]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - include/net/tcp.h
net: tcp: Define the TCP_MAX_WSCALE instead of literal number 14
[mirror_ubuntu-artful-kernel.git] / include / net / tcp.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18 #ifndef _TCP_H
19 #define _TCP_H
20
21 #define FASTRETRANS_DEBUG 1
22
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48
49 extern struct inet_hashinfo tcp_hashinfo;
50
51 extern struct percpu_counter tcp_orphan_count;
52 void tcp_time_wait(struct sock *sk, int state, int timeo);
53
54 #define MAX_TCP_HEADER (128 + MAX_HEADER)
55 #define MAX_TCP_OPTION_SPACE 40
56
57 /*
58 * Never offer a window over 32767 without using window scaling. Some
59 * poor stacks do signed 16bit maths!
60 */
61 #define MAX_TCP_WINDOW 32767U
62
63 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
64 #define TCP_MIN_MSS 88U
65
66 /* The least MTU to use for probing */
67 #define TCP_BASE_MSS 1024
68
69 /* probing interval, default to 10 minutes as per RFC4821 */
70 #define TCP_PROBE_INTERVAL 600
71
72 /* Specify interval when tcp mtu probing will stop */
73 #define TCP_PROBE_THRESHOLD 8
74
75 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
76 #define TCP_FASTRETRANS_THRESH 3
77
78 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
79 #define TCP_MAX_QUICKACKS 16U
80
81 /* Maximal number of window scale according to RFC1323 */
82 #define TCP_MAX_WSCALE 14U
83
84 /* urg_data states */
85 #define TCP_URG_VALID 0x0100
86 #define TCP_URG_NOTYET 0x0200
87 #define TCP_URG_READ 0x0400
88
89 #define TCP_RETR1 3 /*
90 * This is how many retries it does before it
91 * tries to figure out if the gateway is
92 * down. Minimal RFC value is 3; it corresponds
93 * to ~3sec-8min depending on RTO.
94 */
95
96 #define TCP_RETR2 15 /*
97 * This should take at least
98 * 90 minutes to time out.
99 * RFC1122 says that the limit is 100 sec.
100 * 15 is ~13-30min depending on RTO.
101 */
102
103 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
104 * when active opening a connection.
105 * RFC1122 says the minimum retry MUST
106 * be at least 180secs. Nevertheless
107 * this value is corresponding to
108 * 63secs of retransmission with the
109 * current initial RTO.
110 */
111
112 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
113 * when passive opening a connection.
114 * This is corresponding to 31secs of
115 * retransmission with the current
116 * initial RTO.
117 */
118
119 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
120 * state, about 60 seconds */
121 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
122 /* BSD style FIN_WAIT2 deadlock breaker.
123 * It used to be 3min, new value is 60sec,
124 * to combine FIN-WAIT-2 timeout with
125 * TIME-WAIT timer.
126 */
127
128 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
129 #if HZ >= 100
130 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
131 #define TCP_ATO_MIN ((unsigned)(HZ/25))
132 #else
133 #define TCP_DELACK_MIN 4U
134 #define TCP_ATO_MIN 4U
135 #endif
136 #define TCP_RTO_MAX ((unsigned)(120*HZ))
137 #define TCP_RTO_MIN ((unsigned)(HZ/5))
138 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
139 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
140 * used as a fallback RTO for the
141 * initial data transmission if no
142 * valid RTT sample has been acquired,
143 * most likely due to retrans in 3WHS.
144 */
145
146 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
147 * for local resources.
148 */
149 #define TCP_REO_TIMEOUT_MIN (2000) /* Min RACK reordering timeout in usec */
150
151 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
152 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
153 #define TCP_KEEPALIVE_INTVL (75*HZ)
154
155 #define MAX_TCP_KEEPIDLE 32767
156 #define MAX_TCP_KEEPINTVL 32767
157 #define MAX_TCP_KEEPCNT 127
158 #define MAX_TCP_SYNCNT 127
159
160 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
161
162 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
164 * after this time. It should be equal
165 * (or greater than) TCP_TIMEWAIT_LEN
166 * to provide reliability equal to one
167 * provided by timewait state.
168 */
169 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
170 * timestamps. It must be less than
171 * minimal timewait lifetime.
172 */
173 /*
174 * TCP option
175 */
176
177 #define TCPOPT_NOP 1 /* Padding */
178 #define TCPOPT_EOL 0 /* End of options */
179 #define TCPOPT_MSS 2 /* Segment size negotiating */
180 #define TCPOPT_WINDOW 3 /* Window scaling */
181 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
182 #define TCPOPT_SACK 5 /* SACK Block */
183 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
186 #define TCPOPT_EXP 254 /* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189 */
190 #define TCPOPT_FASTOPEN_MAGIC 0xF989
191
192 /*
193 * TCP option lengths
194 */
195
196 #define TCPOLEN_MSS 4
197 #define TCPOLEN_WINDOW 3
198 #define TCPOLEN_SACK_PERM 2
199 #define TCPOLEN_TIMESTAMP 10
200 #define TCPOLEN_MD5SIG 18
201 #define TCPOLEN_FASTOPEN_BASE 2
202 #define TCPOLEN_EXP_FASTOPEN_BASE 4
203
204 /* But this is what stacks really send out. */
205 #define TCPOLEN_TSTAMP_ALIGNED 12
206 #define TCPOLEN_WSCALE_ALIGNED 4
207 #define TCPOLEN_SACKPERM_ALIGNED 4
208 #define TCPOLEN_SACK_BASE 2
209 #define TCPOLEN_SACK_BASE_ALIGNED 4
210 #define TCPOLEN_SACK_PERBLOCK 8
211 #define TCPOLEN_MD5SIG_ALIGNED 20
212 #define TCPOLEN_MSS_ALIGNED 4
213
214 /* Flags in tp->nonagle */
215 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
216 #define TCP_NAGLE_CORK 2 /* Socket is corked */
217 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
218
219 /* TCP thin-stream limits */
220 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
221
222 /* TCP initial congestion window as per rfc6928 */
223 #define TCP_INIT_CWND 10
224
225 /* Bit Flags for sysctl_tcp_fastopen */
226 #define TFO_CLIENT_ENABLE 1
227 #define TFO_SERVER_ENABLE 2
228 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
229
230 /* Accept SYN data w/o any cookie option */
231 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
232
233 /* Force enable TFO on all listeners, i.e., not requiring the
234 * TCP_FASTOPEN socket option.
235 */
236 #define TFO_SERVER_WO_SOCKOPT1 0x400
237
238
239 /* sysctl variables for tcp */
240 extern int sysctl_tcp_timestamps;
241 extern int sysctl_tcp_window_scaling;
242 extern int sysctl_tcp_sack;
243 extern int sysctl_tcp_fastopen;
244 extern int sysctl_tcp_retrans_collapse;
245 extern int sysctl_tcp_stdurg;
246 extern int sysctl_tcp_rfc1337;
247 extern int sysctl_tcp_abort_on_overflow;
248 extern int sysctl_tcp_max_orphans;
249 extern int sysctl_tcp_fack;
250 extern int sysctl_tcp_reordering;
251 extern int sysctl_tcp_max_reordering;
252 extern int sysctl_tcp_dsack;
253 extern long sysctl_tcp_mem[3];
254 extern int sysctl_tcp_wmem[3];
255 extern int sysctl_tcp_rmem[3];
256 extern int sysctl_tcp_app_win;
257 extern int sysctl_tcp_adv_win_scale;
258 extern int sysctl_tcp_frto;
259 extern int sysctl_tcp_low_latency;
260 extern int sysctl_tcp_nometrics_save;
261 extern int sysctl_tcp_moderate_rcvbuf;
262 extern int sysctl_tcp_tso_win_divisor;
263 extern int sysctl_tcp_workaround_signed_windows;
264 extern int sysctl_tcp_slow_start_after_idle;
265 extern int sysctl_tcp_thin_linear_timeouts;
266 extern int sysctl_tcp_thin_dupack;
267 extern int sysctl_tcp_early_retrans;
268 extern int sysctl_tcp_recovery;
269 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
270
271 extern int sysctl_tcp_limit_output_bytes;
272 extern int sysctl_tcp_challenge_ack_limit;
273 extern int sysctl_tcp_min_tso_segs;
274 extern int sysctl_tcp_min_rtt_wlen;
275 extern int sysctl_tcp_autocorking;
276 extern int sysctl_tcp_invalid_ratelimit;
277 extern int sysctl_tcp_pacing_ss_ratio;
278 extern int sysctl_tcp_pacing_ca_ratio;
279
280 extern atomic_long_t tcp_memory_allocated;
281 extern struct percpu_counter tcp_sockets_allocated;
282 extern int tcp_memory_pressure;
283
284 /* optimized version of sk_under_memory_pressure() for TCP sockets */
285 static inline bool tcp_under_memory_pressure(const struct sock *sk)
286 {
287 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
288 mem_cgroup_under_socket_pressure(sk->sk_memcg))
289 return true;
290
291 return tcp_memory_pressure;
292 }
293 /*
294 * The next routines deal with comparing 32 bit unsigned ints
295 * and worry about wraparound (automatic with unsigned arithmetic).
296 */
297
298 static inline bool before(__u32 seq1, __u32 seq2)
299 {
300 return (__s32)(seq1-seq2) < 0;
301 }
302 #define after(seq2, seq1) before(seq1, seq2)
303
304 /* is s2<=s1<=s3 ? */
305 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
306 {
307 return seq3 - seq2 >= seq1 - seq2;
308 }
309
310 static inline bool tcp_out_of_memory(struct sock *sk)
311 {
312 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
313 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
314 return true;
315 return false;
316 }
317
318 void sk_forced_mem_schedule(struct sock *sk, int size);
319
320 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
321 {
322 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
323 int orphans = percpu_counter_read_positive(ocp);
324
325 if (orphans << shift > sysctl_tcp_max_orphans) {
326 orphans = percpu_counter_sum_positive(ocp);
327 if (orphans << shift > sysctl_tcp_max_orphans)
328 return true;
329 }
330 return false;
331 }
332
333 bool tcp_check_oom(struct sock *sk, int shift);
334
335
336 extern struct proto tcp_prot;
337
338 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
339 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
340 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
341 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
342
343 void tcp_tasklet_init(void);
344
345 void tcp_v4_err(struct sk_buff *skb, u32);
346
347 void tcp_shutdown(struct sock *sk, int how);
348
349 void tcp_v4_early_demux(struct sk_buff *skb);
350 int tcp_v4_rcv(struct sk_buff *skb);
351
352 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
353 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
354 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
355 int flags);
356 void tcp_release_cb(struct sock *sk);
357 void tcp_wfree(struct sk_buff *skb);
358 void tcp_write_timer_handler(struct sock *sk);
359 void tcp_delack_timer_handler(struct sock *sk);
360 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
361 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
362 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
363 const struct tcphdr *th, unsigned int len);
364 void tcp_rcv_space_adjust(struct sock *sk);
365 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
366 void tcp_twsk_destructor(struct sock *sk);
367 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
368 struct pipe_inode_info *pipe, size_t len,
369 unsigned int flags);
370
371 static inline void tcp_dec_quickack_mode(struct sock *sk,
372 const unsigned int pkts)
373 {
374 struct inet_connection_sock *icsk = inet_csk(sk);
375
376 if (icsk->icsk_ack.quick) {
377 if (pkts >= icsk->icsk_ack.quick) {
378 icsk->icsk_ack.quick = 0;
379 /* Leaving quickack mode we deflate ATO. */
380 icsk->icsk_ack.ato = TCP_ATO_MIN;
381 } else
382 icsk->icsk_ack.quick -= pkts;
383 }
384 }
385
386 #define TCP_ECN_OK 1
387 #define TCP_ECN_QUEUE_CWR 2
388 #define TCP_ECN_DEMAND_CWR 4
389 #define TCP_ECN_SEEN 8
390
391 enum tcp_tw_status {
392 TCP_TW_SUCCESS = 0,
393 TCP_TW_RST = 1,
394 TCP_TW_ACK = 2,
395 TCP_TW_SYN = 3
396 };
397
398
399 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
400 struct sk_buff *skb,
401 const struct tcphdr *th);
402 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
403 struct request_sock *req, bool fastopen);
404 int tcp_child_process(struct sock *parent, struct sock *child,
405 struct sk_buff *skb);
406 void tcp_enter_loss(struct sock *sk);
407 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
408 void tcp_clear_retrans(struct tcp_sock *tp);
409 void tcp_update_metrics(struct sock *sk);
410 void tcp_init_metrics(struct sock *sk);
411 void tcp_metrics_init(void);
412 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
413 void tcp_disable_fack(struct tcp_sock *tp);
414 void tcp_close(struct sock *sk, long timeout);
415 void tcp_init_sock(struct sock *sk);
416 unsigned int tcp_poll(struct file *file, struct socket *sock,
417 struct poll_table_struct *wait);
418 int tcp_getsockopt(struct sock *sk, int level, int optname,
419 char __user *optval, int __user *optlen);
420 int tcp_setsockopt(struct sock *sk, int level, int optname,
421 char __user *optval, unsigned int optlen);
422 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
423 char __user *optval, int __user *optlen);
424 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
425 char __user *optval, unsigned int optlen);
426 void tcp_set_keepalive(struct sock *sk, int val);
427 void tcp_syn_ack_timeout(const struct request_sock *req);
428 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
429 int flags, int *addr_len);
430 void tcp_parse_options(const struct sk_buff *skb,
431 struct tcp_options_received *opt_rx,
432 int estab, struct tcp_fastopen_cookie *foc);
433 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
434
435 /*
436 * TCP v4 functions exported for the inet6 API
437 */
438
439 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
440 void tcp_v4_mtu_reduced(struct sock *sk);
441 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
442 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
443 struct sock *tcp_create_openreq_child(const struct sock *sk,
444 struct request_sock *req,
445 struct sk_buff *skb);
446 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
447 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
448 struct request_sock *req,
449 struct dst_entry *dst,
450 struct request_sock *req_unhash,
451 bool *own_req);
452 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
453 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
454 int tcp_connect(struct sock *sk);
455 enum tcp_synack_type {
456 TCP_SYNACK_NORMAL,
457 TCP_SYNACK_FASTOPEN,
458 TCP_SYNACK_COOKIE,
459 };
460 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
461 struct request_sock *req,
462 struct tcp_fastopen_cookie *foc,
463 enum tcp_synack_type synack_type);
464 int tcp_disconnect(struct sock *sk, int flags);
465
466 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
467 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
468 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
469
470 /* From syncookies.c */
471 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
472 struct request_sock *req,
473 struct dst_entry *dst);
474 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
475 u32 cookie);
476 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
477 #ifdef CONFIG_SYN_COOKIES
478
479 /* Syncookies use a monotonic timer which increments every 60 seconds.
480 * This counter is used both as a hash input and partially encoded into
481 * the cookie value. A cookie is only validated further if the delta
482 * between the current counter value and the encoded one is less than this,
483 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
484 * the counter advances immediately after a cookie is generated).
485 */
486 #define MAX_SYNCOOKIE_AGE 2
487 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
488 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
489
490 /* syncookies: remember time of last synqueue overflow
491 * But do not dirty this field too often (once per second is enough)
492 * It is racy as we do not hold a lock, but race is very minor.
493 */
494 static inline void tcp_synq_overflow(const struct sock *sk)
495 {
496 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
497 unsigned long now = jiffies;
498
499 if (time_after(now, last_overflow + HZ))
500 tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
501 }
502
503 /* syncookies: no recent synqueue overflow on this listening socket? */
504 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
505 {
506 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
507
508 return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
509 }
510
511 static inline u32 tcp_cookie_time(void)
512 {
513 u64 val = get_jiffies_64();
514
515 do_div(val, TCP_SYNCOOKIE_PERIOD);
516 return val;
517 }
518
519 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
520 u16 *mssp);
521 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
522 __u32 cookie_init_timestamp(struct request_sock *req);
523 bool cookie_timestamp_decode(struct tcp_options_received *opt);
524 bool cookie_ecn_ok(const struct tcp_options_received *opt,
525 const struct net *net, const struct dst_entry *dst);
526
527 /* From net/ipv6/syncookies.c */
528 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
529 u32 cookie);
530 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
531
532 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
533 const struct tcphdr *th, u16 *mssp);
534 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
535 #endif
536 /* tcp_output.c */
537
538 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
539 int min_tso_segs);
540 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
541 int nonagle);
542 bool tcp_may_send_now(struct sock *sk);
543 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
544 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
545 void tcp_retransmit_timer(struct sock *sk);
546 void tcp_xmit_retransmit_queue(struct sock *);
547 void tcp_simple_retransmit(struct sock *);
548 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
549 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
550 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
551
552 void tcp_send_probe0(struct sock *);
553 void tcp_send_partial(struct sock *);
554 int tcp_write_wakeup(struct sock *, int mib);
555 void tcp_send_fin(struct sock *sk);
556 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
557 int tcp_send_synack(struct sock *);
558 void tcp_push_one(struct sock *, unsigned int mss_now);
559 void tcp_send_ack(struct sock *sk);
560 void tcp_send_delayed_ack(struct sock *sk);
561 void tcp_send_loss_probe(struct sock *sk);
562 bool tcp_schedule_loss_probe(struct sock *sk);
563 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
564 const struct sk_buff *next_skb);
565
566 /* tcp_input.c */
567 void tcp_rearm_rto(struct sock *sk);
568 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
569 void tcp_reset(struct sock *sk);
570 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
571 void tcp_fin(struct sock *sk);
572
573 /* tcp_timer.c */
574 void tcp_init_xmit_timers(struct sock *);
575 static inline void tcp_clear_xmit_timers(struct sock *sk)
576 {
577 inet_csk_clear_xmit_timers(sk);
578 }
579
580 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
581 unsigned int tcp_current_mss(struct sock *sk);
582
583 /* Bound MSS / TSO packet size with the half of the window */
584 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
585 {
586 int cutoff;
587
588 /* When peer uses tiny windows, there is no use in packetizing
589 * to sub-MSS pieces for the sake of SWS or making sure there
590 * are enough packets in the pipe for fast recovery.
591 *
592 * On the other hand, for extremely large MSS devices, handling
593 * smaller than MSS windows in this way does make sense.
594 */
595 if (tp->max_window > TCP_MSS_DEFAULT)
596 cutoff = (tp->max_window >> 1);
597 else
598 cutoff = tp->max_window;
599
600 if (cutoff && pktsize > cutoff)
601 return max_t(int, cutoff, 68U - tp->tcp_header_len);
602 else
603 return pktsize;
604 }
605
606 /* tcp.c */
607 void tcp_get_info(struct sock *, struct tcp_info *);
608
609 /* Read 'sendfile()'-style from a TCP socket */
610 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
611 sk_read_actor_t recv_actor);
612
613 void tcp_initialize_rcv_mss(struct sock *sk);
614
615 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
616 int tcp_mss_to_mtu(struct sock *sk, int mss);
617 void tcp_mtup_init(struct sock *sk);
618 void tcp_init_buffer_space(struct sock *sk);
619
620 static inline void tcp_bound_rto(const struct sock *sk)
621 {
622 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
623 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
624 }
625
626 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
627 {
628 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
629 }
630
631 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
632 {
633 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
634 ntohl(TCP_FLAG_ACK) |
635 snd_wnd);
636 }
637
638 static inline void tcp_fast_path_on(struct tcp_sock *tp)
639 {
640 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
641 }
642
643 static inline void tcp_fast_path_check(struct sock *sk)
644 {
645 struct tcp_sock *tp = tcp_sk(sk);
646
647 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
648 tp->rcv_wnd &&
649 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
650 !tp->urg_data)
651 tcp_fast_path_on(tp);
652 }
653
654 /* Compute the actual rto_min value */
655 static inline u32 tcp_rto_min(struct sock *sk)
656 {
657 const struct dst_entry *dst = __sk_dst_get(sk);
658 u32 rto_min = TCP_RTO_MIN;
659
660 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
661 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
662 return rto_min;
663 }
664
665 static inline u32 tcp_rto_min_us(struct sock *sk)
666 {
667 return jiffies_to_usecs(tcp_rto_min(sk));
668 }
669
670 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
671 {
672 return dst_metric_locked(dst, RTAX_CC_ALGO);
673 }
674
675 /* Minimum RTT in usec. ~0 means not available. */
676 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
677 {
678 return minmax_get(&tp->rtt_min);
679 }
680
681 /* Compute the actual receive window we are currently advertising.
682 * Rcv_nxt can be after the window if our peer push more data
683 * than the offered window.
684 */
685 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
686 {
687 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
688
689 if (win < 0)
690 win = 0;
691 return (u32) win;
692 }
693
694 /* Choose a new window, without checks for shrinking, and without
695 * scaling applied to the result. The caller does these things
696 * if necessary. This is a "raw" window selection.
697 */
698 u32 __tcp_select_window(struct sock *sk);
699
700 void tcp_send_window_probe(struct sock *sk);
701
702 /* TCP timestamps are only 32-bits, this causes a slight
703 * complication on 64-bit systems since we store a snapshot
704 * of jiffies in the buffer control blocks below. We decided
705 * to use only the low 32-bits of jiffies and hide the ugly
706 * casts with the following macro.
707 */
708 #define tcp_time_stamp ((__u32)(jiffies))
709
710 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
711 {
712 return skb->skb_mstamp.stamp_jiffies;
713 }
714
715
716 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
717
718 #define TCPHDR_FIN 0x01
719 #define TCPHDR_SYN 0x02
720 #define TCPHDR_RST 0x04
721 #define TCPHDR_PSH 0x08
722 #define TCPHDR_ACK 0x10
723 #define TCPHDR_URG 0x20
724 #define TCPHDR_ECE 0x40
725 #define TCPHDR_CWR 0x80
726
727 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
728
729 /* This is what the send packet queuing engine uses to pass
730 * TCP per-packet control information to the transmission code.
731 * We also store the host-order sequence numbers in here too.
732 * This is 44 bytes if IPV6 is enabled.
733 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
734 */
735 struct tcp_skb_cb {
736 __u32 seq; /* Starting sequence number */
737 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
738 union {
739 /* Note : tcp_tw_isn is used in input path only
740 * (isn chosen by tcp_timewait_state_process())
741 *
742 * tcp_gso_segs/size are used in write queue only,
743 * cf tcp_skb_pcount()/tcp_skb_mss()
744 */
745 __u32 tcp_tw_isn;
746 struct {
747 u16 tcp_gso_segs;
748 u16 tcp_gso_size;
749 };
750 };
751 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
752
753 __u8 sacked; /* State flags for SACK/FACK. */
754 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
755 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
756 #define TCPCB_LOST 0x04 /* SKB is lost */
757 #define TCPCB_TAGBITS 0x07 /* All tag bits */
758 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp) */
759 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
760 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
761 TCPCB_REPAIRED)
762
763 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
764 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
765 eor:1, /* Is skb MSG_EOR marked? */
766 unused:6;
767 __u32 ack_seq; /* Sequence number ACK'd */
768 union {
769 struct {
770 /* There is space for up to 24 bytes */
771 __u32 in_flight:30,/* Bytes in flight at transmit */
772 is_app_limited:1, /* cwnd not fully used? */
773 unused:1;
774 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
775 __u32 delivered;
776 /* start of send pipeline phase */
777 struct skb_mstamp first_tx_mstamp;
778 /* when we reached the "delivered" count */
779 struct skb_mstamp delivered_mstamp;
780 } tx; /* only used for outgoing skbs */
781 union {
782 struct inet_skb_parm h4;
783 #if IS_ENABLED(CONFIG_IPV6)
784 struct inet6_skb_parm h6;
785 #endif
786 } header; /* For incoming skbs */
787 };
788 };
789
790 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
791
792
793 #if IS_ENABLED(CONFIG_IPV6)
794 /* This is the variant of inet6_iif() that must be used by TCP,
795 * as TCP moves IP6CB into a different location in skb->cb[]
796 */
797 static inline int tcp_v6_iif(const struct sk_buff *skb)
798 {
799 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
800
801 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
802 }
803 #endif
804
805 /* TCP_SKB_CB reference means this can not be used from early demux */
806 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
807 {
808 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
809 if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
810 skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
811 return true;
812 #endif
813 return false;
814 }
815
816 /* Due to TSO, an SKB can be composed of multiple actual
817 * packets. To keep these tracked properly, we use this.
818 */
819 static inline int tcp_skb_pcount(const struct sk_buff *skb)
820 {
821 return TCP_SKB_CB(skb)->tcp_gso_segs;
822 }
823
824 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
825 {
826 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
827 }
828
829 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
830 {
831 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
832 }
833
834 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
835 static inline int tcp_skb_mss(const struct sk_buff *skb)
836 {
837 return TCP_SKB_CB(skb)->tcp_gso_size;
838 }
839
840 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
841 {
842 return likely(!TCP_SKB_CB(skb)->eor);
843 }
844
845 /* Events passed to congestion control interface */
846 enum tcp_ca_event {
847 CA_EVENT_TX_START, /* first transmit when no packets in flight */
848 CA_EVENT_CWND_RESTART, /* congestion window restart */
849 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
850 CA_EVENT_LOSS, /* loss timeout */
851 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
852 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
853 CA_EVENT_DELAYED_ACK, /* Delayed ack is sent */
854 CA_EVENT_NON_DELAYED_ACK,
855 };
856
857 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
858 enum tcp_ca_ack_event_flags {
859 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
860 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
861 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
862 };
863
864 /*
865 * Interface for adding new TCP congestion control handlers
866 */
867 #define TCP_CA_NAME_MAX 16
868 #define TCP_CA_MAX 128
869 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
870
871 #define TCP_CA_UNSPEC 0
872
873 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
874 #define TCP_CONG_NON_RESTRICTED 0x1
875 /* Requires ECN/ECT set on all packets */
876 #define TCP_CONG_NEEDS_ECN 0x2
877
878 union tcp_cc_info;
879
880 struct ack_sample {
881 u32 pkts_acked;
882 s32 rtt_us;
883 u32 in_flight;
884 };
885
886 /* A rate sample measures the number of (original/retransmitted) data
887 * packets delivered "delivered" over an interval of time "interval_us".
888 * The tcp_rate.c code fills in the rate sample, and congestion
889 * control modules that define a cong_control function to run at the end
890 * of ACK processing can optionally chose to consult this sample when
891 * setting cwnd and pacing rate.
892 * A sample is invalid if "delivered" or "interval_us" is negative.
893 */
894 struct rate_sample {
895 struct skb_mstamp prior_mstamp; /* starting timestamp for interval */
896 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
897 s32 delivered; /* number of packets delivered over interval */
898 long interval_us; /* time for tp->delivered to incr "delivered" */
899 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
900 int losses; /* number of packets marked lost upon ACK */
901 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
902 u32 prior_in_flight; /* in flight before this ACK */
903 bool is_app_limited; /* is sample from packet with bubble in pipe? */
904 bool is_retrans; /* is sample from retransmission? */
905 };
906
907 struct tcp_congestion_ops {
908 struct list_head list;
909 u32 key;
910 u32 flags;
911
912 /* initialize private data (optional) */
913 void (*init)(struct sock *sk);
914 /* cleanup private data (optional) */
915 void (*release)(struct sock *sk);
916
917 /* return slow start threshold (required) */
918 u32 (*ssthresh)(struct sock *sk);
919 /* do new cwnd calculation (required) */
920 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
921 /* call before changing ca_state (optional) */
922 void (*set_state)(struct sock *sk, u8 new_state);
923 /* call when cwnd event occurs (optional) */
924 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
925 /* call when ack arrives (optional) */
926 void (*in_ack_event)(struct sock *sk, u32 flags);
927 /* new value of cwnd after loss (optional) */
928 u32 (*undo_cwnd)(struct sock *sk);
929 /* hook for packet ack accounting (optional) */
930 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
931 /* suggest number of segments for each skb to transmit (optional) */
932 u32 (*tso_segs_goal)(struct sock *sk);
933 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
934 u32 (*sndbuf_expand)(struct sock *sk);
935 /* call when packets are delivered to update cwnd and pacing rate,
936 * after all the ca_state processing. (optional)
937 */
938 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
939 /* get info for inet_diag (optional) */
940 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
941 union tcp_cc_info *info);
942
943 char name[TCP_CA_NAME_MAX];
944 struct module *owner;
945 };
946
947 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
948 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
949
950 void tcp_assign_congestion_control(struct sock *sk);
951 void tcp_init_congestion_control(struct sock *sk);
952 void tcp_cleanup_congestion_control(struct sock *sk);
953 int tcp_set_default_congestion_control(const char *name);
954 void tcp_get_default_congestion_control(char *name);
955 void tcp_get_available_congestion_control(char *buf, size_t len);
956 void tcp_get_allowed_congestion_control(char *buf, size_t len);
957 int tcp_set_allowed_congestion_control(char *allowed);
958 int tcp_set_congestion_control(struct sock *sk, const char *name);
959 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
960 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
961
962 u32 tcp_reno_ssthresh(struct sock *sk);
963 u32 tcp_reno_undo_cwnd(struct sock *sk);
964 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
965 extern struct tcp_congestion_ops tcp_reno;
966
967 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
968 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
969 #ifdef CONFIG_INET
970 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
971 #else
972 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
973 {
974 return NULL;
975 }
976 #endif
977
978 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
979 {
980 const struct inet_connection_sock *icsk = inet_csk(sk);
981
982 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
983 }
984
985 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
986 {
987 struct inet_connection_sock *icsk = inet_csk(sk);
988
989 if (icsk->icsk_ca_ops->set_state)
990 icsk->icsk_ca_ops->set_state(sk, ca_state);
991 icsk->icsk_ca_state = ca_state;
992 }
993
994 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
995 {
996 const struct inet_connection_sock *icsk = inet_csk(sk);
997
998 if (icsk->icsk_ca_ops->cwnd_event)
999 icsk->icsk_ca_ops->cwnd_event(sk, event);
1000 }
1001
1002 /* From tcp_rate.c */
1003 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1004 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1005 struct rate_sample *rs);
1006 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1007 struct skb_mstamp *now, struct rate_sample *rs);
1008 void tcp_rate_check_app_limited(struct sock *sk);
1009
1010 /* These functions determine how the current flow behaves in respect of SACK
1011 * handling. SACK is negotiated with the peer, and therefore it can vary
1012 * between different flows.
1013 *
1014 * tcp_is_sack - SACK enabled
1015 * tcp_is_reno - No SACK
1016 * tcp_is_fack - FACK enabled, implies SACK enabled
1017 */
1018 static inline int tcp_is_sack(const struct tcp_sock *tp)
1019 {
1020 return tp->rx_opt.sack_ok;
1021 }
1022
1023 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1024 {
1025 return !tcp_is_sack(tp);
1026 }
1027
1028 static inline bool tcp_is_fack(const struct tcp_sock *tp)
1029 {
1030 return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
1031 }
1032
1033 static inline void tcp_enable_fack(struct tcp_sock *tp)
1034 {
1035 tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
1036 }
1037
1038 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1039 {
1040 return tp->sacked_out + tp->lost_out;
1041 }
1042
1043 /* This determines how many packets are "in the network" to the best
1044 * of our knowledge. In many cases it is conservative, but where
1045 * detailed information is available from the receiver (via SACK
1046 * blocks etc.) we can make more aggressive calculations.
1047 *
1048 * Use this for decisions involving congestion control, use just
1049 * tp->packets_out to determine if the send queue is empty or not.
1050 *
1051 * Read this equation as:
1052 *
1053 * "Packets sent once on transmission queue" MINUS
1054 * "Packets left network, but not honestly ACKed yet" PLUS
1055 * "Packets fast retransmitted"
1056 */
1057 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1058 {
1059 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1060 }
1061
1062 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1063
1064 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1065 {
1066 return tp->snd_cwnd < tp->snd_ssthresh;
1067 }
1068
1069 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1070 {
1071 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1072 }
1073
1074 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1075 {
1076 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1077 (1 << inet_csk(sk)->icsk_ca_state);
1078 }
1079
1080 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1081 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1082 * ssthresh.
1083 */
1084 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1085 {
1086 const struct tcp_sock *tp = tcp_sk(sk);
1087
1088 if (tcp_in_cwnd_reduction(sk))
1089 return tp->snd_ssthresh;
1090 else
1091 return max(tp->snd_ssthresh,
1092 ((tp->snd_cwnd >> 1) +
1093 (tp->snd_cwnd >> 2)));
1094 }
1095
1096 /* Use define here intentionally to get WARN_ON location shown at the caller */
1097 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1098
1099 void tcp_enter_cwr(struct sock *sk);
1100 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1101
1102 /* The maximum number of MSS of available cwnd for which TSO defers
1103 * sending if not using sysctl_tcp_tso_win_divisor.
1104 */
1105 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1106 {
1107 return 3;
1108 }
1109
1110 /* Returns end sequence number of the receiver's advertised window */
1111 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1112 {
1113 return tp->snd_una + tp->snd_wnd;
1114 }
1115
1116 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1117 * flexible approach. The RFC suggests cwnd should not be raised unless
1118 * it was fully used previously. And that's exactly what we do in
1119 * congestion avoidance mode. But in slow start we allow cwnd to grow
1120 * as long as the application has used half the cwnd.
1121 * Example :
1122 * cwnd is 10 (IW10), but application sends 9 frames.
1123 * We allow cwnd to reach 18 when all frames are ACKed.
1124 * This check is safe because it's as aggressive as slow start which already
1125 * risks 100% overshoot. The advantage is that we discourage application to
1126 * either send more filler packets or data to artificially blow up the cwnd
1127 * usage, and allow application-limited process to probe bw more aggressively.
1128 */
1129 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1130 {
1131 const struct tcp_sock *tp = tcp_sk(sk);
1132
1133 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1134 if (tcp_in_slow_start(tp))
1135 return tp->snd_cwnd < 2 * tp->max_packets_out;
1136
1137 return tp->is_cwnd_limited;
1138 }
1139
1140 /* Something is really bad, we could not queue an additional packet,
1141 * because qdisc is full or receiver sent a 0 window.
1142 * We do not want to add fuel to the fire, or abort too early,
1143 * so make sure the timer we arm now is at least 200ms in the future,
1144 * regardless of current icsk_rto value (as it could be ~2ms)
1145 */
1146 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1147 {
1148 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1149 }
1150
1151 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1152 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1153 unsigned long max_when)
1154 {
1155 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1156
1157 return (unsigned long)min_t(u64, when, max_when);
1158 }
1159
1160 static inline void tcp_check_probe_timer(struct sock *sk)
1161 {
1162 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1163 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1164 tcp_probe0_base(sk), TCP_RTO_MAX);
1165 }
1166
1167 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1168 {
1169 tp->snd_wl1 = seq;
1170 }
1171
1172 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1173 {
1174 tp->snd_wl1 = seq;
1175 }
1176
1177 /*
1178 * Calculate(/check) TCP checksum
1179 */
1180 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1181 __be32 daddr, __wsum base)
1182 {
1183 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1184 }
1185
1186 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1187 {
1188 return __skb_checksum_complete(skb);
1189 }
1190
1191 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1192 {
1193 return !skb_csum_unnecessary(skb) &&
1194 __tcp_checksum_complete(skb);
1195 }
1196
1197 /* Prequeue for VJ style copy to user, combined with checksumming. */
1198
1199 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1200 {
1201 tp->ucopy.task = NULL;
1202 tp->ucopy.len = 0;
1203 tp->ucopy.memory = 0;
1204 skb_queue_head_init(&tp->ucopy.prequeue);
1205 }
1206
1207 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1208 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1209 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1210
1211 #undef STATE_TRACE
1212
1213 #ifdef STATE_TRACE
1214 static const char *statename[]={
1215 "Unused","Established","Syn Sent","Syn Recv",
1216 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1217 "Close Wait","Last ACK","Listen","Closing"
1218 };
1219 #endif
1220 void tcp_set_state(struct sock *sk, int state);
1221
1222 void tcp_done(struct sock *sk);
1223
1224 int tcp_abort(struct sock *sk, int err);
1225
1226 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1227 {
1228 rx_opt->dsack = 0;
1229 rx_opt->num_sacks = 0;
1230 }
1231
1232 u32 tcp_default_init_rwnd(u32 mss);
1233 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1234
1235 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1236 {
1237 struct tcp_sock *tp = tcp_sk(sk);
1238 s32 delta;
1239
1240 if (!sysctl_tcp_slow_start_after_idle || tp->packets_out)
1241 return;
1242 delta = tcp_time_stamp - tp->lsndtime;
1243 if (delta > inet_csk(sk)->icsk_rto)
1244 tcp_cwnd_restart(sk, delta);
1245 }
1246
1247 /* Determine a window scaling and initial window to offer. */
1248 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1249 __u32 *window_clamp, int wscale_ok,
1250 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1251
1252 static inline int tcp_win_from_space(int space)
1253 {
1254 int tcp_adv_win_scale = sysctl_tcp_adv_win_scale;
1255
1256 return tcp_adv_win_scale <= 0 ?
1257 (space>>(-tcp_adv_win_scale)) :
1258 space - (space>>tcp_adv_win_scale);
1259 }
1260
1261 /* Note: caller must be prepared to deal with negative returns */
1262 static inline int tcp_space(const struct sock *sk)
1263 {
1264 return tcp_win_from_space(sk->sk_rcvbuf -
1265 atomic_read(&sk->sk_rmem_alloc));
1266 }
1267
1268 static inline int tcp_full_space(const struct sock *sk)
1269 {
1270 return tcp_win_from_space(sk->sk_rcvbuf);
1271 }
1272
1273 extern void tcp_openreq_init_rwin(struct request_sock *req,
1274 const struct sock *sk_listener,
1275 const struct dst_entry *dst);
1276
1277 void tcp_enter_memory_pressure(struct sock *sk);
1278
1279 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1280 {
1281 struct net *net = sock_net((struct sock *)tp);
1282
1283 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1284 }
1285
1286 static inline int keepalive_time_when(const struct tcp_sock *tp)
1287 {
1288 struct net *net = sock_net((struct sock *)tp);
1289
1290 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1291 }
1292
1293 static inline int keepalive_probes(const struct tcp_sock *tp)
1294 {
1295 struct net *net = sock_net((struct sock *)tp);
1296
1297 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1298 }
1299
1300 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1301 {
1302 const struct inet_connection_sock *icsk = &tp->inet_conn;
1303
1304 return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1305 tcp_time_stamp - tp->rcv_tstamp);
1306 }
1307
1308 static inline int tcp_fin_time(const struct sock *sk)
1309 {
1310 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1311 const int rto = inet_csk(sk)->icsk_rto;
1312
1313 if (fin_timeout < (rto << 2) - (rto >> 1))
1314 fin_timeout = (rto << 2) - (rto >> 1);
1315
1316 return fin_timeout;
1317 }
1318
1319 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1320 int paws_win)
1321 {
1322 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1323 return true;
1324 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1325 return true;
1326 /*
1327 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1328 * then following tcp messages have valid values. Ignore 0 value,
1329 * or else 'negative' tsval might forbid us to accept their packets.
1330 */
1331 if (!rx_opt->ts_recent)
1332 return true;
1333 return false;
1334 }
1335
1336 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1337 int rst)
1338 {
1339 if (tcp_paws_check(rx_opt, 0))
1340 return false;
1341
1342 /* RST segments are not recommended to carry timestamp,
1343 and, if they do, it is recommended to ignore PAWS because
1344 "their cleanup function should take precedence over timestamps."
1345 Certainly, it is mistake. It is necessary to understand the reasons
1346 of this constraint to relax it: if peer reboots, clock may go
1347 out-of-sync and half-open connections will not be reset.
1348 Actually, the problem would be not existing if all
1349 the implementations followed draft about maintaining clock
1350 via reboots. Linux-2.2 DOES NOT!
1351
1352 However, we can relax time bounds for RST segments to MSL.
1353 */
1354 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1355 return false;
1356 return true;
1357 }
1358
1359 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1360 int mib_idx, u32 *last_oow_ack_time);
1361
1362 static inline void tcp_mib_init(struct net *net)
1363 {
1364 /* See RFC 2012 */
1365 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1366 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1367 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1368 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1369 }
1370
1371 /* from STCP */
1372 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1373 {
1374 tp->lost_skb_hint = NULL;
1375 }
1376
1377 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1378 {
1379 tcp_clear_retrans_hints_partial(tp);
1380 tp->retransmit_skb_hint = NULL;
1381 }
1382
1383 union tcp_md5_addr {
1384 struct in_addr a4;
1385 #if IS_ENABLED(CONFIG_IPV6)
1386 struct in6_addr a6;
1387 #endif
1388 };
1389
1390 /* - key database */
1391 struct tcp_md5sig_key {
1392 struct hlist_node node;
1393 u8 keylen;
1394 u8 family; /* AF_INET or AF_INET6 */
1395 union tcp_md5_addr addr;
1396 u8 key[TCP_MD5SIG_MAXKEYLEN];
1397 struct rcu_head rcu;
1398 };
1399
1400 /* - sock block */
1401 struct tcp_md5sig_info {
1402 struct hlist_head head;
1403 struct rcu_head rcu;
1404 };
1405
1406 /* - pseudo header */
1407 struct tcp4_pseudohdr {
1408 __be32 saddr;
1409 __be32 daddr;
1410 __u8 pad;
1411 __u8 protocol;
1412 __be16 len;
1413 };
1414
1415 struct tcp6_pseudohdr {
1416 struct in6_addr saddr;
1417 struct in6_addr daddr;
1418 __be32 len;
1419 __be32 protocol; /* including padding */
1420 };
1421
1422 union tcp_md5sum_block {
1423 struct tcp4_pseudohdr ip4;
1424 #if IS_ENABLED(CONFIG_IPV6)
1425 struct tcp6_pseudohdr ip6;
1426 #endif
1427 };
1428
1429 /* - pool: digest algorithm, hash description and scratch buffer */
1430 struct tcp_md5sig_pool {
1431 struct ahash_request *md5_req;
1432 void *scratch;
1433 };
1434
1435 /* - functions */
1436 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1437 const struct sock *sk, const struct sk_buff *skb);
1438 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1439 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
1440 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1441 int family);
1442 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1443 const struct sock *addr_sk);
1444
1445 #ifdef CONFIG_TCP_MD5SIG
1446 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1447 const union tcp_md5_addr *addr,
1448 int family);
1449 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1450 #else
1451 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1452 const union tcp_md5_addr *addr,
1453 int family)
1454 {
1455 return NULL;
1456 }
1457 #define tcp_twsk_md5_key(twsk) NULL
1458 #endif
1459
1460 bool tcp_alloc_md5sig_pool(void);
1461
1462 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1463 static inline void tcp_put_md5sig_pool(void)
1464 {
1465 local_bh_enable();
1466 }
1467
1468 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1469 unsigned int header_len);
1470 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1471 const struct tcp_md5sig_key *key);
1472
1473 /* From tcp_fastopen.c */
1474 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1475 struct tcp_fastopen_cookie *cookie, int *syn_loss,
1476 unsigned long *last_syn_loss);
1477 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1478 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1479 u16 try_exp);
1480 struct tcp_fastopen_request {
1481 /* Fast Open cookie. Size 0 means a cookie request */
1482 struct tcp_fastopen_cookie cookie;
1483 struct msghdr *data; /* data in MSG_FASTOPEN */
1484 size_t size;
1485 int copied; /* queued in tcp_connect() */
1486 };
1487 void tcp_free_fastopen_req(struct tcp_sock *tp);
1488
1489 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1490 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1491 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1492 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1493 struct request_sock *req,
1494 struct tcp_fastopen_cookie *foc,
1495 struct dst_entry *dst);
1496 void tcp_fastopen_init_key_once(bool publish);
1497 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1498 struct tcp_fastopen_cookie *cookie);
1499 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1500 #define TCP_FASTOPEN_KEY_LENGTH 16
1501
1502 /* Fastopen key context */
1503 struct tcp_fastopen_context {
1504 struct crypto_cipher *tfm;
1505 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
1506 struct rcu_head rcu;
1507 };
1508
1509 /* Latencies incurred by various limits for a sender. They are
1510 * chronograph-like stats that are mutually exclusive.
1511 */
1512 enum tcp_chrono {
1513 TCP_CHRONO_UNSPEC,
1514 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1515 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1516 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1517 __TCP_CHRONO_MAX,
1518 };
1519
1520 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1521 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1522
1523 /* write queue abstraction */
1524 static inline void tcp_write_queue_purge(struct sock *sk)
1525 {
1526 struct sk_buff *skb;
1527
1528 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1529 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1530 sk_wmem_free_skb(sk, skb);
1531 sk_mem_reclaim(sk);
1532 tcp_clear_all_retrans_hints(tcp_sk(sk));
1533 }
1534
1535 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1536 {
1537 return skb_peek(&sk->sk_write_queue);
1538 }
1539
1540 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1541 {
1542 return skb_peek_tail(&sk->sk_write_queue);
1543 }
1544
1545 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1546 const struct sk_buff *skb)
1547 {
1548 return skb_queue_next(&sk->sk_write_queue, skb);
1549 }
1550
1551 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1552 const struct sk_buff *skb)
1553 {
1554 return skb_queue_prev(&sk->sk_write_queue, skb);
1555 }
1556
1557 #define tcp_for_write_queue(skb, sk) \
1558 skb_queue_walk(&(sk)->sk_write_queue, skb)
1559
1560 #define tcp_for_write_queue_from(skb, sk) \
1561 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1562
1563 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1564 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1565
1566 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1567 {
1568 return sk->sk_send_head;
1569 }
1570
1571 static inline bool tcp_skb_is_last(const struct sock *sk,
1572 const struct sk_buff *skb)
1573 {
1574 return skb_queue_is_last(&sk->sk_write_queue, skb);
1575 }
1576
1577 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1578 {
1579 if (tcp_skb_is_last(sk, skb))
1580 sk->sk_send_head = NULL;
1581 else
1582 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1583 }
1584
1585 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1586 {
1587 if (sk->sk_send_head == skb_unlinked) {
1588 sk->sk_send_head = NULL;
1589 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1590 }
1591 if (tcp_sk(sk)->highest_sack == skb_unlinked)
1592 tcp_sk(sk)->highest_sack = NULL;
1593 }
1594
1595 static inline void tcp_init_send_head(struct sock *sk)
1596 {
1597 sk->sk_send_head = NULL;
1598 }
1599
1600 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1601 {
1602 __skb_queue_tail(&sk->sk_write_queue, skb);
1603 }
1604
1605 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1606 {
1607 __tcp_add_write_queue_tail(sk, skb);
1608
1609 /* Queue it, remembering where we must start sending. */
1610 if (sk->sk_send_head == NULL) {
1611 sk->sk_send_head = skb;
1612 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1613
1614 if (tcp_sk(sk)->highest_sack == NULL)
1615 tcp_sk(sk)->highest_sack = skb;
1616 }
1617 }
1618
1619 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1620 {
1621 __skb_queue_head(&sk->sk_write_queue, skb);
1622 }
1623
1624 /* Insert buff after skb on the write queue of sk. */
1625 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1626 struct sk_buff *buff,
1627 struct sock *sk)
1628 {
1629 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1630 }
1631
1632 /* Insert new before skb on the write queue of sk. */
1633 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1634 struct sk_buff *skb,
1635 struct sock *sk)
1636 {
1637 __skb_queue_before(&sk->sk_write_queue, skb, new);
1638
1639 if (sk->sk_send_head == skb)
1640 sk->sk_send_head = new;
1641 }
1642
1643 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1644 {
1645 __skb_unlink(skb, &sk->sk_write_queue);
1646 }
1647
1648 static inline bool tcp_write_queue_empty(struct sock *sk)
1649 {
1650 return skb_queue_empty(&sk->sk_write_queue);
1651 }
1652
1653 static inline void tcp_push_pending_frames(struct sock *sk)
1654 {
1655 if (tcp_send_head(sk)) {
1656 struct tcp_sock *tp = tcp_sk(sk);
1657
1658 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1659 }
1660 }
1661
1662 /* Start sequence of the skb just after the highest skb with SACKed
1663 * bit, valid only if sacked_out > 0 or when the caller has ensured
1664 * validity by itself.
1665 */
1666 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1667 {
1668 if (!tp->sacked_out)
1669 return tp->snd_una;
1670
1671 if (tp->highest_sack == NULL)
1672 return tp->snd_nxt;
1673
1674 return TCP_SKB_CB(tp->highest_sack)->seq;
1675 }
1676
1677 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1678 {
1679 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1680 tcp_write_queue_next(sk, skb);
1681 }
1682
1683 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1684 {
1685 return tcp_sk(sk)->highest_sack;
1686 }
1687
1688 static inline void tcp_highest_sack_reset(struct sock *sk)
1689 {
1690 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1691 }
1692
1693 /* Called when old skb is about to be deleted (to be combined with new skb) */
1694 static inline void tcp_highest_sack_combine(struct sock *sk,
1695 struct sk_buff *old,
1696 struct sk_buff *new)
1697 {
1698 if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1699 tcp_sk(sk)->highest_sack = new;
1700 }
1701
1702 /* This helper checks if socket has IP_TRANSPARENT set */
1703 static inline bool inet_sk_transparent(const struct sock *sk)
1704 {
1705 switch (sk->sk_state) {
1706 case TCP_TIME_WAIT:
1707 return inet_twsk(sk)->tw_transparent;
1708 case TCP_NEW_SYN_RECV:
1709 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1710 }
1711 return inet_sk(sk)->transparent;
1712 }
1713
1714 /* Determines whether this is a thin stream (which may suffer from
1715 * increased latency). Used to trigger latency-reducing mechanisms.
1716 */
1717 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1718 {
1719 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1720 }
1721
1722 /* /proc */
1723 enum tcp_seq_states {
1724 TCP_SEQ_STATE_LISTENING,
1725 TCP_SEQ_STATE_ESTABLISHED,
1726 };
1727
1728 int tcp_seq_open(struct inode *inode, struct file *file);
1729
1730 struct tcp_seq_afinfo {
1731 char *name;
1732 sa_family_t family;
1733 const struct file_operations *seq_fops;
1734 struct seq_operations seq_ops;
1735 };
1736
1737 struct tcp_iter_state {
1738 struct seq_net_private p;
1739 sa_family_t family;
1740 enum tcp_seq_states state;
1741 struct sock *syn_wait_sk;
1742 int bucket, offset, sbucket, num;
1743 loff_t last_pos;
1744 };
1745
1746 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1747 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1748
1749 extern struct request_sock_ops tcp_request_sock_ops;
1750 extern struct request_sock_ops tcp6_request_sock_ops;
1751
1752 void tcp_v4_destroy_sock(struct sock *sk);
1753
1754 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1755 netdev_features_t features);
1756 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1757 int tcp_gro_complete(struct sk_buff *skb);
1758
1759 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1760
1761 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1762 {
1763 struct net *net = sock_net((struct sock *)tp);
1764 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1765 }
1766
1767 static inline bool tcp_stream_memory_free(const struct sock *sk)
1768 {
1769 const struct tcp_sock *tp = tcp_sk(sk);
1770 u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1771
1772 return notsent_bytes < tcp_notsent_lowat(tp);
1773 }
1774
1775 #ifdef CONFIG_PROC_FS
1776 int tcp4_proc_init(void);
1777 void tcp4_proc_exit(void);
1778 #endif
1779
1780 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1781 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1782 const struct tcp_request_sock_ops *af_ops,
1783 struct sock *sk, struct sk_buff *skb);
1784
1785 /* TCP af-specific functions */
1786 struct tcp_sock_af_ops {
1787 #ifdef CONFIG_TCP_MD5SIG
1788 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
1789 const struct sock *addr_sk);
1790 int (*calc_md5_hash)(char *location,
1791 const struct tcp_md5sig_key *md5,
1792 const struct sock *sk,
1793 const struct sk_buff *skb);
1794 int (*md5_parse)(struct sock *sk,
1795 char __user *optval,
1796 int optlen);
1797 #endif
1798 };
1799
1800 struct tcp_request_sock_ops {
1801 u16 mss_clamp;
1802 #ifdef CONFIG_TCP_MD5SIG
1803 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1804 const struct sock *addr_sk);
1805 int (*calc_md5_hash) (char *location,
1806 const struct tcp_md5sig_key *md5,
1807 const struct sock *sk,
1808 const struct sk_buff *skb);
1809 #endif
1810 void (*init_req)(struct request_sock *req,
1811 const struct sock *sk_listener,
1812 struct sk_buff *skb);
1813 #ifdef CONFIG_SYN_COOKIES
1814 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
1815 __u16 *mss);
1816 #endif
1817 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1818 const struct request_sock *req);
1819 __u32 (*init_seq_tsoff)(const struct sk_buff *skb, u32 *tsoff);
1820 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1821 struct flowi *fl, struct request_sock *req,
1822 struct tcp_fastopen_cookie *foc,
1823 enum tcp_synack_type synack_type);
1824 };
1825
1826 #ifdef CONFIG_SYN_COOKIES
1827 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1828 const struct sock *sk, struct sk_buff *skb,
1829 __u16 *mss)
1830 {
1831 tcp_synq_overflow(sk);
1832 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1833 return ops->cookie_init_seq(skb, mss);
1834 }
1835 #else
1836 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1837 const struct sock *sk, struct sk_buff *skb,
1838 __u16 *mss)
1839 {
1840 return 0;
1841 }
1842 #endif
1843
1844 int tcpv4_offload_init(void);
1845
1846 void tcp_v4_init(void);
1847 void tcp_init(void);
1848
1849 /* tcp_recovery.c */
1850 extern void tcp_rack_mark_lost(struct sock *sk, const struct skb_mstamp *now);
1851 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1852 const struct skb_mstamp *xmit_time,
1853 const struct skb_mstamp *ack_time);
1854 extern void tcp_rack_reo_timeout(struct sock *sk);
1855
1856 /*
1857 * Save and compile IPv4 options, return a pointer to it
1858 */
1859 static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
1860 {
1861 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1862 struct ip_options_rcu *dopt = NULL;
1863
1864 if (opt->optlen) {
1865 int opt_size = sizeof(*dopt) + opt->optlen;
1866
1867 dopt = kmalloc(opt_size, GFP_ATOMIC);
1868 if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1869 kfree(dopt);
1870 dopt = NULL;
1871 }
1872 }
1873 return dopt;
1874 }
1875
1876 /* locally generated TCP pure ACKs have skb->truesize == 2
1877 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1878 * This is much faster than dissecting the packet to find out.
1879 * (Think of GRE encapsulations, IPv4, IPv6, ...)
1880 */
1881 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1882 {
1883 return skb->truesize == 2;
1884 }
1885
1886 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1887 {
1888 skb->truesize = 2;
1889 }
1890
1891 static inline int tcp_inq(struct sock *sk)
1892 {
1893 struct tcp_sock *tp = tcp_sk(sk);
1894 int answ;
1895
1896 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1897 answ = 0;
1898 } else if (sock_flag(sk, SOCK_URGINLINE) ||
1899 !tp->urg_data ||
1900 before(tp->urg_seq, tp->copied_seq) ||
1901 !before(tp->urg_seq, tp->rcv_nxt)) {
1902
1903 answ = tp->rcv_nxt - tp->copied_seq;
1904
1905 /* Subtract 1, if FIN was received */
1906 if (answ && sock_flag(sk, SOCK_DONE))
1907 answ--;
1908 } else {
1909 answ = tp->urg_seq - tp->copied_seq;
1910 }
1911
1912 return answ;
1913 }
1914
1915 int tcp_peek_len(struct socket *sock);
1916
1917 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1918 {
1919 u16 segs_in;
1920
1921 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1922 tp->segs_in += segs_in;
1923 if (skb->len > tcp_hdrlen(skb))
1924 tp->data_segs_in += segs_in;
1925 }
1926
1927 /*
1928 * TCP listen path runs lockless.
1929 * We forced "struct sock" to be const qualified to make sure
1930 * we don't modify one of its field by mistake.
1931 * Here, we increment sk_drops which is an atomic_t, so we can safely
1932 * make sock writable again.
1933 */
1934 static inline void tcp_listendrop(const struct sock *sk)
1935 {
1936 atomic_inc(&((struct sock *)sk)->sk_drops);
1937 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
1938 }
1939
1940 #endif /* _TCP_H */