]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - include/linux/perf_event.h
Merge tag 'ceph-for-4.15-rc1' of git://github.com/ceph/ceph-client
[mirror_ubuntu-bionic-kernel.git] / include / linux / perf_event.h
1 /*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20 * Kernel-internal data types and definitions:
21 */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <asm/perf_event.h>
25 # include <asm/local64.h>
26 #endif
27
28 struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32 };
33
34 #ifdef CONFIG_HAVE_HW_BREAKPOINT
35 #include <asm/hw_breakpoint.h>
36 #endif
37
38 #include <linux/list.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/rcupdate.h>
42 #include <linux/spinlock.h>
43 #include <linux/hrtimer.h>
44 #include <linux/fs.h>
45 #include <linux/pid_namespace.h>
46 #include <linux/workqueue.h>
47 #include <linux/ftrace.h>
48 #include <linux/cpu.h>
49 #include <linux/irq_work.h>
50 #include <linux/static_key.h>
51 #include <linux/jump_label_ratelimit.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <linux/workqueue.h>
56 #include <linux/cgroup.h>
57 #include <asm/local.h>
58
59 struct perf_callchain_entry {
60 __u64 nr;
61 __u64 ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
62 };
63
64 struct perf_callchain_entry_ctx {
65 struct perf_callchain_entry *entry;
66 u32 max_stack;
67 u32 nr;
68 short contexts;
69 bool contexts_maxed;
70 };
71
72 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
73 unsigned long off, unsigned long len);
74
75 struct perf_raw_frag {
76 union {
77 struct perf_raw_frag *next;
78 unsigned long pad;
79 };
80 perf_copy_f copy;
81 void *data;
82 u32 size;
83 } __packed;
84
85 struct perf_raw_record {
86 struct perf_raw_frag frag;
87 u32 size;
88 };
89
90 /*
91 * branch stack layout:
92 * nr: number of taken branches stored in entries[]
93 *
94 * Note that nr can vary from sample to sample
95 * branches (to, from) are stored from most recent
96 * to least recent, i.e., entries[0] contains the most
97 * recent branch.
98 */
99 struct perf_branch_stack {
100 __u64 nr;
101 struct perf_branch_entry entries[0];
102 };
103
104 struct task_struct;
105
106 /*
107 * extra PMU register associated with an event
108 */
109 struct hw_perf_event_extra {
110 u64 config; /* register value */
111 unsigned int reg; /* register address or index */
112 int alloc; /* extra register already allocated */
113 int idx; /* index in shared_regs->regs[] */
114 };
115
116 /**
117 * struct hw_perf_event - performance event hardware details:
118 */
119 struct hw_perf_event {
120 #ifdef CONFIG_PERF_EVENTS
121 union {
122 struct { /* hardware */
123 u64 config;
124 u64 last_tag;
125 unsigned long config_base;
126 unsigned long event_base;
127 int event_base_rdpmc;
128 int idx;
129 int last_cpu;
130 int flags;
131
132 struct hw_perf_event_extra extra_reg;
133 struct hw_perf_event_extra branch_reg;
134 };
135 struct { /* software */
136 struct hrtimer hrtimer;
137 };
138 struct { /* tracepoint */
139 /* for tp_event->class */
140 struct list_head tp_list;
141 };
142 struct { /* amd_power */
143 u64 pwr_acc;
144 u64 ptsc;
145 };
146 #ifdef CONFIG_HAVE_HW_BREAKPOINT
147 struct { /* breakpoint */
148 /*
149 * Crufty hack to avoid the chicken and egg
150 * problem hw_breakpoint has with context
151 * creation and event initalization.
152 */
153 struct arch_hw_breakpoint info;
154 struct list_head bp_list;
155 };
156 #endif
157 struct { /* amd_iommu */
158 u8 iommu_bank;
159 u8 iommu_cntr;
160 u16 padding;
161 u64 conf;
162 u64 conf1;
163 };
164 };
165 /*
166 * If the event is a per task event, this will point to the task in
167 * question. See the comment in perf_event_alloc().
168 */
169 struct task_struct *target;
170
171 /*
172 * PMU would store hardware filter configuration
173 * here.
174 */
175 void *addr_filters;
176
177 /* Last sync'ed generation of filters */
178 unsigned long addr_filters_gen;
179
180 /*
181 * hw_perf_event::state flags; used to track the PERF_EF_* state.
182 */
183 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
184 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
185 #define PERF_HES_ARCH 0x04
186
187 int state;
188
189 /*
190 * The last observed hardware counter value, updated with a
191 * local64_cmpxchg() such that pmu::read() can be called nested.
192 */
193 local64_t prev_count;
194
195 /*
196 * The period to start the next sample with.
197 */
198 u64 sample_period;
199
200 /*
201 * The period we started this sample with.
202 */
203 u64 last_period;
204
205 /*
206 * However much is left of the current period; note that this is
207 * a full 64bit value and allows for generation of periods longer
208 * than hardware might allow.
209 */
210 local64_t period_left;
211
212 /*
213 * State for throttling the event, see __perf_event_overflow() and
214 * perf_adjust_freq_unthr_context().
215 */
216 u64 interrupts_seq;
217 u64 interrupts;
218
219 /*
220 * State for freq target events, see __perf_event_overflow() and
221 * perf_adjust_freq_unthr_context().
222 */
223 u64 freq_time_stamp;
224 u64 freq_count_stamp;
225 #endif
226 };
227
228 struct perf_event;
229
230 /*
231 * Common implementation detail of pmu::{start,commit,cancel}_txn
232 */
233 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
234 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
235
236 /**
237 * pmu::capabilities flags
238 */
239 #define PERF_PMU_CAP_NO_INTERRUPT 0x01
240 #define PERF_PMU_CAP_NO_NMI 0x02
241 #define PERF_PMU_CAP_AUX_NO_SG 0x04
242 #define PERF_PMU_CAP_AUX_SW_DOUBLEBUF 0x08
243 #define PERF_PMU_CAP_EXCLUSIVE 0x10
244 #define PERF_PMU_CAP_ITRACE 0x20
245 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
246
247 /**
248 * struct pmu - generic performance monitoring unit
249 */
250 struct pmu {
251 struct list_head entry;
252
253 struct module *module;
254 struct device *dev;
255 const struct attribute_group **attr_groups;
256 const char *name;
257 int type;
258
259 /*
260 * various common per-pmu feature flags
261 */
262 int capabilities;
263
264 int * __percpu pmu_disable_count;
265 struct perf_cpu_context * __percpu pmu_cpu_context;
266 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
267 int task_ctx_nr;
268 int hrtimer_interval_ms;
269
270 /* number of address filters this PMU can do */
271 unsigned int nr_addr_filters;
272
273 /*
274 * Fully disable/enable this PMU, can be used to protect from the PMI
275 * as well as for lazy/batch writing of the MSRs.
276 */
277 void (*pmu_enable) (struct pmu *pmu); /* optional */
278 void (*pmu_disable) (struct pmu *pmu); /* optional */
279
280 /*
281 * Try and initialize the event for this PMU.
282 *
283 * Returns:
284 * -ENOENT -- @event is not for this PMU
285 *
286 * -ENODEV -- @event is for this PMU but PMU not present
287 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
288 * -EINVAL -- @event is for this PMU but @event is not valid
289 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
290 * -EACCESS -- @event is for this PMU, @event is valid, but no privilidges
291 *
292 * 0 -- @event is for this PMU and valid
293 *
294 * Other error return values are allowed.
295 */
296 int (*event_init) (struct perf_event *event);
297
298 /*
299 * Notification that the event was mapped or unmapped. Called
300 * in the context of the mapping task.
301 */
302 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
303 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
304
305 /*
306 * Flags for ->add()/->del()/ ->start()/->stop(). There are
307 * matching hw_perf_event::state flags.
308 */
309 #define PERF_EF_START 0x01 /* start the counter when adding */
310 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
311 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
312
313 /*
314 * Adds/Removes a counter to/from the PMU, can be done inside a
315 * transaction, see the ->*_txn() methods.
316 *
317 * The add/del callbacks will reserve all hardware resources required
318 * to service the event, this includes any counter constraint
319 * scheduling etc.
320 *
321 * Called with IRQs disabled and the PMU disabled on the CPU the event
322 * is on.
323 *
324 * ->add() called without PERF_EF_START should result in the same state
325 * as ->add() followed by ->stop().
326 *
327 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
328 * ->stop() that must deal with already being stopped without
329 * PERF_EF_UPDATE.
330 */
331 int (*add) (struct perf_event *event, int flags);
332 void (*del) (struct perf_event *event, int flags);
333
334 /*
335 * Starts/Stops a counter present on the PMU.
336 *
337 * The PMI handler should stop the counter when perf_event_overflow()
338 * returns !0. ->start() will be used to continue.
339 *
340 * Also used to change the sample period.
341 *
342 * Called with IRQs disabled and the PMU disabled on the CPU the event
343 * is on -- will be called from NMI context with the PMU generates
344 * NMIs.
345 *
346 * ->stop() with PERF_EF_UPDATE will read the counter and update
347 * period/count values like ->read() would.
348 *
349 * ->start() with PERF_EF_RELOAD will reprogram the the counter
350 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
351 */
352 void (*start) (struct perf_event *event, int flags);
353 void (*stop) (struct perf_event *event, int flags);
354
355 /*
356 * Updates the counter value of the event.
357 *
358 * For sampling capable PMUs this will also update the software period
359 * hw_perf_event::period_left field.
360 */
361 void (*read) (struct perf_event *event);
362
363 /*
364 * Group events scheduling is treated as a transaction, add
365 * group events as a whole and perform one schedulability test.
366 * If the test fails, roll back the whole group
367 *
368 * Start the transaction, after this ->add() doesn't need to
369 * do schedulability tests.
370 *
371 * Optional.
372 */
373 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
374 /*
375 * If ->start_txn() disabled the ->add() schedulability test
376 * then ->commit_txn() is required to perform one. On success
377 * the transaction is closed. On error the transaction is kept
378 * open until ->cancel_txn() is called.
379 *
380 * Optional.
381 */
382 int (*commit_txn) (struct pmu *pmu);
383 /*
384 * Will cancel the transaction, assumes ->del() is called
385 * for each successful ->add() during the transaction.
386 *
387 * Optional.
388 */
389 void (*cancel_txn) (struct pmu *pmu);
390
391 /*
392 * Will return the value for perf_event_mmap_page::index for this event,
393 * if no implementation is provided it will default to: event->hw.idx + 1.
394 */
395 int (*event_idx) (struct perf_event *event); /*optional */
396
397 /*
398 * context-switches callback
399 */
400 void (*sched_task) (struct perf_event_context *ctx,
401 bool sched_in);
402 /*
403 * PMU specific data size
404 */
405 size_t task_ctx_size;
406
407
408 /*
409 * Set up pmu-private data structures for an AUX area
410 */
411 void *(*setup_aux) (int cpu, void **pages,
412 int nr_pages, bool overwrite);
413 /* optional */
414
415 /*
416 * Free pmu-private AUX data structures
417 */
418 void (*free_aux) (void *aux); /* optional */
419
420 /*
421 * Validate address range filters: make sure the HW supports the
422 * requested configuration and number of filters; return 0 if the
423 * supplied filters are valid, -errno otherwise.
424 *
425 * Runs in the context of the ioctl()ing process and is not serialized
426 * with the rest of the PMU callbacks.
427 */
428 int (*addr_filters_validate) (struct list_head *filters);
429 /* optional */
430
431 /*
432 * Synchronize address range filter configuration:
433 * translate hw-agnostic filters into hardware configuration in
434 * event::hw::addr_filters.
435 *
436 * Runs as a part of filter sync sequence that is done in ->start()
437 * callback by calling perf_event_addr_filters_sync().
438 *
439 * May (and should) traverse event::addr_filters::list, for which its
440 * caller provides necessary serialization.
441 */
442 void (*addr_filters_sync) (struct perf_event *event);
443 /* optional */
444
445 /*
446 * Filter events for PMU-specific reasons.
447 */
448 int (*filter_match) (struct perf_event *event); /* optional */
449 };
450
451 /**
452 * struct perf_addr_filter - address range filter definition
453 * @entry: event's filter list linkage
454 * @inode: object file's inode for file-based filters
455 * @offset: filter range offset
456 * @size: filter range size
457 * @range: 1: range, 0: address
458 * @filter: 1: filter/start, 0: stop
459 *
460 * This is a hardware-agnostic filter configuration as specified by the user.
461 */
462 struct perf_addr_filter {
463 struct list_head entry;
464 struct inode *inode;
465 unsigned long offset;
466 unsigned long size;
467 unsigned int range : 1,
468 filter : 1;
469 };
470
471 /**
472 * struct perf_addr_filters_head - container for address range filters
473 * @list: list of filters for this event
474 * @lock: spinlock that serializes accesses to the @list and event's
475 * (and its children's) filter generations.
476 * @nr_file_filters: number of file-based filters
477 *
478 * A child event will use parent's @list (and therefore @lock), so they are
479 * bundled together; see perf_event_addr_filters().
480 */
481 struct perf_addr_filters_head {
482 struct list_head list;
483 raw_spinlock_t lock;
484 unsigned int nr_file_filters;
485 };
486
487 /**
488 * enum perf_event_state - the states of a event
489 */
490 enum perf_event_state {
491 PERF_EVENT_STATE_DEAD = -4,
492 PERF_EVENT_STATE_EXIT = -3,
493 PERF_EVENT_STATE_ERROR = -2,
494 PERF_EVENT_STATE_OFF = -1,
495 PERF_EVENT_STATE_INACTIVE = 0,
496 PERF_EVENT_STATE_ACTIVE = 1,
497 };
498
499 struct file;
500 struct perf_sample_data;
501
502 typedef void (*perf_overflow_handler_t)(struct perf_event *,
503 struct perf_sample_data *,
504 struct pt_regs *regs);
505
506 /*
507 * Event capabilities. For event_caps and groups caps.
508 *
509 * PERF_EV_CAP_SOFTWARE: Is a software event.
510 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
511 * from any CPU in the package where it is active.
512 */
513 #define PERF_EV_CAP_SOFTWARE BIT(0)
514 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
515
516 #define SWEVENT_HLIST_BITS 8
517 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
518
519 struct swevent_hlist {
520 struct hlist_head heads[SWEVENT_HLIST_SIZE];
521 struct rcu_head rcu_head;
522 };
523
524 #define PERF_ATTACH_CONTEXT 0x01
525 #define PERF_ATTACH_GROUP 0x02
526 #define PERF_ATTACH_TASK 0x04
527 #define PERF_ATTACH_TASK_DATA 0x08
528 #define PERF_ATTACH_ITRACE 0x10
529
530 struct perf_cgroup;
531 struct ring_buffer;
532
533 struct pmu_event_list {
534 raw_spinlock_t lock;
535 struct list_head list;
536 };
537
538 /**
539 * struct perf_event - performance event kernel representation:
540 */
541 struct perf_event {
542 #ifdef CONFIG_PERF_EVENTS
543 /*
544 * entry onto perf_event_context::event_list;
545 * modifications require ctx->lock
546 * RCU safe iterations.
547 */
548 struct list_head event_entry;
549
550 /*
551 * XXX: group_entry and sibling_list should be mutually exclusive;
552 * either you're a sibling on a group, or you're the group leader.
553 * Rework the code to always use the same list element.
554 *
555 * Locked for modification by both ctx->mutex and ctx->lock; holding
556 * either sufficies for read.
557 */
558 struct list_head group_entry;
559 struct list_head sibling_list;
560
561 /*
562 * We need storage to track the entries in perf_pmu_migrate_context; we
563 * cannot use the event_entry because of RCU and we want to keep the
564 * group in tact which avoids us using the other two entries.
565 */
566 struct list_head migrate_entry;
567
568 struct hlist_node hlist_entry;
569 struct list_head active_entry;
570 int nr_siblings;
571
572 /* Not serialized. Only written during event initialization. */
573 int event_caps;
574 /* The cumulative AND of all event_caps for events in this group. */
575 int group_caps;
576
577 struct perf_event *group_leader;
578 struct pmu *pmu;
579 void *pmu_private;
580
581 enum perf_event_state state;
582 unsigned int attach_state;
583 local64_t count;
584 atomic64_t child_count;
585
586 /*
587 * These are the total time in nanoseconds that the event
588 * has been enabled (i.e. eligible to run, and the task has
589 * been scheduled in, if this is a per-task event)
590 * and running (scheduled onto the CPU), respectively.
591 */
592 u64 total_time_enabled;
593 u64 total_time_running;
594 u64 tstamp;
595
596 /*
597 * timestamp shadows the actual context timing but it can
598 * be safely used in NMI interrupt context. It reflects the
599 * context time as it was when the event was last scheduled in.
600 *
601 * ctx_time already accounts for ctx->timestamp. Therefore to
602 * compute ctx_time for a sample, simply add perf_clock().
603 */
604 u64 shadow_ctx_time;
605
606 struct perf_event_attr attr;
607 u16 header_size;
608 u16 id_header_size;
609 u16 read_size;
610 struct hw_perf_event hw;
611
612 struct perf_event_context *ctx;
613 atomic_long_t refcount;
614
615 /*
616 * These accumulate total time (in nanoseconds) that children
617 * events have been enabled and running, respectively.
618 */
619 atomic64_t child_total_time_enabled;
620 atomic64_t child_total_time_running;
621
622 /*
623 * Protect attach/detach and child_list:
624 */
625 struct mutex child_mutex;
626 struct list_head child_list;
627 struct perf_event *parent;
628
629 int oncpu;
630 int cpu;
631
632 struct list_head owner_entry;
633 struct task_struct *owner;
634
635 /* mmap bits */
636 struct mutex mmap_mutex;
637 atomic_t mmap_count;
638
639 struct ring_buffer *rb;
640 struct list_head rb_entry;
641 unsigned long rcu_batches;
642 int rcu_pending;
643
644 /* poll related */
645 wait_queue_head_t waitq;
646 struct fasync_struct *fasync;
647
648 /* delayed work for NMIs and such */
649 int pending_wakeup;
650 int pending_kill;
651 int pending_disable;
652 struct irq_work pending;
653
654 atomic_t event_limit;
655
656 /* address range filters */
657 struct perf_addr_filters_head addr_filters;
658 /* vma address array for file-based filders */
659 unsigned long *addr_filters_offs;
660 unsigned long addr_filters_gen;
661
662 void (*destroy)(struct perf_event *);
663 struct rcu_head rcu_head;
664
665 struct pid_namespace *ns;
666 u64 id;
667
668 u64 (*clock)(void);
669 perf_overflow_handler_t overflow_handler;
670 void *overflow_handler_context;
671 #ifdef CONFIG_BPF_SYSCALL
672 perf_overflow_handler_t orig_overflow_handler;
673 struct bpf_prog *prog;
674 #endif
675
676 #ifdef CONFIG_EVENT_TRACING
677 struct trace_event_call *tp_event;
678 struct event_filter *filter;
679 #ifdef CONFIG_FUNCTION_TRACER
680 struct ftrace_ops ftrace_ops;
681 #endif
682 #endif
683
684 #ifdef CONFIG_CGROUP_PERF
685 struct perf_cgroup *cgrp; /* cgroup event is attach to */
686 #endif
687
688 struct list_head sb_list;
689 #endif /* CONFIG_PERF_EVENTS */
690 };
691
692 /**
693 * struct perf_event_context - event context structure
694 *
695 * Used as a container for task events and CPU events as well:
696 */
697 struct perf_event_context {
698 struct pmu *pmu;
699 /*
700 * Protect the states of the events in the list,
701 * nr_active, and the list:
702 */
703 raw_spinlock_t lock;
704 /*
705 * Protect the list of events. Locking either mutex or lock
706 * is sufficient to ensure the list doesn't change; to change
707 * the list you need to lock both the mutex and the spinlock.
708 */
709 struct mutex mutex;
710
711 struct list_head active_ctx_list;
712 struct list_head pinned_groups;
713 struct list_head flexible_groups;
714 struct list_head event_list;
715 int nr_events;
716 int nr_active;
717 int is_active;
718 int nr_stat;
719 int nr_freq;
720 int rotate_disable;
721 atomic_t refcount;
722 struct task_struct *task;
723
724 /*
725 * Context clock, runs when context enabled.
726 */
727 u64 time;
728 u64 timestamp;
729
730 /*
731 * These fields let us detect when two contexts have both
732 * been cloned (inherited) from a common ancestor.
733 */
734 struct perf_event_context *parent_ctx;
735 u64 parent_gen;
736 u64 generation;
737 int pin_count;
738 #ifdef CONFIG_CGROUP_PERF
739 int nr_cgroups; /* cgroup evts */
740 #endif
741 void *task_ctx_data; /* pmu specific data */
742 struct rcu_head rcu_head;
743 };
744
745 /*
746 * Number of contexts where an event can trigger:
747 * task, softirq, hardirq, nmi.
748 */
749 #define PERF_NR_CONTEXTS 4
750
751 /**
752 * struct perf_event_cpu_context - per cpu event context structure
753 */
754 struct perf_cpu_context {
755 struct perf_event_context ctx;
756 struct perf_event_context *task_ctx;
757 int active_oncpu;
758 int exclusive;
759
760 raw_spinlock_t hrtimer_lock;
761 struct hrtimer hrtimer;
762 ktime_t hrtimer_interval;
763 unsigned int hrtimer_active;
764
765 #ifdef CONFIG_CGROUP_PERF
766 struct perf_cgroup *cgrp;
767 struct list_head cgrp_cpuctx_entry;
768 #endif
769
770 struct list_head sched_cb_entry;
771 int sched_cb_usage;
772
773 int online;
774 };
775
776 struct perf_output_handle {
777 struct perf_event *event;
778 struct ring_buffer *rb;
779 unsigned long wakeup;
780 unsigned long size;
781 u64 aux_flags;
782 union {
783 void *addr;
784 unsigned long head;
785 };
786 int page;
787 };
788
789 struct bpf_perf_event_data_kern {
790 struct pt_regs *regs;
791 struct perf_sample_data *data;
792 struct perf_event *event;
793 };
794
795 #ifdef CONFIG_CGROUP_PERF
796
797 /*
798 * perf_cgroup_info keeps track of time_enabled for a cgroup.
799 * This is a per-cpu dynamically allocated data structure.
800 */
801 struct perf_cgroup_info {
802 u64 time;
803 u64 timestamp;
804 };
805
806 struct perf_cgroup {
807 struct cgroup_subsys_state css;
808 struct perf_cgroup_info __percpu *info;
809 };
810
811 /*
812 * Must ensure cgroup is pinned (css_get) before calling
813 * this function. In other words, we cannot call this function
814 * if there is no cgroup event for the current CPU context.
815 */
816 static inline struct perf_cgroup *
817 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
818 {
819 return container_of(task_css_check(task, perf_event_cgrp_id,
820 ctx ? lockdep_is_held(&ctx->lock)
821 : true),
822 struct perf_cgroup, css);
823 }
824 #endif /* CONFIG_CGROUP_PERF */
825
826 #ifdef CONFIG_PERF_EVENTS
827
828 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
829 struct perf_event *event);
830 extern void perf_aux_output_end(struct perf_output_handle *handle,
831 unsigned long size);
832 extern int perf_aux_output_skip(struct perf_output_handle *handle,
833 unsigned long size);
834 extern void *perf_get_aux(struct perf_output_handle *handle);
835 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
836 extern void perf_event_itrace_started(struct perf_event *event);
837
838 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
839 extern void perf_pmu_unregister(struct pmu *pmu);
840
841 extern int perf_num_counters(void);
842 extern const char *perf_pmu_name(void);
843 extern void __perf_event_task_sched_in(struct task_struct *prev,
844 struct task_struct *task);
845 extern void __perf_event_task_sched_out(struct task_struct *prev,
846 struct task_struct *next);
847 extern int perf_event_init_task(struct task_struct *child);
848 extern void perf_event_exit_task(struct task_struct *child);
849 extern void perf_event_free_task(struct task_struct *task);
850 extern void perf_event_delayed_put(struct task_struct *task);
851 extern struct file *perf_event_get(unsigned int fd);
852 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
853 extern void perf_event_print_debug(void);
854 extern void perf_pmu_disable(struct pmu *pmu);
855 extern void perf_pmu_enable(struct pmu *pmu);
856 extern void perf_sched_cb_dec(struct pmu *pmu);
857 extern void perf_sched_cb_inc(struct pmu *pmu);
858 extern int perf_event_task_disable(void);
859 extern int perf_event_task_enable(void);
860 extern int perf_event_refresh(struct perf_event *event, int refresh);
861 extern void perf_event_update_userpage(struct perf_event *event);
862 extern int perf_event_release_kernel(struct perf_event *event);
863 extern struct perf_event *
864 perf_event_create_kernel_counter(struct perf_event_attr *attr,
865 int cpu,
866 struct task_struct *task,
867 perf_overflow_handler_t callback,
868 void *context);
869 extern void perf_pmu_migrate_context(struct pmu *pmu,
870 int src_cpu, int dst_cpu);
871 int perf_event_read_local(struct perf_event *event, u64 *value,
872 u64 *enabled, u64 *running);
873 extern u64 perf_event_read_value(struct perf_event *event,
874 u64 *enabled, u64 *running);
875
876
877 struct perf_sample_data {
878 /*
879 * Fields set by perf_sample_data_init(), group so as to
880 * minimize the cachelines touched.
881 */
882 u64 addr;
883 struct perf_raw_record *raw;
884 struct perf_branch_stack *br_stack;
885 u64 period;
886 u64 weight;
887 u64 txn;
888 union perf_mem_data_src data_src;
889
890 /*
891 * The other fields, optionally {set,used} by
892 * perf_{prepare,output}_sample().
893 */
894 u64 type;
895 u64 ip;
896 struct {
897 u32 pid;
898 u32 tid;
899 } tid_entry;
900 u64 time;
901 u64 id;
902 u64 stream_id;
903 struct {
904 u32 cpu;
905 u32 reserved;
906 } cpu_entry;
907 struct perf_callchain_entry *callchain;
908
909 /*
910 * regs_user may point to task_pt_regs or to regs_user_copy, depending
911 * on arch details.
912 */
913 struct perf_regs regs_user;
914 struct pt_regs regs_user_copy;
915
916 struct perf_regs regs_intr;
917 u64 stack_user_size;
918
919 u64 phys_addr;
920 } ____cacheline_aligned;
921
922 /* default value for data source */
923 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
924 PERF_MEM_S(LVL, NA) |\
925 PERF_MEM_S(SNOOP, NA) |\
926 PERF_MEM_S(LOCK, NA) |\
927 PERF_MEM_S(TLB, NA))
928
929 static inline void perf_sample_data_init(struct perf_sample_data *data,
930 u64 addr, u64 period)
931 {
932 /* remaining struct members initialized in perf_prepare_sample() */
933 data->addr = addr;
934 data->raw = NULL;
935 data->br_stack = NULL;
936 data->period = period;
937 data->weight = 0;
938 data->data_src.val = PERF_MEM_NA;
939 data->txn = 0;
940 }
941
942 extern void perf_output_sample(struct perf_output_handle *handle,
943 struct perf_event_header *header,
944 struct perf_sample_data *data,
945 struct perf_event *event);
946 extern void perf_prepare_sample(struct perf_event_header *header,
947 struct perf_sample_data *data,
948 struct perf_event *event,
949 struct pt_regs *regs);
950
951 extern int perf_event_overflow(struct perf_event *event,
952 struct perf_sample_data *data,
953 struct pt_regs *regs);
954
955 extern void perf_event_output_forward(struct perf_event *event,
956 struct perf_sample_data *data,
957 struct pt_regs *regs);
958 extern void perf_event_output_backward(struct perf_event *event,
959 struct perf_sample_data *data,
960 struct pt_regs *regs);
961 extern void perf_event_output(struct perf_event *event,
962 struct perf_sample_data *data,
963 struct pt_regs *regs);
964
965 static inline bool
966 is_default_overflow_handler(struct perf_event *event)
967 {
968 if (likely(event->overflow_handler == perf_event_output_forward))
969 return true;
970 if (unlikely(event->overflow_handler == perf_event_output_backward))
971 return true;
972 return false;
973 }
974
975 extern void
976 perf_event_header__init_id(struct perf_event_header *header,
977 struct perf_sample_data *data,
978 struct perf_event *event);
979 extern void
980 perf_event__output_id_sample(struct perf_event *event,
981 struct perf_output_handle *handle,
982 struct perf_sample_data *sample);
983
984 extern void
985 perf_log_lost_samples(struct perf_event *event, u64 lost);
986
987 static inline bool is_sampling_event(struct perf_event *event)
988 {
989 return event->attr.sample_period != 0;
990 }
991
992 /*
993 * Return 1 for a software event, 0 for a hardware event
994 */
995 static inline int is_software_event(struct perf_event *event)
996 {
997 return event->event_caps & PERF_EV_CAP_SOFTWARE;
998 }
999
1000 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1001
1002 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1003 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1004
1005 #ifndef perf_arch_fetch_caller_regs
1006 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1007 #endif
1008
1009 /*
1010 * Take a snapshot of the regs. Skip ip and frame pointer to
1011 * the nth caller. We only need a few of the regs:
1012 * - ip for PERF_SAMPLE_IP
1013 * - cs for user_mode() tests
1014 * - bp for callchains
1015 * - eflags, for future purposes, just in case
1016 */
1017 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1018 {
1019 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1020 }
1021
1022 static __always_inline void
1023 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1024 {
1025 if (static_key_false(&perf_swevent_enabled[event_id]))
1026 __perf_sw_event(event_id, nr, regs, addr);
1027 }
1028
1029 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1030
1031 /*
1032 * 'Special' version for the scheduler, it hard assumes no recursion,
1033 * which is guaranteed by us not actually scheduling inside other swevents
1034 * because those disable preemption.
1035 */
1036 static __always_inline void
1037 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1038 {
1039 if (static_key_false(&perf_swevent_enabled[event_id])) {
1040 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1041
1042 perf_fetch_caller_regs(regs);
1043 ___perf_sw_event(event_id, nr, regs, addr);
1044 }
1045 }
1046
1047 extern struct static_key_false perf_sched_events;
1048
1049 static __always_inline bool
1050 perf_sw_migrate_enabled(void)
1051 {
1052 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1053 return true;
1054 return false;
1055 }
1056
1057 static inline void perf_event_task_migrate(struct task_struct *task)
1058 {
1059 if (perf_sw_migrate_enabled())
1060 task->sched_migrated = 1;
1061 }
1062
1063 static inline void perf_event_task_sched_in(struct task_struct *prev,
1064 struct task_struct *task)
1065 {
1066 if (static_branch_unlikely(&perf_sched_events))
1067 __perf_event_task_sched_in(prev, task);
1068
1069 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1070 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1071
1072 perf_fetch_caller_regs(regs);
1073 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1074 task->sched_migrated = 0;
1075 }
1076 }
1077
1078 static inline void perf_event_task_sched_out(struct task_struct *prev,
1079 struct task_struct *next)
1080 {
1081 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1082
1083 if (static_branch_unlikely(&perf_sched_events))
1084 __perf_event_task_sched_out(prev, next);
1085 }
1086
1087 extern void perf_event_mmap(struct vm_area_struct *vma);
1088 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1089 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1090 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1091
1092 extern void perf_event_exec(void);
1093 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1094 extern void perf_event_namespaces(struct task_struct *tsk);
1095 extern void perf_event_fork(struct task_struct *tsk);
1096
1097 /* Callchains */
1098 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1099
1100 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1101 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1102 extern struct perf_callchain_entry *
1103 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1104 u32 max_stack, bool crosstask, bool add_mark);
1105 extern int get_callchain_buffers(int max_stack);
1106 extern void put_callchain_buffers(void);
1107
1108 extern int sysctl_perf_event_max_stack;
1109 extern int sysctl_perf_event_max_contexts_per_stack;
1110
1111 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1112 {
1113 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1114 struct perf_callchain_entry *entry = ctx->entry;
1115 entry->ip[entry->nr++] = ip;
1116 ++ctx->contexts;
1117 return 0;
1118 } else {
1119 ctx->contexts_maxed = true;
1120 return -1; /* no more room, stop walking the stack */
1121 }
1122 }
1123
1124 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1125 {
1126 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1127 struct perf_callchain_entry *entry = ctx->entry;
1128 entry->ip[entry->nr++] = ip;
1129 ++ctx->nr;
1130 return 0;
1131 } else {
1132 return -1; /* no more room, stop walking the stack */
1133 }
1134 }
1135
1136 extern int sysctl_perf_event_paranoid;
1137 extern int sysctl_perf_event_mlock;
1138 extern int sysctl_perf_event_sample_rate;
1139 extern int sysctl_perf_cpu_time_max_percent;
1140
1141 extern void perf_sample_event_took(u64 sample_len_ns);
1142
1143 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1144 void __user *buffer, size_t *lenp,
1145 loff_t *ppos);
1146 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1147 void __user *buffer, size_t *lenp,
1148 loff_t *ppos);
1149
1150 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1151 void __user *buffer, size_t *lenp, loff_t *ppos);
1152
1153 static inline bool perf_paranoid_tracepoint_raw(void)
1154 {
1155 return sysctl_perf_event_paranoid > -1;
1156 }
1157
1158 static inline bool perf_paranoid_cpu(void)
1159 {
1160 return sysctl_perf_event_paranoid > 0;
1161 }
1162
1163 static inline bool perf_paranoid_kernel(void)
1164 {
1165 return sysctl_perf_event_paranoid > 1;
1166 }
1167
1168 extern void perf_event_init(void);
1169 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1170 int entry_size, struct pt_regs *regs,
1171 struct hlist_head *head, int rctx,
1172 struct task_struct *task);
1173 extern void perf_bp_event(struct perf_event *event, void *data);
1174
1175 #ifndef perf_misc_flags
1176 # define perf_misc_flags(regs) \
1177 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1178 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1179 #endif
1180
1181 static inline bool has_branch_stack(struct perf_event *event)
1182 {
1183 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1184 }
1185
1186 static inline bool needs_branch_stack(struct perf_event *event)
1187 {
1188 return event->attr.branch_sample_type != 0;
1189 }
1190
1191 static inline bool has_aux(struct perf_event *event)
1192 {
1193 return event->pmu->setup_aux;
1194 }
1195
1196 static inline bool is_write_backward(struct perf_event *event)
1197 {
1198 return !!event->attr.write_backward;
1199 }
1200
1201 static inline bool has_addr_filter(struct perf_event *event)
1202 {
1203 return event->pmu->nr_addr_filters;
1204 }
1205
1206 /*
1207 * An inherited event uses parent's filters
1208 */
1209 static inline struct perf_addr_filters_head *
1210 perf_event_addr_filters(struct perf_event *event)
1211 {
1212 struct perf_addr_filters_head *ifh = &event->addr_filters;
1213
1214 if (event->parent)
1215 ifh = &event->parent->addr_filters;
1216
1217 return ifh;
1218 }
1219
1220 extern void perf_event_addr_filters_sync(struct perf_event *event);
1221
1222 extern int perf_output_begin(struct perf_output_handle *handle,
1223 struct perf_event *event, unsigned int size);
1224 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1225 struct perf_event *event,
1226 unsigned int size);
1227 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1228 struct perf_event *event,
1229 unsigned int size);
1230
1231 extern void perf_output_end(struct perf_output_handle *handle);
1232 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1233 const void *buf, unsigned int len);
1234 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1235 unsigned int len);
1236 extern int perf_swevent_get_recursion_context(void);
1237 extern void perf_swevent_put_recursion_context(int rctx);
1238 extern u64 perf_swevent_set_period(struct perf_event *event);
1239 extern void perf_event_enable(struct perf_event *event);
1240 extern void perf_event_disable(struct perf_event *event);
1241 extern void perf_event_disable_local(struct perf_event *event);
1242 extern void perf_event_disable_inatomic(struct perf_event *event);
1243 extern void perf_event_task_tick(void);
1244 extern int perf_event_account_interrupt(struct perf_event *event);
1245 #else /* !CONFIG_PERF_EVENTS: */
1246 static inline void *
1247 perf_aux_output_begin(struct perf_output_handle *handle,
1248 struct perf_event *event) { return NULL; }
1249 static inline void
1250 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1251 { }
1252 static inline int
1253 perf_aux_output_skip(struct perf_output_handle *handle,
1254 unsigned long size) { return -EINVAL; }
1255 static inline void *
1256 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1257 static inline void
1258 perf_event_task_migrate(struct task_struct *task) { }
1259 static inline void
1260 perf_event_task_sched_in(struct task_struct *prev,
1261 struct task_struct *task) { }
1262 static inline void
1263 perf_event_task_sched_out(struct task_struct *prev,
1264 struct task_struct *next) { }
1265 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1266 static inline void perf_event_exit_task(struct task_struct *child) { }
1267 static inline void perf_event_free_task(struct task_struct *task) { }
1268 static inline void perf_event_delayed_put(struct task_struct *task) { }
1269 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1270 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1271 {
1272 return ERR_PTR(-EINVAL);
1273 }
1274 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1275 u64 *enabled, u64 *running)
1276 {
1277 return -EINVAL;
1278 }
1279 static inline void perf_event_print_debug(void) { }
1280 static inline int perf_event_task_disable(void) { return -EINVAL; }
1281 static inline int perf_event_task_enable(void) { return -EINVAL; }
1282 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1283 {
1284 return -EINVAL;
1285 }
1286
1287 static inline void
1288 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1289 static inline void
1290 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1291 static inline void
1292 perf_bp_event(struct perf_event *event, void *data) { }
1293
1294 static inline int perf_register_guest_info_callbacks
1295 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1296 static inline int perf_unregister_guest_info_callbacks
1297 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1298
1299 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1300 static inline void perf_event_exec(void) { }
1301 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1302 static inline void perf_event_namespaces(struct task_struct *tsk) { }
1303 static inline void perf_event_fork(struct task_struct *tsk) { }
1304 static inline void perf_event_init(void) { }
1305 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1306 static inline void perf_swevent_put_recursion_context(int rctx) { }
1307 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1308 static inline void perf_event_enable(struct perf_event *event) { }
1309 static inline void perf_event_disable(struct perf_event *event) { }
1310 static inline int __perf_event_disable(void *info) { return -1; }
1311 static inline void perf_event_task_tick(void) { }
1312 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1313 #endif
1314
1315 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1316 extern void perf_restore_debug_store(void);
1317 #else
1318 static inline void perf_restore_debug_store(void) { }
1319 #endif
1320
1321 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1322 {
1323 return frag->pad < sizeof(u64);
1324 }
1325
1326 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1327
1328 struct perf_pmu_events_attr {
1329 struct device_attribute attr;
1330 u64 id;
1331 const char *event_str;
1332 };
1333
1334 struct perf_pmu_events_ht_attr {
1335 struct device_attribute attr;
1336 u64 id;
1337 const char *event_str_ht;
1338 const char *event_str_noht;
1339 };
1340
1341 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1342 char *page);
1343
1344 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1345 static struct perf_pmu_events_attr _var = { \
1346 .attr = __ATTR(_name, 0444, _show, NULL), \
1347 .id = _id, \
1348 };
1349
1350 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1351 static struct perf_pmu_events_attr _var = { \
1352 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1353 .id = 0, \
1354 .event_str = _str, \
1355 };
1356
1357 #define PMU_FORMAT_ATTR(_name, _format) \
1358 static ssize_t \
1359 _name##_show(struct device *dev, \
1360 struct device_attribute *attr, \
1361 char *page) \
1362 { \
1363 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1364 return sprintf(page, _format "\n"); \
1365 } \
1366 \
1367 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1368
1369 /* Performance counter hotplug functions */
1370 #ifdef CONFIG_PERF_EVENTS
1371 int perf_event_init_cpu(unsigned int cpu);
1372 int perf_event_exit_cpu(unsigned int cpu);
1373 #else
1374 #define perf_event_init_cpu NULL
1375 #define perf_event_exit_cpu NULL
1376 #endif
1377
1378 #endif /* _LINUX_PERF_EVENT_H */