]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/linux/sched.h
mm, oom: fix race when specifying a thread as the oom origin
[mirror_ubuntu-artful-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8 int sched_priority;
9 };
10
11 #include <asm/param.h> /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54
55 #include <asm/processor.h>
56
57 struct exec_domain;
58 struct futex_pi_state;
59 struct robust_list_head;
60 struct bio_list;
61 struct fs_struct;
62 struct perf_event_context;
63 struct blk_plug;
64
65 /*
66 * List of flags we want to share for kernel threads,
67 * if only because they are not used by them anyway.
68 */
69 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
70
71 /*
72 * These are the constant used to fake the fixed-point load-average
73 * counting. Some notes:
74 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
75 * a load-average precision of 10 bits integer + 11 bits fractional
76 * - if you want to count load-averages more often, you need more
77 * precision, or rounding will get you. With 2-second counting freq,
78 * the EXP_n values would be 1981, 2034 and 2043 if still using only
79 * 11 bit fractions.
80 */
81 extern unsigned long avenrun[]; /* Load averages */
82 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
83
84 #define FSHIFT 11 /* nr of bits of precision */
85 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
86 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
87 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
88 #define EXP_5 2014 /* 1/exp(5sec/5min) */
89 #define EXP_15 2037 /* 1/exp(5sec/15min) */
90
91 #define CALC_LOAD(load,exp,n) \
92 load *= exp; \
93 load += n*(FIXED_1-exp); \
94 load >>= FSHIFT;
95
96 extern unsigned long total_forks;
97 extern int nr_threads;
98 DECLARE_PER_CPU(unsigned long, process_counts);
99 extern int nr_processes(void);
100 extern unsigned long nr_running(void);
101 extern unsigned long nr_uninterruptible(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105
106
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109
110 extern unsigned long get_parent_ip(unsigned long addr);
111
112 struct seq_file;
113 struct cfs_rq;
114 struct task_group;
115 #ifdef CONFIG_SCHED_DEBUG
116 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
117 extern void proc_sched_set_task(struct task_struct *p);
118 extern void
119 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
120 #else
121 static inline void
122 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
123 {
124 }
125 static inline void proc_sched_set_task(struct task_struct *p)
126 {
127 }
128 static inline void
129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
130 {
131 }
132 #endif
133
134 /*
135 * Task state bitmask. NOTE! These bits are also
136 * encoded in fs/proc/array.c: get_task_state().
137 *
138 * We have two separate sets of flags: task->state
139 * is about runnability, while task->exit_state are
140 * about the task exiting. Confusing, but this way
141 * modifying one set can't modify the other one by
142 * mistake.
143 */
144 #define TASK_RUNNING 0
145 #define TASK_INTERRUPTIBLE 1
146 #define TASK_UNINTERRUPTIBLE 2
147 #define __TASK_STOPPED 4
148 #define __TASK_TRACED 8
149 /* in tsk->exit_state */
150 #define EXIT_ZOMBIE 16
151 #define EXIT_DEAD 32
152 /* in tsk->state again */
153 #define TASK_DEAD 64
154 #define TASK_WAKEKILL 128
155 #define TASK_WAKING 256
156 #define TASK_STATE_MAX 512
157
158 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
159
160 extern char ___assert_task_state[1 - 2*!!(
161 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
162
163 /* Convenience macros for the sake of set_task_state */
164 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
165 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
166 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
167
168 /* Convenience macros for the sake of wake_up */
169 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
170 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
171
172 /* get_task_state() */
173 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
174 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
175 __TASK_TRACED)
176
177 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
178 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
179 #define task_is_dead(task) ((task)->exit_state != 0)
180 #define task_is_stopped_or_traced(task) \
181 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
182 #define task_contributes_to_load(task) \
183 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
184 (task->flags & PF_FROZEN) == 0)
185
186 #define __set_task_state(tsk, state_value) \
187 do { (tsk)->state = (state_value); } while (0)
188 #define set_task_state(tsk, state_value) \
189 set_mb((tsk)->state, (state_value))
190
191 /*
192 * set_current_state() includes a barrier so that the write of current->state
193 * is correctly serialised wrt the caller's subsequent test of whether to
194 * actually sleep:
195 *
196 * set_current_state(TASK_UNINTERRUPTIBLE);
197 * if (do_i_need_to_sleep())
198 * schedule();
199 *
200 * If the caller does not need such serialisation then use __set_current_state()
201 */
202 #define __set_current_state(state_value) \
203 do { current->state = (state_value); } while (0)
204 #define set_current_state(state_value) \
205 set_mb(current->state, (state_value))
206
207 /* Task command name length */
208 #define TASK_COMM_LEN 16
209
210 #include <linux/spinlock.h>
211
212 /*
213 * This serializes "schedule()" and also protects
214 * the run-queue from deletions/modifications (but
215 * _adding_ to the beginning of the run-queue has
216 * a separate lock).
217 */
218 extern rwlock_t tasklist_lock;
219 extern spinlock_t mmlist_lock;
220
221 struct task_struct;
222
223 #ifdef CONFIG_PROVE_RCU
224 extern int lockdep_tasklist_lock_is_held(void);
225 #endif /* #ifdef CONFIG_PROVE_RCU */
226
227 extern void sched_init(void);
228 extern void sched_init_smp(void);
229 extern asmlinkage void schedule_tail(struct task_struct *prev);
230 extern void init_idle(struct task_struct *idle, int cpu);
231 extern void init_idle_bootup_task(struct task_struct *idle);
232
233 extern int runqueue_is_locked(int cpu);
234
235 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
236 extern void nohz_balance_enter_idle(int cpu);
237 extern void set_cpu_sd_state_idle(void);
238 extern int get_nohz_timer_target(void);
239 #else
240 static inline void nohz_balance_enter_idle(int cpu) { }
241 static inline void set_cpu_sd_state_idle(void) { }
242 #endif
243
244 /*
245 * Only dump TASK_* tasks. (0 for all tasks)
246 */
247 extern void show_state_filter(unsigned long state_filter);
248
249 static inline void show_state(void)
250 {
251 show_state_filter(0);
252 }
253
254 extern void show_regs(struct pt_regs *);
255
256 /*
257 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
258 * task), SP is the stack pointer of the first frame that should be shown in the back
259 * trace (or NULL if the entire call-chain of the task should be shown).
260 */
261 extern void show_stack(struct task_struct *task, unsigned long *sp);
262
263 void io_schedule(void);
264 long io_schedule_timeout(long timeout);
265
266 extern void cpu_init (void);
267 extern void trap_init(void);
268 extern void update_process_times(int user);
269 extern void scheduler_tick(void);
270
271 extern void sched_show_task(struct task_struct *p);
272
273 #ifdef CONFIG_LOCKUP_DETECTOR
274 extern void touch_softlockup_watchdog(void);
275 extern void touch_softlockup_watchdog_sync(void);
276 extern void touch_all_softlockup_watchdogs(void);
277 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
278 void __user *buffer,
279 size_t *lenp, loff_t *ppos);
280 extern unsigned int softlockup_panic;
281 void lockup_detector_init(void);
282 #else
283 static inline void touch_softlockup_watchdog(void)
284 {
285 }
286 static inline void touch_softlockup_watchdog_sync(void)
287 {
288 }
289 static inline void touch_all_softlockup_watchdogs(void)
290 {
291 }
292 static inline void lockup_detector_init(void)
293 {
294 }
295 #endif
296
297 #ifdef CONFIG_DETECT_HUNG_TASK
298 extern unsigned int sysctl_hung_task_panic;
299 extern unsigned long sysctl_hung_task_check_count;
300 extern unsigned long sysctl_hung_task_timeout_secs;
301 extern unsigned long sysctl_hung_task_warnings;
302 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
303 void __user *buffer,
304 size_t *lenp, loff_t *ppos);
305 #else
306 /* Avoid need for ifdefs elsewhere in the code */
307 enum { sysctl_hung_task_timeout_secs = 0 };
308 #endif
309
310 /* Attach to any functions which should be ignored in wchan output. */
311 #define __sched __attribute__((__section__(".sched.text")))
312
313 /* Linker adds these: start and end of __sched functions */
314 extern char __sched_text_start[], __sched_text_end[];
315
316 /* Is this address in the __sched functions? */
317 extern int in_sched_functions(unsigned long addr);
318
319 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
320 extern signed long schedule_timeout(signed long timeout);
321 extern signed long schedule_timeout_interruptible(signed long timeout);
322 extern signed long schedule_timeout_killable(signed long timeout);
323 extern signed long schedule_timeout_uninterruptible(signed long timeout);
324 asmlinkage void schedule(void);
325 extern void schedule_preempt_disabled(void);
326 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
327
328 struct nsproxy;
329 struct user_namespace;
330
331 /*
332 * Default maximum number of active map areas, this limits the number of vmas
333 * per mm struct. Users can overwrite this number by sysctl but there is a
334 * problem.
335 *
336 * When a program's coredump is generated as ELF format, a section is created
337 * per a vma. In ELF, the number of sections is represented in unsigned short.
338 * This means the number of sections should be smaller than 65535 at coredump.
339 * Because the kernel adds some informative sections to a image of program at
340 * generating coredump, we need some margin. The number of extra sections is
341 * 1-3 now and depends on arch. We use "5" as safe margin, here.
342 */
343 #define MAPCOUNT_ELF_CORE_MARGIN (5)
344 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
345
346 extern int sysctl_max_map_count;
347
348 #include <linux/aio.h>
349
350 #ifdef CONFIG_MMU
351 extern void arch_pick_mmap_layout(struct mm_struct *mm);
352 extern unsigned long
353 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
354 unsigned long, unsigned long);
355 extern unsigned long
356 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
357 unsigned long len, unsigned long pgoff,
358 unsigned long flags);
359 extern void arch_unmap_area(struct mm_struct *, unsigned long);
360 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
361 #else
362 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
363 #endif
364
365
366 extern void set_dumpable(struct mm_struct *mm, int value);
367 extern int get_dumpable(struct mm_struct *mm);
368
369 /* get/set_dumpable() values */
370 #define SUID_DUMPABLE_DISABLED 0
371 #define SUID_DUMPABLE_ENABLED 1
372 #define SUID_DUMPABLE_SAFE 2
373
374 /* mm flags */
375 /* dumpable bits */
376 #define MMF_DUMPABLE 0 /* core dump is permitted */
377 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
378
379 #define MMF_DUMPABLE_BITS 2
380 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
381
382 /* coredump filter bits */
383 #define MMF_DUMP_ANON_PRIVATE 2
384 #define MMF_DUMP_ANON_SHARED 3
385 #define MMF_DUMP_MAPPED_PRIVATE 4
386 #define MMF_DUMP_MAPPED_SHARED 5
387 #define MMF_DUMP_ELF_HEADERS 6
388 #define MMF_DUMP_HUGETLB_PRIVATE 7
389 #define MMF_DUMP_HUGETLB_SHARED 8
390
391 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
392 #define MMF_DUMP_FILTER_BITS 7
393 #define MMF_DUMP_FILTER_MASK \
394 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
395 #define MMF_DUMP_FILTER_DEFAULT \
396 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
397 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
398
399 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
400 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
401 #else
402 # define MMF_DUMP_MASK_DEFAULT_ELF 0
403 #endif
404 /* leave room for more dump flags */
405 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
406 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
407 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
408
409 #define MMF_HAS_UPROBES 19 /* has uprobes */
410 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
411
412 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
413
414 struct sighand_struct {
415 atomic_t count;
416 struct k_sigaction action[_NSIG];
417 spinlock_t siglock;
418 wait_queue_head_t signalfd_wqh;
419 };
420
421 struct pacct_struct {
422 int ac_flag;
423 long ac_exitcode;
424 unsigned long ac_mem;
425 cputime_t ac_utime, ac_stime;
426 unsigned long ac_minflt, ac_majflt;
427 };
428
429 struct cpu_itimer {
430 cputime_t expires;
431 cputime_t incr;
432 u32 error;
433 u32 incr_error;
434 };
435
436 /**
437 * struct task_cputime - collected CPU time counts
438 * @utime: time spent in user mode, in &cputime_t units
439 * @stime: time spent in kernel mode, in &cputime_t units
440 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
441 *
442 * This structure groups together three kinds of CPU time that are
443 * tracked for threads and thread groups. Most things considering
444 * CPU time want to group these counts together and treat all three
445 * of them in parallel.
446 */
447 struct task_cputime {
448 cputime_t utime;
449 cputime_t stime;
450 unsigned long long sum_exec_runtime;
451 };
452 /* Alternate field names when used to cache expirations. */
453 #define prof_exp stime
454 #define virt_exp utime
455 #define sched_exp sum_exec_runtime
456
457 #define INIT_CPUTIME \
458 (struct task_cputime) { \
459 .utime = 0, \
460 .stime = 0, \
461 .sum_exec_runtime = 0, \
462 }
463
464 /*
465 * Disable preemption until the scheduler is running.
466 * Reset by start_kernel()->sched_init()->init_idle().
467 *
468 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
469 * before the scheduler is active -- see should_resched().
470 */
471 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
472
473 /**
474 * struct thread_group_cputimer - thread group interval timer counts
475 * @cputime: thread group interval timers.
476 * @running: non-zero when there are timers running and
477 * @cputime receives updates.
478 * @lock: lock for fields in this struct.
479 *
480 * This structure contains the version of task_cputime, above, that is
481 * used for thread group CPU timer calculations.
482 */
483 struct thread_group_cputimer {
484 struct task_cputime cputime;
485 int running;
486 raw_spinlock_t lock;
487 };
488
489 #include <linux/rwsem.h>
490 struct autogroup;
491
492 /*
493 * NOTE! "signal_struct" does not have its own
494 * locking, because a shared signal_struct always
495 * implies a shared sighand_struct, so locking
496 * sighand_struct is always a proper superset of
497 * the locking of signal_struct.
498 */
499 struct signal_struct {
500 atomic_t sigcnt;
501 atomic_t live;
502 int nr_threads;
503
504 wait_queue_head_t wait_chldexit; /* for wait4() */
505
506 /* current thread group signal load-balancing target: */
507 struct task_struct *curr_target;
508
509 /* shared signal handling: */
510 struct sigpending shared_pending;
511
512 /* thread group exit support */
513 int group_exit_code;
514 /* overloaded:
515 * - notify group_exit_task when ->count is equal to notify_count
516 * - everyone except group_exit_task is stopped during signal delivery
517 * of fatal signals, group_exit_task processes the signal.
518 */
519 int notify_count;
520 struct task_struct *group_exit_task;
521
522 /* thread group stop support, overloads group_exit_code too */
523 int group_stop_count;
524 unsigned int flags; /* see SIGNAL_* flags below */
525
526 /*
527 * PR_SET_CHILD_SUBREAPER marks a process, like a service
528 * manager, to re-parent orphan (double-forking) child processes
529 * to this process instead of 'init'. The service manager is
530 * able to receive SIGCHLD signals and is able to investigate
531 * the process until it calls wait(). All children of this
532 * process will inherit a flag if they should look for a
533 * child_subreaper process at exit.
534 */
535 unsigned int is_child_subreaper:1;
536 unsigned int has_child_subreaper:1;
537
538 /* POSIX.1b Interval Timers */
539 struct list_head posix_timers;
540
541 /* ITIMER_REAL timer for the process */
542 struct hrtimer real_timer;
543 struct pid *leader_pid;
544 ktime_t it_real_incr;
545
546 /*
547 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
548 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
549 * values are defined to 0 and 1 respectively
550 */
551 struct cpu_itimer it[2];
552
553 /*
554 * Thread group totals for process CPU timers.
555 * See thread_group_cputimer(), et al, for details.
556 */
557 struct thread_group_cputimer cputimer;
558
559 /* Earliest-expiration cache. */
560 struct task_cputime cputime_expires;
561
562 struct list_head cpu_timers[3];
563
564 struct pid *tty_old_pgrp;
565
566 /* boolean value for session group leader */
567 int leader;
568
569 struct tty_struct *tty; /* NULL if no tty */
570
571 #ifdef CONFIG_SCHED_AUTOGROUP
572 struct autogroup *autogroup;
573 #endif
574 /*
575 * Cumulative resource counters for dead threads in the group,
576 * and for reaped dead child processes forked by this group.
577 * Live threads maintain their own counters and add to these
578 * in __exit_signal, except for the group leader.
579 */
580 cputime_t utime, stime, cutime, cstime;
581 cputime_t gtime;
582 cputime_t cgtime;
583 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
584 cputime_t prev_utime, prev_stime;
585 #endif
586 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
587 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
588 unsigned long inblock, oublock, cinblock, coublock;
589 unsigned long maxrss, cmaxrss;
590 struct task_io_accounting ioac;
591
592 /*
593 * Cumulative ns of schedule CPU time fo dead threads in the
594 * group, not including a zombie group leader, (This only differs
595 * from jiffies_to_ns(utime + stime) if sched_clock uses something
596 * other than jiffies.)
597 */
598 unsigned long long sum_sched_runtime;
599
600 /*
601 * We don't bother to synchronize most readers of this at all,
602 * because there is no reader checking a limit that actually needs
603 * to get both rlim_cur and rlim_max atomically, and either one
604 * alone is a single word that can safely be read normally.
605 * getrlimit/setrlimit use task_lock(current->group_leader) to
606 * protect this instead of the siglock, because they really
607 * have no need to disable irqs.
608 */
609 struct rlimit rlim[RLIM_NLIMITS];
610
611 #ifdef CONFIG_BSD_PROCESS_ACCT
612 struct pacct_struct pacct; /* per-process accounting information */
613 #endif
614 #ifdef CONFIG_TASKSTATS
615 struct taskstats *stats;
616 #endif
617 #ifdef CONFIG_AUDIT
618 unsigned audit_tty;
619 struct tty_audit_buf *tty_audit_buf;
620 #endif
621 #ifdef CONFIG_CGROUPS
622 /*
623 * group_rwsem prevents new tasks from entering the threadgroup and
624 * member tasks from exiting,a more specifically, setting of
625 * PF_EXITING. fork and exit paths are protected with this rwsem
626 * using threadgroup_change_begin/end(). Users which require
627 * threadgroup to remain stable should use threadgroup_[un]lock()
628 * which also takes care of exec path. Currently, cgroup is the
629 * only user.
630 */
631 struct rw_semaphore group_rwsem;
632 #endif
633
634 oom_flags_t oom_flags;
635 short oom_score_adj; /* OOM kill score adjustment */
636 short oom_score_adj_min; /* OOM kill score adjustment min value.
637 * Only settable by CAP_SYS_RESOURCE. */
638
639 struct mutex cred_guard_mutex; /* guard against foreign influences on
640 * credential calculations
641 * (notably. ptrace) */
642 };
643
644 /*
645 * Bits in flags field of signal_struct.
646 */
647 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
648 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
649 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
650 /*
651 * Pending notifications to parent.
652 */
653 #define SIGNAL_CLD_STOPPED 0x00000010
654 #define SIGNAL_CLD_CONTINUED 0x00000020
655 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
656
657 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
658
659 /* If true, all threads except ->group_exit_task have pending SIGKILL */
660 static inline int signal_group_exit(const struct signal_struct *sig)
661 {
662 return (sig->flags & SIGNAL_GROUP_EXIT) ||
663 (sig->group_exit_task != NULL);
664 }
665
666 /*
667 * Some day this will be a full-fledged user tracking system..
668 */
669 struct user_struct {
670 atomic_t __count; /* reference count */
671 atomic_t processes; /* How many processes does this user have? */
672 atomic_t files; /* How many open files does this user have? */
673 atomic_t sigpending; /* How many pending signals does this user have? */
674 #ifdef CONFIG_INOTIFY_USER
675 atomic_t inotify_watches; /* How many inotify watches does this user have? */
676 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
677 #endif
678 #ifdef CONFIG_FANOTIFY
679 atomic_t fanotify_listeners;
680 #endif
681 #ifdef CONFIG_EPOLL
682 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
683 #endif
684 #ifdef CONFIG_POSIX_MQUEUE
685 /* protected by mq_lock */
686 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
687 #endif
688 unsigned long locked_shm; /* How many pages of mlocked shm ? */
689
690 #ifdef CONFIG_KEYS
691 struct key *uid_keyring; /* UID specific keyring */
692 struct key *session_keyring; /* UID's default session keyring */
693 #endif
694
695 /* Hash table maintenance information */
696 struct hlist_node uidhash_node;
697 kuid_t uid;
698
699 #ifdef CONFIG_PERF_EVENTS
700 atomic_long_t locked_vm;
701 #endif
702 };
703
704 extern int uids_sysfs_init(void);
705
706 extern struct user_struct *find_user(kuid_t);
707
708 extern struct user_struct root_user;
709 #define INIT_USER (&root_user)
710
711
712 struct backing_dev_info;
713 struct reclaim_state;
714
715 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
716 struct sched_info {
717 /* cumulative counters */
718 unsigned long pcount; /* # of times run on this cpu */
719 unsigned long long run_delay; /* time spent waiting on a runqueue */
720
721 /* timestamps */
722 unsigned long long last_arrival,/* when we last ran on a cpu */
723 last_queued; /* when we were last queued to run */
724 };
725 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
726
727 #ifdef CONFIG_TASK_DELAY_ACCT
728 struct task_delay_info {
729 spinlock_t lock;
730 unsigned int flags; /* Private per-task flags */
731
732 /* For each stat XXX, add following, aligned appropriately
733 *
734 * struct timespec XXX_start, XXX_end;
735 * u64 XXX_delay;
736 * u32 XXX_count;
737 *
738 * Atomicity of updates to XXX_delay, XXX_count protected by
739 * single lock above (split into XXX_lock if contention is an issue).
740 */
741
742 /*
743 * XXX_count is incremented on every XXX operation, the delay
744 * associated with the operation is added to XXX_delay.
745 * XXX_delay contains the accumulated delay time in nanoseconds.
746 */
747 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
748 u64 blkio_delay; /* wait for sync block io completion */
749 u64 swapin_delay; /* wait for swapin block io completion */
750 u32 blkio_count; /* total count of the number of sync block */
751 /* io operations performed */
752 u32 swapin_count; /* total count of the number of swapin block */
753 /* io operations performed */
754
755 struct timespec freepages_start, freepages_end;
756 u64 freepages_delay; /* wait for memory reclaim */
757 u32 freepages_count; /* total count of memory reclaim */
758 };
759 #endif /* CONFIG_TASK_DELAY_ACCT */
760
761 static inline int sched_info_on(void)
762 {
763 #ifdef CONFIG_SCHEDSTATS
764 return 1;
765 #elif defined(CONFIG_TASK_DELAY_ACCT)
766 extern int delayacct_on;
767 return delayacct_on;
768 #else
769 return 0;
770 #endif
771 }
772
773 enum cpu_idle_type {
774 CPU_IDLE,
775 CPU_NOT_IDLE,
776 CPU_NEWLY_IDLE,
777 CPU_MAX_IDLE_TYPES
778 };
779
780 /*
781 * Increase resolution of nice-level calculations for 64-bit architectures.
782 * The extra resolution improves shares distribution and load balancing of
783 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
784 * hierarchies, especially on larger systems. This is not a user-visible change
785 * and does not change the user-interface for setting shares/weights.
786 *
787 * We increase resolution only if we have enough bits to allow this increased
788 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
789 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
790 * increased costs.
791 */
792 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
793 # define SCHED_LOAD_RESOLUTION 10
794 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
795 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
796 #else
797 # define SCHED_LOAD_RESOLUTION 0
798 # define scale_load(w) (w)
799 # define scale_load_down(w) (w)
800 #endif
801
802 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
803 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
804
805 /*
806 * Increase resolution of cpu_power calculations
807 */
808 #define SCHED_POWER_SHIFT 10
809 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
810
811 /*
812 * sched-domains (multiprocessor balancing) declarations:
813 */
814 #ifdef CONFIG_SMP
815 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
816 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
817 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
818 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
819 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
820 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
821 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
822 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
823 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
824 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
825 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
826 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
827
828 extern int __weak arch_sd_sibiling_asym_packing(void);
829
830 struct sched_group_power {
831 atomic_t ref;
832 /*
833 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
834 * single CPU.
835 */
836 unsigned int power, power_orig;
837 unsigned long next_update;
838 /*
839 * Number of busy cpus in this group.
840 */
841 atomic_t nr_busy_cpus;
842
843 unsigned long cpumask[0]; /* iteration mask */
844 };
845
846 struct sched_group {
847 struct sched_group *next; /* Must be a circular list */
848 atomic_t ref;
849
850 unsigned int group_weight;
851 struct sched_group_power *sgp;
852
853 /*
854 * The CPUs this group covers.
855 *
856 * NOTE: this field is variable length. (Allocated dynamically
857 * by attaching extra space to the end of the structure,
858 * depending on how many CPUs the kernel has booted up with)
859 */
860 unsigned long cpumask[0];
861 };
862
863 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
864 {
865 return to_cpumask(sg->cpumask);
866 }
867
868 /*
869 * cpumask masking which cpus in the group are allowed to iterate up the domain
870 * tree.
871 */
872 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
873 {
874 return to_cpumask(sg->sgp->cpumask);
875 }
876
877 /**
878 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
879 * @group: The group whose first cpu is to be returned.
880 */
881 static inline unsigned int group_first_cpu(struct sched_group *group)
882 {
883 return cpumask_first(sched_group_cpus(group));
884 }
885
886 struct sched_domain_attr {
887 int relax_domain_level;
888 };
889
890 #define SD_ATTR_INIT (struct sched_domain_attr) { \
891 .relax_domain_level = -1, \
892 }
893
894 extern int sched_domain_level_max;
895
896 struct sched_domain {
897 /* These fields must be setup */
898 struct sched_domain *parent; /* top domain must be null terminated */
899 struct sched_domain *child; /* bottom domain must be null terminated */
900 struct sched_group *groups; /* the balancing groups of the domain */
901 unsigned long min_interval; /* Minimum balance interval ms */
902 unsigned long max_interval; /* Maximum balance interval ms */
903 unsigned int busy_factor; /* less balancing by factor if busy */
904 unsigned int imbalance_pct; /* No balance until over watermark */
905 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
906 unsigned int busy_idx;
907 unsigned int idle_idx;
908 unsigned int newidle_idx;
909 unsigned int wake_idx;
910 unsigned int forkexec_idx;
911 unsigned int smt_gain;
912 int flags; /* See SD_* */
913 int level;
914
915 /* Runtime fields. */
916 unsigned long last_balance; /* init to jiffies. units in jiffies */
917 unsigned int balance_interval; /* initialise to 1. units in ms. */
918 unsigned int nr_balance_failed; /* initialise to 0 */
919
920 u64 last_update;
921
922 #ifdef CONFIG_SCHEDSTATS
923 /* load_balance() stats */
924 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
925 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
926 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
927 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
928 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
929 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
930 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
931 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
932
933 /* Active load balancing */
934 unsigned int alb_count;
935 unsigned int alb_failed;
936 unsigned int alb_pushed;
937
938 /* SD_BALANCE_EXEC stats */
939 unsigned int sbe_count;
940 unsigned int sbe_balanced;
941 unsigned int sbe_pushed;
942
943 /* SD_BALANCE_FORK stats */
944 unsigned int sbf_count;
945 unsigned int sbf_balanced;
946 unsigned int sbf_pushed;
947
948 /* try_to_wake_up() stats */
949 unsigned int ttwu_wake_remote;
950 unsigned int ttwu_move_affine;
951 unsigned int ttwu_move_balance;
952 #endif
953 #ifdef CONFIG_SCHED_DEBUG
954 char *name;
955 #endif
956 union {
957 void *private; /* used during construction */
958 struct rcu_head rcu; /* used during destruction */
959 };
960
961 unsigned int span_weight;
962 /*
963 * Span of all CPUs in this domain.
964 *
965 * NOTE: this field is variable length. (Allocated dynamically
966 * by attaching extra space to the end of the structure,
967 * depending on how many CPUs the kernel has booted up with)
968 */
969 unsigned long span[0];
970 };
971
972 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
973 {
974 return to_cpumask(sd->span);
975 }
976
977 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
978 struct sched_domain_attr *dattr_new);
979
980 /* Allocate an array of sched domains, for partition_sched_domains(). */
981 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
982 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
983
984 /* Test a flag in parent sched domain */
985 static inline int test_sd_parent(struct sched_domain *sd, int flag)
986 {
987 if (sd->parent && (sd->parent->flags & flag))
988 return 1;
989
990 return 0;
991 }
992
993 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
994 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
995
996 bool cpus_share_cache(int this_cpu, int that_cpu);
997
998 #else /* CONFIG_SMP */
999
1000 struct sched_domain_attr;
1001
1002 static inline void
1003 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1004 struct sched_domain_attr *dattr_new)
1005 {
1006 }
1007
1008 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1009 {
1010 return true;
1011 }
1012
1013 #endif /* !CONFIG_SMP */
1014
1015
1016 struct io_context; /* See blkdev.h */
1017
1018
1019 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1020 extern void prefetch_stack(struct task_struct *t);
1021 #else
1022 static inline void prefetch_stack(struct task_struct *t) { }
1023 #endif
1024
1025 struct audit_context; /* See audit.c */
1026 struct mempolicy;
1027 struct pipe_inode_info;
1028 struct uts_namespace;
1029
1030 struct rq;
1031 struct sched_domain;
1032
1033 /*
1034 * wake flags
1035 */
1036 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1037 #define WF_FORK 0x02 /* child wakeup after fork */
1038 #define WF_MIGRATED 0x04 /* internal use, task got migrated */
1039
1040 #define ENQUEUE_WAKEUP 1
1041 #define ENQUEUE_HEAD 2
1042 #ifdef CONFIG_SMP
1043 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1044 #else
1045 #define ENQUEUE_WAKING 0
1046 #endif
1047
1048 #define DEQUEUE_SLEEP 1
1049
1050 struct sched_class {
1051 const struct sched_class *next;
1052
1053 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1054 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1055 void (*yield_task) (struct rq *rq);
1056 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1057
1058 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1059
1060 struct task_struct * (*pick_next_task) (struct rq *rq);
1061 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1062
1063 #ifdef CONFIG_SMP
1064 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1065
1066 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1067 void (*post_schedule) (struct rq *this_rq);
1068 void (*task_waking) (struct task_struct *task);
1069 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1070
1071 void (*set_cpus_allowed)(struct task_struct *p,
1072 const struct cpumask *newmask);
1073
1074 void (*rq_online)(struct rq *rq);
1075 void (*rq_offline)(struct rq *rq);
1076 #endif
1077
1078 void (*set_curr_task) (struct rq *rq);
1079 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1080 void (*task_fork) (struct task_struct *p);
1081
1082 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1083 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1084 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1085 int oldprio);
1086
1087 unsigned int (*get_rr_interval) (struct rq *rq,
1088 struct task_struct *task);
1089
1090 #ifdef CONFIG_FAIR_GROUP_SCHED
1091 void (*task_move_group) (struct task_struct *p, int on_rq);
1092 #endif
1093 };
1094
1095 struct load_weight {
1096 unsigned long weight, inv_weight;
1097 };
1098
1099 #ifdef CONFIG_SCHEDSTATS
1100 struct sched_statistics {
1101 u64 wait_start;
1102 u64 wait_max;
1103 u64 wait_count;
1104 u64 wait_sum;
1105 u64 iowait_count;
1106 u64 iowait_sum;
1107
1108 u64 sleep_start;
1109 u64 sleep_max;
1110 s64 sum_sleep_runtime;
1111
1112 u64 block_start;
1113 u64 block_max;
1114 u64 exec_max;
1115 u64 slice_max;
1116
1117 u64 nr_migrations_cold;
1118 u64 nr_failed_migrations_affine;
1119 u64 nr_failed_migrations_running;
1120 u64 nr_failed_migrations_hot;
1121 u64 nr_forced_migrations;
1122
1123 u64 nr_wakeups;
1124 u64 nr_wakeups_sync;
1125 u64 nr_wakeups_migrate;
1126 u64 nr_wakeups_local;
1127 u64 nr_wakeups_remote;
1128 u64 nr_wakeups_affine;
1129 u64 nr_wakeups_affine_attempts;
1130 u64 nr_wakeups_passive;
1131 u64 nr_wakeups_idle;
1132 };
1133 #endif
1134
1135 struct sched_entity {
1136 struct load_weight load; /* for load-balancing */
1137 struct rb_node run_node;
1138 struct list_head group_node;
1139 unsigned int on_rq;
1140
1141 u64 exec_start;
1142 u64 sum_exec_runtime;
1143 u64 vruntime;
1144 u64 prev_sum_exec_runtime;
1145
1146 u64 nr_migrations;
1147
1148 #ifdef CONFIG_SCHEDSTATS
1149 struct sched_statistics statistics;
1150 #endif
1151
1152 #ifdef CONFIG_FAIR_GROUP_SCHED
1153 struct sched_entity *parent;
1154 /* rq on which this entity is (to be) queued: */
1155 struct cfs_rq *cfs_rq;
1156 /* rq "owned" by this entity/group: */
1157 struct cfs_rq *my_q;
1158 #endif
1159 };
1160
1161 struct sched_rt_entity {
1162 struct list_head run_list;
1163 unsigned long timeout;
1164 unsigned int time_slice;
1165
1166 struct sched_rt_entity *back;
1167 #ifdef CONFIG_RT_GROUP_SCHED
1168 struct sched_rt_entity *parent;
1169 /* rq on which this entity is (to be) queued: */
1170 struct rt_rq *rt_rq;
1171 /* rq "owned" by this entity/group: */
1172 struct rt_rq *my_q;
1173 #endif
1174 };
1175
1176 /*
1177 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1178 * Timeslices get refilled after they expire.
1179 */
1180 #define RR_TIMESLICE (100 * HZ / 1000)
1181
1182 struct rcu_node;
1183
1184 enum perf_event_task_context {
1185 perf_invalid_context = -1,
1186 perf_hw_context = 0,
1187 perf_sw_context,
1188 perf_nr_task_contexts,
1189 };
1190
1191 struct task_struct {
1192 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1193 void *stack;
1194 atomic_t usage;
1195 unsigned int flags; /* per process flags, defined below */
1196 unsigned int ptrace;
1197
1198 #ifdef CONFIG_SMP
1199 struct llist_node wake_entry;
1200 int on_cpu;
1201 #endif
1202 int on_rq;
1203
1204 int prio, static_prio, normal_prio;
1205 unsigned int rt_priority;
1206 const struct sched_class *sched_class;
1207 struct sched_entity se;
1208 struct sched_rt_entity rt;
1209 #ifdef CONFIG_CGROUP_SCHED
1210 struct task_group *sched_task_group;
1211 #endif
1212
1213 #ifdef CONFIG_PREEMPT_NOTIFIERS
1214 /* list of struct preempt_notifier: */
1215 struct hlist_head preempt_notifiers;
1216 #endif
1217
1218 /*
1219 * fpu_counter contains the number of consecutive context switches
1220 * that the FPU is used. If this is over a threshold, the lazy fpu
1221 * saving becomes unlazy to save the trap. This is an unsigned char
1222 * so that after 256 times the counter wraps and the behavior turns
1223 * lazy again; this to deal with bursty apps that only use FPU for
1224 * a short time
1225 */
1226 unsigned char fpu_counter;
1227 #ifdef CONFIG_BLK_DEV_IO_TRACE
1228 unsigned int btrace_seq;
1229 #endif
1230
1231 unsigned int policy;
1232 int nr_cpus_allowed;
1233 cpumask_t cpus_allowed;
1234
1235 #ifdef CONFIG_PREEMPT_RCU
1236 int rcu_read_lock_nesting;
1237 char rcu_read_unlock_special;
1238 struct list_head rcu_node_entry;
1239 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1240 #ifdef CONFIG_TREE_PREEMPT_RCU
1241 struct rcu_node *rcu_blocked_node;
1242 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1243 #ifdef CONFIG_RCU_BOOST
1244 struct rt_mutex *rcu_boost_mutex;
1245 #endif /* #ifdef CONFIG_RCU_BOOST */
1246
1247 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1248 struct sched_info sched_info;
1249 #endif
1250
1251 struct list_head tasks;
1252 #ifdef CONFIG_SMP
1253 struct plist_node pushable_tasks;
1254 #endif
1255
1256 struct mm_struct *mm, *active_mm;
1257 #ifdef CONFIG_COMPAT_BRK
1258 unsigned brk_randomized:1;
1259 #endif
1260 #if defined(SPLIT_RSS_COUNTING)
1261 struct task_rss_stat rss_stat;
1262 #endif
1263 /* task state */
1264 int exit_state;
1265 int exit_code, exit_signal;
1266 int pdeath_signal; /* The signal sent when the parent dies */
1267 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1268 /* ??? */
1269 unsigned int personality;
1270 unsigned did_exec:1;
1271 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1272 * execve */
1273 unsigned in_iowait:1;
1274
1275 /* task may not gain privileges */
1276 unsigned no_new_privs:1;
1277
1278 /* Revert to default priority/policy when forking */
1279 unsigned sched_reset_on_fork:1;
1280 unsigned sched_contributes_to_load:1;
1281
1282 pid_t pid;
1283 pid_t tgid;
1284
1285 #ifdef CONFIG_CC_STACKPROTECTOR
1286 /* Canary value for the -fstack-protector gcc feature */
1287 unsigned long stack_canary;
1288 #endif
1289 /*
1290 * pointers to (original) parent process, youngest child, younger sibling,
1291 * older sibling, respectively. (p->father can be replaced with
1292 * p->real_parent->pid)
1293 */
1294 struct task_struct __rcu *real_parent; /* real parent process */
1295 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1296 /*
1297 * children/sibling forms the list of my natural children
1298 */
1299 struct list_head children; /* list of my children */
1300 struct list_head sibling; /* linkage in my parent's children list */
1301 struct task_struct *group_leader; /* threadgroup leader */
1302
1303 /*
1304 * ptraced is the list of tasks this task is using ptrace on.
1305 * This includes both natural children and PTRACE_ATTACH targets.
1306 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1307 */
1308 struct list_head ptraced;
1309 struct list_head ptrace_entry;
1310
1311 /* PID/PID hash table linkage. */
1312 struct pid_link pids[PIDTYPE_MAX];
1313 struct list_head thread_group;
1314
1315 struct completion *vfork_done; /* for vfork() */
1316 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1317 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1318
1319 cputime_t utime, stime, utimescaled, stimescaled;
1320 cputime_t gtime;
1321 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1322 cputime_t prev_utime, prev_stime;
1323 #endif
1324 unsigned long nvcsw, nivcsw; /* context switch counts */
1325 struct timespec start_time; /* monotonic time */
1326 struct timespec real_start_time; /* boot based time */
1327 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1328 unsigned long min_flt, maj_flt;
1329
1330 struct task_cputime cputime_expires;
1331 struct list_head cpu_timers[3];
1332
1333 /* process credentials */
1334 const struct cred __rcu *real_cred; /* objective and real subjective task
1335 * credentials (COW) */
1336 const struct cred __rcu *cred; /* effective (overridable) subjective task
1337 * credentials (COW) */
1338 char comm[TASK_COMM_LEN]; /* executable name excluding path
1339 - access with [gs]et_task_comm (which lock
1340 it with task_lock())
1341 - initialized normally by setup_new_exec */
1342 /* file system info */
1343 int link_count, total_link_count;
1344 #ifdef CONFIG_SYSVIPC
1345 /* ipc stuff */
1346 struct sysv_sem sysvsem;
1347 #endif
1348 #ifdef CONFIG_DETECT_HUNG_TASK
1349 /* hung task detection */
1350 unsigned long last_switch_count;
1351 #endif
1352 /* CPU-specific state of this task */
1353 struct thread_struct thread;
1354 /* filesystem information */
1355 struct fs_struct *fs;
1356 /* open file information */
1357 struct files_struct *files;
1358 /* namespaces */
1359 struct nsproxy *nsproxy;
1360 /* signal handlers */
1361 struct signal_struct *signal;
1362 struct sighand_struct *sighand;
1363
1364 sigset_t blocked, real_blocked;
1365 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1366 struct sigpending pending;
1367
1368 unsigned long sas_ss_sp;
1369 size_t sas_ss_size;
1370 int (*notifier)(void *priv);
1371 void *notifier_data;
1372 sigset_t *notifier_mask;
1373 struct callback_head *task_works;
1374
1375 struct audit_context *audit_context;
1376 #ifdef CONFIG_AUDITSYSCALL
1377 kuid_t loginuid;
1378 unsigned int sessionid;
1379 #endif
1380 struct seccomp seccomp;
1381
1382 /* Thread group tracking */
1383 u32 parent_exec_id;
1384 u32 self_exec_id;
1385 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1386 * mempolicy */
1387 spinlock_t alloc_lock;
1388
1389 /* Protection of the PI data structures: */
1390 raw_spinlock_t pi_lock;
1391
1392 #ifdef CONFIG_RT_MUTEXES
1393 /* PI waiters blocked on a rt_mutex held by this task */
1394 struct plist_head pi_waiters;
1395 /* Deadlock detection and priority inheritance handling */
1396 struct rt_mutex_waiter *pi_blocked_on;
1397 #endif
1398
1399 #ifdef CONFIG_DEBUG_MUTEXES
1400 /* mutex deadlock detection */
1401 struct mutex_waiter *blocked_on;
1402 #endif
1403 #ifdef CONFIG_TRACE_IRQFLAGS
1404 unsigned int irq_events;
1405 unsigned long hardirq_enable_ip;
1406 unsigned long hardirq_disable_ip;
1407 unsigned int hardirq_enable_event;
1408 unsigned int hardirq_disable_event;
1409 int hardirqs_enabled;
1410 int hardirq_context;
1411 unsigned long softirq_disable_ip;
1412 unsigned long softirq_enable_ip;
1413 unsigned int softirq_disable_event;
1414 unsigned int softirq_enable_event;
1415 int softirqs_enabled;
1416 int softirq_context;
1417 #endif
1418 #ifdef CONFIG_LOCKDEP
1419 # define MAX_LOCK_DEPTH 48UL
1420 u64 curr_chain_key;
1421 int lockdep_depth;
1422 unsigned int lockdep_recursion;
1423 struct held_lock held_locks[MAX_LOCK_DEPTH];
1424 gfp_t lockdep_reclaim_gfp;
1425 #endif
1426
1427 /* journalling filesystem info */
1428 void *journal_info;
1429
1430 /* stacked block device info */
1431 struct bio_list *bio_list;
1432
1433 #ifdef CONFIG_BLOCK
1434 /* stack plugging */
1435 struct blk_plug *plug;
1436 #endif
1437
1438 /* VM state */
1439 struct reclaim_state *reclaim_state;
1440
1441 struct backing_dev_info *backing_dev_info;
1442
1443 struct io_context *io_context;
1444
1445 unsigned long ptrace_message;
1446 siginfo_t *last_siginfo; /* For ptrace use. */
1447 struct task_io_accounting ioac;
1448 #if defined(CONFIG_TASK_XACCT)
1449 u64 acct_rss_mem1; /* accumulated rss usage */
1450 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1451 cputime_t acct_timexpd; /* stime + utime since last update */
1452 #endif
1453 #ifdef CONFIG_CPUSETS
1454 nodemask_t mems_allowed; /* Protected by alloc_lock */
1455 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1456 int cpuset_mem_spread_rotor;
1457 int cpuset_slab_spread_rotor;
1458 #endif
1459 #ifdef CONFIG_CGROUPS
1460 /* Control Group info protected by css_set_lock */
1461 struct css_set __rcu *cgroups;
1462 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1463 struct list_head cg_list;
1464 #endif
1465 #ifdef CONFIG_FUTEX
1466 struct robust_list_head __user *robust_list;
1467 #ifdef CONFIG_COMPAT
1468 struct compat_robust_list_head __user *compat_robust_list;
1469 #endif
1470 struct list_head pi_state_list;
1471 struct futex_pi_state *pi_state_cache;
1472 #endif
1473 #ifdef CONFIG_PERF_EVENTS
1474 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1475 struct mutex perf_event_mutex;
1476 struct list_head perf_event_list;
1477 #endif
1478 #ifdef CONFIG_NUMA
1479 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1480 short il_next;
1481 short pref_node_fork;
1482 #endif
1483 struct rcu_head rcu;
1484
1485 /*
1486 * cache last used pipe for splice
1487 */
1488 struct pipe_inode_info *splice_pipe;
1489
1490 struct page_frag task_frag;
1491
1492 #ifdef CONFIG_TASK_DELAY_ACCT
1493 struct task_delay_info *delays;
1494 #endif
1495 #ifdef CONFIG_FAULT_INJECTION
1496 int make_it_fail;
1497 #endif
1498 /*
1499 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1500 * balance_dirty_pages() for some dirty throttling pause
1501 */
1502 int nr_dirtied;
1503 int nr_dirtied_pause;
1504 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1505
1506 #ifdef CONFIG_LATENCYTOP
1507 int latency_record_count;
1508 struct latency_record latency_record[LT_SAVECOUNT];
1509 #endif
1510 /*
1511 * time slack values; these are used to round up poll() and
1512 * select() etc timeout values. These are in nanoseconds.
1513 */
1514 unsigned long timer_slack_ns;
1515 unsigned long default_timer_slack_ns;
1516
1517 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1518 /* Index of current stored address in ret_stack */
1519 int curr_ret_stack;
1520 /* Stack of return addresses for return function tracing */
1521 struct ftrace_ret_stack *ret_stack;
1522 /* time stamp for last schedule */
1523 unsigned long long ftrace_timestamp;
1524 /*
1525 * Number of functions that haven't been traced
1526 * because of depth overrun.
1527 */
1528 atomic_t trace_overrun;
1529 /* Pause for the tracing */
1530 atomic_t tracing_graph_pause;
1531 #endif
1532 #ifdef CONFIG_TRACING
1533 /* state flags for use by tracers */
1534 unsigned long trace;
1535 /* bitmask and counter of trace recursion */
1536 unsigned long trace_recursion;
1537 #endif /* CONFIG_TRACING */
1538 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1539 struct memcg_batch_info {
1540 int do_batch; /* incremented when batch uncharge started */
1541 struct mem_cgroup *memcg; /* target memcg of uncharge */
1542 unsigned long nr_pages; /* uncharged usage */
1543 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1544 } memcg_batch;
1545 #endif
1546 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1547 atomic_t ptrace_bp_refcnt;
1548 #endif
1549 #ifdef CONFIG_UPROBES
1550 struct uprobe_task *utask;
1551 #endif
1552 };
1553
1554 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1555 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1556
1557 /*
1558 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1559 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1560 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1561 * values are inverted: lower p->prio value means higher priority.
1562 *
1563 * The MAX_USER_RT_PRIO value allows the actual maximum
1564 * RT priority to be separate from the value exported to
1565 * user-space. This allows kernel threads to set their
1566 * priority to a value higher than any user task. Note:
1567 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1568 */
1569
1570 #define MAX_USER_RT_PRIO 100
1571 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1572
1573 #define MAX_PRIO (MAX_RT_PRIO + 40)
1574 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1575
1576 static inline int rt_prio(int prio)
1577 {
1578 if (unlikely(prio < MAX_RT_PRIO))
1579 return 1;
1580 return 0;
1581 }
1582
1583 static inline int rt_task(struct task_struct *p)
1584 {
1585 return rt_prio(p->prio);
1586 }
1587
1588 static inline struct pid *task_pid(struct task_struct *task)
1589 {
1590 return task->pids[PIDTYPE_PID].pid;
1591 }
1592
1593 static inline struct pid *task_tgid(struct task_struct *task)
1594 {
1595 return task->group_leader->pids[PIDTYPE_PID].pid;
1596 }
1597
1598 /*
1599 * Without tasklist or rcu lock it is not safe to dereference
1600 * the result of task_pgrp/task_session even if task == current,
1601 * we can race with another thread doing sys_setsid/sys_setpgid.
1602 */
1603 static inline struct pid *task_pgrp(struct task_struct *task)
1604 {
1605 return task->group_leader->pids[PIDTYPE_PGID].pid;
1606 }
1607
1608 static inline struct pid *task_session(struct task_struct *task)
1609 {
1610 return task->group_leader->pids[PIDTYPE_SID].pid;
1611 }
1612
1613 struct pid_namespace;
1614
1615 /*
1616 * the helpers to get the task's different pids as they are seen
1617 * from various namespaces
1618 *
1619 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1620 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1621 * current.
1622 * task_xid_nr_ns() : id seen from the ns specified;
1623 *
1624 * set_task_vxid() : assigns a virtual id to a task;
1625 *
1626 * see also pid_nr() etc in include/linux/pid.h
1627 */
1628 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1629 struct pid_namespace *ns);
1630
1631 static inline pid_t task_pid_nr(struct task_struct *tsk)
1632 {
1633 return tsk->pid;
1634 }
1635
1636 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1637 struct pid_namespace *ns)
1638 {
1639 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1640 }
1641
1642 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1643 {
1644 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1645 }
1646
1647
1648 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1649 {
1650 return tsk->tgid;
1651 }
1652
1653 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1654
1655 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1656 {
1657 return pid_vnr(task_tgid(tsk));
1658 }
1659
1660
1661 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1662 struct pid_namespace *ns)
1663 {
1664 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1665 }
1666
1667 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1668 {
1669 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1670 }
1671
1672
1673 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1674 struct pid_namespace *ns)
1675 {
1676 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1677 }
1678
1679 static inline pid_t task_session_vnr(struct task_struct *tsk)
1680 {
1681 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1682 }
1683
1684 /* obsolete, do not use */
1685 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1686 {
1687 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1688 }
1689
1690 /**
1691 * pid_alive - check that a task structure is not stale
1692 * @p: Task structure to be checked.
1693 *
1694 * Test if a process is not yet dead (at most zombie state)
1695 * If pid_alive fails, then pointers within the task structure
1696 * can be stale and must not be dereferenced.
1697 */
1698 static inline int pid_alive(struct task_struct *p)
1699 {
1700 return p->pids[PIDTYPE_PID].pid != NULL;
1701 }
1702
1703 /**
1704 * is_global_init - check if a task structure is init
1705 * @tsk: Task structure to be checked.
1706 *
1707 * Check if a task structure is the first user space task the kernel created.
1708 */
1709 static inline int is_global_init(struct task_struct *tsk)
1710 {
1711 return tsk->pid == 1;
1712 }
1713
1714 /*
1715 * is_container_init:
1716 * check whether in the task is init in its own pid namespace.
1717 */
1718 extern int is_container_init(struct task_struct *tsk);
1719
1720 extern struct pid *cad_pid;
1721
1722 extern void free_task(struct task_struct *tsk);
1723 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1724
1725 extern void __put_task_struct(struct task_struct *t);
1726
1727 static inline void put_task_struct(struct task_struct *t)
1728 {
1729 if (atomic_dec_and_test(&t->usage))
1730 __put_task_struct(t);
1731 }
1732
1733 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1734 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1735
1736 /*
1737 * Per process flags
1738 */
1739 #define PF_EXITING 0x00000004 /* getting shut down */
1740 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1741 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1742 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1743 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1744 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1745 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1746 #define PF_DUMPCORE 0x00000200 /* dumped core */
1747 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1748 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1749 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1750 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1751 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1752 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1753 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1754 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1755 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1756 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1757 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1758 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1759 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1760 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1761 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1762 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1763 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1764 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1765 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1766
1767 /*
1768 * Only the _current_ task can read/write to tsk->flags, but other
1769 * tasks can access tsk->flags in readonly mode for example
1770 * with tsk_used_math (like during threaded core dumping).
1771 * There is however an exception to this rule during ptrace
1772 * or during fork: the ptracer task is allowed to write to the
1773 * child->flags of its traced child (same goes for fork, the parent
1774 * can write to the child->flags), because we're guaranteed the
1775 * child is not running and in turn not changing child->flags
1776 * at the same time the parent does it.
1777 */
1778 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1779 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1780 #define clear_used_math() clear_stopped_child_used_math(current)
1781 #define set_used_math() set_stopped_child_used_math(current)
1782 #define conditional_stopped_child_used_math(condition, child) \
1783 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1784 #define conditional_used_math(condition) \
1785 conditional_stopped_child_used_math(condition, current)
1786 #define copy_to_stopped_child_used_math(child) \
1787 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1788 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1789 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1790 #define used_math() tsk_used_math(current)
1791
1792 /*
1793 * task->jobctl flags
1794 */
1795 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1796
1797 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1798 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1799 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1800 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1801 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1802 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1803 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1804
1805 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1806 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1807 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1808 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1809 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1810 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1811 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1812
1813 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1814 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1815
1816 extern bool task_set_jobctl_pending(struct task_struct *task,
1817 unsigned int mask);
1818 extern void task_clear_jobctl_trapping(struct task_struct *task);
1819 extern void task_clear_jobctl_pending(struct task_struct *task,
1820 unsigned int mask);
1821
1822 #ifdef CONFIG_PREEMPT_RCU
1823
1824 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1825 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1826
1827 static inline void rcu_copy_process(struct task_struct *p)
1828 {
1829 p->rcu_read_lock_nesting = 0;
1830 p->rcu_read_unlock_special = 0;
1831 #ifdef CONFIG_TREE_PREEMPT_RCU
1832 p->rcu_blocked_node = NULL;
1833 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1834 #ifdef CONFIG_RCU_BOOST
1835 p->rcu_boost_mutex = NULL;
1836 #endif /* #ifdef CONFIG_RCU_BOOST */
1837 INIT_LIST_HEAD(&p->rcu_node_entry);
1838 }
1839
1840 #else
1841
1842 static inline void rcu_copy_process(struct task_struct *p)
1843 {
1844 }
1845
1846 #endif
1847
1848 static inline void rcu_switch(struct task_struct *prev,
1849 struct task_struct *next)
1850 {
1851 #ifdef CONFIG_RCU_USER_QS
1852 rcu_user_hooks_switch(prev, next);
1853 #endif
1854 }
1855
1856 static inline void tsk_restore_flags(struct task_struct *task,
1857 unsigned long orig_flags, unsigned long flags)
1858 {
1859 task->flags &= ~flags;
1860 task->flags |= orig_flags & flags;
1861 }
1862
1863 #ifdef CONFIG_SMP
1864 extern void do_set_cpus_allowed(struct task_struct *p,
1865 const struct cpumask *new_mask);
1866
1867 extern int set_cpus_allowed_ptr(struct task_struct *p,
1868 const struct cpumask *new_mask);
1869 #else
1870 static inline void do_set_cpus_allowed(struct task_struct *p,
1871 const struct cpumask *new_mask)
1872 {
1873 }
1874 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1875 const struct cpumask *new_mask)
1876 {
1877 if (!cpumask_test_cpu(0, new_mask))
1878 return -EINVAL;
1879 return 0;
1880 }
1881 #endif
1882
1883 #ifdef CONFIG_NO_HZ
1884 void calc_load_enter_idle(void);
1885 void calc_load_exit_idle(void);
1886 #else
1887 static inline void calc_load_enter_idle(void) { }
1888 static inline void calc_load_exit_idle(void) { }
1889 #endif /* CONFIG_NO_HZ */
1890
1891 #ifndef CONFIG_CPUMASK_OFFSTACK
1892 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1893 {
1894 return set_cpus_allowed_ptr(p, &new_mask);
1895 }
1896 #endif
1897
1898 /*
1899 * Do not use outside of architecture code which knows its limitations.
1900 *
1901 * sched_clock() has no promise of monotonicity or bounded drift between
1902 * CPUs, use (which you should not) requires disabling IRQs.
1903 *
1904 * Please use one of the three interfaces below.
1905 */
1906 extern unsigned long long notrace sched_clock(void);
1907 /*
1908 * See the comment in kernel/sched/clock.c
1909 */
1910 extern u64 cpu_clock(int cpu);
1911 extern u64 local_clock(void);
1912 extern u64 sched_clock_cpu(int cpu);
1913
1914
1915 extern void sched_clock_init(void);
1916
1917 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1918 static inline void sched_clock_tick(void)
1919 {
1920 }
1921
1922 static inline void sched_clock_idle_sleep_event(void)
1923 {
1924 }
1925
1926 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1927 {
1928 }
1929 #else
1930 /*
1931 * Architectures can set this to 1 if they have specified
1932 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1933 * but then during bootup it turns out that sched_clock()
1934 * is reliable after all:
1935 */
1936 extern int sched_clock_stable;
1937
1938 extern void sched_clock_tick(void);
1939 extern void sched_clock_idle_sleep_event(void);
1940 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1941 #endif
1942
1943 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1944 /*
1945 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1946 * The reason for this explicit opt-in is not to have perf penalty with
1947 * slow sched_clocks.
1948 */
1949 extern void enable_sched_clock_irqtime(void);
1950 extern void disable_sched_clock_irqtime(void);
1951 #else
1952 static inline void enable_sched_clock_irqtime(void) {}
1953 static inline void disable_sched_clock_irqtime(void) {}
1954 #endif
1955
1956 extern unsigned long long
1957 task_sched_runtime(struct task_struct *task);
1958
1959 /* sched_exec is called by processes performing an exec */
1960 #ifdef CONFIG_SMP
1961 extern void sched_exec(void);
1962 #else
1963 #define sched_exec() {}
1964 #endif
1965
1966 extern void sched_clock_idle_sleep_event(void);
1967 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1968
1969 #ifdef CONFIG_HOTPLUG_CPU
1970 extern void idle_task_exit(void);
1971 #else
1972 static inline void idle_task_exit(void) {}
1973 #endif
1974
1975 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1976 extern void wake_up_idle_cpu(int cpu);
1977 #else
1978 static inline void wake_up_idle_cpu(int cpu) { }
1979 #endif
1980
1981 extern unsigned int sysctl_sched_latency;
1982 extern unsigned int sysctl_sched_min_granularity;
1983 extern unsigned int sysctl_sched_wakeup_granularity;
1984 extern unsigned int sysctl_sched_child_runs_first;
1985
1986 enum sched_tunable_scaling {
1987 SCHED_TUNABLESCALING_NONE,
1988 SCHED_TUNABLESCALING_LOG,
1989 SCHED_TUNABLESCALING_LINEAR,
1990 SCHED_TUNABLESCALING_END,
1991 };
1992 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1993
1994 #ifdef CONFIG_SCHED_DEBUG
1995 extern unsigned int sysctl_sched_migration_cost;
1996 extern unsigned int sysctl_sched_nr_migrate;
1997 extern unsigned int sysctl_sched_time_avg;
1998 extern unsigned int sysctl_timer_migration;
1999 extern unsigned int sysctl_sched_shares_window;
2000
2001 int sched_proc_update_handler(struct ctl_table *table, int write,
2002 void __user *buffer, size_t *length,
2003 loff_t *ppos);
2004 #endif
2005 #ifdef CONFIG_SCHED_DEBUG
2006 static inline unsigned int get_sysctl_timer_migration(void)
2007 {
2008 return sysctl_timer_migration;
2009 }
2010 #else
2011 static inline unsigned int get_sysctl_timer_migration(void)
2012 {
2013 return 1;
2014 }
2015 #endif
2016 extern unsigned int sysctl_sched_rt_period;
2017 extern int sysctl_sched_rt_runtime;
2018
2019 int sched_rt_handler(struct ctl_table *table, int write,
2020 void __user *buffer, size_t *lenp,
2021 loff_t *ppos);
2022
2023 #ifdef CONFIG_SCHED_AUTOGROUP
2024 extern unsigned int sysctl_sched_autogroup_enabled;
2025
2026 extern void sched_autogroup_create_attach(struct task_struct *p);
2027 extern void sched_autogroup_detach(struct task_struct *p);
2028 extern void sched_autogroup_fork(struct signal_struct *sig);
2029 extern void sched_autogroup_exit(struct signal_struct *sig);
2030 #ifdef CONFIG_PROC_FS
2031 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2032 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2033 #endif
2034 #else
2035 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2036 static inline void sched_autogroup_detach(struct task_struct *p) { }
2037 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2038 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2039 #endif
2040
2041 #ifdef CONFIG_CFS_BANDWIDTH
2042 extern unsigned int sysctl_sched_cfs_bandwidth_slice;
2043 #endif
2044
2045 #ifdef CONFIG_RT_MUTEXES
2046 extern int rt_mutex_getprio(struct task_struct *p);
2047 extern void rt_mutex_setprio(struct task_struct *p, int prio);
2048 extern void rt_mutex_adjust_pi(struct task_struct *p);
2049 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2050 {
2051 return tsk->pi_blocked_on != NULL;
2052 }
2053 #else
2054 static inline int rt_mutex_getprio(struct task_struct *p)
2055 {
2056 return p->normal_prio;
2057 }
2058 # define rt_mutex_adjust_pi(p) do { } while (0)
2059 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2060 {
2061 return false;
2062 }
2063 #endif
2064
2065 extern bool yield_to(struct task_struct *p, bool preempt);
2066 extern void set_user_nice(struct task_struct *p, long nice);
2067 extern int task_prio(const struct task_struct *p);
2068 extern int task_nice(const struct task_struct *p);
2069 extern int can_nice(const struct task_struct *p, const int nice);
2070 extern int task_curr(const struct task_struct *p);
2071 extern int idle_cpu(int cpu);
2072 extern int sched_setscheduler(struct task_struct *, int,
2073 const struct sched_param *);
2074 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2075 const struct sched_param *);
2076 extern struct task_struct *idle_task(int cpu);
2077 /**
2078 * is_idle_task - is the specified task an idle task?
2079 * @p: the task in question.
2080 */
2081 static inline bool is_idle_task(const struct task_struct *p)
2082 {
2083 return p->pid == 0;
2084 }
2085 extern struct task_struct *curr_task(int cpu);
2086 extern void set_curr_task(int cpu, struct task_struct *p);
2087
2088 void yield(void);
2089
2090 /*
2091 * The default (Linux) execution domain.
2092 */
2093 extern struct exec_domain default_exec_domain;
2094
2095 union thread_union {
2096 struct thread_info thread_info;
2097 unsigned long stack[THREAD_SIZE/sizeof(long)];
2098 };
2099
2100 #ifndef __HAVE_ARCH_KSTACK_END
2101 static inline int kstack_end(void *addr)
2102 {
2103 /* Reliable end of stack detection:
2104 * Some APM bios versions misalign the stack
2105 */
2106 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2107 }
2108 #endif
2109
2110 extern union thread_union init_thread_union;
2111 extern struct task_struct init_task;
2112
2113 extern struct mm_struct init_mm;
2114
2115 extern struct pid_namespace init_pid_ns;
2116
2117 /*
2118 * find a task by one of its numerical ids
2119 *
2120 * find_task_by_pid_ns():
2121 * finds a task by its pid in the specified namespace
2122 * find_task_by_vpid():
2123 * finds a task by its virtual pid
2124 *
2125 * see also find_vpid() etc in include/linux/pid.h
2126 */
2127
2128 extern struct task_struct *find_task_by_vpid(pid_t nr);
2129 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2130 struct pid_namespace *ns);
2131
2132 extern void __set_special_pids(struct pid *pid);
2133
2134 /* per-UID process charging. */
2135 extern struct user_struct * alloc_uid(kuid_t);
2136 static inline struct user_struct *get_uid(struct user_struct *u)
2137 {
2138 atomic_inc(&u->__count);
2139 return u;
2140 }
2141 extern void free_uid(struct user_struct *);
2142
2143 #include <asm/current.h>
2144
2145 extern void xtime_update(unsigned long ticks);
2146
2147 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2148 extern int wake_up_process(struct task_struct *tsk);
2149 extern void wake_up_new_task(struct task_struct *tsk);
2150 #ifdef CONFIG_SMP
2151 extern void kick_process(struct task_struct *tsk);
2152 #else
2153 static inline void kick_process(struct task_struct *tsk) { }
2154 #endif
2155 extern void sched_fork(struct task_struct *p);
2156 extern void sched_dead(struct task_struct *p);
2157
2158 extern void proc_caches_init(void);
2159 extern void flush_signals(struct task_struct *);
2160 extern void __flush_signals(struct task_struct *);
2161 extern void ignore_signals(struct task_struct *);
2162 extern void flush_signal_handlers(struct task_struct *, int force_default);
2163 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2164
2165 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2166 {
2167 unsigned long flags;
2168 int ret;
2169
2170 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2171 ret = dequeue_signal(tsk, mask, info);
2172 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2173
2174 return ret;
2175 }
2176
2177 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2178 sigset_t *mask);
2179 extern void unblock_all_signals(void);
2180 extern void release_task(struct task_struct * p);
2181 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2182 extern int force_sigsegv(int, struct task_struct *);
2183 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2184 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2185 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2186 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2187 const struct cred *, u32);
2188 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2189 extern int kill_pid(struct pid *pid, int sig, int priv);
2190 extern int kill_proc_info(int, struct siginfo *, pid_t);
2191 extern __must_check bool do_notify_parent(struct task_struct *, int);
2192 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2193 extern void force_sig(int, struct task_struct *);
2194 extern int send_sig(int, struct task_struct *, int);
2195 extern int zap_other_threads(struct task_struct *p);
2196 extern struct sigqueue *sigqueue_alloc(void);
2197 extern void sigqueue_free(struct sigqueue *);
2198 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2199 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2200 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2201
2202 static inline void restore_saved_sigmask(void)
2203 {
2204 if (test_and_clear_restore_sigmask())
2205 __set_current_blocked(&current->saved_sigmask);
2206 }
2207
2208 static inline sigset_t *sigmask_to_save(void)
2209 {
2210 sigset_t *res = &current->blocked;
2211 if (unlikely(test_restore_sigmask()))
2212 res = &current->saved_sigmask;
2213 return res;
2214 }
2215
2216 static inline int kill_cad_pid(int sig, int priv)
2217 {
2218 return kill_pid(cad_pid, sig, priv);
2219 }
2220
2221 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2222 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2223 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2224 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2225
2226 /*
2227 * True if we are on the alternate signal stack.
2228 */
2229 static inline int on_sig_stack(unsigned long sp)
2230 {
2231 #ifdef CONFIG_STACK_GROWSUP
2232 return sp >= current->sas_ss_sp &&
2233 sp - current->sas_ss_sp < current->sas_ss_size;
2234 #else
2235 return sp > current->sas_ss_sp &&
2236 sp - current->sas_ss_sp <= current->sas_ss_size;
2237 #endif
2238 }
2239
2240 static inline int sas_ss_flags(unsigned long sp)
2241 {
2242 return (current->sas_ss_size == 0 ? SS_DISABLE
2243 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2244 }
2245
2246 /*
2247 * Routines for handling mm_structs
2248 */
2249 extern struct mm_struct * mm_alloc(void);
2250
2251 /* mmdrop drops the mm and the page tables */
2252 extern void __mmdrop(struct mm_struct *);
2253 static inline void mmdrop(struct mm_struct * mm)
2254 {
2255 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2256 __mmdrop(mm);
2257 }
2258
2259 /* mmput gets rid of the mappings and all user-space */
2260 extern void mmput(struct mm_struct *);
2261 /* Grab a reference to a task's mm, if it is not already going away */
2262 extern struct mm_struct *get_task_mm(struct task_struct *task);
2263 /*
2264 * Grab a reference to a task's mm, if it is not already going away
2265 * and ptrace_may_access with the mode parameter passed to it
2266 * succeeds.
2267 */
2268 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2269 /* Remove the current tasks stale references to the old mm_struct */
2270 extern void mm_release(struct task_struct *, struct mm_struct *);
2271 /* Allocate a new mm structure and copy contents from tsk->mm */
2272 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2273
2274 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2275 struct task_struct *, struct pt_regs *);
2276 extern void flush_thread(void);
2277 extern void exit_thread(void);
2278
2279 extern void exit_files(struct task_struct *);
2280 extern void __cleanup_sighand(struct sighand_struct *);
2281
2282 extern void exit_itimers(struct signal_struct *);
2283 extern void flush_itimer_signals(void);
2284
2285 extern void do_group_exit(int);
2286
2287 extern void daemonize(const char *, ...);
2288 extern int allow_signal(int);
2289 extern int disallow_signal(int);
2290
2291 extern int do_execve(const char *,
2292 const char __user * const __user *,
2293 const char __user * const __user *, struct pt_regs *);
2294 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2295 struct task_struct *fork_idle(int);
2296 #ifdef CONFIG_GENERIC_KERNEL_THREAD
2297 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2298 #endif
2299
2300 extern void set_task_comm(struct task_struct *tsk, char *from);
2301 extern char *get_task_comm(char *to, struct task_struct *tsk);
2302
2303 #ifdef CONFIG_SMP
2304 void scheduler_ipi(void);
2305 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2306 #else
2307 static inline void scheduler_ipi(void) { }
2308 static inline unsigned long wait_task_inactive(struct task_struct *p,
2309 long match_state)
2310 {
2311 return 1;
2312 }
2313 #endif
2314
2315 #define next_task(p) \
2316 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2317
2318 #define for_each_process(p) \
2319 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2320
2321 extern bool current_is_single_threaded(void);
2322
2323 /*
2324 * Careful: do_each_thread/while_each_thread is a double loop so
2325 * 'break' will not work as expected - use goto instead.
2326 */
2327 #define do_each_thread(g, t) \
2328 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2329
2330 #define while_each_thread(g, t) \
2331 while ((t = next_thread(t)) != g)
2332
2333 static inline int get_nr_threads(struct task_struct *tsk)
2334 {
2335 return tsk->signal->nr_threads;
2336 }
2337
2338 static inline bool thread_group_leader(struct task_struct *p)
2339 {
2340 return p->exit_signal >= 0;
2341 }
2342
2343 /* Do to the insanities of de_thread it is possible for a process
2344 * to have the pid of the thread group leader without actually being
2345 * the thread group leader. For iteration through the pids in proc
2346 * all we care about is that we have a task with the appropriate
2347 * pid, we don't actually care if we have the right task.
2348 */
2349 static inline int has_group_leader_pid(struct task_struct *p)
2350 {
2351 return p->pid == p->tgid;
2352 }
2353
2354 static inline
2355 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2356 {
2357 return p1->tgid == p2->tgid;
2358 }
2359
2360 static inline struct task_struct *next_thread(const struct task_struct *p)
2361 {
2362 return list_entry_rcu(p->thread_group.next,
2363 struct task_struct, thread_group);
2364 }
2365
2366 static inline int thread_group_empty(struct task_struct *p)
2367 {
2368 return list_empty(&p->thread_group);
2369 }
2370
2371 #define delay_group_leader(p) \
2372 (thread_group_leader(p) && !thread_group_empty(p))
2373
2374 /*
2375 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2376 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2377 * pins the final release of task.io_context. Also protects ->cpuset and
2378 * ->cgroup.subsys[]. And ->vfork_done.
2379 *
2380 * Nests both inside and outside of read_lock(&tasklist_lock).
2381 * It must not be nested with write_lock_irq(&tasklist_lock),
2382 * neither inside nor outside.
2383 */
2384 static inline void task_lock(struct task_struct *p)
2385 {
2386 spin_lock(&p->alloc_lock);
2387 }
2388
2389 static inline void task_unlock(struct task_struct *p)
2390 {
2391 spin_unlock(&p->alloc_lock);
2392 }
2393
2394 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2395 unsigned long *flags);
2396
2397 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2398 unsigned long *flags)
2399 {
2400 struct sighand_struct *ret;
2401
2402 ret = __lock_task_sighand(tsk, flags);
2403 (void)__cond_lock(&tsk->sighand->siglock, ret);
2404 return ret;
2405 }
2406
2407 static inline void unlock_task_sighand(struct task_struct *tsk,
2408 unsigned long *flags)
2409 {
2410 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2411 }
2412
2413 #ifdef CONFIG_CGROUPS
2414 static inline void threadgroup_change_begin(struct task_struct *tsk)
2415 {
2416 down_read(&tsk->signal->group_rwsem);
2417 }
2418 static inline void threadgroup_change_end(struct task_struct *tsk)
2419 {
2420 up_read(&tsk->signal->group_rwsem);
2421 }
2422
2423 /**
2424 * threadgroup_lock - lock threadgroup
2425 * @tsk: member task of the threadgroup to lock
2426 *
2427 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2428 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2429 * perform exec. This is useful for cases where the threadgroup needs to
2430 * stay stable across blockable operations.
2431 *
2432 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2433 * synchronization. While held, no new task will be added to threadgroup
2434 * and no existing live task will have its PF_EXITING set.
2435 *
2436 * During exec, a task goes and puts its thread group through unusual
2437 * changes. After de-threading, exclusive access is assumed to resources
2438 * which are usually shared by tasks in the same group - e.g. sighand may
2439 * be replaced with a new one. Also, the exec'ing task takes over group
2440 * leader role including its pid. Exclude these changes while locked by
2441 * grabbing cred_guard_mutex which is used to synchronize exec path.
2442 */
2443 static inline void threadgroup_lock(struct task_struct *tsk)
2444 {
2445 /*
2446 * exec uses exit for de-threading nesting group_rwsem inside
2447 * cred_guard_mutex. Grab cred_guard_mutex first.
2448 */
2449 mutex_lock(&tsk->signal->cred_guard_mutex);
2450 down_write(&tsk->signal->group_rwsem);
2451 }
2452
2453 /**
2454 * threadgroup_unlock - unlock threadgroup
2455 * @tsk: member task of the threadgroup to unlock
2456 *
2457 * Reverse threadgroup_lock().
2458 */
2459 static inline void threadgroup_unlock(struct task_struct *tsk)
2460 {
2461 up_write(&tsk->signal->group_rwsem);
2462 mutex_unlock(&tsk->signal->cred_guard_mutex);
2463 }
2464 #else
2465 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2466 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2467 static inline void threadgroup_lock(struct task_struct *tsk) {}
2468 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2469 #endif
2470
2471 #ifndef __HAVE_THREAD_FUNCTIONS
2472
2473 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2474 #define task_stack_page(task) ((task)->stack)
2475
2476 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2477 {
2478 *task_thread_info(p) = *task_thread_info(org);
2479 task_thread_info(p)->task = p;
2480 }
2481
2482 static inline unsigned long *end_of_stack(struct task_struct *p)
2483 {
2484 return (unsigned long *)(task_thread_info(p) + 1);
2485 }
2486
2487 #endif
2488
2489 static inline int object_is_on_stack(void *obj)
2490 {
2491 void *stack = task_stack_page(current);
2492
2493 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2494 }
2495
2496 extern void thread_info_cache_init(void);
2497
2498 #ifdef CONFIG_DEBUG_STACK_USAGE
2499 static inline unsigned long stack_not_used(struct task_struct *p)
2500 {
2501 unsigned long *n = end_of_stack(p);
2502
2503 do { /* Skip over canary */
2504 n++;
2505 } while (!*n);
2506
2507 return (unsigned long)n - (unsigned long)end_of_stack(p);
2508 }
2509 #endif
2510
2511 /* set thread flags in other task's structures
2512 * - see asm/thread_info.h for TIF_xxxx flags available
2513 */
2514 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2515 {
2516 set_ti_thread_flag(task_thread_info(tsk), flag);
2517 }
2518
2519 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2520 {
2521 clear_ti_thread_flag(task_thread_info(tsk), flag);
2522 }
2523
2524 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2525 {
2526 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2527 }
2528
2529 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2530 {
2531 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2532 }
2533
2534 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2535 {
2536 return test_ti_thread_flag(task_thread_info(tsk), flag);
2537 }
2538
2539 static inline void set_tsk_need_resched(struct task_struct *tsk)
2540 {
2541 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2542 }
2543
2544 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2545 {
2546 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2547 }
2548
2549 static inline int test_tsk_need_resched(struct task_struct *tsk)
2550 {
2551 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2552 }
2553
2554 static inline int restart_syscall(void)
2555 {
2556 set_tsk_thread_flag(current, TIF_SIGPENDING);
2557 return -ERESTARTNOINTR;
2558 }
2559
2560 static inline int signal_pending(struct task_struct *p)
2561 {
2562 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2563 }
2564
2565 static inline int __fatal_signal_pending(struct task_struct *p)
2566 {
2567 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2568 }
2569
2570 static inline int fatal_signal_pending(struct task_struct *p)
2571 {
2572 return signal_pending(p) && __fatal_signal_pending(p);
2573 }
2574
2575 static inline int signal_pending_state(long state, struct task_struct *p)
2576 {
2577 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2578 return 0;
2579 if (!signal_pending(p))
2580 return 0;
2581
2582 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2583 }
2584
2585 static inline int need_resched(void)
2586 {
2587 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2588 }
2589
2590 /*
2591 * cond_resched() and cond_resched_lock(): latency reduction via
2592 * explicit rescheduling in places that are safe. The return
2593 * value indicates whether a reschedule was done in fact.
2594 * cond_resched_lock() will drop the spinlock before scheduling,
2595 * cond_resched_softirq() will enable bhs before scheduling.
2596 */
2597 extern int _cond_resched(void);
2598
2599 #define cond_resched() ({ \
2600 __might_sleep(__FILE__, __LINE__, 0); \
2601 _cond_resched(); \
2602 })
2603
2604 extern int __cond_resched_lock(spinlock_t *lock);
2605
2606 #ifdef CONFIG_PREEMPT_COUNT
2607 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2608 #else
2609 #define PREEMPT_LOCK_OFFSET 0
2610 #endif
2611
2612 #define cond_resched_lock(lock) ({ \
2613 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2614 __cond_resched_lock(lock); \
2615 })
2616
2617 extern int __cond_resched_softirq(void);
2618
2619 #define cond_resched_softirq() ({ \
2620 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2621 __cond_resched_softirq(); \
2622 })
2623
2624 /*
2625 * Does a critical section need to be broken due to another
2626 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2627 * but a general need for low latency)
2628 */
2629 static inline int spin_needbreak(spinlock_t *lock)
2630 {
2631 #ifdef CONFIG_PREEMPT
2632 return spin_is_contended(lock);
2633 #else
2634 return 0;
2635 #endif
2636 }
2637
2638 /*
2639 * Thread group CPU time accounting.
2640 */
2641 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2642 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2643
2644 static inline void thread_group_cputime_init(struct signal_struct *sig)
2645 {
2646 raw_spin_lock_init(&sig->cputimer.lock);
2647 }
2648
2649 /*
2650 * Reevaluate whether the task has signals pending delivery.
2651 * Wake the task if so.
2652 * This is required every time the blocked sigset_t changes.
2653 * callers must hold sighand->siglock.
2654 */
2655 extern void recalc_sigpending_and_wake(struct task_struct *t);
2656 extern void recalc_sigpending(void);
2657
2658 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2659
2660 /*
2661 * Wrappers for p->thread_info->cpu access. No-op on UP.
2662 */
2663 #ifdef CONFIG_SMP
2664
2665 static inline unsigned int task_cpu(const struct task_struct *p)
2666 {
2667 return task_thread_info(p)->cpu;
2668 }
2669
2670 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2671
2672 #else
2673
2674 static inline unsigned int task_cpu(const struct task_struct *p)
2675 {
2676 return 0;
2677 }
2678
2679 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2680 {
2681 }
2682
2683 #endif /* CONFIG_SMP */
2684
2685 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2686 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2687
2688 extern void normalize_rt_tasks(void);
2689
2690 #ifdef CONFIG_CGROUP_SCHED
2691
2692 extern struct task_group root_task_group;
2693
2694 extern struct task_group *sched_create_group(struct task_group *parent);
2695 extern void sched_destroy_group(struct task_group *tg);
2696 extern void sched_move_task(struct task_struct *tsk);
2697 #ifdef CONFIG_FAIR_GROUP_SCHED
2698 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2699 extern unsigned long sched_group_shares(struct task_group *tg);
2700 #endif
2701 #ifdef CONFIG_RT_GROUP_SCHED
2702 extern int sched_group_set_rt_runtime(struct task_group *tg,
2703 long rt_runtime_us);
2704 extern long sched_group_rt_runtime(struct task_group *tg);
2705 extern int sched_group_set_rt_period(struct task_group *tg,
2706 long rt_period_us);
2707 extern long sched_group_rt_period(struct task_group *tg);
2708 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2709 #endif
2710 #endif /* CONFIG_CGROUP_SCHED */
2711
2712 extern int task_can_switch_user(struct user_struct *up,
2713 struct task_struct *tsk);
2714
2715 #ifdef CONFIG_TASK_XACCT
2716 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2717 {
2718 tsk->ioac.rchar += amt;
2719 }
2720
2721 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2722 {
2723 tsk->ioac.wchar += amt;
2724 }
2725
2726 static inline void inc_syscr(struct task_struct *tsk)
2727 {
2728 tsk->ioac.syscr++;
2729 }
2730
2731 static inline void inc_syscw(struct task_struct *tsk)
2732 {
2733 tsk->ioac.syscw++;
2734 }
2735 #else
2736 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2737 {
2738 }
2739
2740 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2741 {
2742 }
2743
2744 static inline void inc_syscr(struct task_struct *tsk)
2745 {
2746 }
2747
2748 static inline void inc_syscw(struct task_struct *tsk)
2749 {
2750 }
2751 #endif
2752
2753 #ifndef TASK_SIZE_OF
2754 #define TASK_SIZE_OF(tsk) TASK_SIZE
2755 #endif
2756
2757 #ifdef CONFIG_MM_OWNER
2758 extern void mm_update_next_owner(struct mm_struct *mm);
2759 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2760 #else
2761 static inline void mm_update_next_owner(struct mm_struct *mm)
2762 {
2763 }
2764
2765 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2766 {
2767 }
2768 #endif /* CONFIG_MM_OWNER */
2769
2770 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2771 unsigned int limit)
2772 {
2773 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2774 }
2775
2776 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2777 unsigned int limit)
2778 {
2779 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2780 }
2781
2782 static inline unsigned long rlimit(unsigned int limit)
2783 {
2784 return task_rlimit(current, limit);
2785 }
2786
2787 static inline unsigned long rlimit_max(unsigned int limit)
2788 {
2789 return task_rlimit_max(current, limit);
2790 }
2791
2792 #endif