]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/audit.c
audit: rename the queues and kauditd related functions
[mirror_ubuntu-zesty-kernel.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/file.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/atomic.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/err.h>
54 #include <linux/kthread.h>
55 #include <linux/kernel.h>
56 #include <linux/syscalls.h>
57
58 #include <linux/audit.h>
59
60 #include <net/sock.h>
61 #include <net/netlink.h>
62 #include <linux/skbuff.h>
63 #ifdef CONFIG_SECURITY
64 #include <linux/security.h>
65 #endif
66 #include <linux/freezer.h>
67 #include <linux/pid_namespace.h>
68 #include <net/netns/generic.h>
69
70 #include "audit.h"
71
72 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
73 * (Initialization happens after skb_init is called.) */
74 #define AUDIT_DISABLED -1
75 #define AUDIT_UNINITIALIZED 0
76 #define AUDIT_INITIALIZED 1
77 static int audit_initialized;
78
79 #define AUDIT_OFF 0
80 #define AUDIT_ON 1
81 #define AUDIT_LOCKED 2
82 u32 audit_enabled;
83 u32 audit_ever_enabled;
84
85 EXPORT_SYMBOL_GPL(audit_enabled);
86
87 /* Default state when kernel boots without any parameters. */
88 static u32 audit_default;
89
90 /* If auditing cannot proceed, audit_failure selects what happens. */
91 static u32 audit_failure = AUDIT_FAIL_PRINTK;
92
93 /*
94 * If audit records are to be written to the netlink socket, audit_pid
95 * contains the pid of the auditd process and audit_nlk_portid contains
96 * the portid to use to send netlink messages to that process.
97 */
98 int audit_pid;
99 static __u32 audit_nlk_portid;
100
101 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
102 * to that number per second. This prevents DoS attacks, but results in
103 * audit records being dropped. */
104 static u32 audit_rate_limit;
105
106 /* Number of outstanding audit_buffers allowed.
107 * When set to zero, this means unlimited. */
108 static u32 audit_backlog_limit = 64;
109 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
110 static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
111 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
112
113 /* The identity of the user shutting down the audit system. */
114 kuid_t audit_sig_uid = INVALID_UID;
115 pid_t audit_sig_pid = -1;
116 u32 audit_sig_sid = 0;
117
118 /* Records can be lost in several ways:
119 0) [suppressed in audit_alloc]
120 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
121 2) out of memory in audit_log_move [alloc_skb]
122 3) suppressed due to audit_rate_limit
123 4) suppressed due to audit_backlog_limit
124 */
125 static atomic_t audit_lost = ATOMIC_INIT(0);
126
127 /* The netlink socket. */
128 static struct sock *audit_sock;
129 static int audit_net_id;
130
131 /* Hash for inode-based rules */
132 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
133
134 /* The audit_freelist is a list of pre-allocated audit buffers (if more
135 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
136 * being placed on the freelist). */
137 static DEFINE_SPINLOCK(audit_freelist_lock);
138 static int audit_freelist_count;
139 static LIST_HEAD(audit_freelist);
140
141 static struct sk_buff_head audit_queue;
142 /* queue of skbs to send to auditd when/if it comes back */
143 static struct sk_buff_head audit_hold_queue;
144 static struct task_struct *kauditd_task;
145 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
146 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
147
148 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
149 .mask = -1,
150 .features = 0,
151 .lock = 0,};
152
153 static char *audit_feature_names[2] = {
154 "only_unset_loginuid",
155 "loginuid_immutable",
156 };
157
158
159 /* Serialize requests from userspace. */
160 DEFINE_MUTEX(audit_cmd_mutex);
161
162 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
163 * audit records. Since printk uses a 1024 byte buffer, this buffer
164 * should be at least that large. */
165 #define AUDIT_BUFSIZ 1024
166
167 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
168 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
169 #define AUDIT_MAXFREE (2*NR_CPUS)
170
171 /* The audit_buffer is used when formatting an audit record. The caller
172 * locks briefly to get the record off the freelist or to allocate the
173 * buffer, and locks briefly to send the buffer to the netlink layer or
174 * to place it on a transmit queue. Multiple audit_buffers can be in
175 * use simultaneously. */
176 struct audit_buffer {
177 struct list_head list;
178 struct sk_buff *skb; /* formatted skb ready to send */
179 struct audit_context *ctx; /* NULL or associated context */
180 gfp_t gfp_mask;
181 };
182
183 struct audit_reply {
184 __u32 portid;
185 struct net *net;
186 struct sk_buff *skb;
187 };
188
189 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
190 {
191 if (ab) {
192 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
193 nlh->nlmsg_pid = portid;
194 }
195 }
196
197 void audit_panic(const char *message)
198 {
199 switch (audit_failure) {
200 case AUDIT_FAIL_SILENT:
201 break;
202 case AUDIT_FAIL_PRINTK:
203 if (printk_ratelimit())
204 pr_err("%s\n", message);
205 break;
206 case AUDIT_FAIL_PANIC:
207 /* test audit_pid since printk is always losey, why bother? */
208 if (audit_pid)
209 panic("audit: %s\n", message);
210 break;
211 }
212 }
213
214 static inline int audit_rate_check(void)
215 {
216 static unsigned long last_check = 0;
217 static int messages = 0;
218 static DEFINE_SPINLOCK(lock);
219 unsigned long flags;
220 unsigned long now;
221 unsigned long elapsed;
222 int retval = 0;
223
224 if (!audit_rate_limit) return 1;
225
226 spin_lock_irqsave(&lock, flags);
227 if (++messages < audit_rate_limit) {
228 retval = 1;
229 } else {
230 now = jiffies;
231 elapsed = now - last_check;
232 if (elapsed > HZ) {
233 last_check = now;
234 messages = 0;
235 retval = 1;
236 }
237 }
238 spin_unlock_irqrestore(&lock, flags);
239
240 return retval;
241 }
242
243 /**
244 * audit_log_lost - conditionally log lost audit message event
245 * @message: the message stating reason for lost audit message
246 *
247 * Emit at least 1 message per second, even if audit_rate_check is
248 * throttling.
249 * Always increment the lost messages counter.
250 */
251 void audit_log_lost(const char *message)
252 {
253 static unsigned long last_msg = 0;
254 static DEFINE_SPINLOCK(lock);
255 unsigned long flags;
256 unsigned long now;
257 int print;
258
259 atomic_inc(&audit_lost);
260
261 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
262
263 if (!print) {
264 spin_lock_irqsave(&lock, flags);
265 now = jiffies;
266 if (now - last_msg > HZ) {
267 print = 1;
268 last_msg = now;
269 }
270 spin_unlock_irqrestore(&lock, flags);
271 }
272
273 if (print) {
274 if (printk_ratelimit())
275 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
276 atomic_read(&audit_lost),
277 audit_rate_limit,
278 audit_backlog_limit);
279 audit_panic(message);
280 }
281 }
282
283 static int audit_log_config_change(char *function_name, u32 new, u32 old,
284 int allow_changes)
285 {
286 struct audit_buffer *ab;
287 int rc = 0;
288
289 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
290 if (unlikely(!ab))
291 return rc;
292 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
293 audit_log_session_info(ab);
294 rc = audit_log_task_context(ab);
295 if (rc)
296 allow_changes = 0; /* Something weird, deny request */
297 audit_log_format(ab, " res=%d", allow_changes);
298 audit_log_end(ab);
299 return rc;
300 }
301
302 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
303 {
304 int allow_changes, rc = 0;
305 u32 old = *to_change;
306
307 /* check if we are locked */
308 if (audit_enabled == AUDIT_LOCKED)
309 allow_changes = 0;
310 else
311 allow_changes = 1;
312
313 if (audit_enabled != AUDIT_OFF) {
314 rc = audit_log_config_change(function_name, new, old, allow_changes);
315 if (rc)
316 allow_changes = 0;
317 }
318
319 /* If we are allowed, make the change */
320 if (allow_changes == 1)
321 *to_change = new;
322 /* Not allowed, update reason */
323 else if (rc == 0)
324 rc = -EPERM;
325 return rc;
326 }
327
328 static int audit_set_rate_limit(u32 limit)
329 {
330 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
331 }
332
333 static int audit_set_backlog_limit(u32 limit)
334 {
335 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
336 }
337
338 static int audit_set_backlog_wait_time(u32 timeout)
339 {
340 return audit_do_config_change("audit_backlog_wait_time",
341 &audit_backlog_wait_time_master, timeout);
342 }
343
344 static int audit_set_enabled(u32 state)
345 {
346 int rc;
347 if (state > AUDIT_LOCKED)
348 return -EINVAL;
349
350 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
351 if (!rc)
352 audit_ever_enabled |= !!state;
353
354 return rc;
355 }
356
357 static int audit_set_failure(u32 state)
358 {
359 if (state != AUDIT_FAIL_SILENT
360 && state != AUDIT_FAIL_PRINTK
361 && state != AUDIT_FAIL_PANIC)
362 return -EINVAL;
363
364 return audit_do_config_change("audit_failure", &audit_failure, state);
365 }
366
367 /*
368 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
369 * already have been sent via prink/syslog and so if these messages are dropped
370 * it is not a huge concern since we already passed the audit_log_lost()
371 * notification and stuff. This is just nice to get audit messages during
372 * boot before auditd is running or messages generated while auditd is stopped.
373 * This only holds messages is audit_default is set, aka booting with audit=1
374 * or building your kernel that way.
375 */
376 static void audit_hold_skb(struct sk_buff *skb)
377 {
378 if (audit_default &&
379 (!audit_backlog_limit ||
380 skb_queue_len(&audit_hold_queue) < audit_backlog_limit))
381 skb_queue_tail(&audit_hold_queue, skb);
382 else
383 kfree_skb(skb);
384 }
385
386 /*
387 * For one reason or another this nlh isn't getting delivered to the userspace
388 * audit daemon, just send it to printk.
389 */
390 static void kauditd_printk_skb(struct sk_buff *skb)
391 {
392 struct nlmsghdr *nlh = nlmsg_hdr(skb);
393 char *data = nlmsg_data(nlh);
394
395 if (nlh->nlmsg_type != AUDIT_EOE) {
396 if (printk_ratelimit())
397 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
398 else
399 audit_log_lost("printk limit exceeded");
400 }
401
402 audit_hold_skb(skb);
403 }
404
405 static void kauditd_send_unicast_skb(struct sk_buff *skb)
406 {
407 int err;
408 int attempts = 0;
409 #define AUDITD_RETRIES 5
410
411 restart:
412 /* take a reference in case we can't send it and we want to hold it */
413 skb_get(skb);
414 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
415 if (err < 0) {
416 pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
417 audit_pid, err);
418 if (audit_pid) {
419 if (err == -ECONNREFUSED || err == -EPERM
420 || ++attempts >= AUDITD_RETRIES) {
421 char s[32];
422
423 snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
424 audit_log_lost(s);
425 audit_pid = 0;
426 audit_sock = NULL;
427 } else {
428 pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
429 attempts, audit_pid);
430 set_current_state(TASK_INTERRUPTIBLE);
431 schedule();
432 goto restart;
433 }
434 }
435 /* we might get lucky and get this in the next auditd */
436 audit_hold_skb(skb);
437 } else
438 /* drop the extra reference if sent ok */
439 consume_skb(skb);
440 }
441
442 /*
443 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
444 *
445 * This function doesn't consume an skb as might be expected since it has to
446 * copy it anyways.
447 */
448 static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
449 {
450 struct sk_buff *copy;
451 struct audit_net *aunet = net_generic(&init_net, audit_net_id);
452 struct sock *sock = aunet->nlsk;
453
454 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
455 return;
456
457 /*
458 * The seemingly wasteful skb_copy() rather than bumping the refcount
459 * using skb_get() is necessary because non-standard mods are made to
460 * the skb by the original kaudit unicast socket send routine. The
461 * existing auditd daemon assumes this breakage. Fixing this would
462 * require co-ordinating a change in the established protocol between
463 * the kaudit kernel subsystem and the auditd userspace code. There is
464 * no reason for new multicast clients to continue with this
465 * non-compliance.
466 */
467 copy = skb_copy(skb, gfp_mask);
468 if (!copy)
469 return;
470
471 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
472 }
473
474 /*
475 * flush_hold_queue - empty the hold queue if auditd appears
476 *
477 * If auditd just started, drain the queue of messages already
478 * sent to syslog/printk. Remember loss here is ok. We already
479 * called audit_log_lost() if it didn't go out normally. so the
480 * race between the skb_dequeue and the next check for audit_pid
481 * doesn't matter.
482 *
483 * If you ever find kauditd to be too slow we can get a perf win
484 * by doing our own locking and keeping better track if there
485 * are messages in this queue. I don't see the need now, but
486 * in 5 years when I want to play with this again I'll see this
487 * note and still have no friggin idea what i'm thinking today.
488 */
489 static void flush_hold_queue(void)
490 {
491 struct sk_buff *skb;
492
493 if (!audit_default || !audit_pid)
494 return;
495
496 skb = skb_dequeue(&audit_hold_queue);
497 if (likely(!skb))
498 return;
499
500 while (skb && audit_pid) {
501 kauditd_send_unicast_skb(skb);
502 skb = skb_dequeue(&audit_hold_queue);
503 }
504
505 /*
506 * if auditd just disappeared but we
507 * dequeued an skb we need to drop ref
508 */
509 consume_skb(skb);
510 }
511
512 static int kauditd_thread(void *dummy)
513 {
514 struct sk_buff *skb;
515 struct nlmsghdr *nlh;
516
517 set_freezable();
518 while (!kthread_should_stop()) {
519 flush_hold_queue();
520
521 skb = skb_dequeue(&audit_queue);
522 if (skb) {
523 nlh = nlmsg_hdr(skb);
524
525 /* if nlh->nlmsg_len is zero then we haven't attempted
526 * to send the message to userspace yet, if nlmsg_len
527 * is non-zero then we have attempted to send it to
528 * the multicast listeners as well as auditd; keep
529 * trying to send to auditd but don't repeat the
530 * multicast send */
531 if (nlh->nlmsg_len == 0) {
532 nlh->nlmsg_len = skb->len;
533 kauditd_send_multicast_skb(skb, GFP_KERNEL);
534
535 /* see the note in kauditd_send_multicast_skb
536 * regarding the nlh->nlmsg_len value and why
537 * it differs between the multicast and unicast
538 * clients */
539 nlh->nlmsg_len -= NLMSG_HDRLEN;
540 }
541
542 if (audit_pid)
543 kauditd_send_unicast_skb(skb);
544 else
545 kauditd_printk_skb(skb);
546 } else {
547 /* we have flushed the backlog so wake everyone up who
548 * is blocked and go to sleep until we have something
549 * in the backlog again */
550 wake_up(&audit_backlog_wait);
551 wait_event_freezable(kauditd_wait,
552 skb_queue_len(&audit_queue));
553 }
554 }
555 return 0;
556 }
557
558 int audit_send_list(void *_dest)
559 {
560 struct audit_netlink_list *dest = _dest;
561 struct sk_buff *skb;
562 struct net *net = dest->net;
563 struct audit_net *aunet = net_generic(net, audit_net_id);
564
565 /* wait for parent to finish and send an ACK */
566 mutex_lock(&audit_cmd_mutex);
567 mutex_unlock(&audit_cmd_mutex);
568
569 while ((skb = __skb_dequeue(&dest->q)) != NULL)
570 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
571
572 put_net(net);
573 kfree(dest);
574
575 return 0;
576 }
577
578 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
579 int multi, const void *payload, int size)
580 {
581 struct sk_buff *skb;
582 struct nlmsghdr *nlh;
583 void *data;
584 int flags = multi ? NLM_F_MULTI : 0;
585 int t = done ? NLMSG_DONE : type;
586
587 skb = nlmsg_new(size, GFP_KERNEL);
588 if (!skb)
589 return NULL;
590
591 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
592 if (!nlh)
593 goto out_kfree_skb;
594 data = nlmsg_data(nlh);
595 memcpy(data, payload, size);
596 return skb;
597
598 out_kfree_skb:
599 kfree_skb(skb);
600 return NULL;
601 }
602
603 static int audit_send_reply_thread(void *arg)
604 {
605 struct audit_reply *reply = (struct audit_reply *)arg;
606 struct net *net = reply->net;
607 struct audit_net *aunet = net_generic(net, audit_net_id);
608
609 mutex_lock(&audit_cmd_mutex);
610 mutex_unlock(&audit_cmd_mutex);
611
612 /* Ignore failure. It'll only happen if the sender goes away,
613 because our timeout is set to infinite. */
614 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
615 put_net(net);
616 kfree(reply);
617 return 0;
618 }
619 /**
620 * audit_send_reply - send an audit reply message via netlink
621 * @request_skb: skb of request we are replying to (used to target the reply)
622 * @seq: sequence number
623 * @type: audit message type
624 * @done: done (last) flag
625 * @multi: multi-part message flag
626 * @payload: payload data
627 * @size: payload size
628 *
629 * Allocates an skb, builds the netlink message, and sends it to the port id.
630 * No failure notifications.
631 */
632 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
633 int multi, const void *payload, int size)
634 {
635 u32 portid = NETLINK_CB(request_skb).portid;
636 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
637 struct sk_buff *skb;
638 struct task_struct *tsk;
639 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
640 GFP_KERNEL);
641
642 if (!reply)
643 return;
644
645 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
646 if (!skb)
647 goto out;
648
649 reply->net = get_net(net);
650 reply->portid = portid;
651 reply->skb = skb;
652
653 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
654 if (!IS_ERR(tsk))
655 return;
656 kfree_skb(skb);
657 out:
658 kfree(reply);
659 }
660
661 /*
662 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
663 * control messages.
664 */
665 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
666 {
667 int err = 0;
668
669 /* Only support initial user namespace for now. */
670 /*
671 * We return ECONNREFUSED because it tricks userspace into thinking
672 * that audit was not configured into the kernel. Lots of users
673 * configure their PAM stack (because that's what the distro does)
674 * to reject login if unable to send messages to audit. If we return
675 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
676 * configured in and will let login proceed. If we return EPERM
677 * userspace will reject all logins. This should be removed when we
678 * support non init namespaces!!
679 */
680 if (current_user_ns() != &init_user_ns)
681 return -ECONNREFUSED;
682
683 switch (msg_type) {
684 case AUDIT_LIST:
685 case AUDIT_ADD:
686 case AUDIT_DEL:
687 return -EOPNOTSUPP;
688 case AUDIT_GET:
689 case AUDIT_SET:
690 case AUDIT_GET_FEATURE:
691 case AUDIT_SET_FEATURE:
692 case AUDIT_LIST_RULES:
693 case AUDIT_ADD_RULE:
694 case AUDIT_DEL_RULE:
695 case AUDIT_SIGNAL_INFO:
696 case AUDIT_TTY_GET:
697 case AUDIT_TTY_SET:
698 case AUDIT_TRIM:
699 case AUDIT_MAKE_EQUIV:
700 /* Only support auditd and auditctl in initial pid namespace
701 * for now. */
702 if (task_active_pid_ns(current) != &init_pid_ns)
703 return -EPERM;
704
705 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
706 err = -EPERM;
707 break;
708 case AUDIT_USER:
709 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
710 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
711 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
712 err = -EPERM;
713 break;
714 default: /* bad msg */
715 err = -EINVAL;
716 }
717
718 return err;
719 }
720
721 static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
722 {
723 uid_t uid = from_kuid(&init_user_ns, current_uid());
724 pid_t pid = task_tgid_nr(current);
725
726 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
727 *ab = NULL;
728 return;
729 }
730
731 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
732 if (unlikely(!*ab))
733 return;
734 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
735 audit_log_session_info(*ab);
736 audit_log_task_context(*ab);
737 }
738
739 int is_audit_feature_set(int i)
740 {
741 return af.features & AUDIT_FEATURE_TO_MASK(i);
742 }
743
744
745 static int audit_get_feature(struct sk_buff *skb)
746 {
747 u32 seq;
748
749 seq = nlmsg_hdr(skb)->nlmsg_seq;
750
751 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
752
753 return 0;
754 }
755
756 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
757 u32 old_lock, u32 new_lock, int res)
758 {
759 struct audit_buffer *ab;
760
761 if (audit_enabled == AUDIT_OFF)
762 return;
763
764 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
765 audit_log_task_info(ab, current);
766 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
767 audit_feature_names[which], !!old_feature, !!new_feature,
768 !!old_lock, !!new_lock, res);
769 audit_log_end(ab);
770 }
771
772 static int audit_set_feature(struct sk_buff *skb)
773 {
774 struct audit_features *uaf;
775 int i;
776
777 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
778 uaf = nlmsg_data(nlmsg_hdr(skb));
779
780 /* if there is ever a version 2 we should handle that here */
781
782 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
783 u32 feature = AUDIT_FEATURE_TO_MASK(i);
784 u32 old_feature, new_feature, old_lock, new_lock;
785
786 /* if we are not changing this feature, move along */
787 if (!(feature & uaf->mask))
788 continue;
789
790 old_feature = af.features & feature;
791 new_feature = uaf->features & feature;
792 new_lock = (uaf->lock | af.lock) & feature;
793 old_lock = af.lock & feature;
794
795 /* are we changing a locked feature? */
796 if (old_lock && (new_feature != old_feature)) {
797 audit_log_feature_change(i, old_feature, new_feature,
798 old_lock, new_lock, 0);
799 return -EPERM;
800 }
801 }
802 /* nothing invalid, do the changes */
803 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
804 u32 feature = AUDIT_FEATURE_TO_MASK(i);
805 u32 old_feature, new_feature, old_lock, new_lock;
806
807 /* if we are not changing this feature, move along */
808 if (!(feature & uaf->mask))
809 continue;
810
811 old_feature = af.features & feature;
812 new_feature = uaf->features & feature;
813 old_lock = af.lock & feature;
814 new_lock = (uaf->lock | af.lock) & feature;
815
816 if (new_feature != old_feature)
817 audit_log_feature_change(i, old_feature, new_feature,
818 old_lock, new_lock, 1);
819
820 if (new_feature)
821 af.features |= feature;
822 else
823 af.features &= ~feature;
824 af.lock |= new_lock;
825 }
826
827 return 0;
828 }
829
830 static int audit_replace(pid_t pid)
831 {
832 struct sk_buff *skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0,
833 &pid, sizeof(pid));
834
835 if (!skb)
836 return -ENOMEM;
837 return netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
838 }
839
840 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
841 {
842 u32 seq;
843 void *data;
844 int err;
845 struct audit_buffer *ab;
846 u16 msg_type = nlh->nlmsg_type;
847 struct audit_sig_info *sig_data;
848 char *ctx = NULL;
849 u32 len;
850
851 err = audit_netlink_ok(skb, msg_type);
852 if (err)
853 return err;
854
855 seq = nlh->nlmsg_seq;
856 data = nlmsg_data(nlh);
857
858 switch (msg_type) {
859 case AUDIT_GET: {
860 struct audit_status s;
861 memset(&s, 0, sizeof(s));
862 s.enabled = audit_enabled;
863 s.failure = audit_failure;
864 s.pid = audit_pid;
865 s.rate_limit = audit_rate_limit;
866 s.backlog_limit = audit_backlog_limit;
867 s.lost = atomic_read(&audit_lost);
868 s.backlog = skb_queue_len(&audit_queue);
869 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
870 s.backlog_wait_time = audit_backlog_wait_time_master;
871 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
872 break;
873 }
874 case AUDIT_SET: {
875 struct audit_status s;
876 memset(&s, 0, sizeof(s));
877 /* guard against past and future API changes */
878 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
879 if (s.mask & AUDIT_STATUS_ENABLED) {
880 err = audit_set_enabled(s.enabled);
881 if (err < 0)
882 return err;
883 }
884 if (s.mask & AUDIT_STATUS_FAILURE) {
885 err = audit_set_failure(s.failure);
886 if (err < 0)
887 return err;
888 }
889 if (s.mask & AUDIT_STATUS_PID) {
890 int new_pid = s.pid;
891 pid_t requesting_pid = task_tgid_vnr(current);
892
893 if ((!new_pid) && (requesting_pid != audit_pid)) {
894 audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
895 return -EACCES;
896 }
897 if (audit_pid && new_pid &&
898 audit_replace(requesting_pid) != -ECONNREFUSED) {
899 audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
900 return -EEXIST;
901 }
902 if (audit_enabled != AUDIT_OFF)
903 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
904 audit_pid = new_pid;
905 audit_nlk_portid = NETLINK_CB(skb).portid;
906 audit_sock = skb->sk;
907 }
908 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
909 err = audit_set_rate_limit(s.rate_limit);
910 if (err < 0)
911 return err;
912 }
913 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
914 err = audit_set_backlog_limit(s.backlog_limit);
915 if (err < 0)
916 return err;
917 }
918 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
919 if (sizeof(s) > (size_t)nlh->nlmsg_len)
920 return -EINVAL;
921 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
922 return -EINVAL;
923 err = audit_set_backlog_wait_time(s.backlog_wait_time);
924 if (err < 0)
925 return err;
926 }
927 break;
928 }
929 case AUDIT_GET_FEATURE:
930 err = audit_get_feature(skb);
931 if (err)
932 return err;
933 break;
934 case AUDIT_SET_FEATURE:
935 err = audit_set_feature(skb);
936 if (err)
937 return err;
938 break;
939 case AUDIT_USER:
940 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
941 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
942 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
943 return 0;
944
945 err = audit_filter(msg_type, AUDIT_FILTER_USER);
946 if (err == 1) { /* match or error */
947 err = 0;
948 if (msg_type == AUDIT_USER_TTY) {
949 err = tty_audit_push();
950 if (err)
951 break;
952 }
953 mutex_unlock(&audit_cmd_mutex);
954 audit_log_common_recv_msg(&ab, msg_type);
955 if (msg_type != AUDIT_USER_TTY)
956 audit_log_format(ab, " msg='%.*s'",
957 AUDIT_MESSAGE_TEXT_MAX,
958 (char *)data);
959 else {
960 int size;
961
962 audit_log_format(ab, " data=");
963 size = nlmsg_len(nlh);
964 if (size > 0 &&
965 ((unsigned char *)data)[size - 1] == '\0')
966 size--;
967 audit_log_n_untrustedstring(ab, data, size);
968 }
969 audit_set_portid(ab, NETLINK_CB(skb).portid);
970 audit_log_end(ab);
971 mutex_lock(&audit_cmd_mutex);
972 }
973 break;
974 case AUDIT_ADD_RULE:
975 case AUDIT_DEL_RULE:
976 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
977 return -EINVAL;
978 if (audit_enabled == AUDIT_LOCKED) {
979 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
980 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
981 audit_log_end(ab);
982 return -EPERM;
983 }
984 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
985 seq, data, nlmsg_len(nlh));
986 break;
987 case AUDIT_LIST_RULES:
988 err = audit_list_rules_send(skb, seq);
989 break;
990 case AUDIT_TRIM:
991 audit_trim_trees();
992 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
993 audit_log_format(ab, " op=trim res=1");
994 audit_log_end(ab);
995 break;
996 case AUDIT_MAKE_EQUIV: {
997 void *bufp = data;
998 u32 sizes[2];
999 size_t msglen = nlmsg_len(nlh);
1000 char *old, *new;
1001
1002 err = -EINVAL;
1003 if (msglen < 2 * sizeof(u32))
1004 break;
1005 memcpy(sizes, bufp, 2 * sizeof(u32));
1006 bufp += 2 * sizeof(u32);
1007 msglen -= 2 * sizeof(u32);
1008 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1009 if (IS_ERR(old)) {
1010 err = PTR_ERR(old);
1011 break;
1012 }
1013 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1014 if (IS_ERR(new)) {
1015 err = PTR_ERR(new);
1016 kfree(old);
1017 break;
1018 }
1019 /* OK, here comes... */
1020 err = audit_tag_tree(old, new);
1021
1022 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1023
1024 audit_log_format(ab, " op=make_equiv old=");
1025 audit_log_untrustedstring(ab, old);
1026 audit_log_format(ab, " new=");
1027 audit_log_untrustedstring(ab, new);
1028 audit_log_format(ab, " res=%d", !err);
1029 audit_log_end(ab);
1030 kfree(old);
1031 kfree(new);
1032 break;
1033 }
1034 case AUDIT_SIGNAL_INFO:
1035 len = 0;
1036 if (audit_sig_sid) {
1037 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1038 if (err)
1039 return err;
1040 }
1041 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1042 if (!sig_data) {
1043 if (audit_sig_sid)
1044 security_release_secctx(ctx, len);
1045 return -ENOMEM;
1046 }
1047 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1048 sig_data->pid = audit_sig_pid;
1049 if (audit_sig_sid) {
1050 memcpy(sig_data->ctx, ctx, len);
1051 security_release_secctx(ctx, len);
1052 }
1053 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1054 sig_data, sizeof(*sig_data) + len);
1055 kfree(sig_data);
1056 break;
1057 case AUDIT_TTY_GET: {
1058 struct audit_tty_status s;
1059 unsigned int t;
1060
1061 t = READ_ONCE(current->signal->audit_tty);
1062 s.enabled = t & AUDIT_TTY_ENABLE;
1063 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1064
1065 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1066 break;
1067 }
1068 case AUDIT_TTY_SET: {
1069 struct audit_tty_status s, old;
1070 struct audit_buffer *ab;
1071 unsigned int t;
1072
1073 memset(&s, 0, sizeof(s));
1074 /* guard against past and future API changes */
1075 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1076 /* check if new data is valid */
1077 if ((s.enabled != 0 && s.enabled != 1) ||
1078 (s.log_passwd != 0 && s.log_passwd != 1))
1079 err = -EINVAL;
1080
1081 if (err)
1082 t = READ_ONCE(current->signal->audit_tty);
1083 else {
1084 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1085 t = xchg(&current->signal->audit_tty, t);
1086 }
1087 old.enabled = t & AUDIT_TTY_ENABLE;
1088 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1089
1090 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1091 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1092 " old-log_passwd=%d new-log_passwd=%d res=%d",
1093 old.enabled, s.enabled, old.log_passwd,
1094 s.log_passwd, !err);
1095 audit_log_end(ab);
1096 break;
1097 }
1098 default:
1099 err = -EINVAL;
1100 break;
1101 }
1102
1103 return err < 0 ? err : 0;
1104 }
1105
1106 /*
1107 * Get message from skb. Each message is processed by audit_receive_msg.
1108 * Malformed skbs with wrong length are discarded silently.
1109 */
1110 static void audit_receive_skb(struct sk_buff *skb)
1111 {
1112 struct nlmsghdr *nlh;
1113 /*
1114 * len MUST be signed for nlmsg_next to be able to dec it below 0
1115 * if the nlmsg_len was not aligned
1116 */
1117 int len;
1118 int err;
1119
1120 nlh = nlmsg_hdr(skb);
1121 len = skb->len;
1122
1123 while (nlmsg_ok(nlh, len)) {
1124 err = audit_receive_msg(skb, nlh);
1125 /* if err or if this message says it wants a response */
1126 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1127 netlink_ack(skb, nlh, err);
1128
1129 nlh = nlmsg_next(nlh, &len);
1130 }
1131 }
1132
1133 /* Receive messages from netlink socket. */
1134 static void audit_receive(struct sk_buff *skb)
1135 {
1136 mutex_lock(&audit_cmd_mutex);
1137 audit_receive_skb(skb);
1138 mutex_unlock(&audit_cmd_mutex);
1139 }
1140
1141 /* Run custom bind function on netlink socket group connect or bind requests. */
1142 static int audit_bind(struct net *net, int group)
1143 {
1144 if (!capable(CAP_AUDIT_READ))
1145 return -EPERM;
1146
1147 return 0;
1148 }
1149
1150 static int __net_init audit_net_init(struct net *net)
1151 {
1152 struct netlink_kernel_cfg cfg = {
1153 .input = audit_receive,
1154 .bind = audit_bind,
1155 .flags = NL_CFG_F_NONROOT_RECV,
1156 .groups = AUDIT_NLGRP_MAX,
1157 };
1158
1159 struct audit_net *aunet = net_generic(net, audit_net_id);
1160
1161 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1162 if (aunet->nlsk == NULL) {
1163 audit_panic("cannot initialize netlink socket in namespace");
1164 return -ENOMEM;
1165 }
1166 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1167 return 0;
1168 }
1169
1170 static void __net_exit audit_net_exit(struct net *net)
1171 {
1172 struct audit_net *aunet = net_generic(net, audit_net_id);
1173 struct sock *sock = aunet->nlsk;
1174 if (sock == audit_sock) {
1175 audit_pid = 0;
1176 audit_sock = NULL;
1177 }
1178
1179 RCU_INIT_POINTER(aunet->nlsk, NULL);
1180 synchronize_net();
1181 netlink_kernel_release(sock);
1182 }
1183
1184 static struct pernet_operations audit_net_ops __net_initdata = {
1185 .init = audit_net_init,
1186 .exit = audit_net_exit,
1187 .id = &audit_net_id,
1188 .size = sizeof(struct audit_net),
1189 };
1190
1191 /* Initialize audit support at boot time. */
1192 static int __init audit_init(void)
1193 {
1194 int i;
1195
1196 if (audit_initialized == AUDIT_DISABLED)
1197 return 0;
1198
1199 pr_info("initializing netlink subsys (%s)\n",
1200 audit_default ? "enabled" : "disabled");
1201 register_pernet_subsys(&audit_net_ops);
1202
1203 skb_queue_head_init(&audit_queue);
1204 skb_queue_head_init(&audit_hold_queue);
1205 audit_initialized = AUDIT_INITIALIZED;
1206 audit_enabled = audit_default;
1207 audit_ever_enabled |= !!audit_default;
1208
1209 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1210 INIT_LIST_HEAD(&audit_inode_hash[i]);
1211
1212 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1213 if (IS_ERR(kauditd_task)) {
1214 int err = PTR_ERR(kauditd_task);
1215 panic("audit: failed to start the kauditd thread (%d)\n", err);
1216 }
1217
1218 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1219
1220 return 0;
1221 }
1222 __initcall(audit_init);
1223
1224 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1225 static int __init audit_enable(char *str)
1226 {
1227 audit_default = !!simple_strtol(str, NULL, 0);
1228 if (!audit_default)
1229 audit_initialized = AUDIT_DISABLED;
1230
1231 pr_info("%s\n", audit_default ?
1232 "enabled (after initialization)" : "disabled (until reboot)");
1233
1234 return 1;
1235 }
1236 __setup("audit=", audit_enable);
1237
1238 /* Process kernel command-line parameter at boot time.
1239 * audit_backlog_limit=<n> */
1240 static int __init audit_backlog_limit_set(char *str)
1241 {
1242 u32 audit_backlog_limit_arg;
1243
1244 pr_info("audit_backlog_limit: ");
1245 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1246 pr_cont("using default of %u, unable to parse %s\n",
1247 audit_backlog_limit, str);
1248 return 1;
1249 }
1250
1251 audit_backlog_limit = audit_backlog_limit_arg;
1252 pr_cont("%d\n", audit_backlog_limit);
1253
1254 return 1;
1255 }
1256 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1257
1258 static void audit_buffer_free(struct audit_buffer *ab)
1259 {
1260 unsigned long flags;
1261
1262 if (!ab)
1263 return;
1264
1265 kfree_skb(ab->skb);
1266 spin_lock_irqsave(&audit_freelist_lock, flags);
1267 if (audit_freelist_count > AUDIT_MAXFREE)
1268 kfree(ab);
1269 else {
1270 audit_freelist_count++;
1271 list_add(&ab->list, &audit_freelist);
1272 }
1273 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1274 }
1275
1276 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1277 gfp_t gfp_mask, int type)
1278 {
1279 unsigned long flags;
1280 struct audit_buffer *ab = NULL;
1281 struct nlmsghdr *nlh;
1282
1283 spin_lock_irqsave(&audit_freelist_lock, flags);
1284 if (!list_empty(&audit_freelist)) {
1285 ab = list_entry(audit_freelist.next,
1286 struct audit_buffer, list);
1287 list_del(&ab->list);
1288 --audit_freelist_count;
1289 }
1290 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1291
1292 if (!ab) {
1293 ab = kmalloc(sizeof(*ab), gfp_mask);
1294 if (!ab)
1295 goto err;
1296 }
1297
1298 ab->ctx = ctx;
1299 ab->gfp_mask = gfp_mask;
1300
1301 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1302 if (!ab->skb)
1303 goto err;
1304
1305 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1306 if (!nlh)
1307 goto out_kfree_skb;
1308
1309 return ab;
1310
1311 out_kfree_skb:
1312 kfree_skb(ab->skb);
1313 ab->skb = NULL;
1314 err:
1315 audit_buffer_free(ab);
1316 return NULL;
1317 }
1318
1319 /**
1320 * audit_serial - compute a serial number for the audit record
1321 *
1322 * Compute a serial number for the audit record. Audit records are
1323 * written to user-space as soon as they are generated, so a complete
1324 * audit record may be written in several pieces. The timestamp of the
1325 * record and this serial number are used by the user-space tools to
1326 * determine which pieces belong to the same audit record. The
1327 * (timestamp,serial) tuple is unique for each syscall and is live from
1328 * syscall entry to syscall exit.
1329 *
1330 * NOTE: Another possibility is to store the formatted records off the
1331 * audit context (for those records that have a context), and emit them
1332 * all at syscall exit. However, this could delay the reporting of
1333 * significant errors until syscall exit (or never, if the system
1334 * halts).
1335 */
1336 unsigned int audit_serial(void)
1337 {
1338 static atomic_t serial = ATOMIC_INIT(0);
1339
1340 return atomic_add_return(1, &serial);
1341 }
1342
1343 static inline void audit_get_stamp(struct audit_context *ctx,
1344 struct timespec *t, unsigned int *serial)
1345 {
1346 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1347 *t = CURRENT_TIME;
1348 *serial = audit_serial();
1349 }
1350 }
1351
1352 /*
1353 * Wait for auditd to drain the queue a little
1354 */
1355 static long wait_for_auditd(long sleep_time)
1356 {
1357 DECLARE_WAITQUEUE(wait, current);
1358
1359 if (audit_backlog_limit &&
1360 skb_queue_len(&audit_queue) > audit_backlog_limit) {
1361 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1362 set_current_state(TASK_UNINTERRUPTIBLE);
1363 sleep_time = schedule_timeout(sleep_time);
1364 remove_wait_queue(&audit_backlog_wait, &wait);
1365 }
1366
1367 return sleep_time;
1368 }
1369
1370 /**
1371 * audit_log_start - obtain an audit buffer
1372 * @ctx: audit_context (may be NULL)
1373 * @gfp_mask: type of allocation
1374 * @type: audit message type
1375 *
1376 * Returns audit_buffer pointer on success or NULL on error.
1377 *
1378 * Obtain an audit buffer. This routine does locking to obtain the
1379 * audit buffer, but then no locking is required for calls to
1380 * audit_log_*format. If the task (ctx) is a task that is currently in a
1381 * syscall, then the syscall is marked as auditable and an audit record
1382 * will be written at syscall exit. If there is no associated task, then
1383 * task context (ctx) should be NULL.
1384 */
1385 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1386 int type)
1387 {
1388 struct audit_buffer *ab = NULL;
1389 struct timespec t;
1390 unsigned int uninitialized_var(serial);
1391 int reserve = 5; /* Allow atomic callers to go up to five
1392 entries over the normal backlog limit */
1393 unsigned long timeout_start = jiffies;
1394
1395 if (audit_initialized != AUDIT_INITIALIZED)
1396 return NULL;
1397
1398 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
1399 return NULL;
1400
1401 if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1402 if (audit_pid && audit_pid == current->tgid)
1403 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1404 else
1405 reserve = 0;
1406 }
1407
1408 while (audit_backlog_limit
1409 && skb_queue_len(&audit_queue) > audit_backlog_limit + reserve) {
1410 if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1411 long sleep_time;
1412
1413 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1414 if (sleep_time > 0) {
1415 sleep_time = wait_for_auditd(sleep_time);
1416 if (sleep_time > 0)
1417 continue;
1418 }
1419 }
1420 if (audit_rate_check() && printk_ratelimit())
1421 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1422 skb_queue_len(&audit_queue),
1423 audit_backlog_limit);
1424 audit_log_lost("backlog limit exceeded");
1425 audit_backlog_wait_time = 0;
1426 wake_up(&audit_backlog_wait);
1427 return NULL;
1428 }
1429
1430 if (!reserve && !audit_backlog_wait_time)
1431 audit_backlog_wait_time = audit_backlog_wait_time_master;
1432
1433 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1434 if (!ab) {
1435 audit_log_lost("out of memory in audit_log_start");
1436 return NULL;
1437 }
1438
1439 audit_get_stamp(ab->ctx, &t, &serial);
1440
1441 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1442 t.tv_sec, t.tv_nsec/1000000, serial);
1443 return ab;
1444 }
1445
1446 /**
1447 * audit_expand - expand skb in the audit buffer
1448 * @ab: audit_buffer
1449 * @extra: space to add at tail of the skb
1450 *
1451 * Returns 0 (no space) on failed expansion, or available space if
1452 * successful.
1453 */
1454 static inline int audit_expand(struct audit_buffer *ab, int extra)
1455 {
1456 struct sk_buff *skb = ab->skb;
1457 int oldtail = skb_tailroom(skb);
1458 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1459 int newtail = skb_tailroom(skb);
1460
1461 if (ret < 0) {
1462 audit_log_lost("out of memory in audit_expand");
1463 return 0;
1464 }
1465
1466 skb->truesize += newtail - oldtail;
1467 return newtail;
1468 }
1469
1470 /*
1471 * Format an audit message into the audit buffer. If there isn't enough
1472 * room in the audit buffer, more room will be allocated and vsnprint
1473 * will be called a second time. Currently, we assume that a printk
1474 * can't format message larger than 1024 bytes, so we don't either.
1475 */
1476 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1477 va_list args)
1478 {
1479 int len, avail;
1480 struct sk_buff *skb;
1481 va_list args2;
1482
1483 if (!ab)
1484 return;
1485
1486 BUG_ON(!ab->skb);
1487 skb = ab->skb;
1488 avail = skb_tailroom(skb);
1489 if (avail == 0) {
1490 avail = audit_expand(ab, AUDIT_BUFSIZ);
1491 if (!avail)
1492 goto out;
1493 }
1494 va_copy(args2, args);
1495 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1496 if (len >= avail) {
1497 /* The printk buffer is 1024 bytes long, so if we get
1498 * here and AUDIT_BUFSIZ is at least 1024, then we can
1499 * log everything that printk could have logged. */
1500 avail = audit_expand(ab,
1501 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1502 if (!avail)
1503 goto out_va_end;
1504 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1505 }
1506 if (len > 0)
1507 skb_put(skb, len);
1508 out_va_end:
1509 va_end(args2);
1510 out:
1511 return;
1512 }
1513
1514 /**
1515 * audit_log_format - format a message into the audit buffer.
1516 * @ab: audit_buffer
1517 * @fmt: format string
1518 * @...: optional parameters matching @fmt string
1519 *
1520 * All the work is done in audit_log_vformat.
1521 */
1522 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1523 {
1524 va_list args;
1525
1526 if (!ab)
1527 return;
1528 va_start(args, fmt);
1529 audit_log_vformat(ab, fmt, args);
1530 va_end(args);
1531 }
1532
1533 /**
1534 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1535 * @ab: the audit_buffer
1536 * @buf: buffer to convert to hex
1537 * @len: length of @buf to be converted
1538 *
1539 * No return value; failure to expand is silently ignored.
1540 *
1541 * This function will take the passed buf and convert it into a string of
1542 * ascii hex digits. The new string is placed onto the skb.
1543 */
1544 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1545 size_t len)
1546 {
1547 int i, avail, new_len;
1548 unsigned char *ptr;
1549 struct sk_buff *skb;
1550
1551 if (!ab)
1552 return;
1553
1554 BUG_ON(!ab->skb);
1555 skb = ab->skb;
1556 avail = skb_tailroom(skb);
1557 new_len = len<<1;
1558 if (new_len >= avail) {
1559 /* Round the buffer request up to the next multiple */
1560 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1561 avail = audit_expand(ab, new_len);
1562 if (!avail)
1563 return;
1564 }
1565
1566 ptr = skb_tail_pointer(skb);
1567 for (i = 0; i < len; i++)
1568 ptr = hex_byte_pack_upper(ptr, buf[i]);
1569 *ptr = 0;
1570 skb_put(skb, len << 1); /* new string is twice the old string */
1571 }
1572
1573 /*
1574 * Format a string of no more than slen characters into the audit buffer,
1575 * enclosed in quote marks.
1576 */
1577 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1578 size_t slen)
1579 {
1580 int avail, new_len;
1581 unsigned char *ptr;
1582 struct sk_buff *skb;
1583
1584 if (!ab)
1585 return;
1586
1587 BUG_ON(!ab->skb);
1588 skb = ab->skb;
1589 avail = skb_tailroom(skb);
1590 new_len = slen + 3; /* enclosing quotes + null terminator */
1591 if (new_len > avail) {
1592 avail = audit_expand(ab, new_len);
1593 if (!avail)
1594 return;
1595 }
1596 ptr = skb_tail_pointer(skb);
1597 *ptr++ = '"';
1598 memcpy(ptr, string, slen);
1599 ptr += slen;
1600 *ptr++ = '"';
1601 *ptr = 0;
1602 skb_put(skb, slen + 2); /* don't include null terminator */
1603 }
1604
1605 /**
1606 * audit_string_contains_control - does a string need to be logged in hex
1607 * @string: string to be checked
1608 * @len: max length of the string to check
1609 */
1610 bool audit_string_contains_control(const char *string, size_t len)
1611 {
1612 const unsigned char *p;
1613 for (p = string; p < (const unsigned char *)string + len; p++) {
1614 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1615 return true;
1616 }
1617 return false;
1618 }
1619
1620 /**
1621 * audit_log_n_untrustedstring - log a string that may contain random characters
1622 * @ab: audit_buffer
1623 * @len: length of string (not including trailing null)
1624 * @string: string to be logged
1625 *
1626 * This code will escape a string that is passed to it if the string
1627 * contains a control character, unprintable character, double quote mark,
1628 * or a space. Unescaped strings will start and end with a double quote mark.
1629 * Strings that are escaped are printed in hex (2 digits per char).
1630 *
1631 * The caller specifies the number of characters in the string to log, which may
1632 * or may not be the entire string.
1633 */
1634 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1635 size_t len)
1636 {
1637 if (audit_string_contains_control(string, len))
1638 audit_log_n_hex(ab, string, len);
1639 else
1640 audit_log_n_string(ab, string, len);
1641 }
1642
1643 /**
1644 * audit_log_untrustedstring - log a string that may contain random characters
1645 * @ab: audit_buffer
1646 * @string: string to be logged
1647 *
1648 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1649 * determine string length.
1650 */
1651 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1652 {
1653 audit_log_n_untrustedstring(ab, string, strlen(string));
1654 }
1655
1656 /* This is a helper-function to print the escaped d_path */
1657 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1658 const struct path *path)
1659 {
1660 char *p, *pathname;
1661
1662 if (prefix)
1663 audit_log_format(ab, "%s", prefix);
1664
1665 /* We will allow 11 spaces for ' (deleted)' to be appended */
1666 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1667 if (!pathname) {
1668 audit_log_string(ab, "<no_memory>");
1669 return;
1670 }
1671 p = d_path(path, pathname, PATH_MAX+11);
1672 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1673 /* FIXME: can we save some information here? */
1674 audit_log_string(ab, "<too_long>");
1675 } else
1676 audit_log_untrustedstring(ab, p);
1677 kfree(pathname);
1678 }
1679
1680 void audit_log_session_info(struct audit_buffer *ab)
1681 {
1682 unsigned int sessionid = audit_get_sessionid(current);
1683 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1684
1685 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1686 }
1687
1688 void audit_log_key(struct audit_buffer *ab, char *key)
1689 {
1690 audit_log_format(ab, " key=");
1691 if (key)
1692 audit_log_untrustedstring(ab, key);
1693 else
1694 audit_log_format(ab, "(null)");
1695 }
1696
1697 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1698 {
1699 int i;
1700
1701 audit_log_format(ab, " %s=", prefix);
1702 CAP_FOR_EACH_U32(i) {
1703 audit_log_format(ab, "%08x",
1704 cap->cap[CAP_LAST_U32 - i]);
1705 }
1706 }
1707
1708 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1709 {
1710 kernel_cap_t *perm = &name->fcap.permitted;
1711 kernel_cap_t *inh = &name->fcap.inheritable;
1712 int log = 0;
1713
1714 if (!cap_isclear(*perm)) {
1715 audit_log_cap(ab, "cap_fp", perm);
1716 log = 1;
1717 }
1718 if (!cap_isclear(*inh)) {
1719 audit_log_cap(ab, "cap_fi", inh);
1720 log = 1;
1721 }
1722
1723 if (log)
1724 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1725 name->fcap.fE, name->fcap_ver);
1726 }
1727
1728 static inline int audit_copy_fcaps(struct audit_names *name,
1729 const struct dentry *dentry)
1730 {
1731 struct cpu_vfs_cap_data caps;
1732 int rc;
1733
1734 if (!dentry)
1735 return 0;
1736
1737 rc = get_vfs_caps_from_disk(dentry, &caps);
1738 if (rc)
1739 return rc;
1740
1741 name->fcap.permitted = caps.permitted;
1742 name->fcap.inheritable = caps.inheritable;
1743 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1744 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1745 VFS_CAP_REVISION_SHIFT;
1746
1747 return 0;
1748 }
1749
1750 /* Copy inode data into an audit_names. */
1751 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1752 struct inode *inode)
1753 {
1754 name->ino = inode->i_ino;
1755 name->dev = inode->i_sb->s_dev;
1756 name->mode = inode->i_mode;
1757 name->uid = inode->i_uid;
1758 name->gid = inode->i_gid;
1759 name->rdev = inode->i_rdev;
1760 security_inode_getsecid(inode, &name->osid);
1761 audit_copy_fcaps(name, dentry);
1762 }
1763
1764 /**
1765 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1766 * @context: audit_context for the task
1767 * @n: audit_names structure with reportable details
1768 * @path: optional path to report instead of audit_names->name
1769 * @record_num: record number to report when handling a list of names
1770 * @call_panic: optional pointer to int that will be updated if secid fails
1771 */
1772 void audit_log_name(struct audit_context *context, struct audit_names *n,
1773 struct path *path, int record_num, int *call_panic)
1774 {
1775 struct audit_buffer *ab;
1776 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1777 if (!ab)
1778 return;
1779
1780 audit_log_format(ab, "item=%d", record_num);
1781
1782 if (path)
1783 audit_log_d_path(ab, " name=", path);
1784 else if (n->name) {
1785 switch (n->name_len) {
1786 case AUDIT_NAME_FULL:
1787 /* log the full path */
1788 audit_log_format(ab, " name=");
1789 audit_log_untrustedstring(ab, n->name->name);
1790 break;
1791 case 0:
1792 /* name was specified as a relative path and the
1793 * directory component is the cwd */
1794 audit_log_d_path(ab, " name=", &context->pwd);
1795 break;
1796 default:
1797 /* log the name's directory component */
1798 audit_log_format(ab, " name=");
1799 audit_log_n_untrustedstring(ab, n->name->name,
1800 n->name_len);
1801 }
1802 } else
1803 audit_log_format(ab, " name=(null)");
1804
1805 if (n->ino != AUDIT_INO_UNSET)
1806 audit_log_format(ab, " inode=%lu"
1807 " dev=%02x:%02x mode=%#ho"
1808 " ouid=%u ogid=%u rdev=%02x:%02x",
1809 n->ino,
1810 MAJOR(n->dev),
1811 MINOR(n->dev),
1812 n->mode,
1813 from_kuid(&init_user_ns, n->uid),
1814 from_kgid(&init_user_ns, n->gid),
1815 MAJOR(n->rdev),
1816 MINOR(n->rdev));
1817 if (n->osid != 0) {
1818 char *ctx = NULL;
1819 u32 len;
1820 if (security_secid_to_secctx(
1821 n->osid, &ctx, &len)) {
1822 audit_log_format(ab, " osid=%u", n->osid);
1823 if (call_panic)
1824 *call_panic = 2;
1825 } else {
1826 audit_log_format(ab, " obj=%s", ctx);
1827 security_release_secctx(ctx, len);
1828 }
1829 }
1830
1831 /* log the audit_names record type */
1832 audit_log_format(ab, " nametype=");
1833 switch(n->type) {
1834 case AUDIT_TYPE_NORMAL:
1835 audit_log_format(ab, "NORMAL");
1836 break;
1837 case AUDIT_TYPE_PARENT:
1838 audit_log_format(ab, "PARENT");
1839 break;
1840 case AUDIT_TYPE_CHILD_DELETE:
1841 audit_log_format(ab, "DELETE");
1842 break;
1843 case AUDIT_TYPE_CHILD_CREATE:
1844 audit_log_format(ab, "CREATE");
1845 break;
1846 default:
1847 audit_log_format(ab, "UNKNOWN");
1848 break;
1849 }
1850
1851 audit_log_fcaps(ab, n);
1852 audit_log_end(ab);
1853 }
1854
1855 int audit_log_task_context(struct audit_buffer *ab)
1856 {
1857 char *ctx = NULL;
1858 unsigned len;
1859 int error;
1860 u32 sid;
1861
1862 security_task_getsecid(current, &sid);
1863 if (!sid)
1864 return 0;
1865
1866 error = security_secid_to_secctx(sid, &ctx, &len);
1867 if (error) {
1868 if (error != -EINVAL)
1869 goto error_path;
1870 return 0;
1871 }
1872
1873 audit_log_format(ab, " subj=%s", ctx);
1874 security_release_secctx(ctx, len);
1875 return 0;
1876
1877 error_path:
1878 audit_panic("error in audit_log_task_context");
1879 return error;
1880 }
1881 EXPORT_SYMBOL(audit_log_task_context);
1882
1883 void audit_log_d_path_exe(struct audit_buffer *ab,
1884 struct mm_struct *mm)
1885 {
1886 struct file *exe_file;
1887
1888 if (!mm)
1889 goto out_null;
1890
1891 exe_file = get_mm_exe_file(mm);
1892 if (!exe_file)
1893 goto out_null;
1894
1895 audit_log_d_path(ab, " exe=", &exe_file->f_path);
1896 fput(exe_file);
1897 return;
1898 out_null:
1899 audit_log_format(ab, " exe=(null)");
1900 }
1901
1902 struct tty_struct *audit_get_tty(struct task_struct *tsk)
1903 {
1904 struct tty_struct *tty = NULL;
1905 unsigned long flags;
1906
1907 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1908 if (tsk->signal)
1909 tty = tty_kref_get(tsk->signal->tty);
1910 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1911 return tty;
1912 }
1913
1914 void audit_put_tty(struct tty_struct *tty)
1915 {
1916 tty_kref_put(tty);
1917 }
1918
1919 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1920 {
1921 const struct cred *cred;
1922 char comm[sizeof(tsk->comm)];
1923 struct tty_struct *tty;
1924
1925 if (!ab)
1926 return;
1927
1928 /* tsk == current */
1929 cred = current_cred();
1930 tty = audit_get_tty(tsk);
1931 audit_log_format(ab,
1932 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1933 " euid=%u suid=%u fsuid=%u"
1934 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1935 task_ppid_nr(tsk),
1936 task_pid_nr(tsk),
1937 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1938 from_kuid(&init_user_ns, cred->uid),
1939 from_kgid(&init_user_ns, cred->gid),
1940 from_kuid(&init_user_ns, cred->euid),
1941 from_kuid(&init_user_ns, cred->suid),
1942 from_kuid(&init_user_ns, cred->fsuid),
1943 from_kgid(&init_user_ns, cred->egid),
1944 from_kgid(&init_user_ns, cred->sgid),
1945 from_kgid(&init_user_ns, cred->fsgid),
1946 tty ? tty_name(tty) : "(none)",
1947 audit_get_sessionid(tsk));
1948 audit_put_tty(tty);
1949 audit_log_format(ab, " comm=");
1950 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1951 audit_log_d_path_exe(ab, tsk->mm);
1952 audit_log_task_context(ab);
1953 }
1954 EXPORT_SYMBOL(audit_log_task_info);
1955
1956 /**
1957 * audit_log_link_denied - report a link restriction denial
1958 * @operation: specific link operation
1959 * @link: the path that triggered the restriction
1960 */
1961 void audit_log_link_denied(const char *operation, struct path *link)
1962 {
1963 struct audit_buffer *ab;
1964 struct audit_names *name;
1965
1966 name = kzalloc(sizeof(*name), GFP_NOFS);
1967 if (!name)
1968 return;
1969
1970 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1971 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1972 AUDIT_ANOM_LINK);
1973 if (!ab)
1974 goto out;
1975 audit_log_format(ab, "op=%s", operation);
1976 audit_log_task_info(ab, current);
1977 audit_log_format(ab, " res=0");
1978 audit_log_end(ab);
1979
1980 /* Generate AUDIT_PATH record with object. */
1981 name->type = AUDIT_TYPE_NORMAL;
1982 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1983 audit_log_name(current->audit_context, name, link, 0, NULL);
1984 out:
1985 kfree(name);
1986 }
1987
1988 /**
1989 * audit_log_end - end one audit record
1990 * @ab: the audit_buffer
1991 *
1992 * We can not do a netlink send inside an irq context because it blocks (last
1993 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
1994 * queue and a tasklet is scheduled to remove them from the queue outside the
1995 * irq context. May be called in any context.
1996 */
1997 void audit_log_end(struct audit_buffer *ab)
1998 {
1999 if (!ab)
2000 return;
2001 if (!audit_rate_check()) {
2002 audit_log_lost("rate limit exceeded");
2003 } else {
2004 skb_queue_tail(&audit_queue, ab->skb);
2005 wake_up_interruptible(&kauditd_wait);
2006 ab->skb = NULL;
2007 }
2008 audit_buffer_free(ab);
2009 }
2010
2011 /**
2012 * audit_log - Log an audit record
2013 * @ctx: audit context
2014 * @gfp_mask: type of allocation
2015 * @type: audit message type
2016 * @fmt: format string to use
2017 * @...: variable parameters matching the format string
2018 *
2019 * This is a convenience function that calls audit_log_start,
2020 * audit_log_vformat, and audit_log_end. It may be called
2021 * in any context.
2022 */
2023 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2024 const char *fmt, ...)
2025 {
2026 struct audit_buffer *ab;
2027 va_list args;
2028
2029 ab = audit_log_start(ctx, gfp_mask, type);
2030 if (ab) {
2031 va_start(args, fmt);
2032 audit_log_vformat(ab, fmt, args);
2033 va_end(args);
2034 audit_log_end(ab);
2035 }
2036 }
2037
2038 #ifdef CONFIG_SECURITY
2039 /**
2040 * audit_log_secctx - Converts and logs SELinux context
2041 * @ab: audit_buffer
2042 * @secid: security number
2043 *
2044 * This is a helper function that calls security_secid_to_secctx to convert
2045 * secid to secctx and then adds the (converted) SELinux context to the audit
2046 * log by calling audit_log_format, thus also preventing leak of internal secid
2047 * to userspace. If secid cannot be converted audit_panic is called.
2048 */
2049 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2050 {
2051 u32 len;
2052 char *secctx;
2053
2054 if (security_secid_to_secctx(secid, &secctx, &len)) {
2055 audit_panic("Cannot convert secid to context");
2056 } else {
2057 audit_log_format(ab, " obj=%s", secctx);
2058 security_release_secctx(secctx, len);
2059 }
2060 }
2061 EXPORT_SYMBOL(audit_log_secctx);
2062 #endif
2063
2064 EXPORT_SYMBOL(audit_log_start);
2065 EXPORT_SYMBOL(audit_log_end);
2066 EXPORT_SYMBOL(audit_log_format);
2067 EXPORT_SYMBOL(audit_log);