]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/sched.h
Merge tag 'spi-v4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[mirror_ubuntu-zesty-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
48
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/task_io_accounting.h>
55 #include <linux/latencytop.h>
56 #include <linux/cred.h>
57 #include <linux/llist.h>
58 #include <linux/uidgid.h>
59 #include <linux/gfp.h>
60 #include <linux/magic.h>
61 #include <linux/cgroup-defs.h>
62
63 #include <asm/processor.h>
64
65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67 /*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
110 */
111 struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127 };
128
129 struct futex_pi_state;
130 struct robust_list_head;
131 struct bio_list;
132 struct fs_struct;
133 struct perf_event_context;
134 struct blk_plug;
135 struct filename;
136 struct nameidata;
137
138 #define VMACACHE_BITS 2
139 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
140 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
142 /*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152 extern unsigned long avenrun[]; /* Load averages */
153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
154
155 #define FSHIFT 11 /* nr of bits of precision */
156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159 #define EXP_5 2014 /* 1/exp(5sec/5min) */
160 #define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162 #define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167 extern unsigned long total_forks;
168 extern int nr_threads;
169 DECLARE_PER_CPU(unsigned long, process_counts);
170 extern int nr_processes(void);
171 extern unsigned long nr_running(void);
172 extern bool single_task_running(void);
173 extern unsigned long nr_iowait(void);
174 extern unsigned long nr_iowait_cpu(int cpu);
175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
176
177 extern void calc_global_load(unsigned long ticks);
178
179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
180 extern void update_cpu_load_nohz(void);
181 #else
182 static inline void update_cpu_load_nohz(void) { }
183 #endif
184
185 extern unsigned long get_parent_ip(unsigned long addr);
186
187 extern void dump_cpu_task(int cpu);
188
189 struct seq_file;
190 struct cfs_rq;
191 struct task_group;
192 #ifdef CONFIG_SCHED_DEBUG
193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194 extern void proc_sched_set_task(struct task_struct *p);
195 #endif
196
197 /*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
207 #define TASK_RUNNING 0
208 #define TASK_INTERRUPTIBLE 1
209 #define TASK_UNINTERRUPTIBLE 2
210 #define __TASK_STOPPED 4
211 #define __TASK_TRACED 8
212 /* in tsk->exit_state */
213 #define EXIT_DEAD 16
214 #define EXIT_ZOMBIE 32
215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
216 /* in tsk->state again */
217 #define TASK_DEAD 64
218 #define TASK_WAKEKILL 128
219 #define TASK_WAKING 256
220 #define TASK_PARKED 512
221 #define TASK_NOLOAD 1024
222 #define TASK_STATE_MAX 2048
223
224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
225
226 extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
228
229 /* Convenience macros for the sake of set_task_state */
230 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
233
234 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
236 /* Convenience macros for the sake of wake_up */
237 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
238 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
239
240 /* get_task_state() */
241 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
244
245 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
247 #define task_is_stopped_or_traced(task) \
248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
249 #define task_contributes_to_load(task) \
250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
253
254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256 #define __set_task_state(tsk, state_value) \
257 do { \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
260 } while (0)
261 #define set_task_state(tsk, state_value) \
262 do { \
263 (tsk)->task_state_change = _THIS_IP_; \
264 smp_store_mb((tsk)->state, (state_value)); \
265 } while (0)
266
267 /*
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
270 * actually sleep:
271 *
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
274 * schedule();
275 *
276 * If the caller does not need such serialisation then use __set_current_state()
277 */
278 #define __set_current_state(state_value) \
279 do { \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
282 } while (0)
283 #define set_current_state(state_value) \
284 do { \
285 current->task_state_change = _THIS_IP_; \
286 smp_store_mb(current->state, (state_value)); \
287 } while (0)
288
289 #else
290
291 #define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293 #define set_task_state(tsk, state_value) \
294 smp_store_mb((tsk)->state, (state_value))
295
296 /*
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
299 * actually sleep:
300 *
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
303 * schedule();
304 *
305 * If the caller does not need such serialisation then use __set_current_state()
306 */
307 #define __set_current_state(state_value) \
308 do { current->state = (state_value); } while (0)
309 #define set_current_state(state_value) \
310 smp_store_mb(current->state, (state_value))
311
312 #endif
313
314 /* Task command name length */
315 #define TASK_COMM_LEN 16
316
317 #include <linux/spinlock.h>
318
319 /*
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
323 * a separate lock).
324 */
325 extern rwlock_t tasklist_lock;
326 extern spinlock_t mmlist_lock;
327
328 struct task_struct;
329
330 #ifdef CONFIG_PROVE_RCU
331 extern int lockdep_tasklist_lock_is_held(void);
332 #endif /* #ifdef CONFIG_PROVE_RCU */
333
334 extern void sched_init(void);
335 extern void sched_init_smp(void);
336 extern asmlinkage void schedule_tail(struct task_struct *prev);
337 extern void init_idle(struct task_struct *idle, int cpu);
338 extern void init_idle_bootup_task(struct task_struct *idle);
339
340 extern cpumask_var_t cpu_isolated_map;
341
342 extern int runqueue_is_locked(int cpu);
343
344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
345 extern void nohz_balance_enter_idle(int cpu);
346 extern void set_cpu_sd_state_idle(void);
347 extern int get_nohz_timer_target(void);
348 #else
349 static inline void nohz_balance_enter_idle(int cpu) { }
350 static inline void set_cpu_sd_state_idle(void) { }
351 #endif
352
353 /*
354 * Only dump TASK_* tasks. (0 for all tasks)
355 */
356 extern void show_state_filter(unsigned long state_filter);
357
358 static inline void show_state(void)
359 {
360 show_state_filter(0);
361 }
362
363 extern void show_regs(struct pt_regs *);
364
365 /*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370 extern void show_stack(struct task_struct *task, unsigned long *sp);
371
372 extern void cpu_init (void);
373 extern void trap_init(void);
374 extern void update_process_times(int user);
375 extern void scheduler_tick(void);
376
377 extern void sched_show_task(struct task_struct *p);
378
379 #ifdef CONFIG_LOCKUP_DETECTOR
380 extern void touch_softlockup_watchdog(void);
381 extern void touch_softlockup_watchdog_sync(void);
382 extern void touch_all_softlockup_watchdogs(void);
383 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
386 extern unsigned int softlockup_panic;
387 void lockup_detector_init(void);
388 #else
389 static inline void touch_softlockup_watchdog(void)
390 {
391 }
392 static inline void touch_softlockup_watchdog_sync(void)
393 {
394 }
395 static inline void touch_all_softlockup_watchdogs(void)
396 {
397 }
398 static inline void lockup_detector_init(void)
399 {
400 }
401 #endif
402
403 #ifdef CONFIG_DETECT_HUNG_TASK
404 void reset_hung_task_detector(void);
405 #else
406 static inline void reset_hung_task_detector(void)
407 {
408 }
409 #endif
410
411 /* Attach to any functions which should be ignored in wchan output. */
412 #define __sched __attribute__((__section__(".sched.text")))
413
414 /* Linker adds these: start and end of __sched functions */
415 extern char __sched_text_start[], __sched_text_end[];
416
417 /* Is this address in the __sched functions? */
418 extern int in_sched_functions(unsigned long addr);
419
420 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
421 extern signed long schedule_timeout(signed long timeout);
422 extern signed long schedule_timeout_interruptible(signed long timeout);
423 extern signed long schedule_timeout_killable(signed long timeout);
424 extern signed long schedule_timeout_uninterruptible(signed long timeout);
425 asmlinkage void schedule(void);
426 extern void schedule_preempt_disabled(void);
427
428 extern long io_schedule_timeout(long timeout);
429
430 static inline void io_schedule(void)
431 {
432 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
433 }
434
435 struct nsproxy;
436 struct user_namespace;
437
438 #ifdef CONFIG_MMU
439 extern void arch_pick_mmap_layout(struct mm_struct *mm);
440 extern unsigned long
441 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
442 unsigned long, unsigned long);
443 extern unsigned long
444 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
445 unsigned long len, unsigned long pgoff,
446 unsigned long flags);
447 #else
448 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
449 #endif
450
451 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
452 #define SUID_DUMP_USER 1 /* Dump as user of process */
453 #define SUID_DUMP_ROOT 2 /* Dump as root */
454
455 /* mm flags */
456
457 /* for SUID_DUMP_* above */
458 #define MMF_DUMPABLE_BITS 2
459 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
460
461 extern void set_dumpable(struct mm_struct *mm, int value);
462 /*
463 * This returns the actual value of the suid_dumpable flag. For things
464 * that are using this for checking for privilege transitions, it must
465 * test against SUID_DUMP_USER rather than treating it as a boolean
466 * value.
467 */
468 static inline int __get_dumpable(unsigned long mm_flags)
469 {
470 return mm_flags & MMF_DUMPABLE_MASK;
471 }
472
473 static inline int get_dumpable(struct mm_struct *mm)
474 {
475 return __get_dumpable(mm->flags);
476 }
477
478 /* coredump filter bits */
479 #define MMF_DUMP_ANON_PRIVATE 2
480 #define MMF_DUMP_ANON_SHARED 3
481 #define MMF_DUMP_MAPPED_PRIVATE 4
482 #define MMF_DUMP_MAPPED_SHARED 5
483 #define MMF_DUMP_ELF_HEADERS 6
484 #define MMF_DUMP_HUGETLB_PRIVATE 7
485 #define MMF_DUMP_HUGETLB_SHARED 8
486
487 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
488 #define MMF_DUMP_FILTER_BITS 7
489 #define MMF_DUMP_FILTER_MASK \
490 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
491 #define MMF_DUMP_FILTER_DEFAULT \
492 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
493 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
494
495 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
496 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
497 #else
498 # define MMF_DUMP_MASK_DEFAULT_ELF 0
499 #endif
500 /* leave room for more dump flags */
501 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
502 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
503 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
504
505 #define MMF_HAS_UPROBES 19 /* has uprobes */
506 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
507
508 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
509
510 struct sighand_struct {
511 atomic_t count;
512 struct k_sigaction action[_NSIG];
513 spinlock_t siglock;
514 wait_queue_head_t signalfd_wqh;
515 };
516
517 struct pacct_struct {
518 int ac_flag;
519 long ac_exitcode;
520 unsigned long ac_mem;
521 cputime_t ac_utime, ac_stime;
522 unsigned long ac_minflt, ac_majflt;
523 };
524
525 struct cpu_itimer {
526 cputime_t expires;
527 cputime_t incr;
528 u32 error;
529 u32 incr_error;
530 };
531
532 /**
533 * struct prev_cputime - snaphsot of system and user cputime
534 * @utime: time spent in user mode
535 * @stime: time spent in system mode
536 * @lock: protects the above two fields
537 *
538 * Stores previous user/system time values such that we can guarantee
539 * monotonicity.
540 */
541 struct prev_cputime {
542 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
543 cputime_t utime;
544 cputime_t stime;
545 raw_spinlock_t lock;
546 #endif
547 };
548
549 static inline void prev_cputime_init(struct prev_cputime *prev)
550 {
551 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
552 prev->utime = prev->stime = 0;
553 raw_spin_lock_init(&prev->lock);
554 #endif
555 }
556
557 /**
558 * struct task_cputime - collected CPU time counts
559 * @utime: time spent in user mode, in &cputime_t units
560 * @stime: time spent in kernel mode, in &cputime_t units
561 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
562 *
563 * This structure groups together three kinds of CPU time that are tracked for
564 * threads and thread groups. Most things considering CPU time want to group
565 * these counts together and treat all three of them in parallel.
566 */
567 struct task_cputime {
568 cputime_t utime;
569 cputime_t stime;
570 unsigned long long sum_exec_runtime;
571 };
572
573 /* Alternate field names when used to cache expirations. */
574 #define virt_exp utime
575 #define prof_exp stime
576 #define sched_exp sum_exec_runtime
577
578 #define INIT_CPUTIME \
579 (struct task_cputime) { \
580 .utime = 0, \
581 .stime = 0, \
582 .sum_exec_runtime = 0, \
583 }
584
585 /*
586 * This is the atomic variant of task_cputime, which can be used for
587 * storing and updating task_cputime statistics without locking.
588 */
589 struct task_cputime_atomic {
590 atomic64_t utime;
591 atomic64_t stime;
592 atomic64_t sum_exec_runtime;
593 };
594
595 #define INIT_CPUTIME_ATOMIC \
596 (struct task_cputime_atomic) { \
597 .utime = ATOMIC64_INIT(0), \
598 .stime = ATOMIC64_INIT(0), \
599 .sum_exec_runtime = ATOMIC64_INIT(0), \
600 }
601
602 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
603
604 /*
605 * Disable preemption until the scheduler is running -- use an unconditional
606 * value so that it also works on !PREEMPT_COUNT kernels.
607 *
608 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
609 */
610 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET
611
612 /*
613 * Initial preempt_count value; reflects the preempt_count schedule invariant
614 * which states that during context switches:
615 *
616 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
617 *
618 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
619 * Note: See finish_task_switch().
620 */
621 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
622
623 /**
624 * struct thread_group_cputimer - thread group interval timer counts
625 * @cputime_atomic: atomic thread group interval timers.
626 * @running: true when there are timers running and
627 * @cputime_atomic receives updates.
628 * @checking_timer: true when a thread in the group is in the
629 * process of checking for thread group timers.
630 *
631 * This structure contains the version of task_cputime, above, that is
632 * used for thread group CPU timer calculations.
633 */
634 struct thread_group_cputimer {
635 struct task_cputime_atomic cputime_atomic;
636 bool running;
637 bool checking_timer;
638 };
639
640 #include <linux/rwsem.h>
641 struct autogroup;
642
643 /*
644 * NOTE! "signal_struct" does not have its own
645 * locking, because a shared signal_struct always
646 * implies a shared sighand_struct, so locking
647 * sighand_struct is always a proper superset of
648 * the locking of signal_struct.
649 */
650 struct signal_struct {
651 atomic_t sigcnt;
652 atomic_t live;
653 int nr_threads;
654 struct list_head thread_head;
655
656 wait_queue_head_t wait_chldexit; /* for wait4() */
657
658 /* current thread group signal load-balancing target: */
659 struct task_struct *curr_target;
660
661 /* shared signal handling: */
662 struct sigpending shared_pending;
663
664 /* thread group exit support */
665 int group_exit_code;
666 /* overloaded:
667 * - notify group_exit_task when ->count is equal to notify_count
668 * - everyone except group_exit_task is stopped during signal delivery
669 * of fatal signals, group_exit_task processes the signal.
670 */
671 int notify_count;
672 struct task_struct *group_exit_task;
673
674 /* thread group stop support, overloads group_exit_code too */
675 int group_stop_count;
676 unsigned int flags; /* see SIGNAL_* flags below */
677
678 /*
679 * PR_SET_CHILD_SUBREAPER marks a process, like a service
680 * manager, to re-parent orphan (double-forking) child processes
681 * to this process instead of 'init'. The service manager is
682 * able to receive SIGCHLD signals and is able to investigate
683 * the process until it calls wait(). All children of this
684 * process will inherit a flag if they should look for a
685 * child_subreaper process at exit.
686 */
687 unsigned int is_child_subreaper:1;
688 unsigned int has_child_subreaper:1;
689
690 /* POSIX.1b Interval Timers */
691 int posix_timer_id;
692 struct list_head posix_timers;
693
694 /* ITIMER_REAL timer for the process */
695 struct hrtimer real_timer;
696 struct pid *leader_pid;
697 ktime_t it_real_incr;
698
699 /*
700 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
701 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
702 * values are defined to 0 and 1 respectively
703 */
704 struct cpu_itimer it[2];
705
706 /*
707 * Thread group totals for process CPU timers.
708 * See thread_group_cputimer(), et al, for details.
709 */
710 struct thread_group_cputimer cputimer;
711
712 /* Earliest-expiration cache. */
713 struct task_cputime cputime_expires;
714
715 struct list_head cpu_timers[3];
716
717 struct pid *tty_old_pgrp;
718
719 /* boolean value for session group leader */
720 int leader;
721
722 struct tty_struct *tty; /* NULL if no tty */
723
724 #ifdef CONFIG_SCHED_AUTOGROUP
725 struct autogroup *autogroup;
726 #endif
727 /*
728 * Cumulative resource counters for dead threads in the group,
729 * and for reaped dead child processes forked by this group.
730 * Live threads maintain their own counters and add to these
731 * in __exit_signal, except for the group leader.
732 */
733 seqlock_t stats_lock;
734 cputime_t utime, stime, cutime, cstime;
735 cputime_t gtime;
736 cputime_t cgtime;
737 struct prev_cputime prev_cputime;
738 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
739 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
740 unsigned long inblock, oublock, cinblock, coublock;
741 unsigned long maxrss, cmaxrss;
742 struct task_io_accounting ioac;
743
744 /*
745 * Cumulative ns of schedule CPU time fo dead threads in the
746 * group, not including a zombie group leader, (This only differs
747 * from jiffies_to_ns(utime + stime) if sched_clock uses something
748 * other than jiffies.)
749 */
750 unsigned long long sum_sched_runtime;
751
752 /*
753 * We don't bother to synchronize most readers of this at all,
754 * because there is no reader checking a limit that actually needs
755 * to get both rlim_cur and rlim_max atomically, and either one
756 * alone is a single word that can safely be read normally.
757 * getrlimit/setrlimit use task_lock(current->group_leader) to
758 * protect this instead of the siglock, because they really
759 * have no need to disable irqs.
760 */
761 struct rlimit rlim[RLIM_NLIMITS];
762
763 #ifdef CONFIG_BSD_PROCESS_ACCT
764 struct pacct_struct pacct; /* per-process accounting information */
765 #endif
766 #ifdef CONFIG_TASKSTATS
767 struct taskstats *stats;
768 #endif
769 #ifdef CONFIG_AUDIT
770 unsigned audit_tty;
771 unsigned audit_tty_log_passwd;
772 struct tty_audit_buf *tty_audit_buf;
773 #endif
774 #ifdef CONFIG_CGROUPS
775 /*
776 * group_rwsem prevents new tasks from entering the threadgroup and
777 * member tasks from exiting,a more specifically, setting of
778 * PF_EXITING. fork and exit paths are protected with this rwsem
779 * using threadgroup_change_begin/end(). Users which require
780 * threadgroup to remain stable should use threadgroup_[un]lock()
781 * which also takes care of exec path. Currently, cgroup is the
782 * only user.
783 */
784 struct rw_semaphore group_rwsem;
785 #endif
786
787 oom_flags_t oom_flags;
788 short oom_score_adj; /* OOM kill score adjustment */
789 short oom_score_adj_min; /* OOM kill score adjustment min value.
790 * Only settable by CAP_SYS_RESOURCE. */
791
792 struct mutex cred_guard_mutex; /* guard against foreign influences on
793 * credential calculations
794 * (notably. ptrace) */
795 };
796
797 /*
798 * Bits in flags field of signal_struct.
799 */
800 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
801 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
802 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
803 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
804 /*
805 * Pending notifications to parent.
806 */
807 #define SIGNAL_CLD_STOPPED 0x00000010
808 #define SIGNAL_CLD_CONTINUED 0x00000020
809 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
810
811 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
812
813 /* If true, all threads except ->group_exit_task have pending SIGKILL */
814 static inline int signal_group_exit(const struct signal_struct *sig)
815 {
816 return (sig->flags & SIGNAL_GROUP_EXIT) ||
817 (sig->group_exit_task != NULL);
818 }
819
820 /*
821 * Some day this will be a full-fledged user tracking system..
822 */
823 struct user_struct {
824 atomic_t __count; /* reference count */
825 atomic_t processes; /* How many processes does this user have? */
826 atomic_t sigpending; /* How many pending signals does this user have? */
827 #ifdef CONFIG_INOTIFY_USER
828 atomic_t inotify_watches; /* How many inotify watches does this user have? */
829 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
830 #endif
831 #ifdef CONFIG_FANOTIFY
832 atomic_t fanotify_listeners;
833 #endif
834 #ifdef CONFIG_EPOLL
835 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
836 #endif
837 #ifdef CONFIG_POSIX_MQUEUE
838 /* protected by mq_lock */
839 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
840 #endif
841 unsigned long locked_shm; /* How many pages of mlocked shm ? */
842
843 #ifdef CONFIG_KEYS
844 struct key *uid_keyring; /* UID specific keyring */
845 struct key *session_keyring; /* UID's default session keyring */
846 #endif
847
848 /* Hash table maintenance information */
849 struct hlist_node uidhash_node;
850 kuid_t uid;
851
852 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
853 atomic_long_t locked_vm;
854 #endif
855 };
856
857 extern int uids_sysfs_init(void);
858
859 extern struct user_struct *find_user(kuid_t);
860
861 extern struct user_struct root_user;
862 #define INIT_USER (&root_user)
863
864
865 struct backing_dev_info;
866 struct reclaim_state;
867
868 #ifdef CONFIG_SCHED_INFO
869 struct sched_info {
870 /* cumulative counters */
871 unsigned long pcount; /* # of times run on this cpu */
872 unsigned long long run_delay; /* time spent waiting on a runqueue */
873
874 /* timestamps */
875 unsigned long long last_arrival,/* when we last ran on a cpu */
876 last_queued; /* when we were last queued to run */
877 };
878 #endif /* CONFIG_SCHED_INFO */
879
880 #ifdef CONFIG_TASK_DELAY_ACCT
881 struct task_delay_info {
882 spinlock_t lock;
883 unsigned int flags; /* Private per-task flags */
884
885 /* For each stat XXX, add following, aligned appropriately
886 *
887 * struct timespec XXX_start, XXX_end;
888 * u64 XXX_delay;
889 * u32 XXX_count;
890 *
891 * Atomicity of updates to XXX_delay, XXX_count protected by
892 * single lock above (split into XXX_lock if contention is an issue).
893 */
894
895 /*
896 * XXX_count is incremented on every XXX operation, the delay
897 * associated with the operation is added to XXX_delay.
898 * XXX_delay contains the accumulated delay time in nanoseconds.
899 */
900 u64 blkio_start; /* Shared by blkio, swapin */
901 u64 blkio_delay; /* wait for sync block io completion */
902 u64 swapin_delay; /* wait for swapin block io completion */
903 u32 blkio_count; /* total count of the number of sync block */
904 /* io operations performed */
905 u32 swapin_count; /* total count of the number of swapin block */
906 /* io operations performed */
907
908 u64 freepages_start;
909 u64 freepages_delay; /* wait for memory reclaim */
910 u32 freepages_count; /* total count of memory reclaim */
911 };
912 #endif /* CONFIG_TASK_DELAY_ACCT */
913
914 static inline int sched_info_on(void)
915 {
916 #ifdef CONFIG_SCHEDSTATS
917 return 1;
918 #elif defined(CONFIG_TASK_DELAY_ACCT)
919 extern int delayacct_on;
920 return delayacct_on;
921 #else
922 return 0;
923 #endif
924 }
925
926 enum cpu_idle_type {
927 CPU_IDLE,
928 CPU_NOT_IDLE,
929 CPU_NEWLY_IDLE,
930 CPU_MAX_IDLE_TYPES
931 };
932
933 /*
934 * Increase resolution of cpu_capacity calculations
935 */
936 #define SCHED_CAPACITY_SHIFT 10
937 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
938
939 /*
940 * Wake-queues are lists of tasks with a pending wakeup, whose
941 * callers have already marked the task as woken internally,
942 * and can thus carry on. A common use case is being able to
943 * do the wakeups once the corresponding user lock as been
944 * released.
945 *
946 * We hold reference to each task in the list across the wakeup,
947 * thus guaranteeing that the memory is still valid by the time
948 * the actual wakeups are performed in wake_up_q().
949 *
950 * One per task suffices, because there's never a need for a task to be
951 * in two wake queues simultaneously; it is forbidden to abandon a task
952 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
953 * already in a wake queue, the wakeup will happen soon and the second
954 * waker can just skip it.
955 *
956 * The WAKE_Q macro declares and initializes the list head.
957 * wake_up_q() does NOT reinitialize the list; it's expected to be
958 * called near the end of a function, where the fact that the queue is
959 * not used again will be easy to see by inspection.
960 *
961 * Note that this can cause spurious wakeups. schedule() callers
962 * must ensure the call is done inside a loop, confirming that the
963 * wakeup condition has in fact occurred.
964 */
965 struct wake_q_node {
966 struct wake_q_node *next;
967 };
968
969 struct wake_q_head {
970 struct wake_q_node *first;
971 struct wake_q_node **lastp;
972 };
973
974 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
975
976 #define WAKE_Q(name) \
977 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
978
979 extern void wake_q_add(struct wake_q_head *head,
980 struct task_struct *task);
981 extern void wake_up_q(struct wake_q_head *head);
982
983 /*
984 * sched-domains (multiprocessor balancing) declarations:
985 */
986 #ifdef CONFIG_SMP
987 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
988 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
989 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
990 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
991 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
992 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
993 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
994 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
995 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
996 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
997 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
998 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
999 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
1000 #define SD_NUMA 0x4000 /* cross-node balancing */
1001
1002 #ifdef CONFIG_SCHED_SMT
1003 static inline int cpu_smt_flags(void)
1004 {
1005 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1006 }
1007 #endif
1008
1009 #ifdef CONFIG_SCHED_MC
1010 static inline int cpu_core_flags(void)
1011 {
1012 return SD_SHARE_PKG_RESOURCES;
1013 }
1014 #endif
1015
1016 #ifdef CONFIG_NUMA
1017 static inline int cpu_numa_flags(void)
1018 {
1019 return SD_NUMA;
1020 }
1021 #endif
1022
1023 struct sched_domain_attr {
1024 int relax_domain_level;
1025 };
1026
1027 #define SD_ATTR_INIT (struct sched_domain_attr) { \
1028 .relax_domain_level = -1, \
1029 }
1030
1031 extern int sched_domain_level_max;
1032
1033 struct sched_group;
1034
1035 struct sched_domain {
1036 /* These fields must be setup */
1037 struct sched_domain *parent; /* top domain must be null terminated */
1038 struct sched_domain *child; /* bottom domain must be null terminated */
1039 struct sched_group *groups; /* the balancing groups of the domain */
1040 unsigned long min_interval; /* Minimum balance interval ms */
1041 unsigned long max_interval; /* Maximum balance interval ms */
1042 unsigned int busy_factor; /* less balancing by factor if busy */
1043 unsigned int imbalance_pct; /* No balance until over watermark */
1044 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1045 unsigned int busy_idx;
1046 unsigned int idle_idx;
1047 unsigned int newidle_idx;
1048 unsigned int wake_idx;
1049 unsigned int forkexec_idx;
1050 unsigned int smt_gain;
1051
1052 int nohz_idle; /* NOHZ IDLE status */
1053 int flags; /* See SD_* */
1054 int level;
1055
1056 /* Runtime fields. */
1057 unsigned long last_balance; /* init to jiffies. units in jiffies */
1058 unsigned int balance_interval; /* initialise to 1. units in ms. */
1059 unsigned int nr_balance_failed; /* initialise to 0 */
1060
1061 /* idle_balance() stats */
1062 u64 max_newidle_lb_cost;
1063 unsigned long next_decay_max_lb_cost;
1064
1065 #ifdef CONFIG_SCHEDSTATS
1066 /* load_balance() stats */
1067 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1068 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1069 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1070 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1071 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1072 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1073 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1074 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1075
1076 /* Active load balancing */
1077 unsigned int alb_count;
1078 unsigned int alb_failed;
1079 unsigned int alb_pushed;
1080
1081 /* SD_BALANCE_EXEC stats */
1082 unsigned int sbe_count;
1083 unsigned int sbe_balanced;
1084 unsigned int sbe_pushed;
1085
1086 /* SD_BALANCE_FORK stats */
1087 unsigned int sbf_count;
1088 unsigned int sbf_balanced;
1089 unsigned int sbf_pushed;
1090
1091 /* try_to_wake_up() stats */
1092 unsigned int ttwu_wake_remote;
1093 unsigned int ttwu_move_affine;
1094 unsigned int ttwu_move_balance;
1095 #endif
1096 #ifdef CONFIG_SCHED_DEBUG
1097 char *name;
1098 #endif
1099 union {
1100 void *private; /* used during construction */
1101 struct rcu_head rcu; /* used during destruction */
1102 };
1103
1104 unsigned int span_weight;
1105 /*
1106 * Span of all CPUs in this domain.
1107 *
1108 * NOTE: this field is variable length. (Allocated dynamically
1109 * by attaching extra space to the end of the structure,
1110 * depending on how many CPUs the kernel has booted up with)
1111 */
1112 unsigned long span[0];
1113 };
1114
1115 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1116 {
1117 return to_cpumask(sd->span);
1118 }
1119
1120 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1121 struct sched_domain_attr *dattr_new);
1122
1123 /* Allocate an array of sched domains, for partition_sched_domains(). */
1124 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1125 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1126
1127 bool cpus_share_cache(int this_cpu, int that_cpu);
1128
1129 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1130 typedef int (*sched_domain_flags_f)(void);
1131
1132 #define SDTL_OVERLAP 0x01
1133
1134 struct sd_data {
1135 struct sched_domain **__percpu sd;
1136 struct sched_group **__percpu sg;
1137 struct sched_group_capacity **__percpu sgc;
1138 };
1139
1140 struct sched_domain_topology_level {
1141 sched_domain_mask_f mask;
1142 sched_domain_flags_f sd_flags;
1143 int flags;
1144 int numa_level;
1145 struct sd_data data;
1146 #ifdef CONFIG_SCHED_DEBUG
1147 char *name;
1148 #endif
1149 };
1150
1151 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1152 extern void wake_up_if_idle(int cpu);
1153
1154 #ifdef CONFIG_SCHED_DEBUG
1155 # define SD_INIT_NAME(type) .name = #type
1156 #else
1157 # define SD_INIT_NAME(type)
1158 #endif
1159
1160 #else /* CONFIG_SMP */
1161
1162 struct sched_domain_attr;
1163
1164 static inline void
1165 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1166 struct sched_domain_attr *dattr_new)
1167 {
1168 }
1169
1170 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1171 {
1172 return true;
1173 }
1174
1175 #endif /* !CONFIG_SMP */
1176
1177
1178 struct io_context; /* See blkdev.h */
1179
1180
1181 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1182 extern void prefetch_stack(struct task_struct *t);
1183 #else
1184 static inline void prefetch_stack(struct task_struct *t) { }
1185 #endif
1186
1187 struct audit_context; /* See audit.c */
1188 struct mempolicy;
1189 struct pipe_inode_info;
1190 struct uts_namespace;
1191
1192 struct load_weight {
1193 unsigned long weight;
1194 u32 inv_weight;
1195 };
1196
1197 /*
1198 * The load_avg/util_avg accumulates an infinite geometric series.
1199 * 1) load_avg factors frequency scaling into the amount of time that a
1200 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1201 * aggregated such weights of all runnable and blocked sched_entities.
1202 * 2) util_avg factors frequency and cpu scaling into the amount of time
1203 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1204 * For cfs_rq, it is the aggregated such times of all runnable and
1205 * blocked sched_entities.
1206 * The 64 bit load_sum can:
1207 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1208 * the highest weight (=88761) always runnable, we should not overflow
1209 * 2) for entity, support any load.weight always runnable
1210 */
1211 struct sched_avg {
1212 u64 last_update_time, load_sum;
1213 u32 util_sum, period_contrib;
1214 unsigned long load_avg, util_avg;
1215 };
1216
1217 #ifdef CONFIG_SCHEDSTATS
1218 struct sched_statistics {
1219 u64 wait_start;
1220 u64 wait_max;
1221 u64 wait_count;
1222 u64 wait_sum;
1223 u64 iowait_count;
1224 u64 iowait_sum;
1225
1226 u64 sleep_start;
1227 u64 sleep_max;
1228 s64 sum_sleep_runtime;
1229
1230 u64 block_start;
1231 u64 block_max;
1232 u64 exec_max;
1233 u64 slice_max;
1234
1235 u64 nr_migrations_cold;
1236 u64 nr_failed_migrations_affine;
1237 u64 nr_failed_migrations_running;
1238 u64 nr_failed_migrations_hot;
1239 u64 nr_forced_migrations;
1240
1241 u64 nr_wakeups;
1242 u64 nr_wakeups_sync;
1243 u64 nr_wakeups_migrate;
1244 u64 nr_wakeups_local;
1245 u64 nr_wakeups_remote;
1246 u64 nr_wakeups_affine;
1247 u64 nr_wakeups_affine_attempts;
1248 u64 nr_wakeups_passive;
1249 u64 nr_wakeups_idle;
1250 };
1251 #endif
1252
1253 struct sched_entity {
1254 struct load_weight load; /* for load-balancing */
1255 struct rb_node run_node;
1256 struct list_head group_node;
1257 unsigned int on_rq;
1258
1259 u64 exec_start;
1260 u64 sum_exec_runtime;
1261 u64 vruntime;
1262 u64 prev_sum_exec_runtime;
1263
1264 u64 nr_migrations;
1265
1266 #ifdef CONFIG_SCHEDSTATS
1267 struct sched_statistics statistics;
1268 #endif
1269
1270 #ifdef CONFIG_FAIR_GROUP_SCHED
1271 int depth;
1272 struct sched_entity *parent;
1273 /* rq on which this entity is (to be) queued: */
1274 struct cfs_rq *cfs_rq;
1275 /* rq "owned" by this entity/group: */
1276 struct cfs_rq *my_q;
1277 #endif
1278
1279 #ifdef CONFIG_SMP
1280 /* Per entity load average tracking */
1281 struct sched_avg avg;
1282 #endif
1283 };
1284
1285 struct sched_rt_entity {
1286 struct list_head run_list;
1287 unsigned long timeout;
1288 unsigned long watchdog_stamp;
1289 unsigned int time_slice;
1290
1291 struct sched_rt_entity *back;
1292 #ifdef CONFIG_RT_GROUP_SCHED
1293 struct sched_rt_entity *parent;
1294 /* rq on which this entity is (to be) queued: */
1295 struct rt_rq *rt_rq;
1296 /* rq "owned" by this entity/group: */
1297 struct rt_rq *my_q;
1298 #endif
1299 };
1300
1301 struct sched_dl_entity {
1302 struct rb_node rb_node;
1303
1304 /*
1305 * Original scheduling parameters. Copied here from sched_attr
1306 * during sched_setattr(), they will remain the same until
1307 * the next sched_setattr().
1308 */
1309 u64 dl_runtime; /* maximum runtime for each instance */
1310 u64 dl_deadline; /* relative deadline of each instance */
1311 u64 dl_period; /* separation of two instances (period) */
1312 u64 dl_bw; /* dl_runtime / dl_deadline */
1313
1314 /*
1315 * Actual scheduling parameters. Initialized with the values above,
1316 * they are continously updated during task execution. Note that
1317 * the remaining runtime could be < 0 in case we are in overrun.
1318 */
1319 s64 runtime; /* remaining runtime for this instance */
1320 u64 deadline; /* absolute deadline for this instance */
1321 unsigned int flags; /* specifying the scheduler behaviour */
1322
1323 /*
1324 * Some bool flags:
1325 *
1326 * @dl_throttled tells if we exhausted the runtime. If so, the
1327 * task has to wait for a replenishment to be performed at the
1328 * next firing of dl_timer.
1329 *
1330 * @dl_new tells if a new instance arrived. If so we must
1331 * start executing it with full runtime and reset its absolute
1332 * deadline;
1333 *
1334 * @dl_boosted tells if we are boosted due to DI. If so we are
1335 * outside bandwidth enforcement mechanism (but only until we
1336 * exit the critical section);
1337 *
1338 * @dl_yielded tells if task gave up the cpu before consuming
1339 * all its available runtime during the last job.
1340 */
1341 int dl_throttled, dl_new, dl_boosted, dl_yielded;
1342
1343 /*
1344 * Bandwidth enforcement timer. Each -deadline task has its
1345 * own bandwidth to be enforced, thus we need one timer per task.
1346 */
1347 struct hrtimer dl_timer;
1348 };
1349
1350 union rcu_special {
1351 struct {
1352 u8 blocked;
1353 u8 need_qs;
1354 u8 exp_need_qs;
1355 u8 pad; /* Otherwise the compiler can store garbage here. */
1356 } b; /* Bits. */
1357 u32 s; /* Set of bits. */
1358 };
1359 struct rcu_node;
1360
1361 enum perf_event_task_context {
1362 perf_invalid_context = -1,
1363 perf_hw_context = 0,
1364 perf_sw_context,
1365 perf_nr_task_contexts,
1366 };
1367
1368 /* Track pages that require TLB flushes */
1369 struct tlbflush_unmap_batch {
1370 /*
1371 * Each bit set is a CPU that potentially has a TLB entry for one of
1372 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1373 */
1374 struct cpumask cpumask;
1375
1376 /* True if any bit in cpumask is set */
1377 bool flush_required;
1378
1379 /*
1380 * If true then the PTE was dirty when unmapped. The entry must be
1381 * flushed before IO is initiated or a stale TLB entry potentially
1382 * allows an update without redirtying the page.
1383 */
1384 bool writable;
1385 };
1386
1387 struct task_struct {
1388 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1389 void *stack;
1390 atomic_t usage;
1391 unsigned int flags; /* per process flags, defined below */
1392 unsigned int ptrace;
1393
1394 #ifdef CONFIG_SMP
1395 struct llist_node wake_entry;
1396 int on_cpu;
1397 unsigned int wakee_flips;
1398 unsigned long wakee_flip_decay_ts;
1399 struct task_struct *last_wakee;
1400
1401 int wake_cpu;
1402 #endif
1403 int on_rq;
1404
1405 int prio, static_prio, normal_prio;
1406 unsigned int rt_priority;
1407 const struct sched_class *sched_class;
1408 struct sched_entity se;
1409 struct sched_rt_entity rt;
1410 #ifdef CONFIG_CGROUP_SCHED
1411 struct task_group *sched_task_group;
1412 #endif
1413 struct sched_dl_entity dl;
1414
1415 #ifdef CONFIG_PREEMPT_NOTIFIERS
1416 /* list of struct preempt_notifier: */
1417 struct hlist_head preempt_notifiers;
1418 #endif
1419
1420 #ifdef CONFIG_BLK_DEV_IO_TRACE
1421 unsigned int btrace_seq;
1422 #endif
1423
1424 unsigned int policy;
1425 int nr_cpus_allowed;
1426 cpumask_t cpus_allowed;
1427
1428 #ifdef CONFIG_PREEMPT_RCU
1429 int rcu_read_lock_nesting;
1430 union rcu_special rcu_read_unlock_special;
1431 struct list_head rcu_node_entry;
1432 struct rcu_node *rcu_blocked_node;
1433 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1434 #ifdef CONFIG_TASKS_RCU
1435 unsigned long rcu_tasks_nvcsw;
1436 bool rcu_tasks_holdout;
1437 struct list_head rcu_tasks_holdout_list;
1438 int rcu_tasks_idle_cpu;
1439 #endif /* #ifdef CONFIG_TASKS_RCU */
1440
1441 #ifdef CONFIG_SCHED_INFO
1442 struct sched_info sched_info;
1443 #endif
1444
1445 struct list_head tasks;
1446 #ifdef CONFIG_SMP
1447 struct plist_node pushable_tasks;
1448 struct rb_node pushable_dl_tasks;
1449 #endif
1450
1451 struct mm_struct *mm, *active_mm;
1452 /* per-thread vma caching */
1453 u32 vmacache_seqnum;
1454 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1455 #if defined(SPLIT_RSS_COUNTING)
1456 struct task_rss_stat rss_stat;
1457 #endif
1458 /* task state */
1459 int exit_state;
1460 int exit_code, exit_signal;
1461 int pdeath_signal; /* The signal sent when the parent dies */
1462 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1463
1464 /* Used for emulating ABI behavior of previous Linux versions */
1465 unsigned int personality;
1466
1467 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1468 * execve */
1469 unsigned in_iowait:1;
1470
1471 /* Revert to default priority/policy when forking */
1472 unsigned sched_reset_on_fork:1;
1473 unsigned sched_contributes_to_load:1;
1474 unsigned sched_migrated:1;
1475
1476 #ifdef CONFIG_MEMCG_KMEM
1477 unsigned memcg_kmem_skip_account:1;
1478 #endif
1479 #ifdef CONFIG_COMPAT_BRK
1480 unsigned brk_randomized:1;
1481 #endif
1482
1483 unsigned long atomic_flags; /* Flags needing atomic access. */
1484
1485 struct restart_block restart_block;
1486
1487 pid_t pid;
1488 pid_t tgid;
1489
1490 #ifdef CONFIG_CC_STACKPROTECTOR
1491 /* Canary value for the -fstack-protector gcc feature */
1492 unsigned long stack_canary;
1493 #endif
1494 /*
1495 * pointers to (original) parent process, youngest child, younger sibling,
1496 * older sibling, respectively. (p->father can be replaced with
1497 * p->real_parent->pid)
1498 */
1499 struct task_struct __rcu *real_parent; /* real parent process */
1500 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1501 /*
1502 * children/sibling forms the list of my natural children
1503 */
1504 struct list_head children; /* list of my children */
1505 struct list_head sibling; /* linkage in my parent's children list */
1506 struct task_struct *group_leader; /* threadgroup leader */
1507
1508 /*
1509 * ptraced is the list of tasks this task is using ptrace on.
1510 * This includes both natural children and PTRACE_ATTACH targets.
1511 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1512 */
1513 struct list_head ptraced;
1514 struct list_head ptrace_entry;
1515
1516 /* PID/PID hash table linkage. */
1517 struct pid_link pids[PIDTYPE_MAX];
1518 struct list_head thread_group;
1519 struct list_head thread_node;
1520
1521 struct completion *vfork_done; /* for vfork() */
1522 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1523 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1524
1525 cputime_t utime, stime, utimescaled, stimescaled;
1526 cputime_t gtime;
1527 struct prev_cputime prev_cputime;
1528 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1529 seqlock_t vtime_seqlock;
1530 unsigned long long vtime_snap;
1531 enum {
1532 VTIME_SLEEPING = 0,
1533 VTIME_USER,
1534 VTIME_SYS,
1535 } vtime_snap_whence;
1536 #endif
1537 unsigned long nvcsw, nivcsw; /* context switch counts */
1538 u64 start_time; /* monotonic time in nsec */
1539 u64 real_start_time; /* boot based time in nsec */
1540 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1541 unsigned long min_flt, maj_flt;
1542
1543 struct task_cputime cputime_expires;
1544 struct list_head cpu_timers[3];
1545
1546 /* process credentials */
1547 const struct cred __rcu *real_cred; /* objective and real subjective task
1548 * credentials (COW) */
1549 const struct cred __rcu *cred; /* effective (overridable) subjective task
1550 * credentials (COW) */
1551 char comm[TASK_COMM_LEN]; /* executable name excluding path
1552 - access with [gs]et_task_comm (which lock
1553 it with task_lock())
1554 - initialized normally by setup_new_exec */
1555 /* file system info */
1556 struct nameidata *nameidata;
1557 #ifdef CONFIG_SYSVIPC
1558 /* ipc stuff */
1559 struct sysv_sem sysvsem;
1560 struct sysv_shm sysvshm;
1561 #endif
1562 #ifdef CONFIG_DETECT_HUNG_TASK
1563 /* hung task detection */
1564 unsigned long last_switch_count;
1565 #endif
1566 /* filesystem information */
1567 struct fs_struct *fs;
1568 /* open file information */
1569 struct files_struct *files;
1570 /* namespaces */
1571 struct nsproxy *nsproxy;
1572 /* signal handlers */
1573 struct signal_struct *signal;
1574 struct sighand_struct *sighand;
1575
1576 sigset_t blocked, real_blocked;
1577 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1578 struct sigpending pending;
1579
1580 unsigned long sas_ss_sp;
1581 size_t sas_ss_size;
1582 int (*notifier)(void *priv);
1583 void *notifier_data;
1584 sigset_t *notifier_mask;
1585 struct callback_head *task_works;
1586
1587 struct audit_context *audit_context;
1588 #ifdef CONFIG_AUDITSYSCALL
1589 kuid_t loginuid;
1590 unsigned int sessionid;
1591 #endif
1592 struct seccomp seccomp;
1593
1594 /* Thread group tracking */
1595 u32 parent_exec_id;
1596 u32 self_exec_id;
1597 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1598 * mempolicy */
1599 spinlock_t alloc_lock;
1600
1601 /* Protection of the PI data structures: */
1602 raw_spinlock_t pi_lock;
1603
1604 struct wake_q_node wake_q;
1605
1606 #ifdef CONFIG_RT_MUTEXES
1607 /* PI waiters blocked on a rt_mutex held by this task */
1608 struct rb_root pi_waiters;
1609 struct rb_node *pi_waiters_leftmost;
1610 /* Deadlock detection and priority inheritance handling */
1611 struct rt_mutex_waiter *pi_blocked_on;
1612 #endif
1613
1614 #ifdef CONFIG_DEBUG_MUTEXES
1615 /* mutex deadlock detection */
1616 struct mutex_waiter *blocked_on;
1617 #endif
1618 #ifdef CONFIG_TRACE_IRQFLAGS
1619 unsigned int irq_events;
1620 unsigned long hardirq_enable_ip;
1621 unsigned long hardirq_disable_ip;
1622 unsigned int hardirq_enable_event;
1623 unsigned int hardirq_disable_event;
1624 int hardirqs_enabled;
1625 int hardirq_context;
1626 unsigned long softirq_disable_ip;
1627 unsigned long softirq_enable_ip;
1628 unsigned int softirq_disable_event;
1629 unsigned int softirq_enable_event;
1630 int softirqs_enabled;
1631 int softirq_context;
1632 #endif
1633 #ifdef CONFIG_LOCKDEP
1634 # define MAX_LOCK_DEPTH 48UL
1635 u64 curr_chain_key;
1636 int lockdep_depth;
1637 unsigned int lockdep_recursion;
1638 struct held_lock held_locks[MAX_LOCK_DEPTH];
1639 gfp_t lockdep_reclaim_gfp;
1640 #endif
1641
1642 /* journalling filesystem info */
1643 void *journal_info;
1644
1645 /* stacked block device info */
1646 struct bio_list *bio_list;
1647
1648 #ifdef CONFIG_BLOCK
1649 /* stack plugging */
1650 struct blk_plug *plug;
1651 #endif
1652
1653 /* VM state */
1654 struct reclaim_state *reclaim_state;
1655
1656 struct backing_dev_info *backing_dev_info;
1657
1658 struct io_context *io_context;
1659
1660 unsigned long ptrace_message;
1661 siginfo_t *last_siginfo; /* For ptrace use. */
1662 struct task_io_accounting ioac;
1663 #if defined(CONFIG_TASK_XACCT)
1664 u64 acct_rss_mem1; /* accumulated rss usage */
1665 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1666 cputime_t acct_timexpd; /* stime + utime since last update */
1667 #endif
1668 #ifdef CONFIG_CPUSETS
1669 nodemask_t mems_allowed; /* Protected by alloc_lock */
1670 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1671 int cpuset_mem_spread_rotor;
1672 int cpuset_slab_spread_rotor;
1673 #endif
1674 #ifdef CONFIG_CGROUPS
1675 /* Control Group info protected by css_set_lock */
1676 struct css_set __rcu *cgroups;
1677 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1678 struct list_head cg_list;
1679 #endif
1680 #ifdef CONFIG_FUTEX
1681 struct robust_list_head __user *robust_list;
1682 #ifdef CONFIG_COMPAT
1683 struct compat_robust_list_head __user *compat_robust_list;
1684 #endif
1685 struct list_head pi_state_list;
1686 struct futex_pi_state *pi_state_cache;
1687 #endif
1688 #ifdef CONFIG_PERF_EVENTS
1689 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1690 struct mutex perf_event_mutex;
1691 struct list_head perf_event_list;
1692 #endif
1693 #ifdef CONFIG_DEBUG_PREEMPT
1694 unsigned long preempt_disable_ip;
1695 #endif
1696 #ifdef CONFIG_NUMA
1697 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1698 short il_next;
1699 short pref_node_fork;
1700 #endif
1701 #ifdef CONFIG_NUMA_BALANCING
1702 int numa_scan_seq;
1703 unsigned int numa_scan_period;
1704 unsigned int numa_scan_period_max;
1705 int numa_preferred_nid;
1706 unsigned long numa_migrate_retry;
1707 u64 node_stamp; /* migration stamp */
1708 u64 last_task_numa_placement;
1709 u64 last_sum_exec_runtime;
1710 struct callback_head numa_work;
1711
1712 struct list_head numa_entry;
1713 struct numa_group *numa_group;
1714
1715 /*
1716 * numa_faults is an array split into four regions:
1717 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1718 * in this precise order.
1719 *
1720 * faults_memory: Exponential decaying average of faults on a per-node
1721 * basis. Scheduling placement decisions are made based on these
1722 * counts. The values remain static for the duration of a PTE scan.
1723 * faults_cpu: Track the nodes the process was running on when a NUMA
1724 * hinting fault was incurred.
1725 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1726 * during the current scan window. When the scan completes, the counts
1727 * in faults_memory and faults_cpu decay and these values are copied.
1728 */
1729 unsigned long *numa_faults;
1730 unsigned long total_numa_faults;
1731
1732 /*
1733 * numa_faults_locality tracks if faults recorded during the last
1734 * scan window were remote/local or failed to migrate. The task scan
1735 * period is adapted based on the locality of the faults with different
1736 * weights depending on whether they were shared or private faults
1737 */
1738 unsigned long numa_faults_locality[3];
1739
1740 unsigned long numa_pages_migrated;
1741 #endif /* CONFIG_NUMA_BALANCING */
1742
1743 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1744 struct tlbflush_unmap_batch tlb_ubc;
1745 #endif
1746
1747 struct rcu_head rcu;
1748
1749 /*
1750 * cache last used pipe for splice
1751 */
1752 struct pipe_inode_info *splice_pipe;
1753
1754 struct page_frag task_frag;
1755
1756 #ifdef CONFIG_TASK_DELAY_ACCT
1757 struct task_delay_info *delays;
1758 #endif
1759 #ifdef CONFIG_FAULT_INJECTION
1760 int make_it_fail;
1761 #endif
1762 /*
1763 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1764 * balance_dirty_pages() for some dirty throttling pause
1765 */
1766 int nr_dirtied;
1767 int nr_dirtied_pause;
1768 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1769
1770 #ifdef CONFIG_LATENCYTOP
1771 int latency_record_count;
1772 struct latency_record latency_record[LT_SAVECOUNT];
1773 #endif
1774 /*
1775 * time slack values; these are used to round up poll() and
1776 * select() etc timeout values. These are in nanoseconds.
1777 */
1778 unsigned long timer_slack_ns;
1779 unsigned long default_timer_slack_ns;
1780
1781 #ifdef CONFIG_KASAN
1782 unsigned int kasan_depth;
1783 #endif
1784 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1785 /* Index of current stored address in ret_stack */
1786 int curr_ret_stack;
1787 /* Stack of return addresses for return function tracing */
1788 struct ftrace_ret_stack *ret_stack;
1789 /* time stamp for last schedule */
1790 unsigned long long ftrace_timestamp;
1791 /*
1792 * Number of functions that haven't been traced
1793 * because of depth overrun.
1794 */
1795 atomic_t trace_overrun;
1796 /* Pause for the tracing */
1797 atomic_t tracing_graph_pause;
1798 #endif
1799 #ifdef CONFIG_TRACING
1800 /* state flags for use by tracers */
1801 unsigned long trace;
1802 /* bitmask and counter of trace recursion */
1803 unsigned long trace_recursion;
1804 #endif /* CONFIG_TRACING */
1805 #ifdef CONFIG_MEMCG
1806 struct memcg_oom_info {
1807 struct mem_cgroup *memcg;
1808 gfp_t gfp_mask;
1809 int order;
1810 unsigned int may_oom:1;
1811 } memcg_oom;
1812 #endif
1813 #ifdef CONFIG_UPROBES
1814 struct uprobe_task *utask;
1815 #endif
1816 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1817 unsigned int sequential_io;
1818 unsigned int sequential_io_avg;
1819 #endif
1820 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1821 unsigned long task_state_change;
1822 #endif
1823 int pagefault_disabled;
1824 /* CPU-specific state of this task */
1825 struct thread_struct thread;
1826 /*
1827 * WARNING: on x86, 'thread_struct' contains a variable-sized
1828 * structure. It *MUST* be at the end of 'task_struct'.
1829 *
1830 * Do not put anything below here!
1831 */
1832 };
1833
1834 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1835 extern int arch_task_struct_size __read_mostly;
1836 #else
1837 # define arch_task_struct_size (sizeof(struct task_struct))
1838 #endif
1839
1840 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1841 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1842
1843 #define TNF_MIGRATED 0x01
1844 #define TNF_NO_GROUP 0x02
1845 #define TNF_SHARED 0x04
1846 #define TNF_FAULT_LOCAL 0x08
1847 #define TNF_MIGRATE_FAIL 0x10
1848
1849 #ifdef CONFIG_NUMA_BALANCING
1850 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1851 extern pid_t task_numa_group_id(struct task_struct *p);
1852 extern void set_numabalancing_state(bool enabled);
1853 extern void task_numa_free(struct task_struct *p);
1854 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1855 int src_nid, int dst_cpu);
1856 #else
1857 static inline void task_numa_fault(int last_node, int node, int pages,
1858 int flags)
1859 {
1860 }
1861 static inline pid_t task_numa_group_id(struct task_struct *p)
1862 {
1863 return 0;
1864 }
1865 static inline void set_numabalancing_state(bool enabled)
1866 {
1867 }
1868 static inline void task_numa_free(struct task_struct *p)
1869 {
1870 }
1871 static inline bool should_numa_migrate_memory(struct task_struct *p,
1872 struct page *page, int src_nid, int dst_cpu)
1873 {
1874 return true;
1875 }
1876 #endif
1877
1878 static inline struct pid *task_pid(struct task_struct *task)
1879 {
1880 return task->pids[PIDTYPE_PID].pid;
1881 }
1882
1883 static inline struct pid *task_tgid(struct task_struct *task)
1884 {
1885 return task->group_leader->pids[PIDTYPE_PID].pid;
1886 }
1887
1888 /*
1889 * Without tasklist or rcu lock it is not safe to dereference
1890 * the result of task_pgrp/task_session even if task == current,
1891 * we can race with another thread doing sys_setsid/sys_setpgid.
1892 */
1893 static inline struct pid *task_pgrp(struct task_struct *task)
1894 {
1895 return task->group_leader->pids[PIDTYPE_PGID].pid;
1896 }
1897
1898 static inline struct pid *task_session(struct task_struct *task)
1899 {
1900 return task->group_leader->pids[PIDTYPE_SID].pid;
1901 }
1902
1903 struct pid_namespace;
1904
1905 /*
1906 * the helpers to get the task's different pids as they are seen
1907 * from various namespaces
1908 *
1909 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1910 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1911 * current.
1912 * task_xid_nr_ns() : id seen from the ns specified;
1913 *
1914 * set_task_vxid() : assigns a virtual id to a task;
1915 *
1916 * see also pid_nr() etc in include/linux/pid.h
1917 */
1918 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1919 struct pid_namespace *ns);
1920
1921 static inline pid_t task_pid_nr(struct task_struct *tsk)
1922 {
1923 return tsk->pid;
1924 }
1925
1926 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1927 struct pid_namespace *ns)
1928 {
1929 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1930 }
1931
1932 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1933 {
1934 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1935 }
1936
1937
1938 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1939 {
1940 return tsk->tgid;
1941 }
1942
1943 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1944
1945 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1946 {
1947 return pid_vnr(task_tgid(tsk));
1948 }
1949
1950
1951 static inline int pid_alive(const struct task_struct *p);
1952 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1953 {
1954 pid_t pid = 0;
1955
1956 rcu_read_lock();
1957 if (pid_alive(tsk))
1958 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1959 rcu_read_unlock();
1960
1961 return pid;
1962 }
1963
1964 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1965 {
1966 return task_ppid_nr_ns(tsk, &init_pid_ns);
1967 }
1968
1969 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1970 struct pid_namespace *ns)
1971 {
1972 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1973 }
1974
1975 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1976 {
1977 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1978 }
1979
1980
1981 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1982 struct pid_namespace *ns)
1983 {
1984 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1985 }
1986
1987 static inline pid_t task_session_vnr(struct task_struct *tsk)
1988 {
1989 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1990 }
1991
1992 /* obsolete, do not use */
1993 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1994 {
1995 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1996 }
1997
1998 /**
1999 * pid_alive - check that a task structure is not stale
2000 * @p: Task structure to be checked.
2001 *
2002 * Test if a process is not yet dead (at most zombie state)
2003 * If pid_alive fails, then pointers within the task structure
2004 * can be stale and must not be dereferenced.
2005 *
2006 * Return: 1 if the process is alive. 0 otherwise.
2007 */
2008 static inline int pid_alive(const struct task_struct *p)
2009 {
2010 return p->pids[PIDTYPE_PID].pid != NULL;
2011 }
2012
2013 /**
2014 * is_global_init - check if a task structure is init
2015 * @tsk: Task structure to be checked.
2016 *
2017 * Check if a task structure is the first user space task the kernel created.
2018 *
2019 * Return: 1 if the task structure is init. 0 otherwise.
2020 */
2021 static inline int is_global_init(struct task_struct *tsk)
2022 {
2023 return tsk->pid == 1;
2024 }
2025
2026 extern struct pid *cad_pid;
2027
2028 extern void free_task(struct task_struct *tsk);
2029 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2030
2031 extern void __put_task_struct(struct task_struct *t);
2032
2033 static inline void put_task_struct(struct task_struct *t)
2034 {
2035 if (atomic_dec_and_test(&t->usage))
2036 __put_task_struct(t);
2037 }
2038
2039 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2040 extern void task_cputime(struct task_struct *t,
2041 cputime_t *utime, cputime_t *stime);
2042 extern void task_cputime_scaled(struct task_struct *t,
2043 cputime_t *utimescaled, cputime_t *stimescaled);
2044 extern cputime_t task_gtime(struct task_struct *t);
2045 #else
2046 static inline void task_cputime(struct task_struct *t,
2047 cputime_t *utime, cputime_t *stime)
2048 {
2049 if (utime)
2050 *utime = t->utime;
2051 if (stime)
2052 *stime = t->stime;
2053 }
2054
2055 static inline void task_cputime_scaled(struct task_struct *t,
2056 cputime_t *utimescaled,
2057 cputime_t *stimescaled)
2058 {
2059 if (utimescaled)
2060 *utimescaled = t->utimescaled;
2061 if (stimescaled)
2062 *stimescaled = t->stimescaled;
2063 }
2064
2065 static inline cputime_t task_gtime(struct task_struct *t)
2066 {
2067 return t->gtime;
2068 }
2069 #endif
2070 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2071 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2072
2073 /*
2074 * Per process flags
2075 */
2076 #define PF_EXITING 0x00000004 /* getting shut down */
2077 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2078 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2079 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2080 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2081 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2082 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2083 #define PF_DUMPCORE 0x00000200 /* dumped core */
2084 #define PF_SIGNALED 0x00000400 /* killed by a signal */
2085 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
2086 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2087 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2088 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2089 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2090 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
2091 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2092 #define PF_KSWAPD 0x00040000 /* I am kswapd */
2093 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2094 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2095 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2096 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2097 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2098 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2099 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2100 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2101 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2102 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2103
2104 /*
2105 * Only the _current_ task can read/write to tsk->flags, but other
2106 * tasks can access tsk->flags in readonly mode for example
2107 * with tsk_used_math (like during threaded core dumping).
2108 * There is however an exception to this rule during ptrace
2109 * or during fork: the ptracer task is allowed to write to the
2110 * child->flags of its traced child (same goes for fork, the parent
2111 * can write to the child->flags), because we're guaranteed the
2112 * child is not running and in turn not changing child->flags
2113 * at the same time the parent does it.
2114 */
2115 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2116 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2117 #define clear_used_math() clear_stopped_child_used_math(current)
2118 #define set_used_math() set_stopped_child_used_math(current)
2119 #define conditional_stopped_child_used_math(condition, child) \
2120 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2121 #define conditional_used_math(condition) \
2122 conditional_stopped_child_used_math(condition, current)
2123 #define copy_to_stopped_child_used_math(child) \
2124 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2125 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2126 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2127 #define used_math() tsk_used_math(current)
2128
2129 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2130 * __GFP_FS is also cleared as it implies __GFP_IO.
2131 */
2132 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2133 {
2134 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2135 flags &= ~(__GFP_IO | __GFP_FS);
2136 return flags;
2137 }
2138
2139 static inline unsigned int memalloc_noio_save(void)
2140 {
2141 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2142 current->flags |= PF_MEMALLOC_NOIO;
2143 return flags;
2144 }
2145
2146 static inline void memalloc_noio_restore(unsigned int flags)
2147 {
2148 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2149 }
2150
2151 /* Per-process atomic flags. */
2152 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2153 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2154 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2155
2156
2157 #define TASK_PFA_TEST(name, func) \
2158 static inline bool task_##func(struct task_struct *p) \
2159 { return test_bit(PFA_##name, &p->atomic_flags); }
2160 #define TASK_PFA_SET(name, func) \
2161 static inline void task_set_##func(struct task_struct *p) \
2162 { set_bit(PFA_##name, &p->atomic_flags); }
2163 #define TASK_PFA_CLEAR(name, func) \
2164 static inline void task_clear_##func(struct task_struct *p) \
2165 { clear_bit(PFA_##name, &p->atomic_flags); }
2166
2167 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2168 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2169
2170 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2171 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2172 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2173
2174 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2175 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2176 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2177
2178 /*
2179 * task->jobctl flags
2180 */
2181 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2182
2183 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2184 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2185 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2186 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2187 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2188 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2189 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2190
2191 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2192 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2193 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2194 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2195 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2196 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2197 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2198
2199 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2200 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2201
2202 extern bool task_set_jobctl_pending(struct task_struct *task,
2203 unsigned long mask);
2204 extern void task_clear_jobctl_trapping(struct task_struct *task);
2205 extern void task_clear_jobctl_pending(struct task_struct *task,
2206 unsigned long mask);
2207
2208 static inline void rcu_copy_process(struct task_struct *p)
2209 {
2210 #ifdef CONFIG_PREEMPT_RCU
2211 p->rcu_read_lock_nesting = 0;
2212 p->rcu_read_unlock_special.s = 0;
2213 p->rcu_blocked_node = NULL;
2214 INIT_LIST_HEAD(&p->rcu_node_entry);
2215 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2216 #ifdef CONFIG_TASKS_RCU
2217 p->rcu_tasks_holdout = false;
2218 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2219 p->rcu_tasks_idle_cpu = -1;
2220 #endif /* #ifdef CONFIG_TASKS_RCU */
2221 }
2222
2223 static inline void tsk_restore_flags(struct task_struct *task,
2224 unsigned long orig_flags, unsigned long flags)
2225 {
2226 task->flags &= ~flags;
2227 task->flags |= orig_flags & flags;
2228 }
2229
2230 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2231 const struct cpumask *trial);
2232 extern int task_can_attach(struct task_struct *p,
2233 const struct cpumask *cs_cpus_allowed);
2234 #ifdef CONFIG_SMP
2235 extern void do_set_cpus_allowed(struct task_struct *p,
2236 const struct cpumask *new_mask);
2237
2238 extern int set_cpus_allowed_ptr(struct task_struct *p,
2239 const struct cpumask *new_mask);
2240 #else
2241 static inline void do_set_cpus_allowed(struct task_struct *p,
2242 const struct cpumask *new_mask)
2243 {
2244 }
2245 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2246 const struct cpumask *new_mask)
2247 {
2248 if (!cpumask_test_cpu(0, new_mask))
2249 return -EINVAL;
2250 return 0;
2251 }
2252 #endif
2253
2254 #ifdef CONFIG_NO_HZ_COMMON
2255 void calc_load_enter_idle(void);
2256 void calc_load_exit_idle(void);
2257 #else
2258 static inline void calc_load_enter_idle(void) { }
2259 static inline void calc_load_exit_idle(void) { }
2260 #endif /* CONFIG_NO_HZ_COMMON */
2261
2262 /*
2263 * Do not use outside of architecture code which knows its limitations.
2264 *
2265 * sched_clock() has no promise of monotonicity or bounded drift between
2266 * CPUs, use (which you should not) requires disabling IRQs.
2267 *
2268 * Please use one of the three interfaces below.
2269 */
2270 extern unsigned long long notrace sched_clock(void);
2271 /*
2272 * See the comment in kernel/sched/clock.c
2273 */
2274 extern u64 cpu_clock(int cpu);
2275 extern u64 local_clock(void);
2276 extern u64 running_clock(void);
2277 extern u64 sched_clock_cpu(int cpu);
2278
2279
2280 extern void sched_clock_init(void);
2281
2282 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2283 static inline void sched_clock_tick(void)
2284 {
2285 }
2286
2287 static inline void sched_clock_idle_sleep_event(void)
2288 {
2289 }
2290
2291 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2292 {
2293 }
2294 #else
2295 /*
2296 * Architectures can set this to 1 if they have specified
2297 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2298 * but then during bootup it turns out that sched_clock()
2299 * is reliable after all:
2300 */
2301 extern int sched_clock_stable(void);
2302 extern void set_sched_clock_stable(void);
2303 extern void clear_sched_clock_stable(void);
2304
2305 extern void sched_clock_tick(void);
2306 extern void sched_clock_idle_sleep_event(void);
2307 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2308 #endif
2309
2310 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2311 /*
2312 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2313 * The reason for this explicit opt-in is not to have perf penalty with
2314 * slow sched_clocks.
2315 */
2316 extern void enable_sched_clock_irqtime(void);
2317 extern void disable_sched_clock_irqtime(void);
2318 #else
2319 static inline void enable_sched_clock_irqtime(void) {}
2320 static inline void disable_sched_clock_irqtime(void) {}
2321 #endif
2322
2323 extern unsigned long long
2324 task_sched_runtime(struct task_struct *task);
2325
2326 /* sched_exec is called by processes performing an exec */
2327 #ifdef CONFIG_SMP
2328 extern void sched_exec(void);
2329 #else
2330 #define sched_exec() {}
2331 #endif
2332
2333 extern void sched_clock_idle_sleep_event(void);
2334 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2335
2336 #ifdef CONFIG_HOTPLUG_CPU
2337 extern void idle_task_exit(void);
2338 #else
2339 static inline void idle_task_exit(void) {}
2340 #endif
2341
2342 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2343 extern void wake_up_nohz_cpu(int cpu);
2344 #else
2345 static inline void wake_up_nohz_cpu(int cpu) { }
2346 #endif
2347
2348 #ifdef CONFIG_NO_HZ_FULL
2349 extern bool sched_can_stop_tick(void);
2350 extern u64 scheduler_tick_max_deferment(void);
2351 #else
2352 static inline bool sched_can_stop_tick(void) { return false; }
2353 #endif
2354
2355 #ifdef CONFIG_SCHED_AUTOGROUP
2356 extern void sched_autogroup_create_attach(struct task_struct *p);
2357 extern void sched_autogroup_detach(struct task_struct *p);
2358 extern void sched_autogroup_fork(struct signal_struct *sig);
2359 extern void sched_autogroup_exit(struct signal_struct *sig);
2360 #ifdef CONFIG_PROC_FS
2361 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2362 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2363 #endif
2364 #else
2365 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2366 static inline void sched_autogroup_detach(struct task_struct *p) { }
2367 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2368 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2369 #endif
2370
2371 extern int yield_to(struct task_struct *p, bool preempt);
2372 extern void set_user_nice(struct task_struct *p, long nice);
2373 extern int task_prio(const struct task_struct *p);
2374 /**
2375 * task_nice - return the nice value of a given task.
2376 * @p: the task in question.
2377 *
2378 * Return: The nice value [ -20 ... 0 ... 19 ].
2379 */
2380 static inline int task_nice(const struct task_struct *p)
2381 {
2382 return PRIO_TO_NICE((p)->static_prio);
2383 }
2384 extern int can_nice(const struct task_struct *p, const int nice);
2385 extern int task_curr(const struct task_struct *p);
2386 extern int idle_cpu(int cpu);
2387 extern int sched_setscheduler(struct task_struct *, int,
2388 const struct sched_param *);
2389 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2390 const struct sched_param *);
2391 extern int sched_setattr(struct task_struct *,
2392 const struct sched_attr *);
2393 extern struct task_struct *idle_task(int cpu);
2394 /**
2395 * is_idle_task - is the specified task an idle task?
2396 * @p: the task in question.
2397 *
2398 * Return: 1 if @p is an idle task. 0 otherwise.
2399 */
2400 static inline bool is_idle_task(const struct task_struct *p)
2401 {
2402 return p->pid == 0;
2403 }
2404 extern struct task_struct *curr_task(int cpu);
2405 extern void set_curr_task(int cpu, struct task_struct *p);
2406
2407 void yield(void);
2408
2409 union thread_union {
2410 struct thread_info thread_info;
2411 unsigned long stack[THREAD_SIZE/sizeof(long)];
2412 };
2413
2414 #ifndef __HAVE_ARCH_KSTACK_END
2415 static inline int kstack_end(void *addr)
2416 {
2417 /* Reliable end of stack detection:
2418 * Some APM bios versions misalign the stack
2419 */
2420 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2421 }
2422 #endif
2423
2424 extern union thread_union init_thread_union;
2425 extern struct task_struct init_task;
2426
2427 extern struct mm_struct init_mm;
2428
2429 extern struct pid_namespace init_pid_ns;
2430
2431 /*
2432 * find a task by one of its numerical ids
2433 *
2434 * find_task_by_pid_ns():
2435 * finds a task by its pid in the specified namespace
2436 * find_task_by_vpid():
2437 * finds a task by its virtual pid
2438 *
2439 * see also find_vpid() etc in include/linux/pid.h
2440 */
2441
2442 extern struct task_struct *find_task_by_vpid(pid_t nr);
2443 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2444 struct pid_namespace *ns);
2445
2446 /* per-UID process charging. */
2447 extern struct user_struct * alloc_uid(kuid_t);
2448 static inline struct user_struct *get_uid(struct user_struct *u)
2449 {
2450 atomic_inc(&u->__count);
2451 return u;
2452 }
2453 extern void free_uid(struct user_struct *);
2454
2455 #include <asm/current.h>
2456
2457 extern void xtime_update(unsigned long ticks);
2458
2459 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2460 extern int wake_up_process(struct task_struct *tsk);
2461 extern void wake_up_new_task(struct task_struct *tsk);
2462 #ifdef CONFIG_SMP
2463 extern void kick_process(struct task_struct *tsk);
2464 #else
2465 static inline void kick_process(struct task_struct *tsk) { }
2466 #endif
2467 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2468 extern void sched_dead(struct task_struct *p);
2469
2470 extern void proc_caches_init(void);
2471 extern void flush_signals(struct task_struct *);
2472 extern void ignore_signals(struct task_struct *);
2473 extern void flush_signal_handlers(struct task_struct *, int force_default);
2474 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2475
2476 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2477 {
2478 unsigned long flags;
2479 int ret;
2480
2481 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2482 ret = dequeue_signal(tsk, mask, info);
2483 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2484
2485 return ret;
2486 }
2487
2488 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2489 sigset_t *mask);
2490 extern void unblock_all_signals(void);
2491 extern void release_task(struct task_struct * p);
2492 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2493 extern int force_sigsegv(int, struct task_struct *);
2494 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2495 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2496 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2497 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2498 const struct cred *, u32);
2499 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2500 extern int kill_pid(struct pid *pid, int sig, int priv);
2501 extern int kill_proc_info(int, struct siginfo *, pid_t);
2502 extern __must_check bool do_notify_parent(struct task_struct *, int);
2503 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2504 extern void force_sig(int, struct task_struct *);
2505 extern int send_sig(int, struct task_struct *, int);
2506 extern int zap_other_threads(struct task_struct *p);
2507 extern struct sigqueue *sigqueue_alloc(void);
2508 extern void sigqueue_free(struct sigqueue *);
2509 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2510 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2511
2512 static inline void restore_saved_sigmask(void)
2513 {
2514 if (test_and_clear_restore_sigmask())
2515 __set_current_blocked(&current->saved_sigmask);
2516 }
2517
2518 static inline sigset_t *sigmask_to_save(void)
2519 {
2520 sigset_t *res = &current->blocked;
2521 if (unlikely(test_restore_sigmask()))
2522 res = &current->saved_sigmask;
2523 return res;
2524 }
2525
2526 static inline int kill_cad_pid(int sig, int priv)
2527 {
2528 return kill_pid(cad_pid, sig, priv);
2529 }
2530
2531 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2532 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2533 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2534 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2535
2536 /*
2537 * True if we are on the alternate signal stack.
2538 */
2539 static inline int on_sig_stack(unsigned long sp)
2540 {
2541 #ifdef CONFIG_STACK_GROWSUP
2542 return sp >= current->sas_ss_sp &&
2543 sp - current->sas_ss_sp < current->sas_ss_size;
2544 #else
2545 return sp > current->sas_ss_sp &&
2546 sp - current->sas_ss_sp <= current->sas_ss_size;
2547 #endif
2548 }
2549
2550 static inline int sas_ss_flags(unsigned long sp)
2551 {
2552 if (!current->sas_ss_size)
2553 return SS_DISABLE;
2554
2555 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2556 }
2557
2558 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2559 {
2560 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2561 #ifdef CONFIG_STACK_GROWSUP
2562 return current->sas_ss_sp;
2563 #else
2564 return current->sas_ss_sp + current->sas_ss_size;
2565 #endif
2566 return sp;
2567 }
2568
2569 /*
2570 * Routines for handling mm_structs
2571 */
2572 extern struct mm_struct * mm_alloc(void);
2573
2574 /* mmdrop drops the mm and the page tables */
2575 extern void __mmdrop(struct mm_struct *);
2576 static inline void mmdrop(struct mm_struct * mm)
2577 {
2578 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2579 __mmdrop(mm);
2580 }
2581
2582 /* mmput gets rid of the mappings and all user-space */
2583 extern void mmput(struct mm_struct *);
2584 /* Grab a reference to a task's mm, if it is not already going away */
2585 extern struct mm_struct *get_task_mm(struct task_struct *task);
2586 /*
2587 * Grab a reference to a task's mm, if it is not already going away
2588 * and ptrace_may_access with the mode parameter passed to it
2589 * succeeds.
2590 */
2591 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2592 /* Remove the current tasks stale references to the old mm_struct */
2593 extern void mm_release(struct task_struct *, struct mm_struct *);
2594
2595 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2596 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2597 struct task_struct *, unsigned long);
2598 #else
2599 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2600 struct task_struct *);
2601
2602 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2603 * via pt_regs, so ignore the tls argument passed via C. */
2604 static inline int copy_thread_tls(
2605 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2606 struct task_struct *p, unsigned long tls)
2607 {
2608 return copy_thread(clone_flags, sp, arg, p);
2609 }
2610 #endif
2611 extern void flush_thread(void);
2612 extern void exit_thread(void);
2613
2614 extern void exit_files(struct task_struct *);
2615 extern void __cleanup_sighand(struct sighand_struct *);
2616
2617 extern void exit_itimers(struct signal_struct *);
2618 extern void flush_itimer_signals(void);
2619
2620 extern void do_group_exit(int);
2621
2622 extern int do_execve(struct filename *,
2623 const char __user * const __user *,
2624 const char __user * const __user *);
2625 extern int do_execveat(int, struct filename *,
2626 const char __user * const __user *,
2627 const char __user * const __user *,
2628 int);
2629 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2630 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2631 struct task_struct *fork_idle(int);
2632 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2633
2634 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2635 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2636 {
2637 __set_task_comm(tsk, from, false);
2638 }
2639 extern char *get_task_comm(char *to, struct task_struct *tsk);
2640
2641 #ifdef CONFIG_SMP
2642 void scheduler_ipi(void);
2643 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2644 #else
2645 static inline void scheduler_ipi(void) { }
2646 static inline unsigned long wait_task_inactive(struct task_struct *p,
2647 long match_state)
2648 {
2649 return 1;
2650 }
2651 #endif
2652
2653 #define tasklist_empty() \
2654 list_empty(&init_task.tasks)
2655
2656 #define next_task(p) \
2657 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2658
2659 #define for_each_process(p) \
2660 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2661
2662 extern bool current_is_single_threaded(void);
2663
2664 /*
2665 * Careful: do_each_thread/while_each_thread is a double loop so
2666 * 'break' will not work as expected - use goto instead.
2667 */
2668 #define do_each_thread(g, t) \
2669 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2670
2671 #define while_each_thread(g, t) \
2672 while ((t = next_thread(t)) != g)
2673
2674 #define __for_each_thread(signal, t) \
2675 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2676
2677 #define for_each_thread(p, t) \
2678 __for_each_thread((p)->signal, t)
2679
2680 /* Careful: this is a double loop, 'break' won't work as expected. */
2681 #define for_each_process_thread(p, t) \
2682 for_each_process(p) for_each_thread(p, t)
2683
2684 static inline int get_nr_threads(struct task_struct *tsk)
2685 {
2686 return tsk->signal->nr_threads;
2687 }
2688
2689 static inline bool thread_group_leader(struct task_struct *p)
2690 {
2691 return p->exit_signal >= 0;
2692 }
2693
2694 /* Do to the insanities of de_thread it is possible for a process
2695 * to have the pid of the thread group leader without actually being
2696 * the thread group leader. For iteration through the pids in proc
2697 * all we care about is that we have a task with the appropriate
2698 * pid, we don't actually care if we have the right task.
2699 */
2700 static inline bool has_group_leader_pid(struct task_struct *p)
2701 {
2702 return task_pid(p) == p->signal->leader_pid;
2703 }
2704
2705 static inline
2706 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2707 {
2708 return p1->signal == p2->signal;
2709 }
2710
2711 static inline struct task_struct *next_thread(const struct task_struct *p)
2712 {
2713 return list_entry_rcu(p->thread_group.next,
2714 struct task_struct, thread_group);
2715 }
2716
2717 static inline int thread_group_empty(struct task_struct *p)
2718 {
2719 return list_empty(&p->thread_group);
2720 }
2721
2722 #define delay_group_leader(p) \
2723 (thread_group_leader(p) && !thread_group_empty(p))
2724
2725 /*
2726 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2727 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2728 * pins the final release of task.io_context. Also protects ->cpuset and
2729 * ->cgroup.subsys[]. And ->vfork_done.
2730 *
2731 * Nests both inside and outside of read_lock(&tasklist_lock).
2732 * It must not be nested with write_lock_irq(&tasklist_lock),
2733 * neither inside nor outside.
2734 */
2735 static inline void task_lock(struct task_struct *p)
2736 {
2737 spin_lock(&p->alloc_lock);
2738 }
2739
2740 static inline void task_unlock(struct task_struct *p)
2741 {
2742 spin_unlock(&p->alloc_lock);
2743 }
2744
2745 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2746 unsigned long *flags);
2747
2748 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2749 unsigned long *flags)
2750 {
2751 struct sighand_struct *ret;
2752
2753 ret = __lock_task_sighand(tsk, flags);
2754 (void)__cond_lock(&tsk->sighand->siglock, ret);
2755 return ret;
2756 }
2757
2758 static inline void unlock_task_sighand(struct task_struct *tsk,
2759 unsigned long *flags)
2760 {
2761 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2762 }
2763
2764 /**
2765 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2766 * @tsk: task causing the changes
2767 *
2768 * All operations which modify a threadgroup - a new thread joining the
2769 * group, death of a member thread (the assertion of PF_EXITING) and
2770 * exec(2) dethreading the process and replacing the leader - are wrapped
2771 * by threadgroup_change_{begin|end}(). This is to provide a place which
2772 * subsystems needing threadgroup stability can hook into for
2773 * synchronization.
2774 */
2775 static inline void threadgroup_change_begin(struct task_struct *tsk)
2776 {
2777 might_sleep();
2778 cgroup_threadgroup_change_begin(tsk);
2779 }
2780
2781 /**
2782 * threadgroup_change_end - mark the end of changes to a threadgroup
2783 * @tsk: task causing the changes
2784 *
2785 * See threadgroup_change_begin().
2786 */
2787 static inline void threadgroup_change_end(struct task_struct *tsk)
2788 {
2789 cgroup_threadgroup_change_end(tsk);
2790 }
2791
2792 #ifndef __HAVE_THREAD_FUNCTIONS
2793
2794 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2795 #define task_stack_page(task) ((task)->stack)
2796
2797 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2798 {
2799 *task_thread_info(p) = *task_thread_info(org);
2800 task_thread_info(p)->task = p;
2801 }
2802
2803 /*
2804 * Return the address of the last usable long on the stack.
2805 *
2806 * When the stack grows down, this is just above the thread
2807 * info struct. Going any lower will corrupt the threadinfo.
2808 *
2809 * When the stack grows up, this is the highest address.
2810 * Beyond that position, we corrupt data on the next page.
2811 */
2812 static inline unsigned long *end_of_stack(struct task_struct *p)
2813 {
2814 #ifdef CONFIG_STACK_GROWSUP
2815 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2816 #else
2817 return (unsigned long *)(task_thread_info(p) + 1);
2818 #endif
2819 }
2820
2821 #endif
2822 #define task_stack_end_corrupted(task) \
2823 (*(end_of_stack(task)) != STACK_END_MAGIC)
2824
2825 static inline int object_is_on_stack(void *obj)
2826 {
2827 void *stack = task_stack_page(current);
2828
2829 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2830 }
2831
2832 extern void thread_info_cache_init(void);
2833
2834 #ifdef CONFIG_DEBUG_STACK_USAGE
2835 static inline unsigned long stack_not_used(struct task_struct *p)
2836 {
2837 unsigned long *n = end_of_stack(p);
2838
2839 do { /* Skip over canary */
2840 n++;
2841 } while (!*n);
2842
2843 return (unsigned long)n - (unsigned long)end_of_stack(p);
2844 }
2845 #endif
2846 extern void set_task_stack_end_magic(struct task_struct *tsk);
2847
2848 /* set thread flags in other task's structures
2849 * - see asm/thread_info.h for TIF_xxxx flags available
2850 */
2851 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2852 {
2853 set_ti_thread_flag(task_thread_info(tsk), flag);
2854 }
2855
2856 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2857 {
2858 clear_ti_thread_flag(task_thread_info(tsk), flag);
2859 }
2860
2861 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2862 {
2863 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2864 }
2865
2866 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2867 {
2868 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2869 }
2870
2871 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2872 {
2873 return test_ti_thread_flag(task_thread_info(tsk), flag);
2874 }
2875
2876 static inline void set_tsk_need_resched(struct task_struct *tsk)
2877 {
2878 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2879 }
2880
2881 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2882 {
2883 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2884 }
2885
2886 static inline int test_tsk_need_resched(struct task_struct *tsk)
2887 {
2888 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2889 }
2890
2891 static inline int restart_syscall(void)
2892 {
2893 set_tsk_thread_flag(current, TIF_SIGPENDING);
2894 return -ERESTARTNOINTR;
2895 }
2896
2897 static inline int signal_pending(struct task_struct *p)
2898 {
2899 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2900 }
2901
2902 static inline int __fatal_signal_pending(struct task_struct *p)
2903 {
2904 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2905 }
2906
2907 static inline int fatal_signal_pending(struct task_struct *p)
2908 {
2909 return signal_pending(p) && __fatal_signal_pending(p);
2910 }
2911
2912 static inline int signal_pending_state(long state, struct task_struct *p)
2913 {
2914 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2915 return 0;
2916 if (!signal_pending(p))
2917 return 0;
2918
2919 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2920 }
2921
2922 /*
2923 * cond_resched() and cond_resched_lock(): latency reduction via
2924 * explicit rescheduling in places that are safe. The return
2925 * value indicates whether a reschedule was done in fact.
2926 * cond_resched_lock() will drop the spinlock before scheduling,
2927 * cond_resched_softirq() will enable bhs before scheduling.
2928 */
2929 extern int _cond_resched(void);
2930
2931 #define cond_resched() ({ \
2932 ___might_sleep(__FILE__, __LINE__, 0); \
2933 _cond_resched(); \
2934 })
2935
2936 extern int __cond_resched_lock(spinlock_t *lock);
2937
2938 #define cond_resched_lock(lock) ({ \
2939 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2940 __cond_resched_lock(lock); \
2941 })
2942
2943 extern int __cond_resched_softirq(void);
2944
2945 #define cond_resched_softirq() ({ \
2946 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2947 __cond_resched_softirq(); \
2948 })
2949
2950 static inline void cond_resched_rcu(void)
2951 {
2952 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2953 rcu_read_unlock();
2954 cond_resched();
2955 rcu_read_lock();
2956 #endif
2957 }
2958
2959 /*
2960 * Does a critical section need to be broken due to another
2961 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2962 * but a general need for low latency)
2963 */
2964 static inline int spin_needbreak(spinlock_t *lock)
2965 {
2966 #ifdef CONFIG_PREEMPT
2967 return spin_is_contended(lock);
2968 #else
2969 return 0;
2970 #endif
2971 }
2972
2973 /*
2974 * Idle thread specific functions to determine the need_resched
2975 * polling state.
2976 */
2977 #ifdef TIF_POLLING_NRFLAG
2978 static inline int tsk_is_polling(struct task_struct *p)
2979 {
2980 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2981 }
2982
2983 static inline void __current_set_polling(void)
2984 {
2985 set_thread_flag(TIF_POLLING_NRFLAG);
2986 }
2987
2988 static inline bool __must_check current_set_polling_and_test(void)
2989 {
2990 __current_set_polling();
2991
2992 /*
2993 * Polling state must be visible before we test NEED_RESCHED,
2994 * paired by resched_curr()
2995 */
2996 smp_mb__after_atomic();
2997
2998 return unlikely(tif_need_resched());
2999 }
3000
3001 static inline void __current_clr_polling(void)
3002 {
3003 clear_thread_flag(TIF_POLLING_NRFLAG);
3004 }
3005
3006 static inline bool __must_check current_clr_polling_and_test(void)
3007 {
3008 __current_clr_polling();
3009
3010 /*
3011 * Polling state must be visible before we test NEED_RESCHED,
3012 * paired by resched_curr()
3013 */
3014 smp_mb__after_atomic();
3015
3016 return unlikely(tif_need_resched());
3017 }
3018
3019 #else
3020 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3021 static inline void __current_set_polling(void) { }
3022 static inline void __current_clr_polling(void) { }
3023
3024 static inline bool __must_check current_set_polling_and_test(void)
3025 {
3026 return unlikely(tif_need_resched());
3027 }
3028 static inline bool __must_check current_clr_polling_and_test(void)
3029 {
3030 return unlikely(tif_need_resched());
3031 }
3032 #endif
3033
3034 static inline void current_clr_polling(void)
3035 {
3036 __current_clr_polling();
3037
3038 /*
3039 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3040 * Once the bit is cleared, we'll get IPIs with every new
3041 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3042 * fold.
3043 */
3044 smp_mb(); /* paired with resched_curr() */
3045
3046 preempt_fold_need_resched();
3047 }
3048
3049 static __always_inline bool need_resched(void)
3050 {
3051 return unlikely(tif_need_resched());
3052 }
3053
3054 /*
3055 * Thread group CPU time accounting.
3056 */
3057 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3058 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3059
3060 /*
3061 * Reevaluate whether the task has signals pending delivery.
3062 * Wake the task if so.
3063 * This is required every time the blocked sigset_t changes.
3064 * callers must hold sighand->siglock.
3065 */
3066 extern void recalc_sigpending_and_wake(struct task_struct *t);
3067 extern void recalc_sigpending(void);
3068
3069 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3070
3071 static inline void signal_wake_up(struct task_struct *t, bool resume)
3072 {
3073 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3074 }
3075 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3076 {
3077 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3078 }
3079
3080 /*
3081 * Wrappers for p->thread_info->cpu access. No-op on UP.
3082 */
3083 #ifdef CONFIG_SMP
3084
3085 static inline unsigned int task_cpu(const struct task_struct *p)
3086 {
3087 return task_thread_info(p)->cpu;
3088 }
3089
3090 static inline int task_node(const struct task_struct *p)
3091 {
3092 return cpu_to_node(task_cpu(p));
3093 }
3094
3095 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3096
3097 #else
3098
3099 static inline unsigned int task_cpu(const struct task_struct *p)
3100 {
3101 return 0;
3102 }
3103
3104 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3105 {
3106 }
3107
3108 #endif /* CONFIG_SMP */
3109
3110 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3111 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3112
3113 #ifdef CONFIG_CGROUP_SCHED
3114 extern struct task_group root_task_group;
3115 #endif /* CONFIG_CGROUP_SCHED */
3116
3117 extern int task_can_switch_user(struct user_struct *up,
3118 struct task_struct *tsk);
3119
3120 #ifdef CONFIG_TASK_XACCT
3121 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3122 {
3123 tsk->ioac.rchar += amt;
3124 }
3125
3126 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3127 {
3128 tsk->ioac.wchar += amt;
3129 }
3130
3131 static inline void inc_syscr(struct task_struct *tsk)
3132 {
3133 tsk->ioac.syscr++;
3134 }
3135
3136 static inline void inc_syscw(struct task_struct *tsk)
3137 {
3138 tsk->ioac.syscw++;
3139 }
3140 #else
3141 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3142 {
3143 }
3144
3145 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3146 {
3147 }
3148
3149 static inline void inc_syscr(struct task_struct *tsk)
3150 {
3151 }
3152
3153 static inline void inc_syscw(struct task_struct *tsk)
3154 {
3155 }
3156 #endif
3157
3158 #ifndef TASK_SIZE_OF
3159 #define TASK_SIZE_OF(tsk) TASK_SIZE
3160 #endif
3161
3162 #ifdef CONFIG_MEMCG
3163 extern void mm_update_next_owner(struct mm_struct *mm);
3164 #else
3165 static inline void mm_update_next_owner(struct mm_struct *mm)
3166 {
3167 }
3168 #endif /* CONFIG_MEMCG */
3169
3170 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3171 unsigned int limit)
3172 {
3173 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3174 }
3175
3176 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3177 unsigned int limit)
3178 {
3179 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3180 }
3181
3182 static inline unsigned long rlimit(unsigned int limit)
3183 {
3184 return task_rlimit(current, limit);
3185 }
3186
3187 static inline unsigned long rlimit_max(unsigned int limit)
3188 {
3189 return task_rlimit_max(current, limit);
3190 }
3191
3192 #endif