]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - include/net/sock.h
Merge tag 'efi-urgent-for-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / include / net / sock.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 #include <linux/sockptr.h>
63 #include <linux/indirect_call_wrapper.h>
64 #include <linux/atomic.h>
65 #include <linux/refcount.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72
73 /*
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
77 */
78
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91
92 /* This is the per-socket lock. The spinlock provides a synchronization
93 * between user contexts and software interrupt processing, whereas the
94 * mini-semaphore synchronizes multiple users amongst themselves.
95 */
96 typedef struct {
97 spinlock_t slock;
98 int owned;
99 wait_queue_head_t wq;
100 /*
101 * We express the mutex-alike socket_lock semantics
102 * to the lock validator by explicitly managing
103 * the slock as a lock variant (in addition to
104 * the slock itself):
105 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110
111 struct sock;
112 struct proto;
113 struct net;
114
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117
118 /**
119 * struct sock_common - minimal network layer representation of sockets
120 * @skc_daddr: Foreign IPv4 addr
121 * @skc_rcv_saddr: Bound local IPv4 addr
122 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123 * @skc_hash: hash value used with various protocol lookup tables
124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
125 * @skc_dport: placeholder for inet_dport/tw_dport
126 * @skc_num: placeholder for inet_num/tw_num
127 * @skc_portpair: __u32 union of @skc_dport & @skc_num
128 * @skc_family: network address family
129 * @skc_state: Connection state
130 * @skc_reuse: %SO_REUSEADDR setting
131 * @skc_reuseport: %SO_REUSEPORT setting
132 * @skc_ipv6only: socket is IPV6 only
133 * @skc_net_refcnt: socket is using net ref counting
134 * @skc_bound_dev_if: bound device index if != 0
135 * @skc_bind_node: bind hash linkage for various protocol lookup tables
136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137 * @skc_prot: protocol handlers inside a network family
138 * @skc_net: reference to the network namespace of this socket
139 * @skc_v6_daddr: IPV6 destination address
140 * @skc_v6_rcv_saddr: IPV6 source address
141 * @skc_cookie: socket's cookie value
142 * @skc_node: main hash linkage for various protocol lookup tables
143 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144 * @skc_tx_queue_mapping: tx queue number for this connection
145 * @skc_rx_queue_mapping: rx queue number for this connection
146 * @skc_flags: place holder for sk_flags
147 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149 * @skc_listener: connection request listener socket (aka rsk_listener)
150 * [union with @skc_flags]
151 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152 * [union with @skc_flags]
153 * @skc_incoming_cpu: record/match cpu processing incoming packets
154 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155 * [union with @skc_incoming_cpu]
156 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157 * [union with @skc_incoming_cpu]
158 * @skc_refcnt: reference count
159 *
160 * This is the minimal network layer representation of sockets, the header
161 * for struct sock and struct inet_timewait_sock.
162 */
163 struct sock_common {
164 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
165 * address on 64bit arches : cf INET_MATCH()
166 */
167 union {
168 __addrpair skc_addrpair;
169 struct {
170 __be32 skc_daddr;
171 __be32 skc_rcv_saddr;
172 };
173 };
174 union {
175 unsigned int skc_hash;
176 __u16 skc_u16hashes[2];
177 };
178 /* skc_dport && skc_num must be grouped as well */
179 union {
180 __portpair skc_portpair;
181 struct {
182 __be16 skc_dport;
183 __u16 skc_num;
184 };
185 };
186
187 unsigned short skc_family;
188 volatile unsigned char skc_state;
189 unsigned char skc_reuse:4;
190 unsigned char skc_reuseport:1;
191 unsigned char skc_ipv6only:1;
192 unsigned char skc_net_refcnt:1;
193 int skc_bound_dev_if;
194 union {
195 struct hlist_node skc_bind_node;
196 struct hlist_node skc_portaddr_node;
197 };
198 struct proto *skc_prot;
199 possible_net_t skc_net;
200
201 #if IS_ENABLED(CONFIG_IPV6)
202 struct in6_addr skc_v6_daddr;
203 struct in6_addr skc_v6_rcv_saddr;
204 #endif
205
206 atomic64_t skc_cookie;
207
208 /* following fields are padding to force
209 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
210 * assuming IPV6 is enabled. We use this padding differently
211 * for different kind of 'sockets'
212 */
213 union {
214 unsigned long skc_flags;
215 struct sock *skc_listener; /* request_sock */
216 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
217 };
218 /*
219 * fields between dontcopy_begin/dontcopy_end
220 * are not copied in sock_copy()
221 */
222 /* private: */
223 int skc_dontcopy_begin[0];
224 /* public: */
225 union {
226 struct hlist_node skc_node;
227 struct hlist_nulls_node skc_nulls_node;
228 };
229 unsigned short skc_tx_queue_mapping;
230 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
231 unsigned short skc_rx_queue_mapping;
232 #endif
233 union {
234 int skc_incoming_cpu;
235 u32 skc_rcv_wnd;
236 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
237 };
238
239 refcount_t skc_refcnt;
240 /* private: */
241 int skc_dontcopy_end[0];
242 union {
243 u32 skc_rxhash;
244 u32 skc_window_clamp;
245 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
246 };
247 /* public: */
248 };
249
250 struct bpf_local_storage;
251
252 /**
253 * struct sock - network layer representation of sockets
254 * @__sk_common: shared layout with inet_timewait_sock
255 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
256 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
257 * @sk_lock: synchronizer
258 * @sk_kern_sock: True if sock is using kernel lock classes
259 * @sk_rcvbuf: size of receive buffer in bytes
260 * @sk_wq: sock wait queue and async head
261 * @sk_rx_dst: receive input route used by early demux
262 * @sk_dst_cache: destination cache
263 * @sk_dst_pending_confirm: need to confirm neighbour
264 * @sk_policy: flow policy
265 * @sk_rx_skb_cache: cache copy of recently accessed RX skb
266 * @sk_receive_queue: incoming packets
267 * @sk_wmem_alloc: transmit queue bytes committed
268 * @sk_tsq_flags: TCP Small Queues flags
269 * @sk_write_queue: Packet sending queue
270 * @sk_omem_alloc: "o" is "option" or "other"
271 * @sk_wmem_queued: persistent queue size
272 * @sk_forward_alloc: space allocated forward
273 * @sk_napi_id: id of the last napi context to receive data for sk
274 * @sk_ll_usec: usecs to busypoll when there is no data
275 * @sk_allocation: allocation mode
276 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
277 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
278 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
279 * @sk_sndbuf: size of send buffer in bytes
280 * @__sk_flags_offset: empty field used to determine location of bitfield
281 * @sk_padding: unused element for alignment
282 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
283 * @sk_no_check_rx: allow zero checksum in RX packets
284 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
285 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
286 * @sk_route_forced_caps: static, forced route capabilities
287 * (set in tcp_init_sock())
288 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
289 * @sk_gso_max_size: Maximum GSO segment size to build
290 * @sk_gso_max_segs: Maximum number of GSO segments
291 * @sk_pacing_shift: scaling factor for TCP Small Queues
292 * @sk_lingertime: %SO_LINGER l_linger setting
293 * @sk_backlog: always used with the per-socket spinlock held
294 * @sk_callback_lock: used with the callbacks in the end of this struct
295 * @sk_error_queue: rarely used
296 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
297 * IPV6_ADDRFORM for instance)
298 * @sk_err: last error
299 * @sk_err_soft: errors that don't cause failure but are the cause of a
300 * persistent failure not just 'timed out'
301 * @sk_drops: raw/udp drops counter
302 * @sk_ack_backlog: current listen backlog
303 * @sk_max_ack_backlog: listen backlog set in listen()
304 * @sk_uid: user id of owner
305 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
306 * @sk_busy_poll_budget: napi processing budget when busypolling
307 * @sk_priority: %SO_PRIORITY setting
308 * @sk_type: socket type (%SOCK_STREAM, etc)
309 * @sk_protocol: which protocol this socket belongs in this network family
310 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
311 * @sk_peer_pid: &struct pid for this socket's peer
312 * @sk_peer_cred: %SO_PEERCRED setting
313 * @sk_rcvlowat: %SO_RCVLOWAT setting
314 * @sk_rcvtimeo: %SO_RCVTIMEO setting
315 * @sk_sndtimeo: %SO_SNDTIMEO setting
316 * @sk_txhash: computed flow hash for use on transmit
317 * @sk_filter: socket filtering instructions
318 * @sk_timer: sock cleanup timer
319 * @sk_stamp: time stamp of last packet received
320 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
321 * @sk_tsflags: SO_TIMESTAMPING flags
322 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
323 * for timestamping
324 * @sk_tskey: counter to disambiguate concurrent tstamp requests
325 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
326 * @sk_socket: Identd and reporting IO signals
327 * @sk_user_data: RPC layer private data
328 * @sk_frag: cached page frag
329 * @sk_peek_off: current peek_offset value
330 * @sk_send_head: front of stuff to transmit
331 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
332 * @sk_tx_skb_cache: cache copy of recently accessed TX skb
333 * @sk_security: used by security modules
334 * @sk_mark: generic packet mark
335 * @sk_cgrp_data: cgroup data for this cgroup
336 * @sk_memcg: this socket's memory cgroup association
337 * @sk_write_pending: a write to stream socket waits to start
338 * @sk_state_change: callback to indicate change in the state of the sock
339 * @sk_data_ready: callback to indicate there is data to be processed
340 * @sk_write_space: callback to indicate there is bf sending space available
341 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
342 * @sk_backlog_rcv: callback to process the backlog
343 * @sk_validate_xmit_skb: ptr to an optional validate function
344 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
345 * @sk_reuseport_cb: reuseport group container
346 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
347 * @sk_rcu: used during RCU grace period
348 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
349 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
350 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
351 * @sk_txtime_unused: unused txtime flags
352 */
353 struct sock {
354 /*
355 * Now struct inet_timewait_sock also uses sock_common, so please just
356 * don't add nothing before this first member (__sk_common) --acme
357 */
358 struct sock_common __sk_common;
359 #define sk_node __sk_common.skc_node
360 #define sk_nulls_node __sk_common.skc_nulls_node
361 #define sk_refcnt __sk_common.skc_refcnt
362 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
363 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
364 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
365 #endif
366
367 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
368 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
369 #define sk_hash __sk_common.skc_hash
370 #define sk_portpair __sk_common.skc_portpair
371 #define sk_num __sk_common.skc_num
372 #define sk_dport __sk_common.skc_dport
373 #define sk_addrpair __sk_common.skc_addrpair
374 #define sk_daddr __sk_common.skc_daddr
375 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
376 #define sk_family __sk_common.skc_family
377 #define sk_state __sk_common.skc_state
378 #define sk_reuse __sk_common.skc_reuse
379 #define sk_reuseport __sk_common.skc_reuseport
380 #define sk_ipv6only __sk_common.skc_ipv6only
381 #define sk_net_refcnt __sk_common.skc_net_refcnt
382 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
383 #define sk_bind_node __sk_common.skc_bind_node
384 #define sk_prot __sk_common.skc_prot
385 #define sk_net __sk_common.skc_net
386 #define sk_v6_daddr __sk_common.skc_v6_daddr
387 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
388 #define sk_cookie __sk_common.skc_cookie
389 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
390 #define sk_flags __sk_common.skc_flags
391 #define sk_rxhash __sk_common.skc_rxhash
392
393 socket_lock_t sk_lock;
394 atomic_t sk_drops;
395 int sk_rcvlowat;
396 struct sk_buff_head sk_error_queue;
397 struct sk_buff *sk_rx_skb_cache;
398 struct sk_buff_head sk_receive_queue;
399 /*
400 * The backlog queue is special, it is always used with
401 * the per-socket spinlock held and requires low latency
402 * access. Therefore we special case it's implementation.
403 * Note : rmem_alloc is in this structure to fill a hole
404 * on 64bit arches, not because its logically part of
405 * backlog.
406 */
407 struct {
408 atomic_t rmem_alloc;
409 int len;
410 struct sk_buff *head;
411 struct sk_buff *tail;
412 } sk_backlog;
413 #define sk_rmem_alloc sk_backlog.rmem_alloc
414
415 int sk_forward_alloc;
416 #ifdef CONFIG_NET_RX_BUSY_POLL
417 unsigned int sk_ll_usec;
418 /* ===== mostly read cache line ===== */
419 unsigned int sk_napi_id;
420 #endif
421 int sk_rcvbuf;
422
423 struct sk_filter __rcu *sk_filter;
424 union {
425 struct socket_wq __rcu *sk_wq;
426 /* private: */
427 struct socket_wq *sk_wq_raw;
428 /* public: */
429 };
430 #ifdef CONFIG_XFRM
431 struct xfrm_policy __rcu *sk_policy[2];
432 #endif
433 struct dst_entry *sk_rx_dst;
434 struct dst_entry __rcu *sk_dst_cache;
435 atomic_t sk_omem_alloc;
436 int sk_sndbuf;
437
438 /* ===== cache line for TX ===== */
439 int sk_wmem_queued;
440 refcount_t sk_wmem_alloc;
441 unsigned long sk_tsq_flags;
442 union {
443 struct sk_buff *sk_send_head;
444 struct rb_root tcp_rtx_queue;
445 };
446 struct sk_buff *sk_tx_skb_cache;
447 struct sk_buff_head sk_write_queue;
448 __s32 sk_peek_off;
449 int sk_write_pending;
450 __u32 sk_dst_pending_confirm;
451 u32 sk_pacing_status; /* see enum sk_pacing */
452 long sk_sndtimeo;
453 struct timer_list sk_timer;
454 __u32 sk_priority;
455 __u32 sk_mark;
456 unsigned long sk_pacing_rate; /* bytes per second */
457 unsigned long sk_max_pacing_rate;
458 struct page_frag sk_frag;
459 netdev_features_t sk_route_caps;
460 netdev_features_t sk_route_nocaps;
461 netdev_features_t sk_route_forced_caps;
462 int sk_gso_type;
463 unsigned int sk_gso_max_size;
464 gfp_t sk_allocation;
465 __u32 sk_txhash;
466
467 /*
468 * Because of non atomicity rules, all
469 * changes are protected by socket lock.
470 */
471 u8 sk_padding : 1,
472 sk_kern_sock : 1,
473 sk_no_check_tx : 1,
474 sk_no_check_rx : 1,
475 sk_userlocks : 4;
476 u8 sk_pacing_shift;
477 u16 sk_type;
478 u16 sk_protocol;
479 u16 sk_gso_max_segs;
480 unsigned long sk_lingertime;
481 struct proto *sk_prot_creator;
482 rwlock_t sk_callback_lock;
483 int sk_err,
484 sk_err_soft;
485 u32 sk_ack_backlog;
486 u32 sk_max_ack_backlog;
487 kuid_t sk_uid;
488 #ifdef CONFIG_NET_RX_BUSY_POLL
489 u8 sk_prefer_busy_poll;
490 u16 sk_busy_poll_budget;
491 #endif
492 spinlock_t sk_peer_lock;
493 struct pid *sk_peer_pid;
494 const struct cred *sk_peer_cred;
495
496 long sk_rcvtimeo;
497 ktime_t sk_stamp;
498 #if BITS_PER_LONG==32
499 seqlock_t sk_stamp_seq;
500 #endif
501 u16 sk_tsflags;
502 int sk_bind_phc;
503 u8 sk_shutdown;
504 u32 sk_tskey;
505 atomic_t sk_zckey;
506
507 u8 sk_clockid;
508 u8 sk_txtime_deadline_mode : 1,
509 sk_txtime_report_errors : 1,
510 sk_txtime_unused : 6;
511
512 struct socket *sk_socket;
513 void *sk_user_data;
514 #ifdef CONFIG_SECURITY
515 void *sk_security;
516 #endif
517 struct sock_cgroup_data sk_cgrp_data;
518 struct mem_cgroup *sk_memcg;
519 void (*sk_state_change)(struct sock *sk);
520 void (*sk_data_ready)(struct sock *sk);
521 void (*sk_write_space)(struct sock *sk);
522 void (*sk_error_report)(struct sock *sk);
523 int (*sk_backlog_rcv)(struct sock *sk,
524 struct sk_buff *skb);
525 #ifdef CONFIG_SOCK_VALIDATE_XMIT
526 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
527 struct net_device *dev,
528 struct sk_buff *skb);
529 #endif
530 void (*sk_destruct)(struct sock *sk);
531 struct sock_reuseport __rcu *sk_reuseport_cb;
532 #ifdef CONFIG_BPF_SYSCALL
533 struct bpf_local_storage __rcu *sk_bpf_storage;
534 #endif
535 struct rcu_head sk_rcu;
536 };
537
538 enum sk_pacing {
539 SK_PACING_NONE = 0,
540 SK_PACING_NEEDED = 1,
541 SK_PACING_FQ = 2,
542 };
543
544 /* Pointer stored in sk_user_data might not be suitable for copying
545 * when cloning the socket. For instance, it can point to a reference
546 * counted object. sk_user_data bottom bit is set if pointer must not
547 * be copied.
548 */
549 #define SK_USER_DATA_NOCOPY 1UL
550 #define SK_USER_DATA_BPF 2UL /* Managed by BPF */
551 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
552
553 /**
554 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
555 * @sk: socket
556 */
557 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
558 {
559 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
560 }
561
562 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
563
564 #define rcu_dereference_sk_user_data(sk) \
565 ({ \
566 void *__tmp = rcu_dereference(__sk_user_data((sk))); \
567 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \
568 })
569 #define rcu_assign_sk_user_data(sk, ptr) \
570 ({ \
571 uintptr_t __tmp = (uintptr_t)(ptr); \
572 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
573 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \
574 })
575 #define rcu_assign_sk_user_data_nocopy(sk, ptr) \
576 ({ \
577 uintptr_t __tmp = (uintptr_t)(ptr); \
578 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
579 rcu_assign_pointer(__sk_user_data((sk)), \
580 __tmp | SK_USER_DATA_NOCOPY); \
581 })
582
583 /*
584 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
585 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
586 * on a socket means that the socket will reuse everybody else's port
587 * without looking at the other's sk_reuse value.
588 */
589
590 #define SK_NO_REUSE 0
591 #define SK_CAN_REUSE 1
592 #define SK_FORCE_REUSE 2
593
594 int sk_set_peek_off(struct sock *sk, int val);
595
596 static inline int sk_peek_offset(struct sock *sk, int flags)
597 {
598 if (unlikely(flags & MSG_PEEK)) {
599 return READ_ONCE(sk->sk_peek_off);
600 }
601
602 return 0;
603 }
604
605 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
606 {
607 s32 off = READ_ONCE(sk->sk_peek_off);
608
609 if (unlikely(off >= 0)) {
610 off = max_t(s32, off - val, 0);
611 WRITE_ONCE(sk->sk_peek_off, off);
612 }
613 }
614
615 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
616 {
617 sk_peek_offset_bwd(sk, -val);
618 }
619
620 /*
621 * Hashed lists helper routines
622 */
623 static inline struct sock *sk_entry(const struct hlist_node *node)
624 {
625 return hlist_entry(node, struct sock, sk_node);
626 }
627
628 static inline struct sock *__sk_head(const struct hlist_head *head)
629 {
630 return hlist_entry(head->first, struct sock, sk_node);
631 }
632
633 static inline struct sock *sk_head(const struct hlist_head *head)
634 {
635 return hlist_empty(head) ? NULL : __sk_head(head);
636 }
637
638 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
639 {
640 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
641 }
642
643 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
644 {
645 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
646 }
647
648 static inline struct sock *sk_next(const struct sock *sk)
649 {
650 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
651 }
652
653 static inline struct sock *sk_nulls_next(const struct sock *sk)
654 {
655 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
656 hlist_nulls_entry(sk->sk_nulls_node.next,
657 struct sock, sk_nulls_node) :
658 NULL;
659 }
660
661 static inline bool sk_unhashed(const struct sock *sk)
662 {
663 return hlist_unhashed(&sk->sk_node);
664 }
665
666 static inline bool sk_hashed(const struct sock *sk)
667 {
668 return !sk_unhashed(sk);
669 }
670
671 static inline void sk_node_init(struct hlist_node *node)
672 {
673 node->pprev = NULL;
674 }
675
676 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
677 {
678 node->pprev = NULL;
679 }
680
681 static inline void __sk_del_node(struct sock *sk)
682 {
683 __hlist_del(&sk->sk_node);
684 }
685
686 /* NB: equivalent to hlist_del_init_rcu */
687 static inline bool __sk_del_node_init(struct sock *sk)
688 {
689 if (sk_hashed(sk)) {
690 __sk_del_node(sk);
691 sk_node_init(&sk->sk_node);
692 return true;
693 }
694 return false;
695 }
696
697 /* Grab socket reference count. This operation is valid only
698 when sk is ALREADY grabbed f.e. it is found in hash table
699 or a list and the lookup is made under lock preventing hash table
700 modifications.
701 */
702
703 static __always_inline void sock_hold(struct sock *sk)
704 {
705 refcount_inc(&sk->sk_refcnt);
706 }
707
708 /* Ungrab socket in the context, which assumes that socket refcnt
709 cannot hit zero, f.e. it is true in context of any socketcall.
710 */
711 static __always_inline void __sock_put(struct sock *sk)
712 {
713 refcount_dec(&sk->sk_refcnt);
714 }
715
716 static inline bool sk_del_node_init(struct sock *sk)
717 {
718 bool rc = __sk_del_node_init(sk);
719
720 if (rc) {
721 /* paranoid for a while -acme */
722 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
723 __sock_put(sk);
724 }
725 return rc;
726 }
727 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
728
729 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
730 {
731 if (sk_hashed(sk)) {
732 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
733 return true;
734 }
735 return false;
736 }
737
738 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
739 {
740 bool rc = __sk_nulls_del_node_init_rcu(sk);
741
742 if (rc) {
743 /* paranoid for a while -acme */
744 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
745 __sock_put(sk);
746 }
747 return rc;
748 }
749
750 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
751 {
752 hlist_add_head(&sk->sk_node, list);
753 }
754
755 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
756 {
757 sock_hold(sk);
758 __sk_add_node(sk, list);
759 }
760
761 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
762 {
763 sock_hold(sk);
764 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
765 sk->sk_family == AF_INET6)
766 hlist_add_tail_rcu(&sk->sk_node, list);
767 else
768 hlist_add_head_rcu(&sk->sk_node, list);
769 }
770
771 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
772 {
773 sock_hold(sk);
774 hlist_add_tail_rcu(&sk->sk_node, list);
775 }
776
777 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
778 {
779 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
780 }
781
782 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
783 {
784 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
785 }
786
787 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
788 {
789 sock_hold(sk);
790 __sk_nulls_add_node_rcu(sk, list);
791 }
792
793 static inline void __sk_del_bind_node(struct sock *sk)
794 {
795 __hlist_del(&sk->sk_bind_node);
796 }
797
798 static inline void sk_add_bind_node(struct sock *sk,
799 struct hlist_head *list)
800 {
801 hlist_add_head(&sk->sk_bind_node, list);
802 }
803
804 #define sk_for_each(__sk, list) \
805 hlist_for_each_entry(__sk, list, sk_node)
806 #define sk_for_each_rcu(__sk, list) \
807 hlist_for_each_entry_rcu(__sk, list, sk_node)
808 #define sk_nulls_for_each(__sk, node, list) \
809 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
810 #define sk_nulls_for_each_rcu(__sk, node, list) \
811 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
812 #define sk_for_each_from(__sk) \
813 hlist_for_each_entry_from(__sk, sk_node)
814 #define sk_nulls_for_each_from(__sk, node) \
815 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
816 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
817 #define sk_for_each_safe(__sk, tmp, list) \
818 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
819 #define sk_for_each_bound(__sk, list) \
820 hlist_for_each_entry(__sk, list, sk_bind_node)
821
822 /**
823 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
824 * @tpos: the type * to use as a loop cursor.
825 * @pos: the &struct hlist_node to use as a loop cursor.
826 * @head: the head for your list.
827 * @offset: offset of hlist_node within the struct.
828 *
829 */
830 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
831 for (pos = rcu_dereference(hlist_first_rcu(head)); \
832 pos != NULL && \
833 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
834 pos = rcu_dereference(hlist_next_rcu(pos)))
835
836 static inline struct user_namespace *sk_user_ns(struct sock *sk)
837 {
838 /* Careful only use this in a context where these parameters
839 * can not change and must all be valid, such as recvmsg from
840 * userspace.
841 */
842 return sk->sk_socket->file->f_cred->user_ns;
843 }
844
845 /* Sock flags */
846 enum sock_flags {
847 SOCK_DEAD,
848 SOCK_DONE,
849 SOCK_URGINLINE,
850 SOCK_KEEPOPEN,
851 SOCK_LINGER,
852 SOCK_DESTROY,
853 SOCK_BROADCAST,
854 SOCK_TIMESTAMP,
855 SOCK_ZAPPED,
856 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
857 SOCK_DBG, /* %SO_DEBUG setting */
858 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
859 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
860 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
861 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
862 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
863 SOCK_FASYNC, /* fasync() active */
864 SOCK_RXQ_OVFL,
865 SOCK_ZEROCOPY, /* buffers from userspace */
866 SOCK_WIFI_STATUS, /* push wifi status to userspace */
867 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
868 * Will use last 4 bytes of packet sent from
869 * user-space instead.
870 */
871 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
872 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
873 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
874 SOCK_TXTIME,
875 SOCK_XDP, /* XDP is attached */
876 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
877 };
878
879 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
880
881 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
882 {
883 nsk->sk_flags = osk->sk_flags;
884 }
885
886 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
887 {
888 __set_bit(flag, &sk->sk_flags);
889 }
890
891 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
892 {
893 __clear_bit(flag, &sk->sk_flags);
894 }
895
896 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
897 int valbool)
898 {
899 if (valbool)
900 sock_set_flag(sk, bit);
901 else
902 sock_reset_flag(sk, bit);
903 }
904
905 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
906 {
907 return test_bit(flag, &sk->sk_flags);
908 }
909
910 #ifdef CONFIG_NET
911 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
912 static inline int sk_memalloc_socks(void)
913 {
914 return static_branch_unlikely(&memalloc_socks_key);
915 }
916
917 void __receive_sock(struct file *file);
918 #else
919
920 static inline int sk_memalloc_socks(void)
921 {
922 return 0;
923 }
924
925 static inline void __receive_sock(struct file *file)
926 { }
927 #endif
928
929 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
930 {
931 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
932 }
933
934 static inline void sk_acceptq_removed(struct sock *sk)
935 {
936 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
937 }
938
939 static inline void sk_acceptq_added(struct sock *sk)
940 {
941 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
942 }
943
944 /* Note: If you think the test should be:
945 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
946 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
947 */
948 static inline bool sk_acceptq_is_full(const struct sock *sk)
949 {
950 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
951 }
952
953 /*
954 * Compute minimal free write space needed to queue new packets.
955 */
956 static inline int sk_stream_min_wspace(const struct sock *sk)
957 {
958 return READ_ONCE(sk->sk_wmem_queued) >> 1;
959 }
960
961 static inline int sk_stream_wspace(const struct sock *sk)
962 {
963 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
964 }
965
966 static inline void sk_wmem_queued_add(struct sock *sk, int val)
967 {
968 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
969 }
970
971 void sk_stream_write_space(struct sock *sk);
972
973 /* OOB backlog add */
974 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
975 {
976 /* dont let skb dst not refcounted, we are going to leave rcu lock */
977 skb_dst_force(skb);
978
979 if (!sk->sk_backlog.tail)
980 WRITE_ONCE(sk->sk_backlog.head, skb);
981 else
982 sk->sk_backlog.tail->next = skb;
983
984 WRITE_ONCE(sk->sk_backlog.tail, skb);
985 skb->next = NULL;
986 }
987
988 /*
989 * Take into account size of receive queue and backlog queue
990 * Do not take into account this skb truesize,
991 * to allow even a single big packet to come.
992 */
993 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
994 {
995 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
996
997 return qsize > limit;
998 }
999
1000 /* The per-socket spinlock must be held here. */
1001 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1002 unsigned int limit)
1003 {
1004 if (sk_rcvqueues_full(sk, limit))
1005 return -ENOBUFS;
1006
1007 /*
1008 * If the skb was allocated from pfmemalloc reserves, only
1009 * allow SOCK_MEMALLOC sockets to use it as this socket is
1010 * helping free memory
1011 */
1012 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1013 return -ENOMEM;
1014
1015 __sk_add_backlog(sk, skb);
1016 sk->sk_backlog.len += skb->truesize;
1017 return 0;
1018 }
1019
1020 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1021
1022 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1023 {
1024 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1025 return __sk_backlog_rcv(sk, skb);
1026
1027 return sk->sk_backlog_rcv(sk, skb);
1028 }
1029
1030 static inline void sk_incoming_cpu_update(struct sock *sk)
1031 {
1032 int cpu = raw_smp_processor_id();
1033
1034 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1035 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1036 }
1037
1038 static inline void sock_rps_record_flow_hash(__u32 hash)
1039 {
1040 #ifdef CONFIG_RPS
1041 struct rps_sock_flow_table *sock_flow_table;
1042
1043 rcu_read_lock();
1044 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1045 rps_record_sock_flow(sock_flow_table, hash);
1046 rcu_read_unlock();
1047 #endif
1048 }
1049
1050 static inline void sock_rps_record_flow(const struct sock *sk)
1051 {
1052 #ifdef CONFIG_RPS
1053 if (static_branch_unlikely(&rfs_needed)) {
1054 /* Reading sk->sk_rxhash might incur an expensive cache line
1055 * miss.
1056 *
1057 * TCP_ESTABLISHED does cover almost all states where RFS
1058 * might be useful, and is cheaper [1] than testing :
1059 * IPv4: inet_sk(sk)->inet_daddr
1060 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1061 * OR an additional socket flag
1062 * [1] : sk_state and sk_prot are in the same cache line.
1063 */
1064 if (sk->sk_state == TCP_ESTABLISHED)
1065 sock_rps_record_flow_hash(sk->sk_rxhash);
1066 }
1067 #endif
1068 }
1069
1070 static inline void sock_rps_save_rxhash(struct sock *sk,
1071 const struct sk_buff *skb)
1072 {
1073 #ifdef CONFIG_RPS
1074 if (unlikely(sk->sk_rxhash != skb->hash))
1075 sk->sk_rxhash = skb->hash;
1076 #endif
1077 }
1078
1079 static inline void sock_rps_reset_rxhash(struct sock *sk)
1080 {
1081 #ifdef CONFIG_RPS
1082 sk->sk_rxhash = 0;
1083 #endif
1084 }
1085
1086 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1087 ({ int __rc; \
1088 release_sock(__sk); \
1089 __rc = __condition; \
1090 if (!__rc) { \
1091 *(__timeo) = wait_woken(__wait, \
1092 TASK_INTERRUPTIBLE, \
1093 *(__timeo)); \
1094 } \
1095 sched_annotate_sleep(); \
1096 lock_sock(__sk); \
1097 __rc = __condition; \
1098 __rc; \
1099 })
1100
1101 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1102 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1103 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1104 int sk_stream_error(struct sock *sk, int flags, int err);
1105 void sk_stream_kill_queues(struct sock *sk);
1106 void sk_set_memalloc(struct sock *sk);
1107 void sk_clear_memalloc(struct sock *sk);
1108
1109 void __sk_flush_backlog(struct sock *sk);
1110
1111 static inline bool sk_flush_backlog(struct sock *sk)
1112 {
1113 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1114 __sk_flush_backlog(sk);
1115 return true;
1116 }
1117 return false;
1118 }
1119
1120 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1121
1122 struct request_sock_ops;
1123 struct timewait_sock_ops;
1124 struct inet_hashinfo;
1125 struct raw_hashinfo;
1126 struct smc_hashinfo;
1127 struct module;
1128 struct sk_psock;
1129
1130 /*
1131 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1132 * un-modified. Special care is taken when initializing object to zero.
1133 */
1134 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1135 {
1136 if (offsetof(struct sock, sk_node.next) != 0)
1137 memset(sk, 0, offsetof(struct sock, sk_node.next));
1138 memset(&sk->sk_node.pprev, 0,
1139 size - offsetof(struct sock, sk_node.pprev));
1140 }
1141
1142 /* Networking protocol blocks we attach to sockets.
1143 * socket layer -> transport layer interface
1144 */
1145 struct proto {
1146 void (*close)(struct sock *sk,
1147 long timeout);
1148 int (*pre_connect)(struct sock *sk,
1149 struct sockaddr *uaddr,
1150 int addr_len);
1151 int (*connect)(struct sock *sk,
1152 struct sockaddr *uaddr,
1153 int addr_len);
1154 int (*disconnect)(struct sock *sk, int flags);
1155
1156 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1157 bool kern);
1158
1159 int (*ioctl)(struct sock *sk, int cmd,
1160 unsigned long arg);
1161 int (*init)(struct sock *sk);
1162 void (*destroy)(struct sock *sk);
1163 void (*shutdown)(struct sock *sk, int how);
1164 int (*setsockopt)(struct sock *sk, int level,
1165 int optname, sockptr_t optval,
1166 unsigned int optlen);
1167 int (*getsockopt)(struct sock *sk, int level,
1168 int optname, char __user *optval,
1169 int __user *option);
1170 void (*keepalive)(struct sock *sk, int valbool);
1171 #ifdef CONFIG_COMPAT
1172 int (*compat_ioctl)(struct sock *sk,
1173 unsigned int cmd, unsigned long arg);
1174 #endif
1175 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1176 size_t len);
1177 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1178 size_t len, int noblock, int flags,
1179 int *addr_len);
1180 int (*sendpage)(struct sock *sk, struct page *page,
1181 int offset, size_t size, int flags);
1182 int (*bind)(struct sock *sk,
1183 struct sockaddr *addr, int addr_len);
1184 int (*bind_add)(struct sock *sk,
1185 struct sockaddr *addr, int addr_len);
1186
1187 int (*backlog_rcv) (struct sock *sk,
1188 struct sk_buff *skb);
1189 bool (*bpf_bypass_getsockopt)(int level,
1190 int optname);
1191
1192 void (*release_cb)(struct sock *sk);
1193
1194 /* Keeping track of sk's, looking them up, and port selection methods. */
1195 int (*hash)(struct sock *sk);
1196 void (*unhash)(struct sock *sk);
1197 void (*rehash)(struct sock *sk);
1198 int (*get_port)(struct sock *sk, unsigned short snum);
1199 #ifdef CONFIG_BPF_SYSCALL
1200 int (*psock_update_sk_prot)(struct sock *sk,
1201 struct sk_psock *psock,
1202 bool restore);
1203 #endif
1204
1205 /* Keeping track of sockets in use */
1206 #ifdef CONFIG_PROC_FS
1207 unsigned int inuse_idx;
1208 #endif
1209
1210 bool (*stream_memory_free)(const struct sock *sk, int wake);
1211 bool (*stream_memory_read)(const struct sock *sk);
1212 /* Memory pressure */
1213 void (*enter_memory_pressure)(struct sock *sk);
1214 void (*leave_memory_pressure)(struct sock *sk);
1215 atomic_long_t *memory_allocated; /* Current allocated memory. */
1216 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1217 /*
1218 * Pressure flag: try to collapse.
1219 * Technical note: it is used by multiple contexts non atomically.
1220 * All the __sk_mem_schedule() is of this nature: accounting
1221 * is strict, actions are advisory and have some latency.
1222 */
1223 unsigned long *memory_pressure;
1224 long *sysctl_mem;
1225
1226 int *sysctl_wmem;
1227 int *sysctl_rmem;
1228 u32 sysctl_wmem_offset;
1229 u32 sysctl_rmem_offset;
1230
1231 int max_header;
1232 bool no_autobind;
1233
1234 struct kmem_cache *slab;
1235 unsigned int obj_size;
1236 slab_flags_t slab_flags;
1237 unsigned int useroffset; /* Usercopy region offset */
1238 unsigned int usersize; /* Usercopy region size */
1239
1240 struct percpu_counter *orphan_count;
1241
1242 struct request_sock_ops *rsk_prot;
1243 struct timewait_sock_ops *twsk_prot;
1244
1245 union {
1246 struct inet_hashinfo *hashinfo;
1247 struct udp_table *udp_table;
1248 struct raw_hashinfo *raw_hash;
1249 struct smc_hashinfo *smc_hash;
1250 } h;
1251
1252 struct module *owner;
1253
1254 char name[32];
1255
1256 struct list_head node;
1257 #ifdef SOCK_REFCNT_DEBUG
1258 atomic_t socks;
1259 #endif
1260 int (*diag_destroy)(struct sock *sk, int err);
1261 } __randomize_layout;
1262
1263 int proto_register(struct proto *prot, int alloc_slab);
1264 void proto_unregister(struct proto *prot);
1265 int sock_load_diag_module(int family, int protocol);
1266
1267 #ifdef SOCK_REFCNT_DEBUG
1268 static inline void sk_refcnt_debug_inc(struct sock *sk)
1269 {
1270 atomic_inc(&sk->sk_prot->socks);
1271 }
1272
1273 static inline void sk_refcnt_debug_dec(struct sock *sk)
1274 {
1275 atomic_dec(&sk->sk_prot->socks);
1276 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1277 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1278 }
1279
1280 static inline void sk_refcnt_debug_release(const struct sock *sk)
1281 {
1282 if (refcount_read(&sk->sk_refcnt) != 1)
1283 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1284 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1285 }
1286 #else /* SOCK_REFCNT_DEBUG */
1287 #define sk_refcnt_debug_inc(sk) do { } while (0)
1288 #define sk_refcnt_debug_dec(sk) do { } while (0)
1289 #define sk_refcnt_debug_release(sk) do { } while (0)
1290 #endif /* SOCK_REFCNT_DEBUG */
1291
1292 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1293
1294 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1295 {
1296 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1297 return false;
1298
1299 #ifdef CONFIG_INET
1300 return sk->sk_prot->stream_memory_free ?
1301 INDIRECT_CALL_1(sk->sk_prot->stream_memory_free,
1302 tcp_stream_memory_free,
1303 sk, wake) : true;
1304 #else
1305 return sk->sk_prot->stream_memory_free ?
1306 sk->sk_prot->stream_memory_free(sk, wake) : true;
1307 #endif
1308 }
1309
1310 static inline bool sk_stream_memory_free(const struct sock *sk)
1311 {
1312 return __sk_stream_memory_free(sk, 0);
1313 }
1314
1315 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1316 {
1317 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1318 __sk_stream_memory_free(sk, wake);
1319 }
1320
1321 static inline bool sk_stream_is_writeable(const struct sock *sk)
1322 {
1323 return __sk_stream_is_writeable(sk, 0);
1324 }
1325
1326 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1327 struct cgroup *ancestor)
1328 {
1329 #ifdef CONFIG_SOCK_CGROUP_DATA
1330 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1331 ancestor);
1332 #else
1333 return -ENOTSUPP;
1334 #endif
1335 }
1336
1337 static inline bool sk_has_memory_pressure(const struct sock *sk)
1338 {
1339 return sk->sk_prot->memory_pressure != NULL;
1340 }
1341
1342 static inline bool sk_under_memory_pressure(const struct sock *sk)
1343 {
1344 if (!sk->sk_prot->memory_pressure)
1345 return false;
1346
1347 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1348 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1349 return true;
1350
1351 return !!*sk->sk_prot->memory_pressure;
1352 }
1353
1354 static inline long
1355 sk_memory_allocated(const struct sock *sk)
1356 {
1357 return atomic_long_read(sk->sk_prot->memory_allocated);
1358 }
1359
1360 static inline long
1361 sk_memory_allocated_add(struct sock *sk, int amt)
1362 {
1363 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1364 }
1365
1366 static inline void
1367 sk_memory_allocated_sub(struct sock *sk, int amt)
1368 {
1369 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1370 }
1371
1372 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1373
1374 static inline void sk_sockets_allocated_dec(struct sock *sk)
1375 {
1376 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1377 SK_ALLOC_PERCPU_COUNTER_BATCH);
1378 }
1379
1380 static inline void sk_sockets_allocated_inc(struct sock *sk)
1381 {
1382 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1383 SK_ALLOC_PERCPU_COUNTER_BATCH);
1384 }
1385
1386 static inline u64
1387 sk_sockets_allocated_read_positive(struct sock *sk)
1388 {
1389 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1390 }
1391
1392 static inline int
1393 proto_sockets_allocated_sum_positive(struct proto *prot)
1394 {
1395 return percpu_counter_sum_positive(prot->sockets_allocated);
1396 }
1397
1398 static inline long
1399 proto_memory_allocated(struct proto *prot)
1400 {
1401 return atomic_long_read(prot->memory_allocated);
1402 }
1403
1404 static inline bool
1405 proto_memory_pressure(struct proto *prot)
1406 {
1407 if (!prot->memory_pressure)
1408 return false;
1409 return !!*prot->memory_pressure;
1410 }
1411
1412
1413 #ifdef CONFIG_PROC_FS
1414 /* Called with local bh disabled */
1415 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1416 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1417 int sock_inuse_get(struct net *net);
1418 #else
1419 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1420 int inc)
1421 {
1422 }
1423 #endif
1424
1425
1426 /* With per-bucket locks this operation is not-atomic, so that
1427 * this version is not worse.
1428 */
1429 static inline int __sk_prot_rehash(struct sock *sk)
1430 {
1431 sk->sk_prot->unhash(sk);
1432 return sk->sk_prot->hash(sk);
1433 }
1434
1435 /* About 10 seconds */
1436 #define SOCK_DESTROY_TIME (10*HZ)
1437
1438 /* Sockets 0-1023 can't be bound to unless you are superuser */
1439 #define PROT_SOCK 1024
1440
1441 #define SHUTDOWN_MASK 3
1442 #define RCV_SHUTDOWN 1
1443 #define SEND_SHUTDOWN 2
1444
1445 #define SOCK_BINDADDR_LOCK 4
1446 #define SOCK_BINDPORT_LOCK 8
1447
1448 struct socket_alloc {
1449 struct socket socket;
1450 struct inode vfs_inode;
1451 };
1452
1453 static inline struct socket *SOCKET_I(struct inode *inode)
1454 {
1455 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1456 }
1457
1458 static inline struct inode *SOCK_INODE(struct socket *socket)
1459 {
1460 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1461 }
1462
1463 /*
1464 * Functions for memory accounting
1465 */
1466 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1467 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1468 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1469 void __sk_mem_reclaim(struct sock *sk, int amount);
1470
1471 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1472 * do not necessarily have 16x time more memory than 4KB ones.
1473 */
1474 #define SK_MEM_QUANTUM 4096
1475 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1476 #define SK_MEM_SEND 0
1477 #define SK_MEM_RECV 1
1478
1479 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1480 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1481 {
1482 long val = sk->sk_prot->sysctl_mem[index];
1483
1484 #if PAGE_SIZE > SK_MEM_QUANTUM
1485 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1486 #elif PAGE_SIZE < SK_MEM_QUANTUM
1487 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1488 #endif
1489 return val;
1490 }
1491
1492 static inline int sk_mem_pages(int amt)
1493 {
1494 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1495 }
1496
1497 static inline bool sk_has_account(struct sock *sk)
1498 {
1499 /* return true if protocol supports memory accounting */
1500 return !!sk->sk_prot->memory_allocated;
1501 }
1502
1503 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1504 {
1505 if (!sk_has_account(sk))
1506 return true;
1507 return size <= sk->sk_forward_alloc ||
1508 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1509 }
1510
1511 static inline bool
1512 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1513 {
1514 if (!sk_has_account(sk))
1515 return true;
1516 return size <= sk->sk_forward_alloc ||
1517 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1518 skb_pfmemalloc(skb);
1519 }
1520
1521 static inline void sk_mem_reclaim(struct sock *sk)
1522 {
1523 if (!sk_has_account(sk))
1524 return;
1525 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1526 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1527 }
1528
1529 static inline void sk_mem_reclaim_partial(struct sock *sk)
1530 {
1531 if (!sk_has_account(sk))
1532 return;
1533 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1534 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1535 }
1536
1537 static inline void sk_mem_charge(struct sock *sk, int size)
1538 {
1539 if (!sk_has_account(sk))
1540 return;
1541 sk->sk_forward_alloc -= size;
1542 }
1543
1544 static inline void sk_mem_uncharge(struct sock *sk, int size)
1545 {
1546 if (!sk_has_account(sk))
1547 return;
1548 sk->sk_forward_alloc += size;
1549
1550 /* Avoid a possible overflow.
1551 * TCP send queues can make this happen, if sk_mem_reclaim()
1552 * is not called and more than 2 GBytes are released at once.
1553 *
1554 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1555 * no need to hold that much forward allocation anyway.
1556 */
1557 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1558 __sk_mem_reclaim(sk, 1 << 20);
1559 }
1560
1561 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1562 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1563 {
1564 sk_wmem_queued_add(sk, -skb->truesize);
1565 sk_mem_uncharge(sk, skb->truesize);
1566 if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1567 !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1568 skb_ext_reset(skb);
1569 skb_zcopy_clear(skb, true);
1570 sk->sk_tx_skb_cache = skb;
1571 return;
1572 }
1573 __kfree_skb(skb);
1574 }
1575
1576 static inline void sock_release_ownership(struct sock *sk)
1577 {
1578 if (sk->sk_lock.owned) {
1579 sk->sk_lock.owned = 0;
1580
1581 /* The sk_lock has mutex_unlock() semantics: */
1582 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1583 }
1584 }
1585
1586 /*
1587 * Macro so as to not evaluate some arguments when
1588 * lockdep is not enabled.
1589 *
1590 * Mark both the sk_lock and the sk_lock.slock as a
1591 * per-address-family lock class.
1592 */
1593 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1594 do { \
1595 sk->sk_lock.owned = 0; \
1596 init_waitqueue_head(&sk->sk_lock.wq); \
1597 spin_lock_init(&(sk)->sk_lock.slock); \
1598 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1599 sizeof((sk)->sk_lock)); \
1600 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1601 (skey), (sname)); \
1602 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1603 } while (0)
1604
1605 static inline bool lockdep_sock_is_held(const struct sock *sk)
1606 {
1607 return lockdep_is_held(&sk->sk_lock) ||
1608 lockdep_is_held(&sk->sk_lock.slock);
1609 }
1610
1611 void lock_sock_nested(struct sock *sk, int subclass);
1612
1613 static inline void lock_sock(struct sock *sk)
1614 {
1615 lock_sock_nested(sk, 0);
1616 }
1617
1618 void __lock_sock(struct sock *sk);
1619 void __release_sock(struct sock *sk);
1620 void release_sock(struct sock *sk);
1621
1622 /* BH context may only use the following locking interface. */
1623 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1624 #define bh_lock_sock_nested(__sk) \
1625 spin_lock_nested(&((__sk)->sk_lock.slock), \
1626 SINGLE_DEPTH_NESTING)
1627 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1628
1629 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1630
1631 /**
1632 * lock_sock_fast - fast version of lock_sock
1633 * @sk: socket
1634 *
1635 * This version should be used for very small section, where process wont block
1636 * return false if fast path is taken:
1637 *
1638 * sk_lock.slock locked, owned = 0, BH disabled
1639 *
1640 * return true if slow path is taken:
1641 *
1642 * sk_lock.slock unlocked, owned = 1, BH enabled
1643 */
1644 static inline bool lock_sock_fast(struct sock *sk)
1645 {
1646 /* The sk_lock has mutex_lock() semantics here. */
1647 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1648
1649 return __lock_sock_fast(sk);
1650 }
1651
1652 /* fast socket lock variant for caller already holding a [different] socket lock */
1653 static inline bool lock_sock_fast_nested(struct sock *sk)
1654 {
1655 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1656
1657 return __lock_sock_fast(sk);
1658 }
1659
1660 /**
1661 * unlock_sock_fast - complement of lock_sock_fast
1662 * @sk: socket
1663 * @slow: slow mode
1664 *
1665 * fast unlock socket for user context.
1666 * If slow mode is on, we call regular release_sock()
1667 */
1668 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1669 __releases(&sk->sk_lock.slock)
1670 {
1671 if (slow) {
1672 release_sock(sk);
1673 __release(&sk->sk_lock.slock);
1674 } else {
1675 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1676 spin_unlock_bh(&sk->sk_lock.slock);
1677 }
1678 }
1679
1680 /* Used by processes to "lock" a socket state, so that
1681 * interrupts and bottom half handlers won't change it
1682 * from under us. It essentially blocks any incoming
1683 * packets, so that we won't get any new data or any
1684 * packets that change the state of the socket.
1685 *
1686 * While locked, BH processing will add new packets to
1687 * the backlog queue. This queue is processed by the
1688 * owner of the socket lock right before it is released.
1689 *
1690 * Since ~2.3.5 it is also exclusive sleep lock serializing
1691 * accesses from user process context.
1692 */
1693
1694 static inline void sock_owned_by_me(const struct sock *sk)
1695 {
1696 #ifdef CONFIG_LOCKDEP
1697 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1698 #endif
1699 }
1700
1701 static inline bool sock_owned_by_user(const struct sock *sk)
1702 {
1703 sock_owned_by_me(sk);
1704 return sk->sk_lock.owned;
1705 }
1706
1707 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1708 {
1709 return sk->sk_lock.owned;
1710 }
1711
1712 /* no reclassification while locks are held */
1713 static inline bool sock_allow_reclassification(const struct sock *csk)
1714 {
1715 struct sock *sk = (struct sock *)csk;
1716
1717 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1718 }
1719
1720 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1721 struct proto *prot, int kern);
1722 void sk_free(struct sock *sk);
1723 void sk_destruct(struct sock *sk);
1724 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1725 void sk_free_unlock_clone(struct sock *sk);
1726
1727 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1728 gfp_t priority);
1729 void __sock_wfree(struct sk_buff *skb);
1730 void sock_wfree(struct sk_buff *skb);
1731 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1732 gfp_t priority);
1733 void skb_orphan_partial(struct sk_buff *skb);
1734 void sock_rfree(struct sk_buff *skb);
1735 void sock_efree(struct sk_buff *skb);
1736 #ifdef CONFIG_INET
1737 void sock_edemux(struct sk_buff *skb);
1738 void sock_pfree(struct sk_buff *skb);
1739 #else
1740 #define sock_edemux sock_efree
1741 #endif
1742
1743 int sock_setsockopt(struct socket *sock, int level, int op,
1744 sockptr_t optval, unsigned int optlen);
1745
1746 int sock_getsockopt(struct socket *sock, int level, int op,
1747 char __user *optval, int __user *optlen);
1748 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1749 bool timeval, bool time32);
1750 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1751 int noblock, int *errcode);
1752 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1753 unsigned long data_len, int noblock,
1754 int *errcode, int max_page_order);
1755 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1756 void sock_kfree_s(struct sock *sk, void *mem, int size);
1757 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1758 void sk_send_sigurg(struct sock *sk);
1759
1760 struct sockcm_cookie {
1761 u64 transmit_time;
1762 u32 mark;
1763 u16 tsflags;
1764 };
1765
1766 static inline void sockcm_init(struct sockcm_cookie *sockc,
1767 const struct sock *sk)
1768 {
1769 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1770 }
1771
1772 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1773 struct sockcm_cookie *sockc);
1774 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1775 struct sockcm_cookie *sockc);
1776
1777 /*
1778 * Functions to fill in entries in struct proto_ops when a protocol
1779 * does not implement a particular function.
1780 */
1781 int sock_no_bind(struct socket *, struct sockaddr *, int);
1782 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1783 int sock_no_socketpair(struct socket *, struct socket *);
1784 int sock_no_accept(struct socket *, struct socket *, int, bool);
1785 int sock_no_getname(struct socket *, struct sockaddr *, int);
1786 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1787 int sock_no_listen(struct socket *, int);
1788 int sock_no_shutdown(struct socket *, int);
1789 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1790 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1791 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1792 int sock_no_mmap(struct file *file, struct socket *sock,
1793 struct vm_area_struct *vma);
1794 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1795 size_t size, int flags);
1796 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1797 int offset, size_t size, int flags);
1798
1799 /*
1800 * Functions to fill in entries in struct proto_ops when a protocol
1801 * uses the inet style.
1802 */
1803 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1804 char __user *optval, int __user *optlen);
1805 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1806 int flags);
1807 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1808 sockptr_t optval, unsigned int optlen);
1809
1810 void sk_common_release(struct sock *sk);
1811
1812 /*
1813 * Default socket callbacks and setup code
1814 */
1815
1816 /* Initialise core socket variables */
1817 void sock_init_data(struct socket *sock, struct sock *sk);
1818
1819 /*
1820 * Socket reference counting postulates.
1821 *
1822 * * Each user of socket SHOULD hold a reference count.
1823 * * Each access point to socket (an hash table bucket, reference from a list,
1824 * running timer, skb in flight MUST hold a reference count.
1825 * * When reference count hits 0, it means it will never increase back.
1826 * * When reference count hits 0, it means that no references from
1827 * outside exist to this socket and current process on current CPU
1828 * is last user and may/should destroy this socket.
1829 * * sk_free is called from any context: process, BH, IRQ. When
1830 * it is called, socket has no references from outside -> sk_free
1831 * may release descendant resources allocated by the socket, but
1832 * to the time when it is called, socket is NOT referenced by any
1833 * hash tables, lists etc.
1834 * * Packets, delivered from outside (from network or from another process)
1835 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1836 * when they sit in queue. Otherwise, packets will leak to hole, when
1837 * socket is looked up by one cpu and unhasing is made by another CPU.
1838 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1839 * (leak to backlog). Packet socket does all the processing inside
1840 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1841 * use separate SMP lock, so that they are prone too.
1842 */
1843
1844 /* Ungrab socket and destroy it, if it was the last reference. */
1845 static inline void sock_put(struct sock *sk)
1846 {
1847 if (refcount_dec_and_test(&sk->sk_refcnt))
1848 sk_free(sk);
1849 }
1850 /* Generic version of sock_put(), dealing with all sockets
1851 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1852 */
1853 void sock_gen_put(struct sock *sk);
1854
1855 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1856 unsigned int trim_cap, bool refcounted);
1857 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1858 const int nested)
1859 {
1860 return __sk_receive_skb(sk, skb, nested, 1, true);
1861 }
1862
1863 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1864 {
1865 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1866 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1867 return;
1868 sk->sk_tx_queue_mapping = tx_queue;
1869 }
1870
1871 #define NO_QUEUE_MAPPING USHRT_MAX
1872
1873 static inline void sk_tx_queue_clear(struct sock *sk)
1874 {
1875 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1876 }
1877
1878 static inline int sk_tx_queue_get(const struct sock *sk)
1879 {
1880 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1881 return sk->sk_tx_queue_mapping;
1882
1883 return -1;
1884 }
1885
1886 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1887 {
1888 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1889 if (skb_rx_queue_recorded(skb)) {
1890 u16 rx_queue = skb_get_rx_queue(skb);
1891
1892 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1893 return;
1894
1895 sk->sk_rx_queue_mapping = rx_queue;
1896 }
1897 #endif
1898 }
1899
1900 static inline void sk_rx_queue_clear(struct sock *sk)
1901 {
1902 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1903 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1904 #endif
1905 }
1906
1907 static inline int sk_rx_queue_get(const struct sock *sk)
1908 {
1909 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1910 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1911 return sk->sk_rx_queue_mapping;
1912 #endif
1913
1914 return -1;
1915 }
1916
1917 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1918 {
1919 sk->sk_socket = sock;
1920 }
1921
1922 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1923 {
1924 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1925 return &rcu_dereference_raw(sk->sk_wq)->wait;
1926 }
1927 /* Detach socket from process context.
1928 * Announce socket dead, detach it from wait queue and inode.
1929 * Note that parent inode held reference count on this struct sock,
1930 * we do not release it in this function, because protocol
1931 * probably wants some additional cleanups or even continuing
1932 * to work with this socket (TCP).
1933 */
1934 static inline void sock_orphan(struct sock *sk)
1935 {
1936 write_lock_bh(&sk->sk_callback_lock);
1937 sock_set_flag(sk, SOCK_DEAD);
1938 sk_set_socket(sk, NULL);
1939 sk->sk_wq = NULL;
1940 write_unlock_bh(&sk->sk_callback_lock);
1941 }
1942
1943 static inline void sock_graft(struct sock *sk, struct socket *parent)
1944 {
1945 WARN_ON(parent->sk);
1946 write_lock_bh(&sk->sk_callback_lock);
1947 rcu_assign_pointer(sk->sk_wq, &parent->wq);
1948 parent->sk = sk;
1949 sk_set_socket(sk, parent);
1950 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1951 security_sock_graft(sk, parent);
1952 write_unlock_bh(&sk->sk_callback_lock);
1953 }
1954
1955 kuid_t sock_i_uid(struct sock *sk);
1956 unsigned long sock_i_ino(struct sock *sk);
1957
1958 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1959 {
1960 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1961 }
1962
1963 static inline u32 net_tx_rndhash(void)
1964 {
1965 u32 v = prandom_u32();
1966
1967 return v ?: 1;
1968 }
1969
1970 static inline void sk_set_txhash(struct sock *sk)
1971 {
1972 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1973 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
1974 }
1975
1976 static inline bool sk_rethink_txhash(struct sock *sk)
1977 {
1978 if (sk->sk_txhash) {
1979 sk_set_txhash(sk);
1980 return true;
1981 }
1982 return false;
1983 }
1984
1985 static inline struct dst_entry *
1986 __sk_dst_get(struct sock *sk)
1987 {
1988 return rcu_dereference_check(sk->sk_dst_cache,
1989 lockdep_sock_is_held(sk));
1990 }
1991
1992 static inline struct dst_entry *
1993 sk_dst_get(struct sock *sk)
1994 {
1995 struct dst_entry *dst;
1996
1997 rcu_read_lock();
1998 dst = rcu_dereference(sk->sk_dst_cache);
1999 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2000 dst = NULL;
2001 rcu_read_unlock();
2002 return dst;
2003 }
2004
2005 static inline void __dst_negative_advice(struct sock *sk)
2006 {
2007 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2008
2009 if (dst && dst->ops->negative_advice) {
2010 ndst = dst->ops->negative_advice(dst);
2011
2012 if (ndst != dst) {
2013 rcu_assign_pointer(sk->sk_dst_cache, ndst);
2014 sk_tx_queue_clear(sk);
2015 sk->sk_dst_pending_confirm = 0;
2016 }
2017 }
2018 }
2019
2020 static inline void dst_negative_advice(struct sock *sk)
2021 {
2022 sk_rethink_txhash(sk);
2023 __dst_negative_advice(sk);
2024 }
2025
2026 static inline void
2027 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2028 {
2029 struct dst_entry *old_dst;
2030
2031 sk_tx_queue_clear(sk);
2032 sk->sk_dst_pending_confirm = 0;
2033 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2034 lockdep_sock_is_held(sk));
2035 rcu_assign_pointer(sk->sk_dst_cache, dst);
2036 dst_release(old_dst);
2037 }
2038
2039 static inline void
2040 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2041 {
2042 struct dst_entry *old_dst;
2043
2044 sk_tx_queue_clear(sk);
2045 sk->sk_dst_pending_confirm = 0;
2046 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2047 dst_release(old_dst);
2048 }
2049
2050 static inline void
2051 __sk_dst_reset(struct sock *sk)
2052 {
2053 __sk_dst_set(sk, NULL);
2054 }
2055
2056 static inline void
2057 sk_dst_reset(struct sock *sk)
2058 {
2059 sk_dst_set(sk, NULL);
2060 }
2061
2062 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2063
2064 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2065
2066 static inline void sk_dst_confirm(struct sock *sk)
2067 {
2068 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2069 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2070 }
2071
2072 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2073 {
2074 if (skb_get_dst_pending_confirm(skb)) {
2075 struct sock *sk = skb->sk;
2076 unsigned long now = jiffies;
2077
2078 /* avoid dirtying neighbour */
2079 if (READ_ONCE(n->confirmed) != now)
2080 WRITE_ONCE(n->confirmed, now);
2081 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2082 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2083 }
2084 }
2085
2086 bool sk_mc_loop(struct sock *sk);
2087
2088 static inline bool sk_can_gso(const struct sock *sk)
2089 {
2090 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2091 }
2092
2093 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2094
2095 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2096 {
2097 sk->sk_route_nocaps |= flags;
2098 sk->sk_route_caps &= ~flags;
2099 }
2100
2101 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2102 struct iov_iter *from, char *to,
2103 int copy, int offset)
2104 {
2105 if (skb->ip_summed == CHECKSUM_NONE) {
2106 __wsum csum = 0;
2107 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2108 return -EFAULT;
2109 skb->csum = csum_block_add(skb->csum, csum, offset);
2110 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2111 if (!copy_from_iter_full_nocache(to, copy, from))
2112 return -EFAULT;
2113 } else if (!copy_from_iter_full(to, copy, from))
2114 return -EFAULT;
2115
2116 return 0;
2117 }
2118
2119 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2120 struct iov_iter *from, int copy)
2121 {
2122 int err, offset = skb->len;
2123
2124 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2125 copy, offset);
2126 if (err)
2127 __skb_trim(skb, offset);
2128
2129 return err;
2130 }
2131
2132 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2133 struct sk_buff *skb,
2134 struct page *page,
2135 int off, int copy)
2136 {
2137 int err;
2138
2139 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2140 copy, skb->len);
2141 if (err)
2142 return err;
2143
2144 skb->len += copy;
2145 skb->data_len += copy;
2146 skb->truesize += copy;
2147 sk_wmem_queued_add(sk, copy);
2148 sk_mem_charge(sk, copy);
2149 return 0;
2150 }
2151
2152 /**
2153 * sk_wmem_alloc_get - returns write allocations
2154 * @sk: socket
2155 *
2156 * Return: sk_wmem_alloc minus initial offset of one
2157 */
2158 static inline int sk_wmem_alloc_get(const struct sock *sk)
2159 {
2160 return refcount_read(&sk->sk_wmem_alloc) - 1;
2161 }
2162
2163 /**
2164 * sk_rmem_alloc_get - returns read allocations
2165 * @sk: socket
2166 *
2167 * Return: sk_rmem_alloc
2168 */
2169 static inline int sk_rmem_alloc_get(const struct sock *sk)
2170 {
2171 return atomic_read(&sk->sk_rmem_alloc);
2172 }
2173
2174 /**
2175 * sk_has_allocations - check if allocations are outstanding
2176 * @sk: socket
2177 *
2178 * Return: true if socket has write or read allocations
2179 */
2180 static inline bool sk_has_allocations(const struct sock *sk)
2181 {
2182 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2183 }
2184
2185 /**
2186 * skwq_has_sleeper - check if there are any waiting processes
2187 * @wq: struct socket_wq
2188 *
2189 * Return: true if socket_wq has waiting processes
2190 *
2191 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2192 * barrier call. They were added due to the race found within the tcp code.
2193 *
2194 * Consider following tcp code paths::
2195 *
2196 * CPU1 CPU2
2197 * sys_select receive packet
2198 * ... ...
2199 * __add_wait_queue update tp->rcv_nxt
2200 * ... ...
2201 * tp->rcv_nxt check sock_def_readable
2202 * ... {
2203 * schedule rcu_read_lock();
2204 * wq = rcu_dereference(sk->sk_wq);
2205 * if (wq && waitqueue_active(&wq->wait))
2206 * wake_up_interruptible(&wq->wait)
2207 * ...
2208 * }
2209 *
2210 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2211 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2212 * could then endup calling schedule and sleep forever if there are no more
2213 * data on the socket.
2214 *
2215 */
2216 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2217 {
2218 return wq && wq_has_sleeper(&wq->wait);
2219 }
2220
2221 /**
2222 * sock_poll_wait - place memory barrier behind the poll_wait call.
2223 * @filp: file
2224 * @sock: socket to wait on
2225 * @p: poll_table
2226 *
2227 * See the comments in the wq_has_sleeper function.
2228 */
2229 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2230 poll_table *p)
2231 {
2232 if (!poll_does_not_wait(p)) {
2233 poll_wait(filp, &sock->wq.wait, p);
2234 /* We need to be sure we are in sync with the
2235 * socket flags modification.
2236 *
2237 * This memory barrier is paired in the wq_has_sleeper.
2238 */
2239 smp_mb();
2240 }
2241 }
2242
2243 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2244 {
2245 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2246 u32 txhash = READ_ONCE(sk->sk_txhash);
2247
2248 if (txhash) {
2249 skb->l4_hash = 1;
2250 skb->hash = txhash;
2251 }
2252 }
2253
2254 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2255
2256 /*
2257 * Queue a received datagram if it will fit. Stream and sequenced
2258 * protocols can't normally use this as they need to fit buffers in
2259 * and play with them.
2260 *
2261 * Inlined as it's very short and called for pretty much every
2262 * packet ever received.
2263 */
2264 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2265 {
2266 skb_orphan(skb);
2267 skb->sk = sk;
2268 skb->destructor = sock_rfree;
2269 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2270 sk_mem_charge(sk, skb->truesize);
2271 }
2272
2273 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2274 {
2275 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2276 skb_orphan(skb);
2277 skb->destructor = sock_efree;
2278 skb->sk = sk;
2279 return true;
2280 }
2281 return false;
2282 }
2283
2284 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2285 {
2286 if (skb->destructor != sock_wfree) {
2287 skb_orphan(skb);
2288 return;
2289 }
2290 skb->slow_gro = 1;
2291 }
2292
2293 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2294 unsigned long expires);
2295
2296 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2297
2298 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2299
2300 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2301 struct sk_buff *skb, unsigned int flags,
2302 void (*destructor)(struct sock *sk,
2303 struct sk_buff *skb));
2304 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2305 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2306
2307 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2308 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2309
2310 /*
2311 * Recover an error report and clear atomically
2312 */
2313
2314 static inline int sock_error(struct sock *sk)
2315 {
2316 int err;
2317
2318 /* Avoid an atomic operation for the common case.
2319 * This is racy since another cpu/thread can change sk_err under us.
2320 */
2321 if (likely(data_race(!sk->sk_err)))
2322 return 0;
2323
2324 err = xchg(&sk->sk_err, 0);
2325 return -err;
2326 }
2327
2328 void sk_error_report(struct sock *sk);
2329
2330 static inline unsigned long sock_wspace(struct sock *sk)
2331 {
2332 int amt = 0;
2333
2334 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2335 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2336 if (amt < 0)
2337 amt = 0;
2338 }
2339 return amt;
2340 }
2341
2342 /* Note:
2343 * We use sk->sk_wq_raw, from contexts knowing this
2344 * pointer is not NULL and cannot disappear/change.
2345 */
2346 static inline void sk_set_bit(int nr, struct sock *sk)
2347 {
2348 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2349 !sock_flag(sk, SOCK_FASYNC))
2350 return;
2351
2352 set_bit(nr, &sk->sk_wq_raw->flags);
2353 }
2354
2355 static inline void sk_clear_bit(int nr, struct sock *sk)
2356 {
2357 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2358 !sock_flag(sk, SOCK_FASYNC))
2359 return;
2360
2361 clear_bit(nr, &sk->sk_wq_raw->flags);
2362 }
2363
2364 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2365 {
2366 if (sock_flag(sk, SOCK_FASYNC)) {
2367 rcu_read_lock();
2368 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2369 rcu_read_unlock();
2370 }
2371 }
2372
2373 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2374 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2375 * Note: for send buffers, TCP works better if we can build two skbs at
2376 * minimum.
2377 */
2378 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2379
2380 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2381 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2382
2383 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2384 {
2385 u32 val;
2386
2387 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2388 return;
2389
2390 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2391
2392 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2393 }
2394
2395 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2396 bool force_schedule);
2397
2398 /**
2399 * sk_page_frag - return an appropriate page_frag
2400 * @sk: socket
2401 *
2402 * Use the per task page_frag instead of the per socket one for
2403 * optimization when we know that we're in the normal context and owns
2404 * everything that's associated with %current.
2405 *
2406 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2407 * inside other socket operations and end up recursing into sk_page_frag()
2408 * while it's already in use.
2409 *
2410 * Return: a per task page_frag if context allows that,
2411 * otherwise a per socket one.
2412 */
2413 static inline struct page_frag *sk_page_frag(struct sock *sk)
2414 {
2415 if (gfpflags_normal_context(sk->sk_allocation))
2416 return &current->task_frag;
2417
2418 return &sk->sk_frag;
2419 }
2420
2421 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2422
2423 /*
2424 * Default write policy as shown to user space via poll/select/SIGIO
2425 */
2426 static inline bool sock_writeable(const struct sock *sk)
2427 {
2428 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2429 }
2430
2431 static inline gfp_t gfp_any(void)
2432 {
2433 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2434 }
2435
2436 static inline gfp_t gfp_memcg_charge(void)
2437 {
2438 return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2439 }
2440
2441 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2442 {
2443 return noblock ? 0 : sk->sk_rcvtimeo;
2444 }
2445
2446 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2447 {
2448 return noblock ? 0 : sk->sk_sndtimeo;
2449 }
2450
2451 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2452 {
2453 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2454
2455 return v ?: 1;
2456 }
2457
2458 /* Alas, with timeout socket operations are not restartable.
2459 * Compare this to poll().
2460 */
2461 static inline int sock_intr_errno(long timeo)
2462 {
2463 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2464 }
2465
2466 struct sock_skb_cb {
2467 u32 dropcount;
2468 };
2469
2470 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2471 * using skb->cb[] would keep using it directly and utilize its
2472 * alignement guarantee.
2473 */
2474 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2475 sizeof(struct sock_skb_cb)))
2476
2477 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2478 SOCK_SKB_CB_OFFSET))
2479
2480 #define sock_skb_cb_check_size(size) \
2481 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2482
2483 static inline void
2484 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2485 {
2486 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2487 atomic_read(&sk->sk_drops) : 0;
2488 }
2489
2490 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2491 {
2492 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2493
2494 atomic_add(segs, &sk->sk_drops);
2495 }
2496
2497 static inline ktime_t sock_read_timestamp(struct sock *sk)
2498 {
2499 #if BITS_PER_LONG==32
2500 unsigned int seq;
2501 ktime_t kt;
2502
2503 do {
2504 seq = read_seqbegin(&sk->sk_stamp_seq);
2505 kt = sk->sk_stamp;
2506 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2507
2508 return kt;
2509 #else
2510 return READ_ONCE(sk->sk_stamp);
2511 #endif
2512 }
2513
2514 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2515 {
2516 #if BITS_PER_LONG==32
2517 write_seqlock(&sk->sk_stamp_seq);
2518 sk->sk_stamp = kt;
2519 write_sequnlock(&sk->sk_stamp_seq);
2520 #else
2521 WRITE_ONCE(sk->sk_stamp, kt);
2522 #endif
2523 }
2524
2525 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2526 struct sk_buff *skb);
2527 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2528 struct sk_buff *skb);
2529
2530 static inline void
2531 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2532 {
2533 ktime_t kt = skb->tstamp;
2534 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2535
2536 /*
2537 * generate control messages if
2538 * - receive time stamping in software requested
2539 * - software time stamp available and wanted
2540 * - hardware time stamps available and wanted
2541 */
2542 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2543 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2544 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2545 (hwtstamps->hwtstamp &&
2546 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2547 __sock_recv_timestamp(msg, sk, skb);
2548 else
2549 sock_write_timestamp(sk, kt);
2550
2551 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2552 __sock_recv_wifi_status(msg, sk, skb);
2553 }
2554
2555 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2556 struct sk_buff *skb);
2557
2558 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2559 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2560 struct sk_buff *skb)
2561 {
2562 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2563 (1UL << SOCK_RCVTSTAMP))
2564 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2565 SOF_TIMESTAMPING_RAW_HARDWARE)
2566
2567 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2568 __sock_recv_ts_and_drops(msg, sk, skb);
2569 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2570 sock_write_timestamp(sk, skb->tstamp);
2571 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2572 sock_write_timestamp(sk, 0);
2573 }
2574
2575 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2576
2577 /**
2578 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2579 * @sk: socket sending this packet
2580 * @tsflags: timestamping flags to use
2581 * @tx_flags: completed with instructions for time stamping
2582 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2583 *
2584 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2585 */
2586 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2587 __u8 *tx_flags, __u32 *tskey)
2588 {
2589 if (unlikely(tsflags)) {
2590 __sock_tx_timestamp(tsflags, tx_flags);
2591 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2592 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2593 *tskey = sk->sk_tskey++;
2594 }
2595 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2596 *tx_flags |= SKBTX_WIFI_STATUS;
2597 }
2598
2599 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2600 __u8 *tx_flags)
2601 {
2602 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2603 }
2604
2605 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2606 {
2607 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2608 &skb_shinfo(skb)->tskey);
2609 }
2610
2611 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2612 /**
2613 * sk_eat_skb - Release a skb if it is no longer needed
2614 * @sk: socket to eat this skb from
2615 * @skb: socket buffer to eat
2616 *
2617 * This routine must be called with interrupts disabled or with the socket
2618 * locked so that the sk_buff queue operation is ok.
2619 */
2620 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2621 {
2622 __skb_unlink(skb, &sk->sk_receive_queue);
2623 if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2624 !sk->sk_rx_skb_cache) {
2625 sk->sk_rx_skb_cache = skb;
2626 skb_orphan(skb);
2627 return;
2628 }
2629 __kfree_skb(skb);
2630 }
2631
2632 static inline
2633 struct net *sock_net(const struct sock *sk)
2634 {
2635 return read_pnet(&sk->sk_net);
2636 }
2637
2638 static inline
2639 void sock_net_set(struct sock *sk, struct net *net)
2640 {
2641 write_pnet(&sk->sk_net, net);
2642 }
2643
2644 static inline bool
2645 skb_sk_is_prefetched(struct sk_buff *skb)
2646 {
2647 #ifdef CONFIG_INET
2648 return skb->destructor == sock_pfree;
2649 #else
2650 return false;
2651 #endif /* CONFIG_INET */
2652 }
2653
2654 /* This helper checks if a socket is a full socket,
2655 * ie _not_ a timewait or request socket.
2656 */
2657 static inline bool sk_fullsock(const struct sock *sk)
2658 {
2659 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2660 }
2661
2662 static inline bool
2663 sk_is_refcounted(struct sock *sk)
2664 {
2665 /* Only full sockets have sk->sk_flags. */
2666 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2667 }
2668
2669 /**
2670 * skb_steal_sock - steal a socket from an sk_buff
2671 * @skb: sk_buff to steal the socket from
2672 * @refcounted: is set to true if the socket is reference-counted
2673 */
2674 static inline struct sock *
2675 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2676 {
2677 if (skb->sk) {
2678 struct sock *sk = skb->sk;
2679
2680 *refcounted = true;
2681 if (skb_sk_is_prefetched(skb))
2682 *refcounted = sk_is_refcounted(sk);
2683 skb->destructor = NULL;
2684 skb->sk = NULL;
2685 return sk;
2686 }
2687 *refcounted = false;
2688 return NULL;
2689 }
2690
2691 /* Checks if this SKB belongs to an HW offloaded socket
2692 * and whether any SW fallbacks are required based on dev.
2693 * Check decrypted mark in case skb_orphan() cleared socket.
2694 */
2695 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2696 struct net_device *dev)
2697 {
2698 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2699 struct sock *sk = skb->sk;
2700
2701 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2702 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2703 #ifdef CONFIG_TLS_DEVICE
2704 } else if (unlikely(skb->decrypted)) {
2705 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2706 kfree_skb(skb);
2707 skb = NULL;
2708 #endif
2709 }
2710 #endif
2711
2712 return skb;
2713 }
2714
2715 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2716 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2717 */
2718 static inline bool sk_listener(const struct sock *sk)
2719 {
2720 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2721 }
2722
2723 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2724 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2725 int type);
2726
2727 bool sk_ns_capable(const struct sock *sk,
2728 struct user_namespace *user_ns, int cap);
2729 bool sk_capable(const struct sock *sk, int cap);
2730 bool sk_net_capable(const struct sock *sk, int cap);
2731
2732 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2733
2734 /* Take into consideration the size of the struct sk_buff overhead in the
2735 * determination of these values, since that is non-constant across
2736 * platforms. This makes socket queueing behavior and performance
2737 * not depend upon such differences.
2738 */
2739 #define _SK_MEM_PACKETS 256
2740 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2741 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2742 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2743
2744 extern __u32 sysctl_wmem_max;
2745 extern __u32 sysctl_rmem_max;
2746
2747 extern int sysctl_tstamp_allow_data;
2748 extern int sysctl_optmem_max;
2749
2750 extern __u32 sysctl_wmem_default;
2751 extern __u32 sysctl_rmem_default;
2752
2753 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2754 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2755
2756 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2757 {
2758 /* Does this proto have per netns sysctl_wmem ? */
2759 if (proto->sysctl_wmem_offset)
2760 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2761
2762 return *proto->sysctl_wmem;
2763 }
2764
2765 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2766 {
2767 /* Does this proto have per netns sysctl_rmem ? */
2768 if (proto->sysctl_rmem_offset)
2769 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2770
2771 return *proto->sysctl_rmem;
2772 }
2773
2774 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2775 * Some wifi drivers need to tweak it to get more chunks.
2776 * They can use this helper from their ndo_start_xmit()
2777 */
2778 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2779 {
2780 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2781 return;
2782 WRITE_ONCE(sk->sk_pacing_shift, val);
2783 }
2784
2785 /* if a socket is bound to a device, check that the given device
2786 * index is either the same or that the socket is bound to an L3
2787 * master device and the given device index is also enslaved to
2788 * that L3 master
2789 */
2790 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2791 {
2792 int mdif;
2793
2794 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2795 return true;
2796
2797 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2798 if (mdif && mdif == sk->sk_bound_dev_if)
2799 return true;
2800
2801 return false;
2802 }
2803
2804 void sock_def_readable(struct sock *sk);
2805
2806 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2807 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2808 int sock_set_timestamping(struct sock *sk, int optname,
2809 struct so_timestamping timestamping);
2810
2811 void sock_enable_timestamps(struct sock *sk);
2812 void sock_no_linger(struct sock *sk);
2813 void sock_set_keepalive(struct sock *sk);
2814 void sock_set_priority(struct sock *sk, u32 priority);
2815 void sock_set_rcvbuf(struct sock *sk, int val);
2816 void sock_set_mark(struct sock *sk, u32 val);
2817 void sock_set_reuseaddr(struct sock *sk);
2818 void sock_set_reuseport(struct sock *sk);
2819 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2820
2821 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2822
2823 #endif /* _SOCK_H */