]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - include/linux/sched.h
sched: SCHED_FIFO/SCHED_RR watchdog timer
[mirror_ubuntu-zesty-kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30
31 /*
32 * Scheduling policies
33 */
34 #define SCHED_NORMAL 0
35 #define SCHED_FIFO 1
36 #define SCHED_RR 2
37 #define SCHED_BATCH 3
38 /* SCHED_ISO: reserved but not implemented yet */
39 #define SCHED_IDLE 5
40
41 #ifdef __KERNEL__
42
43 struct sched_param {
44 int sched_priority;
45 };
46
47 #include <asm/param.h> /* for HZ */
48
49 #include <linux/capability.h>
50 #include <linux/threads.h>
51 #include <linux/kernel.h>
52 #include <linux/types.h>
53 #include <linux/timex.h>
54 #include <linux/jiffies.h>
55 #include <linux/rbtree.h>
56 #include <linux/thread_info.h>
57 #include <linux/cpumask.h>
58 #include <linux/errno.h>
59 #include <linux/nodemask.h>
60 #include <linux/mm_types.h>
61
62 #include <asm/system.h>
63 #include <asm/semaphore.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
67
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/securebits.h>
72 #include <linux/fs_struct.h>
73 #include <linux/compiler.h>
74 #include <linux/completion.h>
75 #include <linux/pid.h>
76 #include <linux/percpu.h>
77 #include <linux/topology.h>
78 #include <linux/proportions.h>
79 #include <linux/seccomp.h>
80 #include <linux/rcupdate.h>
81 #include <linux/futex.h>
82 #include <linux/rtmutex.h>
83
84 #include <linux/time.h>
85 #include <linux/param.h>
86 #include <linux/resource.h>
87 #include <linux/timer.h>
88 #include <linux/hrtimer.h>
89 #include <linux/task_io_accounting.h>
90 #include <linux/kobject.h>
91
92 #include <asm/processor.h>
93
94 struct exec_domain;
95 struct futex_pi_state;
96 struct bio;
97
98 /*
99 * List of flags we want to share for kernel threads,
100 * if only because they are not used by them anyway.
101 */
102 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
103
104 /*
105 * These are the constant used to fake the fixed-point load-average
106 * counting. Some notes:
107 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
108 * a load-average precision of 10 bits integer + 11 bits fractional
109 * - if you want to count load-averages more often, you need more
110 * precision, or rounding will get you. With 2-second counting freq,
111 * the EXP_n values would be 1981, 2034 and 2043 if still using only
112 * 11 bit fractions.
113 */
114 extern unsigned long avenrun[]; /* Load averages */
115
116 #define FSHIFT 11 /* nr of bits of precision */
117 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
118 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
119 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
120 #define EXP_5 2014 /* 1/exp(5sec/5min) */
121 #define EXP_15 2037 /* 1/exp(5sec/15min) */
122
123 #define CALC_LOAD(load,exp,n) \
124 load *= exp; \
125 load += n*(FIXED_1-exp); \
126 load >>= FSHIFT;
127
128 extern unsigned long total_forks;
129 extern int nr_threads;
130 DECLARE_PER_CPU(unsigned long, process_counts);
131 extern int nr_processes(void);
132 extern unsigned long nr_running(void);
133 extern unsigned long nr_uninterruptible(void);
134 extern unsigned long nr_active(void);
135 extern unsigned long nr_iowait(void);
136 extern unsigned long weighted_cpuload(const int cpu);
137
138 struct seq_file;
139 struct cfs_rq;
140 struct task_group;
141 #ifdef CONFIG_SCHED_DEBUG
142 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
143 extern void proc_sched_set_task(struct task_struct *p);
144 extern void
145 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
146 #else
147 static inline void
148 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
149 {
150 }
151 static inline void proc_sched_set_task(struct task_struct *p)
152 {
153 }
154 static inline void
155 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
156 {
157 }
158 #endif
159
160 /*
161 * Task state bitmask. NOTE! These bits are also
162 * encoded in fs/proc/array.c: get_task_state().
163 *
164 * We have two separate sets of flags: task->state
165 * is about runnability, while task->exit_state are
166 * about the task exiting. Confusing, but this way
167 * modifying one set can't modify the other one by
168 * mistake.
169 */
170 #define TASK_RUNNING 0
171 #define TASK_INTERRUPTIBLE 1
172 #define TASK_UNINTERRUPTIBLE 2
173 #define TASK_STOPPED 4
174 #define TASK_TRACED 8
175 /* in tsk->exit_state */
176 #define EXIT_ZOMBIE 16
177 #define EXIT_DEAD 32
178 /* in tsk->state again */
179 #define TASK_DEAD 64
180
181 #define __set_task_state(tsk, state_value) \
182 do { (tsk)->state = (state_value); } while (0)
183 #define set_task_state(tsk, state_value) \
184 set_mb((tsk)->state, (state_value))
185
186 /*
187 * set_current_state() includes a barrier so that the write of current->state
188 * is correctly serialised wrt the caller's subsequent test of whether to
189 * actually sleep:
190 *
191 * set_current_state(TASK_UNINTERRUPTIBLE);
192 * if (do_i_need_to_sleep())
193 * schedule();
194 *
195 * If the caller does not need such serialisation then use __set_current_state()
196 */
197 #define __set_current_state(state_value) \
198 do { current->state = (state_value); } while (0)
199 #define set_current_state(state_value) \
200 set_mb(current->state, (state_value))
201
202 /* Task command name length */
203 #define TASK_COMM_LEN 16
204
205 #include <linux/spinlock.h>
206
207 /*
208 * This serializes "schedule()" and also protects
209 * the run-queue from deletions/modifications (but
210 * _adding_ to the beginning of the run-queue has
211 * a separate lock).
212 */
213 extern rwlock_t tasklist_lock;
214 extern spinlock_t mmlist_lock;
215
216 struct task_struct;
217
218 extern void sched_init(void);
219 extern void sched_init_smp(void);
220 extern void init_idle(struct task_struct *idle, int cpu);
221 extern void init_idle_bootup_task(struct task_struct *idle);
222
223 extern cpumask_t nohz_cpu_mask;
224 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
225 extern int select_nohz_load_balancer(int cpu);
226 #else
227 static inline int select_nohz_load_balancer(int cpu)
228 {
229 return 0;
230 }
231 #endif
232
233 /*
234 * Only dump TASK_* tasks. (0 for all tasks)
235 */
236 extern void show_state_filter(unsigned long state_filter);
237
238 static inline void show_state(void)
239 {
240 show_state_filter(0);
241 }
242
243 extern void show_regs(struct pt_regs *);
244
245 /*
246 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
247 * task), SP is the stack pointer of the first frame that should be shown in the back
248 * trace (or NULL if the entire call-chain of the task should be shown).
249 */
250 extern void show_stack(struct task_struct *task, unsigned long *sp);
251
252 void io_schedule(void);
253 long io_schedule_timeout(long timeout);
254
255 extern void cpu_init (void);
256 extern void trap_init(void);
257 extern void account_process_tick(struct task_struct *task, int user);
258 extern void update_process_times(int user);
259 extern void scheduler_tick(void);
260
261 extern void sched_show_task(struct task_struct *p);
262
263 #ifdef CONFIG_DETECT_SOFTLOCKUP
264 extern void softlockup_tick(void);
265 extern void spawn_softlockup_task(void);
266 extern void touch_softlockup_watchdog(void);
267 extern void touch_all_softlockup_watchdogs(void);
268 extern int softlockup_thresh;
269 extern unsigned long sysctl_hung_task_check_count;
270 extern unsigned long sysctl_hung_task_timeout_secs;
271 extern long sysctl_hung_task_warnings;
272 #else
273 static inline void softlockup_tick(void)
274 {
275 }
276 static inline void spawn_softlockup_task(void)
277 {
278 }
279 static inline void touch_softlockup_watchdog(void)
280 {
281 }
282 static inline void touch_all_softlockup_watchdogs(void)
283 {
284 }
285 #endif
286
287
288 /* Attach to any functions which should be ignored in wchan output. */
289 #define __sched __attribute__((__section__(".sched.text")))
290
291 /* Linker adds these: start and end of __sched functions */
292 extern char __sched_text_start[], __sched_text_end[];
293
294 /* Is this address in the __sched functions? */
295 extern int in_sched_functions(unsigned long addr);
296
297 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
298 extern signed long FASTCALL(schedule_timeout(signed long timeout));
299 extern signed long schedule_timeout_interruptible(signed long timeout);
300 extern signed long schedule_timeout_uninterruptible(signed long timeout);
301 asmlinkage void schedule(void);
302
303 struct nsproxy;
304 struct user_namespace;
305
306 /* Maximum number of active map areas.. This is a random (large) number */
307 #define DEFAULT_MAX_MAP_COUNT 65536
308
309 extern int sysctl_max_map_count;
310
311 #include <linux/aio.h>
312
313 extern unsigned long
314 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
315 unsigned long, unsigned long);
316 extern unsigned long
317 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
318 unsigned long len, unsigned long pgoff,
319 unsigned long flags);
320 extern void arch_unmap_area(struct mm_struct *, unsigned long);
321 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
322
323 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
324 /*
325 * The mm counters are not protected by its page_table_lock,
326 * so must be incremented atomically.
327 */
328 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
329 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
330 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
331 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
332 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
333
334 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
335 /*
336 * The mm counters are protected by its page_table_lock,
337 * so can be incremented directly.
338 */
339 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
340 #define get_mm_counter(mm, member) ((mm)->_##member)
341 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
342 #define inc_mm_counter(mm, member) (mm)->_##member++
343 #define dec_mm_counter(mm, member) (mm)->_##member--
344
345 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
346
347 #define get_mm_rss(mm) \
348 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
349 #define update_hiwater_rss(mm) do { \
350 unsigned long _rss = get_mm_rss(mm); \
351 if ((mm)->hiwater_rss < _rss) \
352 (mm)->hiwater_rss = _rss; \
353 } while (0)
354 #define update_hiwater_vm(mm) do { \
355 if ((mm)->hiwater_vm < (mm)->total_vm) \
356 (mm)->hiwater_vm = (mm)->total_vm; \
357 } while (0)
358
359 extern void set_dumpable(struct mm_struct *mm, int value);
360 extern int get_dumpable(struct mm_struct *mm);
361
362 /* mm flags */
363 /* dumpable bits */
364 #define MMF_DUMPABLE 0 /* core dump is permitted */
365 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
366 #define MMF_DUMPABLE_BITS 2
367
368 /* coredump filter bits */
369 #define MMF_DUMP_ANON_PRIVATE 2
370 #define MMF_DUMP_ANON_SHARED 3
371 #define MMF_DUMP_MAPPED_PRIVATE 4
372 #define MMF_DUMP_MAPPED_SHARED 5
373 #define MMF_DUMP_ELF_HEADERS 6
374 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
375 #define MMF_DUMP_FILTER_BITS 5
376 #define MMF_DUMP_FILTER_MASK \
377 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
378 #define MMF_DUMP_FILTER_DEFAULT \
379 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
380
381 struct sighand_struct {
382 atomic_t count;
383 struct k_sigaction action[_NSIG];
384 spinlock_t siglock;
385 wait_queue_head_t signalfd_wqh;
386 };
387
388 struct pacct_struct {
389 int ac_flag;
390 long ac_exitcode;
391 unsigned long ac_mem;
392 cputime_t ac_utime, ac_stime;
393 unsigned long ac_minflt, ac_majflt;
394 };
395
396 /*
397 * NOTE! "signal_struct" does not have it's own
398 * locking, because a shared signal_struct always
399 * implies a shared sighand_struct, so locking
400 * sighand_struct is always a proper superset of
401 * the locking of signal_struct.
402 */
403 struct signal_struct {
404 atomic_t count;
405 atomic_t live;
406
407 wait_queue_head_t wait_chldexit; /* for wait4() */
408
409 /* current thread group signal load-balancing target: */
410 struct task_struct *curr_target;
411
412 /* shared signal handling: */
413 struct sigpending shared_pending;
414
415 /* thread group exit support */
416 int group_exit_code;
417 /* overloaded:
418 * - notify group_exit_task when ->count is equal to notify_count
419 * - everyone except group_exit_task is stopped during signal delivery
420 * of fatal signals, group_exit_task processes the signal.
421 */
422 struct task_struct *group_exit_task;
423 int notify_count;
424
425 /* thread group stop support, overloads group_exit_code too */
426 int group_stop_count;
427 unsigned int flags; /* see SIGNAL_* flags below */
428
429 /* POSIX.1b Interval Timers */
430 struct list_head posix_timers;
431
432 /* ITIMER_REAL timer for the process */
433 struct hrtimer real_timer;
434 struct task_struct *tsk;
435 ktime_t it_real_incr;
436
437 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
438 cputime_t it_prof_expires, it_virt_expires;
439 cputime_t it_prof_incr, it_virt_incr;
440
441 /* job control IDs */
442
443 /*
444 * pgrp and session fields are deprecated.
445 * use the task_session_Xnr and task_pgrp_Xnr routines below
446 */
447
448 union {
449 pid_t pgrp __deprecated;
450 pid_t __pgrp;
451 };
452
453 struct pid *tty_old_pgrp;
454
455 union {
456 pid_t session __deprecated;
457 pid_t __session;
458 };
459
460 /* boolean value for session group leader */
461 int leader;
462
463 struct tty_struct *tty; /* NULL if no tty */
464
465 /*
466 * Cumulative resource counters for dead threads in the group,
467 * and for reaped dead child processes forked by this group.
468 * Live threads maintain their own counters and add to these
469 * in __exit_signal, except for the group leader.
470 */
471 cputime_t utime, stime, cutime, cstime;
472 cputime_t gtime;
473 cputime_t cgtime;
474 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
475 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
476 unsigned long inblock, oublock, cinblock, coublock;
477
478 /*
479 * Cumulative ns of scheduled CPU time for dead threads in the
480 * group, not including a zombie group leader. (This only differs
481 * from jiffies_to_ns(utime + stime) if sched_clock uses something
482 * other than jiffies.)
483 */
484 unsigned long long sum_sched_runtime;
485
486 /*
487 * We don't bother to synchronize most readers of this at all,
488 * because there is no reader checking a limit that actually needs
489 * to get both rlim_cur and rlim_max atomically, and either one
490 * alone is a single word that can safely be read normally.
491 * getrlimit/setrlimit use task_lock(current->group_leader) to
492 * protect this instead of the siglock, because they really
493 * have no need to disable irqs.
494 */
495 struct rlimit rlim[RLIM_NLIMITS];
496
497 struct list_head cpu_timers[3];
498
499 /* keep the process-shared keyrings here so that they do the right
500 * thing in threads created with CLONE_THREAD */
501 #ifdef CONFIG_KEYS
502 struct key *session_keyring; /* keyring inherited over fork */
503 struct key *process_keyring; /* keyring private to this process */
504 #endif
505 #ifdef CONFIG_BSD_PROCESS_ACCT
506 struct pacct_struct pacct; /* per-process accounting information */
507 #endif
508 #ifdef CONFIG_TASKSTATS
509 struct taskstats *stats;
510 #endif
511 #ifdef CONFIG_AUDIT
512 unsigned audit_tty;
513 struct tty_audit_buf *tty_audit_buf;
514 #endif
515 };
516
517 /* Context switch must be unlocked if interrupts are to be enabled */
518 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
519 # define __ARCH_WANT_UNLOCKED_CTXSW
520 #endif
521
522 /*
523 * Bits in flags field of signal_struct.
524 */
525 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
526 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
527 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
528 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
529
530 /*
531 * Some day this will be a full-fledged user tracking system..
532 */
533 struct user_struct {
534 atomic_t __count; /* reference count */
535 atomic_t processes; /* How many processes does this user have? */
536 atomic_t files; /* How many open files does this user have? */
537 atomic_t sigpending; /* How many pending signals does this user have? */
538 #ifdef CONFIG_INOTIFY_USER
539 atomic_t inotify_watches; /* How many inotify watches does this user have? */
540 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
541 #endif
542 #ifdef CONFIG_POSIX_MQUEUE
543 /* protected by mq_lock */
544 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
545 #endif
546 unsigned long locked_shm; /* How many pages of mlocked shm ? */
547
548 #ifdef CONFIG_KEYS
549 struct key *uid_keyring; /* UID specific keyring */
550 struct key *session_keyring; /* UID's default session keyring */
551 #endif
552
553 /* Hash table maintenance information */
554 struct hlist_node uidhash_node;
555 uid_t uid;
556
557 #ifdef CONFIG_FAIR_USER_SCHED
558 struct task_group *tg;
559 #ifdef CONFIG_SYSFS
560 struct kobject kobj;
561 struct work_struct work;
562 #endif
563 #endif
564 };
565
566 extern int uids_sysfs_init(void);
567
568 extern struct user_struct *find_user(uid_t);
569
570 extern struct user_struct root_user;
571 #define INIT_USER (&root_user)
572
573 struct backing_dev_info;
574 struct reclaim_state;
575
576 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
577 struct sched_info {
578 /* cumulative counters */
579 unsigned long pcount; /* # of times run on this cpu */
580 unsigned long long cpu_time, /* time spent on the cpu */
581 run_delay; /* time spent waiting on a runqueue */
582
583 /* timestamps */
584 unsigned long long last_arrival,/* when we last ran on a cpu */
585 last_queued; /* when we were last queued to run */
586 #ifdef CONFIG_SCHEDSTATS
587 /* BKL stats */
588 unsigned int bkl_count;
589 #endif
590 };
591 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
592
593 #ifdef CONFIG_SCHEDSTATS
594 extern const struct file_operations proc_schedstat_operations;
595 #endif /* CONFIG_SCHEDSTATS */
596
597 #ifdef CONFIG_TASK_DELAY_ACCT
598 struct task_delay_info {
599 spinlock_t lock;
600 unsigned int flags; /* Private per-task flags */
601
602 /* For each stat XXX, add following, aligned appropriately
603 *
604 * struct timespec XXX_start, XXX_end;
605 * u64 XXX_delay;
606 * u32 XXX_count;
607 *
608 * Atomicity of updates to XXX_delay, XXX_count protected by
609 * single lock above (split into XXX_lock if contention is an issue).
610 */
611
612 /*
613 * XXX_count is incremented on every XXX operation, the delay
614 * associated with the operation is added to XXX_delay.
615 * XXX_delay contains the accumulated delay time in nanoseconds.
616 */
617 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
618 u64 blkio_delay; /* wait for sync block io completion */
619 u64 swapin_delay; /* wait for swapin block io completion */
620 u32 blkio_count; /* total count of the number of sync block */
621 /* io operations performed */
622 u32 swapin_count; /* total count of the number of swapin block */
623 /* io operations performed */
624 };
625 #endif /* CONFIG_TASK_DELAY_ACCT */
626
627 static inline int sched_info_on(void)
628 {
629 #ifdef CONFIG_SCHEDSTATS
630 return 1;
631 #elif defined(CONFIG_TASK_DELAY_ACCT)
632 extern int delayacct_on;
633 return delayacct_on;
634 #else
635 return 0;
636 #endif
637 }
638
639 enum cpu_idle_type {
640 CPU_IDLE,
641 CPU_NOT_IDLE,
642 CPU_NEWLY_IDLE,
643 CPU_MAX_IDLE_TYPES
644 };
645
646 /*
647 * sched-domains (multiprocessor balancing) declarations:
648 */
649
650 /*
651 * Increase resolution of nice-level calculations:
652 */
653 #define SCHED_LOAD_SHIFT 10
654 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
655
656 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
657
658 #ifdef CONFIG_SMP
659 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
660 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
661 #define SD_BALANCE_EXEC 4 /* Balance on exec */
662 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
663 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
664 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
665 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
666 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
667 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
668 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
669 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
670
671 #define BALANCE_FOR_MC_POWER \
672 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
673
674 #define BALANCE_FOR_PKG_POWER \
675 ((sched_mc_power_savings || sched_smt_power_savings) ? \
676 SD_POWERSAVINGS_BALANCE : 0)
677
678 #define test_sd_parent(sd, flag) ((sd->parent && \
679 (sd->parent->flags & flag)) ? 1 : 0)
680
681
682 struct sched_group {
683 struct sched_group *next; /* Must be a circular list */
684 cpumask_t cpumask;
685
686 /*
687 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
688 * single CPU. This is read only (except for setup, hotplug CPU).
689 * Note : Never change cpu_power without recompute its reciprocal
690 */
691 unsigned int __cpu_power;
692 /*
693 * reciprocal value of cpu_power to avoid expensive divides
694 * (see include/linux/reciprocal_div.h)
695 */
696 u32 reciprocal_cpu_power;
697 };
698
699 struct sched_domain {
700 /* These fields must be setup */
701 struct sched_domain *parent; /* top domain must be null terminated */
702 struct sched_domain *child; /* bottom domain must be null terminated */
703 struct sched_group *groups; /* the balancing groups of the domain */
704 cpumask_t span; /* span of all CPUs in this domain */
705 unsigned long min_interval; /* Minimum balance interval ms */
706 unsigned long max_interval; /* Maximum balance interval ms */
707 unsigned int busy_factor; /* less balancing by factor if busy */
708 unsigned int imbalance_pct; /* No balance until over watermark */
709 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
710 unsigned int busy_idx;
711 unsigned int idle_idx;
712 unsigned int newidle_idx;
713 unsigned int wake_idx;
714 unsigned int forkexec_idx;
715 int flags; /* See SD_* */
716
717 /* Runtime fields. */
718 unsigned long last_balance; /* init to jiffies. units in jiffies */
719 unsigned int balance_interval; /* initialise to 1. units in ms. */
720 unsigned int nr_balance_failed; /* initialise to 0 */
721
722 #ifdef CONFIG_SCHEDSTATS
723 /* load_balance() stats */
724 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
725 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
726 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
727 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
728 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
729 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
730 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
731 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
732
733 /* Active load balancing */
734 unsigned int alb_count;
735 unsigned int alb_failed;
736 unsigned int alb_pushed;
737
738 /* SD_BALANCE_EXEC stats */
739 unsigned int sbe_count;
740 unsigned int sbe_balanced;
741 unsigned int sbe_pushed;
742
743 /* SD_BALANCE_FORK stats */
744 unsigned int sbf_count;
745 unsigned int sbf_balanced;
746 unsigned int sbf_pushed;
747
748 /* try_to_wake_up() stats */
749 unsigned int ttwu_wake_remote;
750 unsigned int ttwu_move_affine;
751 unsigned int ttwu_move_balance;
752 #endif
753 };
754
755 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new);
756
757 #endif /* CONFIG_SMP */
758
759 /*
760 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
761 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
762 * task of nice 0 or enough lower priority tasks to bring up the
763 * weighted_cpuload
764 */
765 static inline int above_background_load(void)
766 {
767 unsigned long cpu;
768
769 for_each_online_cpu(cpu) {
770 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
771 return 1;
772 }
773 return 0;
774 }
775
776 struct io_context; /* See blkdev.h */
777 #define NGROUPS_SMALL 32
778 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t)))
779 struct group_info {
780 int ngroups;
781 atomic_t usage;
782 gid_t small_block[NGROUPS_SMALL];
783 int nblocks;
784 gid_t *blocks[0];
785 };
786
787 /*
788 * get_group_info() must be called with the owning task locked (via task_lock())
789 * when task != current. The reason being that the vast majority of callers are
790 * looking at current->group_info, which can not be changed except by the
791 * current task. Changing current->group_info requires the task lock, too.
792 */
793 #define get_group_info(group_info) do { \
794 atomic_inc(&(group_info)->usage); \
795 } while (0)
796
797 #define put_group_info(group_info) do { \
798 if (atomic_dec_and_test(&(group_info)->usage)) \
799 groups_free(group_info); \
800 } while (0)
801
802 extern struct group_info *groups_alloc(int gidsetsize);
803 extern void groups_free(struct group_info *group_info);
804 extern int set_current_groups(struct group_info *group_info);
805 extern int groups_search(struct group_info *group_info, gid_t grp);
806 /* access the groups "array" with this macro */
807 #define GROUP_AT(gi, i) \
808 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
809
810 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
811 extern void prefetch_stack(struct task_struct *t);
812 #else
813 static inline void prefetch_stack(struct task_struct *t) { }
814 #endif
815
816 struct audit_context; /* See audit.c */
817 struct mempolicy;
818 struct pipe_inode_info;
819 struct uts_namespace;
820
821 struct rq;
822 struct sched_domain;
823
824 struct sched_class {
825 const struct sched_class *next;
826
827 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
828 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
829 void (*yield_task) (struct rq *rq);
830 int (*select_task_rq)(struct task_struct *p, int sync);
831
832 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
833
834 struct task_struct * (*pick_next_task) (struct rq *rq);
835 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
836
837 #ifdef CONFIG_SMP
838 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
839 struct rq *busiest, unsigned long max_load_move,
840 struct sched_domain *sd, enum cpu_idle_type idle,
841 int *all_pinned, int *this_best_prio);
842
843 int (*move_one_task) (struct rq *this_rq, int this_cpu,
844 struct rq *busiest, struct sched_domain *sd,
845 enum cpu_idle_type idle);
846 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
847 void (*post_schedule) (struct rq *this_rq);
848 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
849 #endif
850
851 void (*set_curr_task) (struct rq *rq);
852 void (*task_tick) (struct rq *rq, struct task_struct *p);
853 void (*task_new) (struct rq *rq, struct task_struct *p);
854 void (*set_cpus_allowed)(struct task_struct *p, cpumask_t *newmask);
855
856 void (*join_domain)(struct rq *rq);
857 void (*leave_domain)(struct rq *rq);
858
859 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
860 int running);
861 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
862 int running);
863 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
864 int oldprio, int running);
865 };
866
867 struct load_weight {
868 unsigned long weight, inv_weight;
869 };
870
871 /*
872 * CFS stats for a schedulable entity (task, task-group etc)
873 *
874 * Current field usage histogram:
875 *
876 * 4 se->block_start
877 * 4 se->run_node
878 * 4 se->sleep_start
879 * 6 se->load.weight
880 */
881 struct sched_entity {
882 struct load_weight load; /* for load-balancing */
883 struct rb_node run_node;
884 unsigned int on_rq;
885
886 u64 exec_start;
887 u64 sum_exec_runtime;
888 u64 vruntime;
889 u64 prev_sum_exec_runtime;
890
891 #ifdef CONFIG_SCHEDSTATS
892 u64 wait_start;
893 u64 wait_max;
894
895 u64 sleep_start;
896 u64 sleep_max;
897 s64 sum_sleep_runtime;
898
899 u64 block_start;
900 u64 block_max;
901 u64 exec_max;
902 u64 slice_max;
903
904 u64 nr_migrations;
905 u64 nr_migrations_cold;
906 u64 nr_failed_migrations_affine;
907 u64 nr_failed_migrations_running;
908 u64 nr_failed_migrations_hot;
909 u64 nr_forced_migrations;
910 u64 nr_forced2_migrations;
911
912 u64 nr_wakeups;
913 u64 nr_wakeups_sync;
914 u64 nr_wakeups_migrate;
915 u64 nr_wakeups_local;
916 u64 nr_wakeups_remote;
917 u64 nr_wakeups_affine;
918 u64 nr_wakeups_affine_attempts;
919 u64 nr_wakeups_passive;
920 u64 nr_wakeups_idle;
921 #endif
922
923 #ifdef CONFIG_FAIR_GROUP_SCHED
924 struct sched_entity *parent;
925 /* rq on which this entity is (to be) queued: */
926 struct cfs_rq *cfs_rq;
927 /* rq "owned" by this entity/group: */
928 struct cfs_rq *my_q;
929 #endif
930 };
931
932 struct sched_rt_entity {
933 struct list_head run_list;
934 unsigned int time_slice;
935 unsigned long timeout;
936 };
937
938 struct task_struct {
939 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
940 void *stack;
941 atomic_t usage;
942 unsigned int flags; /* per process flags, defined below */
943 unsigned int ptrace;
944
945 int lock_depth; /* BKL lock depth */
946
947 #ifdef CONFIG_SMP
948 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
949 int oncpu;
950 #endif
951 #endif
952
953 int prio, static_prio, normal_prio;
954 const struct sched_class *sched_class;
955 struct sched_entity se;
956 struct sched_rt_entity rt;
957
958 #ifdef CONFIG_PREEMPT_NOTIFIERS
959 /* list of struct preempt_notifier: */
960 struct hlist_head preempt_notifiers;
961 #endif
962
963 unsigned short ioprio;
964 /*
965 * fpu_counter contains the number of consecutive context switches
966 * that the FPU is used. If this is over a threshold, the lazy fpu
967 * saving becomes unlazy to save the trap. This is an unsigned char
968 * so that after 256 times the counter wraps and the behavior turns
969 * lazy again; this to deal with bursty apps that only use FPU for
970 * a short time
971 */
972 unsigned char fpu_counter;
973 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
974 #ifdef CONFIG_BLK_DEV_IO_TRACE
975 unsigned int btrace_seq;
976 #endif
977
978 unsigned int policy;
979 cpumask_t cpus_allowed;
980 int nr_cpus_allowed;
981
982 #ifdef CONFIG_PREEMPT_RCU
983 int rcu_read_lock_nesting;
984 int rcu_flipctr_idx;
985 #endif /* #ifdef CONFIG_PREEMPT_RCU */
986
987 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
988 struct sched_info sched_info;
989 #endif
990
991 struct list_head tasks;
992 /*
993 * ptrace_list/ptrace_children forms the list of my children
994 * that were stolen by a ptracer.
995 */
996 struct list_head ptrace_children;
997 struct list_head ptrace_list;
998
999 struct mm_struct *mm, *active_mm;
1000
1001 /* task state */
1002 struct linux_binfmt *binfmt;
1003 int exit_state;
1004 int exit_code, exit_signal;
1005 int pdeath_signal; /* The signal sent when the parent dies */
1006 /* ??? */
1007 unsigned int personality;
1008 unsigned did_exec:1;
1009 pid_t pid;
1010 pid_t tgid;
1011
1012 #ifdef CONFIG_CC_STACKPROTECTOR
1013 /* Canary value for the -fstack-protector gcc feature */
1014 unsigned long stack_canary;
1015 #endif
1016 /*
1017 * pointers to (original) parent process, youngest child, younger sibling,
1018 * older sibling, respectively. (p->father can be replaced with
1019 * p->parent->pid)
1020 */
1021 struct task_struct *real_parent; /* real parent process (when being debugged) */
1022 struct task_struct *parent; /* parent process */
1023 /*
1024 * children/sibling forms the list of my children plus the
1025 * tasks I'm ptracing.
1026 */
1027 struct list_head children; /* list of my children */
1028 struct list_head sibling; /* linkage in my parent's children list */
1029 struct task_struct *group_leader; /* threadgroup leader */
1030
1031 /* PID/PID hash table linkage. */
1032 struct pid_link pids[PIDTYPE_MAX];
1033 struct list_head thread_group;
1034
1035 struct completion *vfork_done; /* for vfork() */
1036 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1037 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1038
1039 unsigned int rt_priority;
1040 cputime_t utime, stime, utimescaled, stimescaled;
1041 cputime_t gtime;
1042 cputime_t prev_utime, prev_stime;
1043 unsigned long nvcsw, nivcsw; /* context switch counts */
1044 struct timespec start_time; /* monotonic time */
1045 struct timespec real_start_time; /* boot based time */
1046 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1047 unsigned long min_flt, maj_flt;
1048
1049 cputime_t it_prof_expires, it_virt_expires;
1050 unsigned long long it_sched_expires;
1051 struct list_head cpu_timers[3];
1052
1053 /* process credentials */
1054 uid_t uid,euid,suid,fsuid;
1055 gid_t gid,egid,sgid,fsgid;
1056 struct group_info *group_info;
1057 kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
1058 unsigned keep_capabilities:1;
1059 struct user_struct *user;
1060 #ifdef CONFIG_KEYS
1061 struct key *request_key_auth; /* assumed request_key authority */
1062 struct key *thread_keyring; /* keyring private to this thread */
1063 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1064 #endif
1065 char comm[TASK_COMM_LEN]; /* executable name excluding path
1066 - access with [gs]et_task_comm (which lock
1067 it with task_lock())
1068 - initialized normally by flush_old_exec */
1069 /* file system info */
1070 int link_count, total_link_count;
1071 #ifdef CONFIG_SYSVIPC
1072 /* ipc stuff */
1073 struct sysv_sem sysvsem;
1074 #endif
1075 #ifdef CONFIG_DETECT_SOFTLOCKUP
1076 /* hung task detection */
1077 unsigned long last_switch_timestamp;
1078 unsigned long last_switch_count;
1079 #endif
1080 /* CPU-specific state of this task */
1081 struct thread_struct thread;
1082 /* filesystem information */
1083 struct fs_struct *fs;
1084 /* open file information */
1085 struct files_struct *files;
1086 /* namespaces */
1087 struct nsproxy *nsproxy;
1088 /* signal handlers */
1089 struct signal_struct *signal;
1090 struct sighand_struct *sighand;
1091
1092 sigset_t blocked, real_blocked;
1093 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */
1094 struct sigpending pending;
1095
1096 unsigned long sas_ss_sp;
1097 size_t sas_ss_size;
1098 int (*notifier)(void *priv);
1099 void *notifier_data;
1100 sigset_t *notifier_mask;
1101 #ifdef CONFIG_SECURITY
1102 void *security;
1103 #endif
1104 struct audit_context *audit_context;
1105 seccomp_t seccomp;
1106
1107 /* Thread group tracking */
1108 u32 parent_exec_id;
1109 u32 self_exec_id;
1110 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1111 spinlock_t alloc_lock;
1112
1113 /* Protection of the PI data structures: */
1114 spinlock_t pi_lock;
1115
1116 #ifdef CONFIG_RT_MUTEXES
1117 /* PI waiters blocked on a rt_mutex held by this task */
1118 struct plist_head pi_waiters;
1119 /* Deadlock detection and priority inheritance handling */
1120 struct rt_mutex_waiter *pi_blocked_on;
1121 #endif
1122
1123 #ifdef CONFIG_DEBUG_MUTEXES
1124 /* mutex deadlock detection */
1125 struct mutex_waiter *blocked_on;
1126 #endif
1127 #ifdef CONFIG_TRACE_IRQFLAGS
1128 unsigned int irq_events;
1129 int hardirqs_enabled;
1130 unsigned long hardirq_enable_ip;
1131 unsigned int hardirq_enable_event;
1132 unsigned long hardirq_disable_ip;
1133 unsigned int hardirq_disable_event;
1134 int softirqs_enabled;
1135 unsigned long softirq_disable_ip;
1136 unsigned int softirq_disable_event;
1137 unsigned long softirq_enable_ip;
1138 unsigned int softirq_enable_event;
1139 int hardirq_context;
1140 int softirq_context;
1141 #endif
1142 #ifdef CONFIG_LOCKDEP
1143 # define MAX_LOCK_DEPTH 30UL
1144 u64 curr_chain_key;
1145 int lockdep_depth;
1146 struct held_lock held_locks[MAX_LOCK_DEPTH];
1147 unsigned int lockdep_recursion;
1148 #endif
1149
1150 /* journalling filesystem info */
1151 void *journal_info;
1152
1153 /* stacked block device info */
1154 struct bio *bio_list, **bio_tail;
1155
1156 /* VM state */
1157 struct reclaim_state *reclaim_state;
1158
1159 struct backing_dev_info *backing_dev_info;
1160
1161 struct io_context *io_context;
1162
1163 unsigned long ptrace_message;
1164 siginfo_t *last_siginfo; /* For ptrace use. */
1165 #ifdef CONFIG_TASK_XACCT
1166 /* i/o counters(bytes read/written, #syscalls */
1167 u64 rchar, wchar, syscr, syscw;
1168 #endif
1169 struct task_io_accounting ioac;
1170 #if defined(CONFIG_TASK_XACCT)
1171 u64 acct_rss_mem1; /* accumulated rss usage */
1172 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1173 cputime_t acct_stimexpd;/* stime since last update */
1174 #endif
1175 #ifdef CONFIG_NUMA
1176 struct mempolicy *mempolicy;
1177 short il_next;
1178 #endif
1179 #ifdef CONFIG_CPUSETS
1180 nodemask_t mems_allowed;
1181 int cpuset_mems_generation;
1182 int cpuset_mem_spread_rotor;
1183 #endif
1184 #ifdef CONFIG_CGROUPS
1185 /* Control Group info protected by css_set_lock */
1186 struct css_set *cgroups;
1187 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1188 struct list_head cg_list;
1189 #endif
1190 #ifdef CONFIG_FUTEX
1191 struct robust_list_head __user *robust_list;
1192 #ifdef CONFIG_COMPAT
1193 struct compat_robust_list_head __user *compat_robust_list;
1194 #endif
1195 struct list_head pi_state_list;
1196 struct futex_pi_state *pi_state_cache;
1197 #endif
1198 atomic_t fs_excl; /* holding fs exclusive resources */
1199 struct rcu_head rcu;
1200
1201 /*
1202 * cache last used pipe for splice
1203 */
1204 struct pipe_inode_info *splice_pipe;
1205 #ifdef CONFIG_TASK_DELAY_ACCT
1206 struct task_delay_info *delays;
1207 #endif
1208 #ifdef CONFIG_FAULT_INJECTION
1209 int make_it_fail;
1210 #endif
1211 struct prop_local_single dirties;
1212 };
1213
1214 /*
1215 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1216 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1217 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1218 * values are inverted: lower p->prio value means higher priority.
1219 *
1220 * The MAX_USER_RT_PRIO value allows the actual maximum
1221 * RT priority to be separate from the value exported to
1222 * user-space. This allows kernel threads to set their
1223 * priority to a value higher than any user task. Note:
1224 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1225 */
1226
1227 #define MAX_USER_RT_PRIO 100
1228 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1229
1230 #define MAX_PRIO (MAX_RT_PRIO + 40)
1231 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1232
1233 static inline int rt_prio(int prio)
1234 {
1235 if (unlikely(prio < MAX_RT_PRIO))
1236 return 1;
1237 return 0;
1238 }
1239
1240 static inline int rt_task(struct task_struct *p)
1241 {
1242 return rt_prio(p->prio);
1243 }
1244
1245 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1246 {
1247 tsk->signal->__session = session;
1248 }
1249
1250 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1251 {
1252 tsk->signal->__pgrp = pgrp;
1253 }
1254
1255 static inline struct pid *task_pid(struct task_struct *task)
1256 {
1257 return task->pids[PIDTYPE_PID].pid;
1258 }
1259
1260 static inline struct pid *task_tgid(struct task_struct *task)
1261 {
1262 return task->group_leader->pids[PIDTYPE_PID].pid;
1263 }
1264
1265 static inline struct pid *task_pgrp(struct task_struct *task)
1266 {
1267 return task->group_leader->pids[PIDTYPE_PGID].pid;
1268 }
1269
1270 static inline struct pid *task_session(struct task_struct *task)
1271 {
1272 return task->group_leader->pids[PIDTYPE_SID].pid;
1273 }
1274
1275 struct pid_namespace;
1276
1277 /*
1278 * the helpers to get the task's different pids as they are seen
1279 * from various namespaces
1280 *
1281 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1282 * task_xid_vnr() : virtual id, i.e. the id seen from the namespace the task
1283 * belongs to. this only makes sence when called in the
1284 * context of the task that belongs to the same namespace;
1285 * task_xid_nr_ns() : id seen from the ns specified;
1286 *
1287 * set_task_vxid() : assigns a virtual id to a task;
1288 *
1289 * see also pid_nr() etc in include/linux/pid.h
1290 */
1291
1292 static inline pid_t task_pid_nr(struct task_struct *tsk)
1293 {
1294 return tsk->pid;
1295 }
1296
1297 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1298
1299 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1300 {
1301 return pid_vnr(task_pid(tsk));
1302 }
1303
1304
1305 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1306 {
1307 return tsk->tgid;
1308 }
1309
1310 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1311
1312 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1313 {
1314 return pid_vnr(task_tgid(tsk));
1315 }
1316
1317
1318 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1319 {
1320 return tsk->signal->__pgrp;
1321 }
1322
1323 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1324
1325 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1326 {
1327 return pid_vnr(task_pgrp(tsk));
1328 }
1329
1330
1331 static inline pid_t task_session_nr(struct task_struct *tsk)
1332 {
1333 return tsk->signal->__session;
1334 }
1335
1336 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1337
1338 static inline pid_t task_session_vnr(struct task_struct *tsk)
1339 {
1340 return pid_vnr(task_session(tsk));
1341 }
1342
1343
1344 /**
1345 * pid_alive - check that a task structure is not stale
1346 * @p: Task structure to be checked.
1347 *
1348 * Test if a process is not yet dead (at most zombie state)
1349 * If pid_alive fails, then pointers within the task structure
1350 * can be stale and must not be dereferenced.
1351 */
1352 static inline int pid_alive(struct task_struct *p)
1353 {
1354 return p->pids[PIDTYPE_PID].pid != NULL;
1355 }
1356
1357 /**
1358 * is_global_init - check if a task structure is init
1359 * @tsk: Task structure to be checked.
1360 *
1361 * Check if a task structure is the first user space task the kernel created.
1362 */
1363 static inline int is_global_init(struct task_struct *tsk)
1364 {
1365 return tsk->pid == 1;
1366 }
1367
1368 /*
1369 * is_container_init:
1370 * check whether in the task is init in its own pid namespace.
1371 */
1372 extern int is_container_init(struct task_struct *tsk);
1373
1374 extern struct pid *cad_pid;
1375
1376 extern void free_task(struct task_struct *tsk);
1377 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1378
1379 extern void __put_task_struct(struct task_struct *t);
1380
1381 static inline void put_task_struct(struct task_struct *t)
1382 {
1383 if (atomic_dec_and_test(&t->usage))
1384 __put_task_struct(t);
1385 }
1386
1387 /*
1388 * Per process flags
1389 */
1390 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1391 /* Not implemented yet, only for 486*/
1392 #define PF_STARTING 0x00000002 /* being created */
1393 #define PF_EXITING 0x00000004 /* getting shut down */
1394 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1395 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1396 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1397 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1398 #define PF_DUMPCORE 0x00000200 /* dumped core */
1399 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1400 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1401 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1402 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1403 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1404 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1405 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1406 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1407 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1408 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1409 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1410 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1411 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1412 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1413 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1414 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1415 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1416 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1417
1418 /*
1419 * Only the _current_ task can read/write to tsk->flags, but other
1420 * tasks can access tsk->flags in readonly mode for example
1421 * with tsk_used_math (like during threaded core dumping).
1422 * There is however an exception to this rule during ptrace
1423 * or during fork: the ptracer task is allowed to write to the
1424 * child->flags of its traced child (same goes for fork, the parent
1425 * can write to the child->flags), because we're guaranteed the
1426 * child is not running and in turn not changing child->flags
1427 * at the same time the parent does it.
1428 */
1429 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1430 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1431 #define clear_used_math() clear_stopped_child_used_math(current)
1432 #define set_used_math() set_stopped_child_used_math(current)
1433 #define conditional_stopped_child_used_math(condition, child) \
1434 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1435 #define conditional_used_math(condition) \
1436 conditional_stopped_child_used_math(condition, current)
1437 #define copy_to_stopped_child_used_math(child) \
1438 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1439 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1440 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1441 #define used_math() tsk_used_math(current)
1442
1443 #ifdef CONFIG_SMP
1444 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask);
1445 #else
1446 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1447 {
1448 if (!cpu_isset(0, new_mask))
1449 return -EINVAL;
1450 return 0;
1451 }
1452 #endif
1453
1454 extern unsigned long long sched_clock(void);
1455
1456 /*
1457 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1458 * clock constructed from sched_clock():
1459 */
1460 extern unsigned long long cpu_clock(int cpu);
1461
1462 extern unsigned long long
1463 task_sched_runtime(struct task_struct *task);
1464
1465 /* sched_exec is called by processes performing an exec */
1466 #ifdef CONFIG_SMP
1467 extern void sched_exec(void);
1468 #else
1469 #define sched_exec() {}
1470 #endif
1471
1472 extern void sched_clock_idle_sleep_event(void);
1473 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1474
1475 #ifdef CONFIG_HOTPLUG_CPU
1476 extern void idle_task_exit(void);
1477 #else
1478 static inline void idle_task_exit(void) {}
1479 #endif
1480
1481 extern void sched_idle_next(void);
1482
1483 #ifdef CONFIG_SCHED_DEBUG
1484 extern unsigned int sysctl_sched_latency;
1485 extern unsigned int sysctl_sched_min_granularity;
1486 extern unsigned int sysctl_sched_wakeup_granularity;
1487 extern unsigned int sysctl_sched_batch_wakeup_granularity;
1488 extern unsigned int sysctl_sched_child_runs_first;
1489 extern unsigned int sysctl_sched_features;
1490 extern unsigned int sysctl_sched_migration_cost;
1491 extern unsigned int sysctl_sched_nr_migrate;
1492 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
1493 extern unsigned int sysctl_sched_min_bal_int_shares;
1494 extern unsigned int sysctl_sched_max_bal_int_shares;
1495 #endif
1496
1497 int sched_nr_latency_handler(struct ctl_table *table, int write,
1498 struct file *file, void __user *buffer, size_t *length,
1499 loff_t *ppos);
1500 #endif
1501
1502 extern unsigned int sysctl_sched_compat_yield;
1503
1504 #ifdef CONFIG_RT_MUTEXES
1505 extern int rt_mutex_getprio(struct task_struct *p);
1506 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1507 extern void rt_mutex_adjust_pi(struct task_struct *p);
1508 #else
1509 static inline int rt_mutex_getprio(struct task_struct *p)
1510 {
1511 return p->normal_prio;
1512 }
1513 # define rt_mutex_adjust_pi(p) do { } while (0)
1514 #endif
1515
1516 extern void set_user_nice(struct task_struct *p, long nice);
1517 extern int task_prio(const struct task_struct *p);
1518 extern int task_nice(const struct task_struct *p);
1519 extern int can_nice(const struct task_struct *p, const int nice);
1520 extern int task_curr(const struct task_struct *p);
1521 extern int idle_cpu(int cpu);
1522 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1523 extern struct task_struct *idle_task(int cpu);
1524 extern struct task_struct *curr_task(int cpu);
1525 extern void set_curr_task(int cpu, struct task_struct *p);
1526
1527 void yield(void);
1528
1529 /*
1530 * The default (Linux) execution domain.
1531 */
1532 extern struct exec_domain default_exec_domain;
1533
1534 union thread_union {
1535 struct thread_info thread_info;
1536 unsigned long stack[THREAD_SIZE/sizeof(long)];
1537 };
1538
1539 #ifndef __HAVE_ARCH_KSTACK_END
1540 static inline int kstack_end(void *addr)
1541 {
1542 /* Reliable end of stack detection:
1543 * Some APM bios versions misalign the stack
1544 */
1545 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1546 }
1547 #endif
1548
1549 extern union thread_union init_thread_union;
1550 extern struct task_struct init_task;
1551
1552 extern struct mm_struct init_mm;
1553
1554 extern struct pid_namespace init_pid_ns;
1555
1556 /*
1557 * find a task by one of its numerical ids
1558 *
1559 * find_task_by_pid_type_ns():
1560 * it is the most generic call - it finds a task by all id,
1561 * type and namespace specified
1562 * find_task_by_pid_ns():
1563 * finds a task by its pid in the specified namespace
1564 * find_task_by_vpid():
1565 * finds a task by its virtual pid
1566 * find_task_by_pid():
1567 * finds a task by its global pid
1568 *
1569 * see also find_pid() etc in include/linux/pid.h
1570 */
1571
1572 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1573 struct pid_namespace *ns);
1574
1575 extern struct task_struct *find_task_by_pid(pid_t nr);
1576 extern struct task_struct *find_task_by_vpid(pid_t nr);
1577 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1578 struct pid_namespace *ns);
1579
1580 extern void __set_special_pids(pid_t session, pid_t pgrp);
1581
1582 /* per-UID process charging. */
1583 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1584 static inline struct user_struct *get_uid(struct user_struct *u)
1585 {
1586 atomic_inc(&u->__count);
1587 return u;
1588 }
1589 extern void free_uid(struct user_struct *);
1590 extern void switch_uid(struct user_struct *);
1591 extern void release_uids(struct user_namespace *ns);
1592
1593 #include <asm/current.h>
1594
1595 extern void do_timer(unsigned long ticks);
1596
1597 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state));
1598 extern int FASTCALL(wake_up_process(struct task_struct * tsk));
1599 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
1600 unsigned long clone_flags));
1601 #ifdef CONFIG_SMP
1602 extern void kick_process(struct task_struct *tsk);
1603 #else
1604 static inline void kick_process(struct task_struct *tsk) { }
1605 #endif
1606 extern void sched_fork(struct task_struct *p, int clone_flags);
1607 extern void sched_dead(struct task_struct *p);
1608
1609 extern int in_group_p(gid_t);
1610 extern int in_egroup_p(gid_t);
1611
1612 extern void proc_caches_init(void);
1613 extern void flush_signals(struct task_struct *);
1614 extern void ignore_signals(struct task_struct *);
1615 extern void flush_signal_handlers(struct task_struct *, int force_default);
1616 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1617
1618 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1619 {
1620 unsigned long flags;
1621 int ret;
1622
1623 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1624 ret = dequeue_signal(tsk, mask, info);
1625 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1626
1627 return ret;
1628 }
1629
1630 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1631 sigset_t *mask);
1632 extern void unblock_all_signals(void);
1633 extern void release_task(struct task_struct * p);
1634 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1635 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
1636 extern int force_sigsegv(int, struct task_struct *);
1637 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1638 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1639 extern int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1640 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1641 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1642 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1643 extern int kill_pid(struct pid *pid, int sig, int priv);
1644 extern int kill_proc_info(int, struct siginfo *, pid_t);
1645 extern void do_notify_parent(struct task_struct *, int);
1646 extern void force_sig(int, struct task_struct *);
1647 extern void force_sig_specific(int, struct task_struct *);
1648 extern int send_sig(int, struct task_struct *, int);
1649 extern void zap_other_threads(struct task_struct *p);
1650 extern int kill_proc(pid_t, int, int);
1651 extern struct sigqueue *sigqueue_alloc(void);
1652 extern void sigqueue_free(struct sigqueue *);
1653 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *);
1654 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *);
1655 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1656 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1657
1658 static inline int kill_cad_pid(int sig, int priv)
1659 {
1660 return kill_pid(cad_pid, sig, priv);
1661 }
1662
1663 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1664 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1665 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1666 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1667
1668 static inline int is_si_special(const struct siginfo *info)
1669 {
1670 return info <= SEND_SIG_FORCED;
1671 }
1672
1673 /* True if we are on the alternate signal stack. */
1674
1675 static inline int on_sig_stack(unsigned long sp)
1676 {
1677 return (sp - current->sas_ss_sp < current->sas_ss_size);
1678 }
1679
1680 static inline int sas_ss_flags(unsigned long sp)
1681 {
1682 return (current->sas_ss_size == 0 ? SS_DISABLE
1683 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1684 }
1685
1686 /*
1687 * Routines for handling mm_structs
1688 */
1689 extern struct mm_struct * mm_alloc(void);
1690
1691 /* mmdrop drops the mm and the page tables */
1692 extern void FASTCALL(__mmdrop(struct mm_struct *));
1693 static inline void mmdrop(struct mm_struct * mm)
1694 {
1695 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1696 __mmdrop(mm);
1697 }
1698
1699 /* mmput gets rid of the mappings and all user-space */
1700 extern void mmput(struct mm_struct *);
1701 /* Grab a reference to a task's mm, if it is not already going away */
1702 extern struct mm_struct *get_task_mm(struct task_struct *task);
1703 /* Remove the current tasks stale references to the old mm_struct */
1704 extern void mm_release(struct task_struct *, struct mm_struct *);
1705
1706 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1707 extern void flush_thread(void);
1708 extern void exit_thread(void);
1709
1710 extern void exit_files(struct task_struct *);
1711 extern void __cleanup_signal(struct signal_struct *);
1712 extern void __cleanup_sighand(struct sighand_struct *);
1713 extern void exit_itimers(struct signal_struct *);
1714
1715 extern NORET_TYPE void do_group_exit(int);
1716
1717 extern void daemonize(const char *, ...);
1718 extern int allow_signal(int);
1719 extern int disallow_signal(int);
1720
1721 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1722 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1723 struct task_struct *fork_idle(int);
1724
1725 extern void set_task_comm(struct task_struct *tsk, char *from);
1726 extern void get_task_comm(char *to, struct task_struct *tsk);
1727
1728 #ifdef CONFIG_SMP
1729 extern void wait_task_inactive(struct task_struct * p);
1730 #else
1731 #define wait_task_inactive(p) do { } while (0)
1732 #endif
1733
1734 #define remove_parent(p) list_del_init(&(p)->sibling)
1735 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1736
1737 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1738
1739 #define for_each_process(p) \
1740 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1741
1742 /*
1743 * Careful: do_each_thread/while_each_thread is a double loop so
1744 * 'break' will not work as expected - use goto instead.
1745 */
1746 #define do_each_thread(g, t) \
1747 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1748
1749 #define while_each_thread(g, t) \
1750 while ((t = next_thread(t)) != g)
1751
1752 /* de_thread depends on thread_group_leader not being a pid based check */
1753 #define thread_group_leader(p) (p == p->group_leader)
1754
1755 /* Do to the insanities of de_thread it is possible for a process
1756 * to have the pid of the thread group leader without actually being
1757 * the thread group leader. For iteration through the pids in proc
1758 * all we care about is that we have a task with the appropriate
1759 * pid, we don't actually care if we have the right task.
1760 */
1761 static inline int has_group_leader_pid(struct task_struct *p)
1762 {
1763 return p->pid == p->tgid;
1764 }
1765
1766 static inline
1767 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1768 {
1769 return p1->tgid == p2->tgid;
1770 }
1771
1772 static inline struct task_struct *next_thread(const struct task_struct *p)
1773 {
1774 return list_entry(rcu_dereference(p->thread_group.next),
1775 struct task_struct, thread_group);
1776 }
1777
1778 static inline int thread_group_empty(struct task_struct *p)
1779 {
1780 return list_empty(&p->thread_group);
1781 }
1782
1783 #define delay_group_leader(p) \
1784 (thread_group_leader(p) && !thread_group_empty(p))
1785
1786 /*
1787 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1788 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1789 * pins the final release of task.io_context. Also protects ->cpuset and
1790 * ->cgroup.subsys[].
1791 *
1792 * Nests both inside and outside of read_lock(&tasklist_lock).
1793 * It must not be nested with write_lock_irq(&tasklist_lock),
1794 * neither inside nor outside.
1795 */
1796 static inline void task_lock(struct task_struct *p)
1797 {
1798 spin_lock(&p->alloc_lock);
1799 }
1800
1801 static inline void task_unlock(struct task_struct *p)
1802 {
1803 spin_unlock(&p->alloc_lock);
1804 }
1805
1806 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1807 unsigned long *flags);
1808
1809 static inline void unlock_task_sighand(struct task_struct *tsk,
1810 unsigned long *flags)
1811 {
1812 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1813 }
1814
1815 #ifndef __HAVE_THREAD_FUNCTIONS
1816
1817 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1818 #define task_stack_page(task) ((task)->stack)
1819
1820 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1821 {
1822 *task_thread_info(p) = *task_thread_info(org);
1823 task_thread_info(p)->task = p;
1824 }
1825
1826 static inline unsigned long *end_of_stack(struct task_struct *p)
1827 {
1828 return (unsigned long *)(task_thread_info(p) + 1);
1829 }
1830
1831 #endif
1832
1833 /* set thread flags in other task's structures
1834 * - see asm/thread_info.h for TIF_xxxx flags available
1835 */
1836 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1837 {
1838 set_ti_thread_flag(task_thread_info(tsk), flag);
1839 }
1840
1841 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1842 {
1843 clear_ti_thread_flag(task_thread_info(tsk), flag);
1844 }
1845
1846 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1847 {
1848 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1849 }
1850
1851 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1852 {
1853 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1854 }
1855
1856 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1857 {
1858 return test_ti_thread_flag(task_thread_info(tsk), flag);
1859 }
1860
1861 static inline void set_tsk_need_resched(struct task_struct *tsk)
1862 {
1863 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1864 }
1865
1866 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1867 {
1868 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1869 }
1870
1871 static inline int signal_pending(struct task_struct *p)
1872 {
1873 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
1874 }
1875
1876 static inline int need_resched(void)
1877 {
1878 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1879 }
1880
1881 /*
1882 * cond_resched() and cond_resched_lock(): latency reduction via
1883 * explicit rescheduling in places that are safe. The return
1884 * value indicates whether a reschedule was done in fact.
1885 * cond_resched_lock() will drop the spinlock before scheduling,
1886 * cond_resched_softirq() will enable bhs before scheduling.
1887 */
1888 extern int cond_resched(void);
1889 extern int cond_resched_lock(spinlock_t * lock);
1890 extern int cond_resched_softirq(void);
1891
1892 /*
1893 * Does a critical section need to be broken due to another
1894 * task waiting?:
1895 */
1896 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
1897 # define need_lockbreak(lock) ((lock)->break_lock)
1898 #else
1899 # define need_lockbreak(lock) 0
1900 #endif
1901
1902 /*
1903 * Does a critical section need to be broken due to another
1904 * task waiting or preemption being signalled:
1905 */
1906 static inline int lock_need_resched(spinlock_t *lock)
1907 {
1908 if (need_lockbreak(lock) || need_resched())
1909 return 1;
1910 return 0;
1911 }
1912
1913 /*
1914 * Reevaluate whether the task has signals pending delivery.
1915 * Wake the task if so.
1916 * This is required every time the blocked sigset_t changes.
1917 * callers must hold sighand->siglock.
1918 */
1919 extern void recalc_sigpending_and_wake(struct task_struct *t);
1920 extern void recalc_sigpending(void);
1921
1922 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
1923
1924 /*
1925 * Wrappers for p->thread_info->cpu access. No-op on UP.
1926 */
1927 #ifdef CONFIG_SMP
1928
1929 static inline unsigned int task_cpu(const struct task_struct *p)
1930 {
1931 return task_thread_info(p)->cpu;
1932 }
1933
1934 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1935
1936 #else
1937
1938 static inline unsigned int task_cpu(const struct task_struct *p)
1939 {
1940 return 0;
1941 }
1942
1943 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1944 {
1945 }
1946
1947 #endif /* CONFIG_SMP */
1948
1949 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
1950 extern void arch_pick_mmap_layout(struct mm_struct *mm);
1951 #else
1952 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
1953 {
1954 mm->mmap_base = TASK_UNMAPPED_BASE;
1955 mm->get_unmapped_area = arch_get_unmapped_area;
1956 mm->unmap_area = arch_unmap_area;
1957 }
1958 #endif
1959
1960 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
1961 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
1962
1963 extern int sched_mc_power_savings, sched_smt_power_savings;
1964
1965 extern void normalize_rt_tasks(void);
1966
1967 #ifdef CONFIG_FAIR_GROUP_SCHED
1968
1969 extern struct task_group init_task_group;
1970
1971 extern struct task_group *sched_create_group(void);
1972 extern void sched_destroy_group(struct task_group *tg);
1973 extern void sched_move_task(struct task_struct *tsk);
1974 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
1975 extern unsigned long sched_group_shares(struct task_group *tg);
1976
1977 #endif
1978
1979 #ifdef CONFIG_TASK_XACCT
1980 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
1981 {
1982 tsk->rchar += amt;
1983 }
1984
1985 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
1986 {
1987 tsk->wchar += amt;
1988 }
1989
1990 static inline void inc_syscr(struct task_struct *tsk)
1991 {
1992 tsk->syscr++;
1993 }
1994
1995 static inline void inc_syscw(struct task_struct *tsk)
1996 {
1997 tsk->syscw++;
1998 }
1999 #else
2000 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2001 {
2002 }
2003
2004 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2005 {
2006 }
2007
2008 static inline void inc_syscr(struct task_struct *tsk)
2009 {
2010 }
2011
2012 static inline void inc_syscw(struct task_struct *tsk)
2013 {
2014 }
2015 #endif
2016
2017 #ifdef CONFIG_SMP
2018 void migration_init(void);
2019 #else
2020 static inline void migration_init(void)
2021 {
2022 }
2023 #endif
2024
2025 #endif /* __KERNEL__ */
2026
2027 #endif