_queue->dql.num_queued);
2577 #endif
2578 }
2579
2580 /**
2581 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2582 * @dev_queue: pointer to transmit queue
2583 *
2584 * BQL enabled drivers might use this helper in their TX completion path,
2585 * to give appropriate hint to the cpu.
2586 */
2587 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2588 {
2589 #ifdef CONFIG_BQL
2590 prefetchw(&dev_queue->dql.limit);
2591 #endif
2592 }
2593
2594 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2595 unsigned int bytes)
2596 {
2597 #ifdef CONFIG_BQL
2598 dql_queued(&dev_queue->dql, bytes);
2599
2600 if (likely(dql_avail(&dev_queue->dql) >= 0))
2601 return;
2602
2603 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2604
2605 /*
2606 * The XOFF flag must be set before checking the dql_avail below,
2607 * because in netdev_tx_completed_queue we update the dql_completed
2608 * before checking the XOFF flag.
2609 */
2610 smp_mb();
2611
2612 /* check again in case another CPU has just made room avail */
2613 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2614 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2615 #endif
2616 }
2617
2618 /**
2619 * netdev_sent_queue - report the number of bytes queued to hardware
2620 * @dev: network device
2621 * @bytes: number of bytes queued to the hardware device queue
2622 *
2623 * Report the number of bytes queued for sending/completion to the network
2624 * device hardware queue. @bytes should be a good approximation and should
2625 * exactly match netdev_completed_queue() @bytes
2626 */
2627 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2628 {
2629 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2630 }
2631
2632 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2633 unsigned int pkts, unsigned int bytes)
2634 {
2635 #ifdef CONFIG_BQL
2636 if (unlikely(!bytes))
2637 return;
2638
2639 dql_completed(&dev_queue->dql, bytes);
2640
2641 /*
2642 * Without the memory barrier there is a small possiblity that
2643 * netdev_tx_sent_queue will miss the update and cause the queue to
2644 * be stopped forever
2645 */
2646 smp_mb();
2647
2648 if (dql_avail(&dev_queue->dql) < 0)
2649 return;
2650
2651 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2652 netif_schedule_queue(dev_queue);
2653 #endif
2654 }
2655
2656 /**
2657 * netdev_completed_queue - report bytes and packets completed by device
2658 * @dev: network device
2659 * @pkts: actual number of packets sent over the medium
2660 * @bytes: actual number of bytes sent over the medium
2661 *
2662 * Report the number of bytes and packets transmitted by the network device
2663 * hardware queue over the physical medium, @bytes must exactly match the
2664 * @bytes amount passed to netdev_sent_queue()
2665 */
2666 static inline void netdev_completed_queue(struct net_device *dev,
2667 unsigned int pkts, unsigned int bytes)
2668 {
2669 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2670 }
2671
2672 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2673 {
2674 #ifdef CONFIG_BQL
2675 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2676 dql_reset(&q->dql);
2677 #endif
2678 }
2679
2680 /**
2681 * netdev_reset_queue - reset the packets and bytes count of a network device
2682 * @dev_queue: network device
2683 *
2684 * Reset the bytes and packet count of a network device and clear the
2685 * software flow control OFF bit for this network device
2686 */
2687 static inline void netdev_reset_queue(struct net_device *dev_queue)
2688 {
2689 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2690 }
2691
2692 /**
2693 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2694 * @dev: network device
2695 * @queue_index: given tx queue index
2696 *
2697 * Returns 0 if given tx queue index >= number of device tx queues,
2698 * otherwise returns the originally passed tx queue index.
2699 */
2700 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2701 {
2702 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2703 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2704 dev->name, queue_index,
2705 dev->real_num_tx_queues);
2706 return 0;
2707 }
2708
2709 return queue_index;
2710 }
2711
2712 /**
2713 * netif_running - test if up
2714 * @dev: network device
2715 *
2716 * Test if the device has been brought up.
2717 */
2718 static inline bool netif_running(const struct net_device *dev)
2719 {
2720 return test_bit(__LINK_STATE_START, &dev->state);
2721 }
2722
2723 /*
2724 * Routines to manage the subqueues on a device. We only need start
2725 * stop, and a check if it's stopped. All other device management is
2726 * done at the overall netdevice level.
2727 * Also test the device if we're multiqueue.
2728 */
2729
2730 /**
2731 * netif_start_subqueue - allow sending packets on subqueue
2732 * @dev: network device
2733 * @queue_index: sub queue index
2734 *
2735 * Start individual transmit queue of a device with multiple transmit queues.
2736 */
2737 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2738 {
2739 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2740
2741 netif_tx_start_queue(txq);
2742 }
2743
2744 /**
2745 * netif_stop_subqueue - stop sending packets on subqueue
2746 * @dev: network device
2747 * @queue_index: sub queue index
2748 *
2749 * Stop individual transmit queue of a device with multiple transmit queues.
2750 */
2751 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2752 {
2753 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2754 netif_tx_stop_queue(txq);
2755 }
2756
2757 /**
2758 * netif_subqueue_stopped - test status of subqueue
2759 * @dev: network device
2760 * @queue_index: sub queue index
2761 *
2762 * Check individual transmit queue of a device with multiple transmit queues.
2763 */
2764 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2765 u16 queue_index)
2766 {
2767 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2768
2769 return netif_tx_queue_stopped(txq);
2770 }
2771
2772 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2773 struct sk_buff *skb)
2774 {
2775 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2776 }
2777
2778 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2779
2780 #ifdef CONFIG_XPS
2781 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2782 u16 index);
2783 #else
2784 static inline int netif_set_xps_queue(struct net_device *dev,
2785 const struct cpumask *mask,
2786 u16 index)
2787 {
2788 return 0;
2789 }
2790 #endif
2791
2792 /*
2793 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2794 * as a distribution range limit for the returned value.
2795 */
2796 static inline u16 skb_tx_hash(const struct net_device *dev,
2797 struct sk_buff *skb)
2798 {
2799 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2800 }
2801
2802 /**
2803 * netif_is_multiqueue - test if device has multiple transmit queues
2804 * @dev: network device
2805 *
2806 * Check if device has multiple transmit queues
2807 */
2808 static inline bool netif_is_multiqueue(const struct net_device *dev)
2809 {
2810 return dev->num_tx_queues > 1;
2811 }
2812
2813 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2814
2815 #ifdef CONFIG_SYSFS
2816 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2817 #else
2818 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2819 unsigned int rxq)
2820 {
2821 return 0;
2822 }
2823 #endif
2824
2825 #ifdef CONFIG_SYSFS
2826 static inline unsigned int get_netdev_rx_queue_index(
2827 struct netdev_rx_queue *queue)
2828 {
2829 struct net_device *dev = queue->dev;
2830 int index = queue - dev->_rx;
2831
2832 BUG_ON(index >= dev->num_rx_queues);
2833 return index;
2834 }
2835 #endif
2836
2837 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2838 int netif_get_num_default_rss_queues(void);
2839
2840 enum skb_free_reason {
2841 SKB_REASON_CONSUMED,
2842 SKB_REASON_DROPPED,
2843 };
2844
2845 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2846 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2847
2848 /*
2849 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2850 * interrupt context or with hardware interrupts being disabled.
2851 * (in_irq() || irqs_disabled())
2852 *
2853 * We provide four helpers that can be used in following contexts :
2854 *
2855 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2856 * replacing kfree_skb(skb)
2857 *
2858 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2859 * Typically used in place of consume_skb(skb) in TX completion path
2860 *
2861 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2862 * replacing kfree_skb(skb)
2863 *
2864 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2865 * and consumed a packet. Used in place of consume_skb(skb)
2866 */
2867 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2868 {
2869 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2870 }
2871
2872 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2873 {
2874 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2875 }
2876
2877 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2878 {
2879 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2880 }
2881
2882 static inline void dev_consume_skb_any(struct sk_buff *skb)
2883 {
2884 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2885 }
2886
2887 int netif_rx(struct sk_buff *skb);
2888 int netif_rx_ni(struct sk_buff *skb);
2889 int netif_receive_skb(struct sk_buff *skb);
2890 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2891 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2892 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2893 gro_result_t napi_gro_frags(struct napi_struct *napi);
2894 struct packet_offload *gro_find_receive_by_type(__be16 type);
2895 struct packet_offload *gro_find_complete_by_type(__be16 type);
2896
2897 static inline void napi_free_frags(struct napi_struct *napi)
2898 {
2899 kfree_skb(napi->skb);
2900 napi->skb = NULL;
2901 }
2902
2903 int netdev_rx_handler_register(struct net_device *dev,
2904 rx_handler_func_t *rx_handler,
2905 void *rx_handler_data);
2906 void netdev_rx_handler_unregister(struct net_device *dev);
2907
2908 bool dev_valid_name(const char *name);
2909 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2910 int dev_ethtool(struct net *net, struct ifreq *);
2911 unsigned int dev_get_flags(const struct net_device *);
2912 int __dev_change_flags(struct net_device *, unsigned int flags);
2913 int dev_change_flags(struct net_device *, unsigned int);
2914 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
2915 unsigned int gchanges);
2916 int dev_change_name(struct net_device *, const char *);
2917 int dev_set_alias(struct net_device *, const char *, size_t);
2918 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
2919 int dev_set_mtu(struct net_device *, int);
2920 void dev_set_group(struct net_device *, int);
2921 int dev_set_mac_address(struct net_device *, struct sockaddr *);
2922 int dev_change_carrier(struct net_device *, bool new_carrier);
2923 int dev_get_phys_port_id(struct net_device *dev,
2924 struct netdev_phys_item_id *ppid);
2925 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
2926 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2927 struct netdev_queue *txq, int *ret);
2928 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2929 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
2930 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
2931
2932 extern int netdev_budget;
2933
2934 /* Called by rtnetlink.c:rtnl_unlock() */
2935 void netdev_run_todo(void);
2936
2937 /**
2938 * dev_put - release reference to device
2939 * @dev: network device
2940 *
2941 * Release reference to device to allow it to be freed.
2942 */
2943 static inline void dev_put(struct net_device *dev)
2944 {
2945 this_cpu_dec(*dev->pcpu_refcnt);
2946 }
2947
2948 /**
2949 * dev_hold - get reference to device
2950 * @dev: network device
2951 *
2952 * Hold reference to device to keep it from being freed.
2953 */
2954 static inline void dev_hold(struct net_device *dev)
2955 {
2956 this_cpu_inc(*dev->pcpu_refcnt);
2957 }
2958
2959 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2960 * and _off may be called from IRQ context, but it is caller
2961 * who is responsible for serialization of these calls.
2962 *
2963 * The name carrier is inappropriate, these functions should really be
2964 * called netif_lowerlayer_*() because they represent the state of any
2965 * kind of lower layer not just hardware media.
2966 */
2967
2968 void linkwatch_init_dev(struct net_device *dev);
2969 void linkwatch_fire_event(struct net_device *dev);
2970 void linkwatch_forget_dev(struct net_device *dev);
2971
2972 /**
2973 * netif_carrier_ok - test if carrier present
2974 * @dev: network device
2975 *
2976 * Check if carrier is present on device
2977 */
2978 static inline bool netif_carrier_ok(const struct net_device *dev)
2979 {
2980 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2981 }
2982
2983 unsigned long dev_trans_start(struct net_device *dev);
2984
2985 void __netdev_watchdog_up(struct net_device *dev);
2986
2987 void netif_carrier_on(struct net_device *dev);
2988
2989 void netif_carrier_off(struct net_device *dev);
2990
2991 /**
2992 * netif_dormant_on - mark device as dormant.
2993 * @dev: network device
2994 *
2995 * Mark device as dormant (as per RFC2863).
2996 *
2997 * The dormant state indicates that the relevant interface is not
2998 * actually in a condition to pass packets (i.e., it is not 'up') but is
2999 * in a "pending" state, waiting for some external event. For "on-
3000 * demand" interfaces, this new state identifies the situation where the
3001 * interface is waiting for events to place it in the up state.
3002 *
3003 */
3004 static inline void netif_dormant_on(struct net_device *dev)
3005 {
3006 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3007 linkwatch_fire_event(dev);
3008 }
3009
3010 /**
3011 * netif_dormant_off - set device as not dormant.
3012 * @dev: network device
3013 *
3014 * Device is not in dormant state.
3015 */
3016 static inline void netif_dormant_off(struct net_device *dev)
3017 {
3018 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3019 linkwatch_fire_event(dev);
3020 }
3021
3022 /**
3023 * netif_dormant - test if carrier present
3024 * @dev: network device
3025 *
3026 * Check if carrier is present on device
3027 */
3028 static inline bool netif_dormant(const struct net_device *dev)
3029 {
3030 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3031 }
3032
3033
3034 /**
3035 * netif_oper_up - test if device is operational
3036 * @dev: network device
3037 *
3038 * Check if carrier is operational
3039 */
3040 static inline bool netif_oper_up(const struct net_device *dev)
3041 {
3042 return (dev->operstate == IF_OPER_UP ||
3043 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3044 }
3045
3046 /**
3047 * netif_device_present - is device available or removed
3048 * @dev: network device
3049 *
3050 * Check if device has not been removed from system.
3051 */
3052 static inline bool netif_device_present(struct net_device *dev)
3053 {
3054 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3055 }
3056
3057 void netif_device_detach(struct net_device *dev);
3058
3059 void netif_device_attach(struct net_device *dev);
3060
3061 /*
3062 * Network interface message level settings
3063 */
3064
3065 enum {
3066 NETIF_MSG_DRV = 0x0001,
3067 NETIF_MSG_PROBE = 0x0002,
3068 NETIF_MSG_LINK = 0x0004,
3069 NETIF_MSG_TIMER = 0x0008,
3070 NETIF_MSG_IFDOWN = 0x0010,
3071 NETIF_MSG_IFUP = 0x0020,
3072 NETIF_MSG_RX_ERR = 0x0040,
3073 NETIF_MSG_TX_ERR = 0x0080,
3074 NETIF_MSG_TX_QUEUED = 0x0100,
3075 NETIF_MSG_INTR = 0x0200,
3076 NETIF_MSG_TX_DONE = 0x0400,
3077 NETIF_MSG_RX_STATUS = 0x0800,
3078 NETIF_MSG_PKTDATA = 0x1000,
3079 NETIF_MSG_HW = 0x2000,
3080 NETIF_MSG_WOL = 0x4000,
3081 };
3082
3083 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3084 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3085 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3086 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3087 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3088 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3089 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3090 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3091 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3092 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3093 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3094 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3095 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3096 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3097 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3098
3099 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3100 {
3101 /* use default */
3102 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3103 return default_msg_enable_bits;
3104 if (debug_value == 0) /* no output */
3105 return 0;
3106 /* set low N bits */
3107 return (1 << debug_value) - 1;
3108 }
3109
3110 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3111 {
3112 spin_lock(&txq->_xmit_lock);
3113 txq->xmit_lock_owner = cpu;
3114 }
3115
3116 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3117 {
3118 spin_lock_bh(&txq->_xmit_lock);
3119 txq->xmit_lock_owner = smp_processor_id();
3120 }
3121
3122 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3123 {
3124 bool ok = spin_trylock(&txq->_xmit_lock);
3125 if (likely(ok))
3126 txq->xmit_lock_owner = smp_processor_id();
3127 return ok;
3128 }
3129
3130 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3131 {
3132 txq->xmit_lock_owner = -1;
3133 spin_unlock(&txq->_xmit_lock);
3134 }
3135
3136 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3137 {
3138 txq->xmit_lock_owner = -1;
3139 spin_unlock_bh(&txq->_xmit_lock);
3140 }
3141
3142 static inline void txq_trans_update(struct netdev_queue *txq)
3143 {
3144 if (txq->xmit_lock_owner != -1)
3145 txq->trans_start = jiffies;
3146 }
3147
3148 /**
3149 * netif_tx_lock - grab network device transmit lock
3150 * @dev: network device
3151 *
3152 * Get network device transmit lock
3153 */
3154 static inline void netif_tx_lock(struct net_device *dev)
3155 {
3156 unsigned int i;
3157 int cpu;
3158
3159 spin_lock(&dev->tx_global_lock);
3160 cpu = smp_processor_id();
3161 for (i = 0; i < dev->num_tx_queues; i++) {
3162 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3163
3164 /* We are the only thread of execution doing a
3165 * freeze, but we have to grab the _xmit_lock in
3166 * order to synchronize with threads which are in
3167 * the ->hard_start_xmit() handler and already
3168 * checked the frozen bit.
3169 */
3170 __netif_tx_lock(txq, cpu);
3171 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3172 __netif_tx_unlock(txq);
3173 }
3174 }
3175
3176 static inline void netif_tx_lock_bh(struct net_device *dev)
3177 {
3178 local_bh_disable();
3179 netif_tx_lock(dev);
3180 }
3181
3182 static inline void netif_tx_unlock(struct net_device *dev)
3183 {
3184 unsigned int i;
3185
3186 for (i = 0; i < dev->num_tx_queues; i++) {
3187 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3188
3189 /* No need to grab the _xmit_lock here. If the
3190 * queue is not stopped for another reason, we
3191 * force a schedule.
3192 */
3193 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3194 netif_schedule_queue(txq);
3195 }
3196 spin_unlock(&dev->tx_global_lock);
3197 }
3198
3199 static inline void netif_tx_unlock_bh(struct net_device *dev)
3200 {
3201 netif_tx_unlock(dev);
3202 local_bh_enable();
3203 }
3204
3205 #define HARD_TX_LOCK(dev, txq, cpu) { \
3206 if ((dev->features & NETIF_F_LLTX) == 0) { \
3207 __netif_tx_lock(txq, cpu); \
3208 } \
3209 }
3210
3211 #define HARD_TX_TRYLOCK(dev, txq) \
3212 (((dev->features & NETIF_F_LLTX) == 0) ? \
3213 __netif_tx_trylock(txq) : \
3214 true )
3215
3216 #define HARD_TX_UNLOCK(dev, txq) { \
3217 if ((dev->features & NETIF_F_LLTX) == 0) { \
3218 __netif_tx_unlock(txq); \
3219 } \
3220 }
3221
3222 static inline void netif_tx_disable(struct net_device *dev)
3223 {
3224 unsigned int i;
3225 int cpu;
3226
3227 local_bh_disable();
3228 cpu = smp_processor_id();
3229 for (i = 0; i < dev->num_tx_queues; i++) {
3230 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3231
3232 __netif_tx_lock(txq, cpu);
3233 netif_tx_stop_queue(txq);
3234 __netif_tx_unlock(txq);
3235 }
3236 local_bh_enable();
3237 }
3238
3239 static inline void netif_addr_lock(struct net_device *dev)
3240 {
3241 spin_lock(&dev->addr_list_lock);
3242 }
3243
3244 static inline void netif_addr_lock_nested(struct net_device *dev)
3245 {
3246 int subclass = SINGLE_DEPTH_NESTING;
3247
3248 if (dev->netdev_ops->ndo_get_lock_subclass)
3249 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3250
3251 spin_lock_nested(&dev->addr_list_lock, subclass);
3252 }
3253
3254 static inline void netif_addr_lock_bh(struct net_device *dev)
3255 {
3256 spin_lock_bh(&dev->addr_list_lock);
3257 }
3258
3259 static inline void netif_addr_unlock(struct net_device *dev)
3260 {
3261 spin_unlock(&dev->addr_list_lock);
3262 }
3263
3264 static inline void netif_addr_unlock_bh(struct net_device *dev)
3265 {
3266 spin_unlock_bh(&dev->addr_list_lock);
3267 }
3268
3269 /*
3270 * dev_addrs walker. Should be used only for read access. Call with
3271 * rcu_read_lock held.
3272 */
3273 #define for_each_dev_addr(dev, ha) \
3274 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3275
3276 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3277
3278 void ether_setup(struct net_device *dev);
3279
3280 /* Support for loadable net-drivers */
3281 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3282 unsigned char name_assign_type,
3283 void (*setup)(struct net_device *),
3284 unsigned int txqs, unsigned int rxqs);
3285 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3286 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3287
3288 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3289 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3290 count)
3291
3292 int register_netdev(struct net_device *dev);
3293 void unregister_netdev(struct net_device *dev);
3294
3295 /* General hardware address lists handling functions */
3296 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3297 struct netdev_hw_addr_list *from_list, int addr_len);
3298 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3299 struct netdev_hw_addr_list *from_list, int addr_len);
3300 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3301 struct net_device *dev,
3302 int (*sync)(struct net_device *, const unsigned char *),
3303 int (*unsync)(struct net_device *,
3304 const unsigned char *));
3305 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3306 struct net_device *dev,
3307 int (*unsync)(struct net_device *,
3308 const unsigned char *));
3309 void __hw_addr_init(struct netdev_hw_addr_list *list);
3310
3311 /* Functions used for device addresses handling */
3312 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3313 unsigned char addr_type);
3314 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3315 unsigned char addr_type);
3316 void dev_addr_flush(struct net_device *dev);
3317 int dev_addr_init(struct net_device *dev);
3318
3319 /* Functions used for unicast addresses handling */
3320 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3321 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3322 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3323 int dev_uc_sync(struct net_device *to, struct net_device *from);
3324 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3325 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3326 void dev_uc_flush(struct net_device *dev);
3327 void dev_uc_init(struct net_device *dev);
3328
3329 /**
3330 * __dev_uc_sync - Synchonize device's unicast list
3331 * @dev: device to sync
3332 * @sync: function to call if address should be added
3333 * @unsync: function to call if address should be removed
3334 *
3335 * Add newly added addresses to the interface, and release
3336 * addresses that have been deleted.
3337 **/
3338 static inline int __dev_uc_sync(struct net_device *dev,
3339 int (*sync)(struct net_device *,
3340 const unsigned char *),
3341 int (*unsync)(struct net_device *,
3342 const unsigned char *))
3343 {
3344 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3345 }
3346
3347 /**
3348 * __dev_uc_unsync - Remove synchronized addresses from device
3349 * @dev: device to sync
3350 * @unsync: function to call if address should be removed
3351 *
3352 * Remove all addresses that were added to the device by dev_uc_sync().
3353 **/
3354 static inline void __dev_uc_unsync(struct net_device *dev,
3355 int (*unsync)(struct net_device *,
3356 const unsigned char *))
3357 {
3358 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3359 }
3360
3361 /* Functions used for multicast addresses handling */
3362 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3363 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3364 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3365 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3366 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3367 int dev_mc_sync(struct net_device *to, struct net_device *from);
3368 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3369 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3370 void dev_mc_flush(struct net_device *dev);
3371 void dev_mc_init(struct net_device *dev);
3372
3373 /**
3374 * __dev_mc_sync - Synchonize device's multicast list
3375 * @dev: device to sync
3376 * @sync: function to call if address should be added
3377 * @unsync: function to call if address should be removed
3378 *
3379 * Add newly added addresses to the interface, and release
3380 * addresses that have been deleted.
3381 **/
3382 static inline int __dev_mc_sync(struct net_device *dev,
3383 int (*sync)(struct net_device *,
3384 const unsigned char *),
3385 int (*unsync)(struct net_device *,
3386 const unsigned char *))
3387 {
3388 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3389 }
3390
3391 /**
3392 * __dev_mc_unsync - Remove synchronized addresses from device
3393 * @dev: device to sync
3394 * @unsync: function to call if address should be removed
3395 *
3396 * Remove all addresses that were added to the device by dev_mc_sync().
3397 **/
3398 static inline void __dev_mc_unsync(struct net_device *dev,
3399 int (*unsync)(struct net_device *,
3400 const unsigned char *))
3401 {
3402 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3403 }
3404
3405 /* Functions used for secondary unicast and multicast support */
3406 void dev_set_rx_mode(struct net_device *dev);
3407 void __dev_set_rx_mode(struct net_device *dev);
3408 int dev_set_promiscuity(struct net_device *dev, int inc);
3409 int dev_set_allmulti(struct net_device *dev, int inc);
3410 void netdev_state_change(struct net_device *dev);
3411 void netdev_notify_peers(struct net_device *dev);
3412 void netdev_features_change(struct net_device *dev);
3413 /* Load a device via the kmod */
3414 void dev_load(struct net *net, const char *name);
3415 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3416 struct rtnl_link_stats64 *storage);
3417 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3418 const struct net_device_stats *netdev_stats);
3419
3420 extern int netdev_max_backlog;
3421 extern int netdev_tstamp_prequeue;
3422 extern int weight_p;
3423 extern int bpf_jit_enable;
3424
3425 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3426 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3427 struct list_head **iter);
3428 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3429 struct list_head **iter);
3430
3431 /* iterate through upper list, must be called under RCU read lock */
3432 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3433 for (iter = &(dev)->adj_list.upper, \
3434 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3435 updev; \
3436 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3437
3438 /* iterate through upper list, must be called under RCU read lock */
3439 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3440 for (iter = &(dev)->all_adj_list.upper, \
3441 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3442 updev; \
3443 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3444
3445 void *netdev_lower_get_next_private(struct net_device *dev,
3446 struct list_head **iter);
3447 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3448 struct list_head **iter);
3449
3450 #define netdev_for_each_lower_private(dev, priv, iter) \
3451 for (iter = (dev)->adj_list.lower.next, \
3452 priv = netdev_lower_get_next_private(dev, &(iter)); \
3453 priv; \
3454 priv = netdev_lower_get_next_private(dev, &(iter)))
3455
3456 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3457 for (iter = &(dev)->adj_list.lower, \
3458 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3459 priv; \
3460 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3461
3462 void *netdev_lower_get_next(struct net_device *dev,
3463 struct list_head **iter);
3464 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3465 for (iter = &(dev)->adj_list.lower, \
3466 ldev = netdev_lower_get_next(dev, &(iter)); \
3467 ldev; \
3468 ldev = netdev_lower_get_next(dev, &(iter)))
3469
3470 void *netdev_adjacent_get_private(struct list_head *adj_list);
3471 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3472 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3473 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3474 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3475 int netdev_master_upper_dev_link(struct net_device *dev,
3476 struct net_device *upper_dev);
3477 int netdev_master_upper_dev_link_private(struct net_device *dev,
3478 struct net_device *upper_dev,
3479 void *private);
3480 void netdev_upper_dev_unlink(struct net_device *dev,
3481 struct net_device *upper_dev);
3482 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3483 void *netdev_lower_dev_get_private(struct net_device *dev,
3484 struct net_device *lower_dev);
3485
3486 /* RSS keys are 40 or 52 bytes long */
3487 #define NETDEV_RSS_KEY_LEN 52
3488 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3489 void netdev_rss_key_fill(void *buffer, size_t len);
3490
3491 int dev_get_nest_level(struct net_device *dev,
3492 bool (*type_check)(struct net_device *dev));
3493 int skb_checksum_help(struct sk_buff *skb);
3494 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3495 netdev_features_t features, bool tx_path);
3496 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3497 netdev_features_t features);
3498
3499 struct netdev_bonding_info {
3500 ifslave slave;
3501 ifbond master;
3502 };
3503
3504 struct netdev_notifier_bonding_info {
3505 struct netdev_notifier_info info; /* must be first */
3506 struct netdev_bonding_info bonding_info;
3507 };
3508
3509 void netdev_bonding_info_change(struct net_device *dev,
3510 struct netdev_bonding_info *bonding_info);
3511
3512 static inline
3513 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3514 {
3515 return __skb_gso_segment(skb, features, true);
3516 }
3517 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3518
3519 static inline bool can_checksum_protocol(netdev_features_t features,
3520 __be16 protocol)
3521 {
3522 return ((features & NETIF_F_GEN_CSUM) ||
3523 ((features & NETIF_F_V4_CSUM) &&
3524 protocol == htons(ETH_P_IP)) ||
3525 ((features & NETIF_F_V6_CSUM) &&
3526 protocol == htons(ETH_P_IPV6)) ||
3527 ((features & NETIF_F_FCOE_CRC) &&
3528 protocol == htons(ETH_P_FCOE)));
3529 }
3530
3531 #ifdef CONFIG_BUG
3532 void netdev_rx_csum_fault(struct net_device *dev);
3533 #else
3534 static inline void netdev_rx_csum_fault(struct net_device *dev)
3535 {
3536 }
3537 #endif
3538 /* rx skb timestamps */
3539 void net_enable_timestamp(void);
3540 void net_disable_timestamp(void);
3541
3542 #ifdef CONFIG_PROC_FS
3543 int __init dev_proc_init(void);
3544 #else
3545 #define dev_proc_init() 0
3546 #endif
3547
3548 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3549 struct sk_buff *skb, struct net_device *dev,
3550 bool more)
3551 {
3552 skb->xmit_more = more ? 1 : 0;
3553 return ops->ndo_start_xmit(skb, dev);
3554 }
3555
3556 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3557 struct netdev_queue *txq, bool more)
3558 {
3559 const struct net_device_ops *ops = dev->netdev_ops;
3560 int rc;
3561
3562 rc = __netdev_start_xmit(ops, skb, dev, more);
3563 if (rc == NETDEV_TX_OK)
3564 txq_trans_update(txq);
3565
3566 return rc;
3567 }
3568
3569 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3570 const void *ns);
3571 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3572 const void *ns);
3573
3574 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3575 {
3576 return netdev_class_create_file_ns(class_attr, NULL);
3577 }
3578
3579 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3580 {
3581 netdev_class_remove_file_ns(class_attr, NULL);
3582 }
3583
3584 extern struct kobj_ns_type_operations net_ns_type_operations;
3585
3586 const char *netdev_drivername(const struct net_device *dev);
3587
3588 void linkwatch_run_queue(void);
3589
3590 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3591 netdev_features_t f2)
3592 {
3593 if (f1 & NETIF_F_GEN_CSUM)
3594 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3595 if (f2 & NETIF_F_GEN_CSUM)
3596 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3597 f1 &= f2;
3598 if (f1 & NETIF_F_GEN_CSUM)
3599 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3600
3601 return f1;
3602 }
3603
3604 static inline netdev_features_t netdev_get_wanted_features(
3605 struct net_device *dev)
3606 {
3607 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3608 }
3609 netdev_features_t netdev_increment_features(netdev_features_t all,
3610 netdev_features_t one, netdev_features_t mask);
3611
3612 /* Allow TSO being used on stacked device :
3613 * Performing the GSO segmentation before last device
3614 * is a performance improvement.
3615 */
3616 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3617 netdev_features_t mask)
3618 {
3619 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3620 }
3621
3622 int __netdev_update_features(struct net_device *dev);
3623 void netdev_update_features(struct net_device *dev);
3624 void netdev_change_features(struct net_device *dev);
3625
3626 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3627 struct net_device *dev);
3628
3629 netdev_features_t netif_skb_features(struct sk_buff *skb);
3630
3631 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3632 {
3633 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3634
3635 /* check flags correspondence */
3636 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3637 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3638 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3639 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3640 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3641 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3642 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3643 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3644 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3645 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3646 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3647 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3648 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3649
3650 return (features & feature) == feature;
3651 }
3652
3653 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3654 {
3655 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3656 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3657 }
3658
3659 static inline bool netif_needs_gso(struct net_device *dev, struct sk_buff *skb,
3660 netdev_features_t features)
3661 {
3662 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3663 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3664 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3665 }
3666
3667 static inline void netif_set_gso_max_size(struct net_device *dev,
3668 unsigned int size)
3669 {
3670 dev->gso_max_size = size;
3671 }
3672
3673 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3674 int pulled_hlen, u16 mac_offset,
3675 int mac_len)
3676 {
3677 skb->protocol = protocol;
3678 skb->encapsulation = 1;
3679 skb_push(skb, pulled_hlen);
3680 skb_reset_transport_header(skb);
3681 skb->mac_header = mac_offset;
3682 skb->network_header = skb->mac_header + mac_len;
3683 skb->mac_len = mac_len;
3684 }
3685
3686 static inline bool netif_is_macvlan(struct net_device *dev)
3687 {
3688 return dev->priv_flags & IFF_MACVLAN;
3689 }
3690
3691 static inline bool netif_is_macvlan_port(struct net_device *dev)
3692 {
3693 return dev->priv_flags & IFF_MACVLAN_PORT;
3694 }
3695
3696 static inline bool netif_is_ipvlan(struct net_device *dev)
3697 {
3698 return dev->priv_flags & IFF_IPVLAN_SLAVE;
3699 }
3700
3701 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3702 {
3703 return dev->priv_flags & IFF_IPVLAN_MASTER;
3704 }
3705
3706 static inline bool netif_is_bond_master(struct net_device *dev)
3707 {
3708 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3709 }
3710
3711 static inline bool netif_is_bond_slave(struct net_device *dev)
3712 {
3713 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3714 }
3715
3716 static inline bool netif_supports_nofcs(struct net_device *dev)
3717 {
3718 return dev->priv_flags & IFF_SUPP_NOFCS;
3719 }
3720
3721 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3722 static inline void netif_keep_dst(struct net_device *dev)
3723 {
3724 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3725 }
3726
3727 extern struct pernet_operations __net_initdata loopback_net_ops;
3728
3729 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3730
3731 /* netdev_printk helpers, similar to dev_printk */
3732
3733 static inline const char *netdev_name(const struct net_device *dev)
3734 {
3735 if (!dev->name[0] || strchr(dev->name, '%'))
3736 return "(unnamed net_device)";
3737 return dev->name;
3738 }
3739
3740 static inline const char *netdev_reg_state(const struct net_device *dev)
3741 {
3742 switch (dev->reg_state) {
3743 case NETREG_UNINITIALIZED: return " (uninitialized)";
3744 case NETREG_REGISTERED: return "";
3745 case NETREG_UNREGISTERING: return " (unregistering)";
3746 case NETREG_UNREGISTERED: return " (unregistered)";
3747 case NETREG_RELEASED: return " (released)";
3748 case NETREG_DUMMY: return " (dummy)";
3749 }
3750
3751 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3752 return " (unknown)";
3753 }
3754
3755 __printf(3, 4)
3756 void netdev_printk(const char *level, const struct net_device *dev,
3757 const char *format, ...);
3758 __printf(2, 3)
3759 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3760 __printf(2, 3)
3761 void netdev_alert(const struct net_device *dev, const char *format, ...);
3762 __printf(2, 3)
3763 void netdev_crit(const struct net_device *dev, const char *format, ...);
3764 __printf(2, 3)
3765 void netdev_err(const struct net_device *dev, const char *format, ...);
3766 __printf(2, 3)
3767 void netdev_warn(const struct net_device *dev, const char *format, ...);
3768 __printf(2, 3)
3769 void netdev_notice(const struct net_device *dev, const char *format, ...);
3770 __printf(2, 3)
3771 void netdev_info(const struct net_device *dev, const char *format, ...);
3772
3773 #define MODULE_ALIAS_NETDEV(device) \
3774 MODULE_ALIAS("netdev-" device)
3775
3776 #if defined(CONFIG_DYNAMIC_DEBUG)
3777 #define netdev_dbg(__dev, format, args...) \
3778 do { \
3779 dynamic_netdev_dbg(__dev, format, ##args); \
3780 } while (0)
3781 #elif defined(DEBUG)
3782 #define netdev_dbg(__dev, format, args...) \
3783 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3784 #else
3785 #define netdev_dbg(__dev, format, args...) \
3786 ({ \
3787 if (0) \
3788 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3789 })
3790 #endif
3791
3792 #if defined(VERBOSE_DEBUG)
3793 #define netdev_vdbg netdev_dbg
3794 #else
3795
3796 #define netdev_vdbg(dev, format, args...) \
3797 ({ \
3798 if (0) \
3799 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3800 0; \
3801 })
3802 #endif
3803
3804 /*
3805 * netdev_WARN() acts like dev_printk(), but with the key difference
3806 * of using a WARN/WARN_ON to get the message out, including the
3807 * file/line information and a backtrace.
3808 */
3809 #define netdev_WARN(dev, format, args...) \
3810 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
3811 netdev_reg_state(dev), ##args)
3812
3813 /* netif printk helpers, similar to netdev_printk */
3814
3815 #define netif_printk(priv, type, level, dev, fmt, args...) \
3816 do { \
3817 if (netif_msg_##type(priv)) \
3818 netdev_printk(level, (dev), fmt, ##args); \
3819 } while (0)
3820
3821 #define netif_level(level, priv, type, dev, fmt, args...) \
3822 do { \
3823 if (netif_msg_##type(priv)) \
3824 netdev_##level(dev, fmt, ##args); \
3825 } while (0)
3826
3827 #define netif_emerg(priv, type, dev, fmt, args...) \
3828 netif_level(emerg, priv, type, dev, fmt, ##args)
3829 #define netif_alert(priv, type, dev, fmt, args...) \
3830 netif_level(alert, priv, type, dev, fmt, ##args)
3831 #define netif_crit(priv, type, dev, fmt, args...) \
3832 netif_level(crit, priv, type, dev, fmt, ##args)
3833 #define netif_err(priv, type, dev, fmt, args...) \
3834 netif_level(err, priv, type, dev, fmt, ##args)
3835 #define netif_warn(priv, type, dev, fmt, args...) \
3836 netif_level(warn, priv, type, dev, fmt, ##args)
3837 #define netif_notice(priv, type, dev, fmt, args...) \
3838 netif_level(notice, priv, type, dev, fmt, ##args)
3839 #define netif_info(priv, type, dev, fmt, args...) \
3840 netif_level(info, priv, type, dev, fmt, ##args)
3841
3842 #if defined(CONFIG_DYNAMIC_DEBUG)
3843 #define netif_dbg(priv, type, netdev, format, args...) \
3844 do { \
3845 if (netif_msg_##type(priv)) \
3846 dynamic_netdev_dbg(netdev, format, ##args); \
3847 } while (0)
3848 #elif defined(DEBUG)
3849 #define netif_dbg(priv, type, dev, format, args...) \
3850 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3851 #else
3852 #define netif_dbg(priv, type, dev, format, args...) \
3853 ({ \
3854 if (0) \
3855 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3856 0; \
3857 })
3858 #endif
3859
3860 #if defined(VERBOSE_DEBUG)
3861 #define netif_vdbg netif_dbg
3862 #else
3863 #define netif_vdbg(priv, type, dev, format, args...) \
3864 ({ \
3865 if (0) \
3866 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3867 0; \
3868 })
3869 #endif
3870
3871 /*
3872 * The list of packet types we will receive (as opposed to discard)
3873 * and the routines to invoke.
3874 *
3875 * Why 16. Because with 16 the only overlap we get on a hash of the
3876 * low nibble of the protocol value is RARP/SNAP/X.25.
3877 *
3878 * NOTE: That is no longer true with the addition of VLAN tags. Not
3879 * sure which should go first, but I bet it won't make much
3880 * difference if we are running VLANs. The good news is that
3881 * this protocol won't be in the list unless compiled in, so
3882 * the average user (w/out VLANs) will not be adversely affected.
3883 * --BLG
3884 *
3885 * 0800 IP
3886 * 8100 802.1Q VLAN
3887 * 0001 802.3
3888 * 0002 AX.25
3889 * 0004 802.2
3890 * 8035 RARP
3891 * 0005 SNAP
3892 * 0805 X.25
3893 * 0806 ARP
3894 * 8137 IPX
3895 * 0009 Localtalk
3896 * 86DD IPv6
3897 */
3898 #define PTYPE_HASH_SIZE (16)
3899 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
3900
3901 #endif /* _LINUX_NETDEVICE_H */