]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/bpf/btf.c
bpf: Support readonly/readwrite buffers in verifier
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / btf.c
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <net/sock.h>
25
26 /* BTF (BPF Type Format) is the meta data format which describes
27 * the data types of BPF program/map. Hence, it basically focus
28 * on the C programming language which the modern BPF is primary
29 * using.
30 *
31 * ELF Section:
32 * ~~~~~~~~~~~
33 * The BTF data is stored under the ".BTF" ELF section
34 *
35 * struct btf_type:
36 * ~~~~~~~~~~~~~~~
37 * Each 'struct btf_type' object describes a C data type.
38 * Depending on the type it is describing, a 'struct btf_type'
39 * object may be followed by more data. F.e.
40 * To describe an array, 'struct btf_type' is followed by
41 * 'struct btf_array'.
42 *
43 * 'struct btf_type' and any extra data following it are
44 * 4 bytes aligned.
45 *
46 * Type section:
47 * ~~~~~~~~~~~~~
48 * The BTF type section contains a list of 'struct btf_type' objects.
49 * Each one describes a C type. Recall from the above section
50 * that a 'struct btf_type' object could be immediately followed by extra
51 * data in order to desribe some particular C types.
52 *
53 * type_id:
54 * ~~~~~~~
55 * Each btf_type object is identified by a type_id. The type_id
56 * is implicitly implied by the location of the btf_type object in
57 * the BTF type section. The first one has type_id 1. The second
58 * one has type_id 2...etc. Hence, an earlier btf_type has
59 * a smaller type_id.
60 *
61 * A btf_type object may refer to another btf_type object by using
62 * type_id (i.e. the "type" in the "struct btf_type").
63 *
64 * NOTE that we cannot assume any reference-order.
65 * A btf_type object can refer to an earlier btf_type object
66 * but it can also refer to a later btf_type object.
67 *
68 * For example, to describe "const void *". A btf_type
69 * object describing "const" may refer to another btf_type
70 * object describing "void *". This type-reference is done
71 * by specifying type_id:
72 *
73 * [1] CONST (anon) type_id=2
74 * [2] PTR (anon) type_id=0
75 *
76 * The above is the btf_verifier debug log:
77 * - Each line started with "[?]" is a btf_type object
78 * - [?] is the type_id of the btf_type object.
79 * - CONST/PTR is the BTF_KIND_XXX
80 * - "(anon)" is the name of the type. It just
81 * happens that CONST and PTR has no name.
82 * - type_id=XXX is the 'u32 type' in btf_type
83 *
84 * NOTE: "void" has type_id 0
85 *
86 * String section:
87 * ~~~~~~~~~~~~~~
88 * The BTF string section contains the names used by the type section.
89 * Each string is referred by an "offset" from the beginning of the
90 * string section.
91 *
92 * Each string is '\0' terminated.
93 *
94 * The first character in the string section must be '\0'
95 * which is used to mean 'anonymous'. Some btf_type may not
96 * have a name.
97 */
98
99 /* BTF verification:
100 *
101 * To verify BTF data, two passes are needed.
102 *
103 * Pass #1
104 * ~~~~~~~
105 * The first pass is to collect all btf_type objects to
106 * an array: "btf->types".
107 *
108 * Depending on the C type that a btf_type is describing,
109 * a btf_type may be followed by extra data. We don't know
110 * how many btf_type is there, and more importantly we don't
111 * know where each btf_type is located in the type section.
112 *
113 * Without knowing the location of each type_id, most verifications
114 * cannot be done. e.g. an earlier btf_type may refer to a later
115 * btf_type (recall the "const void *" above), so we cannot
116 * check this type-reference in the first pass.
117 *
118 * In the first pass, it still does some verifications (e.g.
119 * checking the name is a valid offset to the string section).
120 *
121 * Pass #2
122 * ~~~~~~~
123 * The main focus is to resolve a btf_type that is referring
124 * to another type.
125 *
126 * We have to ensure the referring type:
127 * 1) does exist in the BTF (i.e. in btf->types[])
128 * 2) does not cause a loop:
129 * struct A {
130 * struct B b;
131 * };
132 *
133 * struct B {
134 * struct A a;
135 * };
136 *
137 * btf_type_needs_resolve() decides if a btf_type needs
138 * to be resolved.
139 *
140 * The needs_resolve type implements the "resolve()" ops which
141 * essentially does a DFS and detects backedge.
142 *
143 * During resolve (or DFS), different C types have different
144 * "RESOLVED" conditions.
145 *
146 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
147 * members because a member is always referring to another
148 * type. A struct's member can be treated as "RESOLVED" if
149 * it is referring to a BTF_KIND_PTR. Otherwise, the
150 * following valid C struct would be rejected:
151 *
152 * struct A {
153 * int m;
154 * struct A *a;
155 * };
156 *
157 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
158 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
159 * detect a pointer loop, e.g.:
160 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
161 * ^ |
162 * +-----------------------------------------+
163 *
164 */
165
166 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
167 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
168 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
169 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
170 #define BITS_ROUNDUP_BYTES(bits) \
171 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
172
173 #define BTF_INFO_MASK 0x8f00ffff
174 #define BTF_INT_MASK 0x0fffffff
175 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
176 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
177
178 /* 16MB for 64k structs and each has 16 members and
179 * a few MB spaces for the string section.
180 * The hard limit is S32_MAX.
181 */
182 #define BTF_MAX_SIZE (16 * 1024 * 1024)
183
184 #define for_each_member_from(i, from, struct_type, member) \
185 for (i = from, member = btf_type_member(struct_type) + from; \
186 i < btf_type_vlen(struct_type); \
187 i++, member++)
188
189 #define for_each_vsi(i, struct_type, member) \
190 for (i = 0, member = btf_type_var_secinfo(struct_type); \
191 i < btf_type_vlen(struct_type); \
192 i++, member++)
193
194 #define for_each_vsi_from(i, from, struct_type, member) \
195 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
196 i < btf_type_vlen(struct_type); \
197 i++, member++)
198
199 DEFINE_IDR(btf_idr);
200 DEFINE_SPINLOCK(btf_idr_lock);
201
202 struct btf {
203 void *data;
204 struct btf_type **types;
205 u32 *resolved_ids;
206 u32 *resolved_sizes;
207 const char *strings;
208 void *nohdr_data;
209 struct btf_header hdr;
210 u32 nr_types;
211 u32 types_size;
212 u32 data_size;
213 refcount_t refcnt;
214 u32 id;
215 struct rcu_head rcu;
216 };
217
218 enum verifier_phase {
219 CHECK_META,
220 CHECK_TYPE,
221 };
222
223 struct resolve_vertex {
224 const struct btf_type *t;
225 u32 type_id;
226 u16 next_member;
227 };
228
229 enum visit_state {
230 NOT_VISITED,
231 VISITED,
232 RESOLVED,
233 };
234
235 enum resolve_mode {
236 RESOLVE_TBD, /* To Be Determined */
237 RESOLVE_PTR, /* Resolving for Pointer */
238 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
239 * or array
240 */
241 };
242
243 #define MAX_RESOLVE_DEPTH 32
244
245 struct btf_sec_info {
246 u32 off;
247 u32 len;
248 };
249
250 struct btf_verifier_env {
251 struct btf *btf;
252 u8 *visit_states;
253 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
254 struct bpf_verifier_log log;
255 u32 log_type_id;
256 u32 top_stack;
257 enum verifier_phase phase;
258 enum resolve_mode resolve_mode;
259 };
260
261 static const char * const btf_kind_str[NR_BTF_KINDS] = {
262 [BTF_KIND_UNKN] = "UNKNOWN",
263 [BTF_KIND_INT] = "INT",
264 [BTF_KIND_PTR] = "PTR",
265 [BTF_KIND_ARRAY] = "ARRAY",
266 [BTF_KIND_STRUCT] = "STRUCT",
267 [BTF_KIND_UNION] = "UNION",
268 [BTF_KIND_ENUM] = "ENUM",
269 [BTF_KIND_FWD] = "FWD",
270 [BTF_KIND_TYPEDEF] = "TYPEDEF",
271 [BTF_KIND_VOLATILE] = "VOLATILE",
272 [BTF_KIND_CONST] = "CONST",
273 [BTF_KIND_RESTRICT] = "RESTRICT",
274 [BTF_KIND_FUNC] = "FUNC",
275 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
276 [BTF_KIND_VAR] = "VAR",
277 [BTF_KIND_DATASEC] = "DATASEC",
278 };
279
280 static const char *btf_type_str(const struct btf_type *t)
281 {
282 return btf_kind_str[BTF_INFO_KIND(t->info)];
283 }
284
285 struct btf_kind_operations {
286 s32 (*check_meta)(struct btf_verifier_env *env,
287 const struct btf_type *t,
288 u32 meta_left);
289 int (*resolve)(struct btf_verifier_env *env,
290 const struct resolve_vertex *v);
291 int (*check_member)(struct btf_verifier_env *env,
292 const struct btf_type *struct_type,
293 const struct btf_member *member,
294 const struct btf_type *member_type);
295 int (*check_kflag_member)(struct btf_verifier_env *env,
296 const struct btf_type *struct_type,
297 const struct btf_member *member,
298 const struct btf_type *member_type);
299 void (*log_details)(struct btf_verifier_env *env,
300 const struct btf_type *t);
301 void (*seq_show)(const struct btf *btf, const struct btf_type *t,
302 u32 type_id, void *data, u8 bits_offsets,
303 struct seq_file *m);
304 };
305
306 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
307 static struct btf_type btf_void;
308
309 static int btf_resolve(struct btf_verifier_env *env,
310 const struct btf_type *t, u32 type_id);
311
312 static bool btf_type_is_modifier(const struct btf_type *t)
313 {
314 /* Some of them is not strictly a C modifier
315 * but they are grouped into the same bucket
316 * for BTF concern:
317 * A type (t) that refers to another
318 * type through t->type AND its size cannot
319 * be determined without following the t->type.
320 *
321 * ptr does not fall into this bucket
322 * because its size is always sizeof(void *).
323 */
324 switch (BTF_INFO_KIND(t->info)) {
325 case BTF_KIND_TYPEDEF:
326 case BTF_KIND_VOLATILE:
327 case BTF_KIND_CONST:
328 case BTF_KIND_RESTRICT:
329 return true;
330 }
331
332 return false;
333 }
334
335 bool btf_type_is_void(const struct btf_type *t)
336 {
337 return t == &btf_void;
338 }
339
340 static bool btf_type_is_fwd(const struct btf_type *t)
341 {
342 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
343 }
344
345 static bool btf_type_nosize(const struct btf_type *t)
346 {
347 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
348 btf_type_is_func(t) || btf_type_is_func_proto(t);
349 }
350
351 static bool btf_type_nosize_or_null(const struct btf_type *t)
352 {
353 return !t || btf_type_nosize(t);
354 }
355
356 /* union is only a special case of struct:
357 * all its offsetof(member) == 0
358 */
359 static bool btf_type_is_struct(const struct btf_type *t)
360 {
361 u8 kind = BTF_INFO_KIND(t->info);
362
363 return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
364 }
365
366 static bool __btf_type_is_struct(const struct btf_type *t)
367 {
368 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
369 }
370
371 static bool btf_type_is_array(const struct btf_type *t)
372 {
373 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
374 }
375
376 static bool btf_type_is_var(const struct btf_type *t)
377 {
378 return BTF_INFO_KIND(t->info) == BTF_KIND_VAR;
379 }
380
381 static bool btf_type_is_datasec(const struct btf_type *t)
382 {
383 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
384 }
385
386 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
387 {
388 const struct btf_type *t;
389 const char *tname;
390 u32 i;
391
392 for (i = 1; i <= btf->nr_types; i++) {
393 t = btf->types[i];
394 if (BTF_INFO_KIND(t->info) != kind)
395 continue;
396
397 tname = btf_name_by_offset(btf, t->name_off);
398 if (!strcmp(tname, name))
399 return i;
400 }
401
402 return -ENOENT;
403 }
404
405 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
406 u32 id, u32 *res_id)
407 {
408 const struct btf_type *t = btf_type_by_id(btf, id);
409
410 while (btf_type_is_modifier(t)) {
411 id = t->type;
412 t = btf_type_by_id(btf, t->type);
413 }
414
415 if (res_id)
416 *res_id = id;
417
418 return t;
419 }
420
421 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
422 u32 id, u32 *res_id)
423 {
424 const struct btf_type *t;
425
426 t = btf_type_skip_modifiers(btf, id, NULL);
427 if (!btf_type_is_ptr(t))
428 return NULL;
429
430 return btf_type_skip_modifiers(btf, t->type, res_id);
431 }
432
433 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
434 u32 id, u32 *res_id)
435 {
436 const struct btf_type *ptype;
437
438 ptype = btf_type_resolve_ptr(btf, id, res_id);
439 if (ptype && btf_type_is_func_proto(ptype))
440 return ptype;
441
442 return NULL;
443 }
444
445 /* Types that act only as a source, not sink or intermediate
446 * type when resolving.
447 */
448 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
449 {
450 return btf_type_is_var(t) ||
451 btf_type_is_datasec(t);
452 }
453
454 /* What types need to be resolved?
455 *
456 * btf_type_is_modifier() is an obvious one.
457 *
458 * btf_type_is_struct() because its member refers to
459 * another type (through member->type).
460 *
461 * btf_type_is_var() because the variable refers to
462 * another type. btf_type_is_datasec() holds multiple
463 * btf_type_is_var() types that need resolving.
464 *
465 * btf_type_is_array() because its element (array->type)
466 * refers to another type. Array can be thought of a
467 * special case of struct while array just has the same
468 * member-type repeated by array->nelems of times.
469 */
470 static bool btf_type_needs_resolve(const struct btf_type *t)
471 {
472 return btf_type_is_modifier(t) ||
473 btf_type_is_ptr(t) ||
474 btf_type_is_struct(t) ||
475 btf_type_is_array(t) ||
476 btf_type_is_var(t) ||
477 btf_type_is_datasec(t);
478 }
479
480 /* t->size can be used */
481 static bool btf_type_has_size(const struct btf_type *t)
482 {
483 switch (BTF_INFO_KIND(t->info)) {
484 case BTF_KIND_INT:
485 case BTF_KIND_STRUCT:
486 case BTF_KIND_UNION:
487 case BTF_KIND_ENUM:
488 case BTF_KIND_DATASEC:
489 return true;
490 }
491
492 return false;
493 }
494
495 static const char *btf_int_encoding_str(u8 encoding)
496 {
497 if (encoding == 0)
498 return "(none)";
499 else if (encoding == BTF_INT_SIGNED)
500 return "SIGNED";
501 else if (encoding == BTF_INT_CHAR)
502 return "CHAR";
503 else if (encoding == BTF_INT_BOOL)
504 return "BOOL";
505 else
506 return "UNKN";
507 }
508
509 static u32 btf_type_int(const struct btf_type *t)
510 {
511 return *(u32 *)(t + 1);
512 }
513
514 static const struct btf_array *btf_type_array(const struct btf_type *t)
515 {
516 return (const struct btf_array *)(t + 1);
517 }
518
519 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
520 {
521 return (const struct btf_enum *)(t + 1);
522 }
523
524 static const struct btf_var *btf_type_var(const struct btf_type *t)
525 {
526 return (const struct btf_var *)(t + 1);
527 }
528
529 static const struct btf_var_secinfo *btf_type_var_secinfo(const struct btf_type *t)
530 {
531 return (const struct btf_var_secinfo *)(t + 1);
532 }
533
534 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
535 {
536 return kind_ops[BTF_INFO_KIND(t->info)];
537 }
538
539 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
540 {
541 return BTF_STR_OFFSET_VALID(offset) &&
542 offset < btf->hdr.str_len;
543 }
544
545 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
546 {
547 if ((first ? !isalpha(c) :
548 !isalnum(c)) &&
549 c != '_' &&
550 ((c == '.' && !dot_ok) ||
551 c != '.'))
552 return false;
553 return true;
554 }
555
556 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
557 {
558 /* offset must be valid */
559 const char *src = &btf->strings[offset];
560 const char *src_limit;
561
562 if (!__btf_name_char_ok(*src, true, dot_ok))
563 return false;
564
565 /* set a limit on identifier length */
566 src_limit = src + KSYM_NAME_LEN;
567 src++;
568 while (*src && src < src_limit) {
569 if (!__btf_name_char_ok(*src, false, dot_ok))
570 return false;
571 src++;
572 }
573
574 return !*src;
575 }
576
577 /* Only C-style identifier is permitted. This can be relaxed if
578 * necessary.
579 */
580 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
581 {
582 return __btf_name_valid(btf, offset, false);
583 }
584
585 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
586 {
587 return __btf_name_valid(btf, offset, true);
588 }
589
590 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
591 {
592 if (!offset)
593 return "(anon)";
594 else if (offset < btf->hdr.str_len)
595 return &btf->strings[offset];
596 else
597 return "(invalid-name-offset)";
598 }
599
600 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
601 {
602 if (offset < btf->hdr.str_len)
603 return &btf->strings[offset];
604
605 return NULL;
606 }
607
608 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
609 {
610 if (type_id > btf->nr_types)
611 return NULL;
612
613 return btf->types[type_id];
614 }
615
616 /*
617 * Regular int is not a bit field and it must be either
618 * u8/u16/u32/u64 or __int128.
619 */
620 static bool btf_type_int_is_regular(const struct btf_type *t)
621 {
622 u8 nr_bits, nr_bytes;
623 u32 int_data;
624
625 int_data = btf_type_int(t);
626 nr_bits = BTF_INT_BITS(int_data);
627 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
628 if (BITS_PER_BYTE_MASKED(nr_bits) ||
629 BTF_INT_OFFSET(int_data) ||
630 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
631 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
632 nr_bytes != (2 * sizeof(u64)))) {
633 return false;
634 }
635
636 return true;
637 }
638
639 /*
640 * Check that given struct member is a regular int with expected
641 * offset and size.
642 */
643 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
644 const struct btf_member *m,
645 u32 expected_offset, u32 expected_size)
646 {
647 const struct btf_type *t;
648 u32 id, int_data;
649 u8 nr_bits;
650
651 id = m->type;
652 t = btf_type_id_size(btf, &id, NULL);
653 if (!t || !btf_type_is_int(t))
654 return false;
655
656 int_data = btf_type_int(t);
657 nr_bits = BTF_INT_BITS(int_data);
658 if (btf_type_kflag(s)) {
659 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
660 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
661
662 /* if kflag set, int should be a regular int and
663 * bit offset should be at byte boundary.
664 */
665 return !bitfield_size &&
666 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
667 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
668 }
669
670 if (BTF_INT_OFFSET(int_data) ||
671 BITS_PER_BYTE_MASKED(m->offset) ||
672 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
673 BITS_PER_BYTE_MASKED(nr_bits) ||
674 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
675 return false;
676
677 return true;
678 }
679
680 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
681 const char *fmt, ...)
682 {
683 va_list args;
684
685 va_start(args, fmt);
686 bpf_verifier_vlog(log, fmt, args);
687 va_end(args);
688 }
689
690 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
691 const char *fmt, ...)
692 {
693 struct bpf_verifier_log *log = &env->log;
694 va_list args;
695
696 if (!bpf_verifier_log_needed(log))
697 return;
698
699 va_start(args, fmt);
700 bpf_verifier_vlog(log, fmt, args);
701 va_end(args);
702 }
703
704 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
705 const struct btf_type *t,
706 bool log_details,
707 const char *fmt, ...)
708 {
709 struct bpf_verifier_log *log = &env->log;
710 u8 kind = BTF_INFO_KIND(t->info);
711 struct btf *btf = env->btf;
712 va_list args;
713
714 if (!bpf_verifier_log_needed(log))
715 return;
716
717 /* btf verifier prints all types it is processing via
718 * btf_verifier_log_type(..., fmt = NULL).
719 * Skip those prints for in-kernel BTF verification.
720 */
721 if (log->level == BPF_LOG_KERNEL && !fmt)
722 return;
723
724 __btf_verifier_log(log, "[%u] %s %s%s",
725 env->log_type_id,
726 btf_kind_str[kind],
727 __btf_name_by_offset(btf, t->name_off),
728 log_details ? " " : "");
729
730 if (log_details)
731 btf_type_ops(t)->log_details(env, t);
732
733 if (fmt && *fmt) {
734 __btf_verifier_log(log, " ");
735 va_start(args, fmt);
736 bpf_verifier_vlog(log, fmt, args);
737 va_end(args);
738 }
739
740 __btf_verifier_log(log, "\n");
741 }
742
743 #define btf_verifier_log_type(env, t, ...) \
744 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
745 #define btf_verifier_log_basic(env, t, ...) \
746 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
747
748 __printf(4, 5)
749 static void btf_verifier_log_member(struct btf_verifier_env *env,
750 const struct btf_type *struct_type,
751 const struct btf_member *member,
752 const char *fmt, ...)
753 {
754 struct bpf_verifier_log *log = &env->log;
755 struct btf *btf = env->btf;
756 va_list args;
757
758 if (!bpf_verifier_log_needed(log))
759 return;
760
761 if (log->level == BPF_LOG_KERNEL && !fmt)
762 return;
763 /* The CHECK_META phase already did a btf dump.
764 *
765 * If member is logged again, it must hit an error in
766 * parsing this member. It is useful to print out which
767 * struct this member belongs to.
768 */
769 if (env->phase != CHECK_META)
770 btf_verifier_log_type(env, struct_type, NULL);
771
772 if (btf_type_kflag(struct_type))
773 __btf_verifier_log(log,
774 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
775 __btf_name_by_offset(btf, member->name_off),
776 member->type,
777 BTF_MEMBER_BITFIELD_SIZE(member->offset),
778 BTF_MEMBER_BIT_OFFSET(member->offset));
779 else
780 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
781 __btf_name_by_offset(btf, member->name_off),
782 member->type, member->offset);
783
784 if (fmt && *fmt) {
785 __btf_verifier_log(log, " ");
786 va_start(args, fmt);
787 bpf_verifier_vlog(log, fmt, args);
788 va_end(args);
789 }
790
791 __btf_verifier_log(log, "\n");
792 }
793
794 __printf(4, 5)
795 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
796 const struct btf_type *datasec_type,
797 const struct btf_var_secinfo *vsi,
798 const char *fmt, ...)
799 {
800 struct bpf_verifier_log *log = &env->log;
801 va_list args;
802
803 if (!bpf_verifier_log_needed(log))
804 return;
805 if (log->level == BPF_LOG_KERNEL && !fmt)
806 return;
807 if (env->phase != CHECK_META)
808 btf_verifier_log_type(env, datasec_type, NULL);
809
810 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
811 vsi->type, vsi->offset, vsi->size);
812 if (fmt && *fmt) {
813 __btf_verifier_log(log, " ");
814 va_start(args, fmt);
815 bpf_verifier_vlog(log, fmt, args);
816 va_end(args);
817 }
818
819 __btf_verifier_log(log, "\n");
820 }
821
822 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
823 u32 btf_data_size)
824 {
825 struct bpf_verifier_log *log = &env->log;
826 const struct btf *btf = env->btf;
827 const struct btf_header *hdr;
828
829 if (!bpf_verifier_log_needed(log))
830 return;
831
832 if (log->level == BPF_LOG_KERNEL)
833 return;
834 hdr = &btf->hdr;
835 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
836 __btf_verifier_log(log, "version: %u\n", hdr->version);
837 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
838 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
839 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
840 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
841 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
842 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
843 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
844 }
845
846 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
847 {
848 struct btf *btf = env->btf;
849
850 /* < 2 because +1 for btf_void which is always in btf->types[0].
851 * btf_void is not accounted in btf->nr_types because btf_void
852 * does not come from the BTF file.
853 */
854 if (btf->types_size - btf->nr_types < 2) {
855 /* Expand 'types' array */
856
857 struct btf_type **new_types;
858 u32 expand_by, new_size;
859
860 if (btf->types_size == BTF_MAX_TYPE) {
861 btf_verifier_log(env, "Exceeded max num of types");
862 return -E2BIG;
863 }
864
865 expand_by = max_t(u32, btf->types_size >> 2, 16);
866 new_size = min_t(u32, BTF_MAX_TYPE,
867 btf->types_size + expand_by);
868
869 new_types = kvcalloc(new_size, sizeof(*new_types),
870 GFP_KERNEL | __GFP_NOWARN);
871 if (!new_types)
872 return -ENOMEM;
873
874 if (btf->nr_types == 0)
875 new_types[0] = &btf_void;
876 else
877 memcpy(new_types, btf->types,
878 sizeof(*btf->types) * (btf->nr_types + 1));
879
880 kvfree(btf->types);
881 btf->types = new_types;
882 btf->types_size = new_size;
883 }
884
885 btf->types[++(btf->nr_types)] = t;
886
887 return 0;
888 }
889
890 static int btf_alloc_id(struct btf *btf)
891 {
892 int id;
893
894 idr_preload(GFP_KERNEL);
895 spin_lock_bh(&btf_idr_lock);
896 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
897 if (id > 0)
898 btf->id = id;
899 spin_unlock_bh(&btf_idr_lock);
900 idr_preload_end();
901
902 if (WARN_ON_ONCE(!id))
903 return -ENOSPC;
904
905 return id > 0 ? 0 : id;
906 }
907
908 static void btf_free_id(struct btf *btf)
909 {
910 unsigned long flags;
911
912 /*
913 * In map-in-map, calling map_delete_elem() on outer
914 * map will call bpf_map_put on the inner map.
915 * It will then eventually call btf_free_id()
916 * on the inner map. Some of the map_delete_elem()
917 * implementation may have irq disabled, so
918 * we need to use the _irqsave() version instead
919 * of the _bh() version.
920 */
921 spin_lock_irqsave(&btf_idr_lock, flags);
922 idr_remove(&btf_idr, btf->id);
923 spin_unlock_irqrestore(&btf_idr_lock, flags);
924 }
925
926 static void btf_free(struct btf *btf)
927 {
928 kvfree(btf->types);
929 kvfree(btf->resolved_sizes);
930 kvfree(btf->resolved_ids);
931 kvfree(btf->data);
932 kfree(btf);
933 }
934
935 static void btf_free_rcu(struct rcu_head *rcu)
936 {
937 struct btf *btf = container_of(rcu, struct btf, rcu);
938
939 btf_free(btf);
940 }
941
942 void btf_put(struct btf *btf)
943 {
944 if (btf && refcount_dec_and_test(&btf->refcnt)) {
945 btf_free_id(btf);
946 call_rcu(&btf->rcu, btf_free_rcu);
947 }
948 }
949
950 static int env_resolve_init(struct btf_verifier_env *env)
951 {
952 struct btf *btf = env->btf;
953 u32 nr_types = btf->nr_types;
954 u32 *resolved_sizes = NULL;
955 u32 *resolved_ids = NULL;
956 u8 *visit_states = NULL;
957
958 /* +1 for btf_void */
959 resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
960 GFP_KERNEL | __GFP_NOWARN);
961 if (!resolved_sizes)
962 goto nomem;
963
964 resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
965 GFP_KERNEL | __GFP_NOWARN);
966 if (!resolved_ids)
967 goto nomem;
968
969 visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
970 GFP_KERNEL | __GFP_NOWARN);
971 if (!visit_states)
972 goto nomem;
973
974 btf->resolved_sizes = resolved_sizes;
975 btf->resolved_ids = resolved_ids;
976 env->visit_states = visit_states;
977
978 return 0;
979
980 nomem:
981 kvfree(resolved_sizes);
982 kvfree(resolved_ids);
983 kvfree(visit_states);
984 return -ENOMEM;
985 }
986
987 static void btf_verifier_env_free(struct btf_verifier_env *env)
988 {
989 kvfree(env->visit_states);
990 kfree(env);
991 }
992
993 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
994 const struct btf_type *next_type)
995 {
996 switch (env->resolve_mode) {
997 case RESOLVE_TBD:
998 /* int, enum or void is a sink */
999 return !btf_type_needs_resolve(next_type);
1000 case RESOLVE_PTR:
1001 /* int, enum, void, struct, array, func or func_proto is a sink
1002 * for ptr
1003 */
1004 return !btf_type_is_modifier(next_type) &&
1005 !btf_type_is_ptr(next_type);
1006 case RESOLVE_STRUCT_OR_ARRAY:
1007 /* int, enum, void, ptr, func or func_proto is a sink
1008 * for struct and array
1009 */
1010 return !btf_type_is_modifier(next_type) &&
1011 !btf_type_is_array(next_type) &&
1012 !btf_type_is_struct(next_type);
1013 default:
1014 BUG();
1015 }
1016 }
1017
1018 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1019 u32 type_id)
1020 {
1021 return env->visit_states[type_id] == RESOLVED;
1022 }
1023
1024 static int env_stack_push(struct btf_verifier_env *env,
1025 const struct btf_type *t, u32 type_id)
1026 {
1027 struct resolve_vertex *v;
1028
1029 if (env->top_stack == MAX_RESOLVE_DEPTH)
1030 return -E2BIG;
1031
1032 if (env->visit_states[type_id] != NOT_VISITED)
1033 return -EEXIST;
1034
1035 env->visit_states[type_id] = VISITED;
1036
1037 v = &env->stack[env->top_stack++];
1038 v->t = t;
1039 v->type_id = type_id;
1040 v->next_member = 0;
1041
1042 if (env->resolve_mode == RESOLVE_TBD) {
1043 if (btf_type_is_ptr(t))
1044 env->resolve_mode = RESOLVE_PTR;
1045 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1046 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1047 }
1048
1049 return 0;
1050 }
1051
1052 static void env_stack_set_next_member(struct btf_verifier_env *env,
1053 u16 next_member)
1054 {
1055 env->stack[env->top_stack - 1].next_member = next_member;
1056 }
1057
1058 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1059 u32 resolved_type_id,
1060 u32 resolved_size)
1061 {
1062 u32 type_id = env->stack[--(env->top_stack)].type_id;
1063 struct btf *btf = env->btf;
1064
1065 btf->resolved_sizes[type_id] = resolved_size;
1066 btf->resolved_ids[type_id] = resolved_type_id;
1067 env->visit_states[type_id] = RESOLVED;
1068 }
1069
1070 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1071 {
1072 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1073 }
1074
1075 /* Resolve the size of a passed-in "type"
1076 *
1077 * type: is an array (e.g. u32 array[x][y])
1078 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1079 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1080 * corresponds to the return type.
1081 * *elem_type: u32
1082 * *total_nelems: (x * y). Hence, individual elem size is
1083 * (*type_size / *total_nelems)
1084 *
1085 * type: is not an array (e.g. const struct X)
1086 * return type: type "struct X"
1087 * *type_size: sizeof(struct X)
1088 * *elem_type: same as return type ("struct X")
1089 * *total_nelems: 1
1090 */
1091 const struct btf_type *
1092 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1093 u32 *type_size, const struct btf_type **elem_type,
1094 u32 *total_nelems)
1095 {
1096 const struct btf_type *array_type = NULL;
1097 const struct btf_array *array;
1098 u32 i, size, nelems = 1;
1099
1100 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1101 switch (BTF_INFO_KIND(type->info)) {
1102 /* type->size can be used */
1103 case BTF_KIND_INT:
1104 case BTF_KIND_STRUCT:
1105 case BTF_KIND_UNION:
1106 case BTF_KIND_ENUM:
1107 size = type->size;
1108 goto resolved;
1109
1110 case BTF_KIND_PTR:
1111 size = sizeof(void *);
1112 goto resolved;
1113
1114 /* Modifiers */
1115 case BTF_KIND_TYPEDEF:
1116 case BTF_KIND_VOLATILE:
1117 case BTF_KIND_CONST:
1118 case BTF_KIND_RESTRICT:
1119 type = btf_type_by_id(btf, type->type);
1120 break;
1121
1122 case BTF_KIND_ARRAY:
1123 if (!array_type)
1124 array_type = type;
1125 array = btf_type_array(type);
1126 if (nelems && array->nelems > U32_MAX / nelems)
1127 return ERR_PTR(-EINVAL);
1128 nelems *= array->nelems;
1129 type = btf_type_by_id(btf, array->type);
1130 break;
1131
1132 /* type without size */
1133 default:
1134 return ERR_PTR(-EINVAL);
1135 }
1136 }
1137
1138 return ERR_PTR(-EINVAL);
1139
1140 resolved:
1141 if (nelems && size > U32_MAX / nelems)
1142 return ERR_PTR(-EINVAL);
1143
1144 *type_size = nelems * size;
1145 if (total_nelems)
1146 *total_nelems = nelems;
1147 if (elem_type)
1148 *elem_type = type;
1149
1150 return array_type ? : type;
1151 }
1152
1153 /* The input param "type_id" must point to a needs_resolve type */
1154 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1155 u32 *type_id)
1156 {
1157 *type_id = btf->resolved_ids[*type_id];
1158 return btf_type_by_id(btf, *type_id);
1159 }
1160
1161 const struct btf_type *btf_type_id_size(const struct btf *btf,
1162 u32 *type_id, u32 *ret_size)
1163 {
1164 const struct btf_type *size_type;
1165 u32 size_type_id = *type_id;
1166 u32 size = 0;
1167
1168 size_type = btf_type_by_id(btf, size_type_id);
1169 if (btf_type_nosize_or_null(size_type))
1170 return NULL;
1171
1172 if (btf_type_has_size(size_type)) {
1173 size = size_type->size;
1174 } else if (btf_type_is_array(size_type)) {
1175 size = btf->resolved_sizes[size_type_id];
1176 } else if (btf_type_is_ptr(size_type)) {
1177 size = sizeof(void *);
1178 } else {
1179 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1180 !btf_type_is_var(size_type)))
1181 return NULL;
1182
1183 size_type_id = btf->resolved_ids[size_type_id];
1184 size_type = btf_type_by_id(btf, size_type_id);
1185 if (btf_type_nosize_or_null(size_type))
1186 return NULL;
1187 else if (btf_type_has_size(size_type))
1188 size = size_type->size;
1189 else if (btf_type_is_array(size_type))
1190 size = btf->resolved_sizes[size_type_id];
1191 else if (btf_type_is_ptr(size_type))
1192 size = sizeof(void *);
1193 else
1194 return NULL;
1195 }
1196
1197 *type_id = size_type_id;
1198 if (ret_size)
1199 *ret_size = size;
1200
1201 return size_type;
1202 }
1203
1204 static int btf_df_check_member(struct btf_verifier_env *env,
1205 const struct btf_type *struct_type,
1206 const struct btf_member *member,
1207 const struct btf_type *member_type)
1208 {
1209 btf_verifier_log_basic(env, struct_type,
1210 "Unsupported check_member");
1211 return -EINVAL;
1212 }
1213
1214 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1215 const struct btf_type *struct_type,
1216 const struct btf_member *member,
1217 const struct btf_type *member_type)
1218 {
1219 btf_verifier_log_basic(env, struct_type,
1220 "Unsupported check_kflag_member");
1221 return -EINVAL;
1222 }
1223
1224 /* Used for ptr, array and struct/union type members.
1225 * int, enum and modifier types have their specific callback functions.
1226 */
1227 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1228 const struct btf_type *struct_type,
1229 const struct btf_member *member,
1230 const struct btf_type *member_type)
1231 {
1232 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1233 btf_verifier_log_member(env, struct_type, member,
1234 "Invalid member bitfield_size");
1235 return -EINVAL;
1236 }
1237
1238 /* bitfield size is 0, so member->offset represents bit offset only.
1239 * It is safe to call non kflag check_member variants.
1240 */
1241 return btf_type_ops(member_type)->check_member(env, struct_type,
1242 member,
1243 member_type);
1244 }
1245
1246 static int btf_df_resolve(struct btf_verifier_env *env,
1247 const struct resolve_vertex *v)
1248 {
1249 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1250 return -EINVAL;
1251 }
1252
1253 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
1254 u32 type_id, void *data, u8 bits_offsets,
1255 struct seq_file *m)
1256 {
1257 seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1258 }
1259
1260 static int btf_int_check_member(struct btf_verifier_env *env,
1261 const struct btf_type *struct_type,
1262 const struct btf_member *member,
1263 const struct btf_type *member_type)
1264 {
1265 u32 int_data = btf_type_int(member_type);
1266 u32 struct_bits_off = member->offset;
1267 u32 struct_size = struct_type->size;
1268 u32 nr_copy_bits;
1269 u32 bytes_offset;
1270
1271 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1272 btf_verifier_log_member(env, struct_type, member,
1273 "bits_offset exceeds U32_MAX");
1274 return -EINVAL;
1275 }
1276
1277 struct_bits_off += BTF_INT_OFFSET(int_data);
1278 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1279 nr_copy_bits = BTF_INT_BITS(int_data) +
1280 BITS_PER_BYTE_MASKED(struct_bits_off);
1281
1282 if (nr_copy_bits > BITS_PER_U128) {
1283 btf_verifier_log_member(env, struct_type, member,
1284 "nr_copy_bits exceeds 128");
1285 return -EINVAL;
1286 }
1287
1288 if (struct_size < bytes_offset ||
1289 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1290 btf_verifier_log_member(env, struct_type, member,
1291 "Member exceeds struct_size");
1292 return -EINVAL;
1293 }
1294
1295 return 0;
1296 }
1297
1298 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1299 const struct btf_type *struct_type,
1300 const struct btf_member *member,
1301 const struct btf_type *member_type)
1302 {
1303 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1304 u32 int_data = btf_type_int(member_type);
1305 u32 struct_size = struct_type->size;
1306 u32 nr_copy_bits;
1307
1308 /* a regular int type is required for the kflag int member */
1309 if (!btf_type_int_is_regular(member_type)) {
1310 btf_verifier_log_member(env, struct_type, member,
1311 "Invalid member base type");
1312 return -EINVAL;
1313 }
1314
1315 /* check sanity of bitfield size */
1316 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1317 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1318 nr_int_data_bits = BTF_INT_BITS(int_data);
1319 if (!nr_bits) {
1320 /* Not a bitfield member, member offset must be at byte
1321 * boundary.
1322 */
1323 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1324 btf_verifier_log_member(env, struct_type, member,
1325 "Invalid member offset");
1326 return -EINVAL;
1327 }
1328
1329 nr_bits = nr_int_data_bits;
1330 } else if (nr_bits > nr_int_data_bits) {
1331 btf_verifier_log_member(env, struct_type, member,
1332 "Invalid member bitfield_size");
1333 return -EINVAL;
1334 }
1335
1336 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1337 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1338 if (nr_copy_bits > BITS_PER_U128) {
1339 btf_verifier_log_member(env, struct_type, member,
1340 "nr_copy_bits exceeds 128");
1341 return -EINVAL;
1342 }
1343
1344 if (struct_size < bytes_offset ||
1345 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1346 btf_verifier_log_member(env, struct_type, member,
1347 "Member exceeds struct_size");
1348 return -EINVAL;
1349 }
1350
1351 return 0;
1352 }
1353
1354 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1355 const struct btf_type *t,
1356 u32 meta_left)
1357 {
1358 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1359 u16 encoding;
1360
1361 if (meta_left < meta_needed) {
1362 btf_verifier_log_basic(env, t,
1363 "meta_left:%u meta_needed:%u",
1364 meta_left, meta_needed);
1365 return -EINVAL;
1366 }
1367
1368 if (btf_type_vlen(t)) {
1369 btf_verifier_log_type(env, t, "vlen != 0");
1370 return -EINVAL;
1371 }
1372
1373 if (btf_type_kflag(t)) {
1374 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1375 return -EINVAL;
1376 }
1377
1378 int_data = btf_type_int(t);
1379 if (int_data & ~BTF_INT_MASK) {
1380 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1381 int_data);
1382 return -EINVAL;
1383 }
1384
1385 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1386
1387 if (nr_bits > BITS_PER_U128) {
1388 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1389 BITS_PER_U128);
1390 return -EINVAL;
1391 }
1392
1393 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1394 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1395 return -EINVAL;
1396 }
1397
1398 /*
1399 * Only one of the encoding bits is allowed and it
1400 * should be sufficient for the pretty print purpose (i.e. decoding).
1401 * Multiple bits can be allowed later if it is found
1402 * to be insufficient.
1403 */
1404 encoding = BTF_INT_ENCODING(int_data);
1405 if (encoding &&
1406 encoding != BTF_INT_SIGNED &&
1407 encoding != BTF_INT_CHAR &&
1408 encoding != BTF_INT_BOOL) {
1409 btf_verifier_log_type(env, t, "Unsupported encoding");
1410 return -ENOTSUPP;
1411 }
1412
1413 btf_verifier_log_type(env, t, NULL);
1414
1415 return meta_needed;
1416 }
1417
1418 static void btf_int_log(struct btf_verifier_env *env,
1419 const struct btf_type *t)
1420 {
1421 int int_data = btf_type_int(t);
1422
1423 btf_verifier_log(env,
1424 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1425 t->size, BTF_INT_OFFSET(int_data),
1426 BTF_INT_BITS(int_data),
1427 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1428 }
1429
1430 static void btf_int128_print(struct seq_file *m, void *data)
1431 {
1432 /* data points to a __int128 number.
1433 * Suppose
1434 * int128_num = *(__int128 *)data;
1435 * The below formulas shows what upper_num and lower_num represents:
1436 * upper_num = int128_num >> 64;
1437 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
1438 */
1439 u64 upper_num, lower_num;
1440
1441 #ifdef __BIG_ENDIAN_BITFIELD
1442 upper_num = *(u64 *)data;
1443 lower_num = *(u64 *)(data + 8);
1444 #else
1445 upper_num = *(u64 *)(data + 8);
1446 lower_num = *(u64 *)data;
1447 #endif
1448 if (upper_num == 0)
1449 seq_printf(m, "0x%llx", lower_num);
1450 else
1451 seq_printf(m, "0x%llx%016llx", upper_num, lower_num);
1452 }
1453
1454 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
1455 u16 right_shift_bits)
1456 {
1457 u64 upper_num, lower_num;
1458
1459 #ifdef __BIG_ENDIAN_BITFIELD
1460 upper_num = print_num[0];
1461 lower_num = print_num[1];
1462 #else
1463 upper_num = print_num[1];
1464 lower_num = print_num[0];
1465 #endif
1466
1467 /* shake out un-needed bits by shift/or operations */
1468 if (left_shift_bits >= 64) {
1469 upper_num = lower_num << (left_shift_bits - 64);
1470 lower_num = 0;
1471 } else {
1472 upper_num = (upper_num << left_shift_bits) |
1473 (lower_num >> (64 - left_shift_bits));
1474 lower_num = lower_num << left_shift_bits;
1475 }
1476
1477 if (right_shift_bits >= 64) {
1478 lower_num = upper_num >> (right_shift_bits - 64);
1479 upper_num = 0;
1480 } else {
1481 lower_num = (lower_num >> right_shift_bits) |
1482 (upper_num << (64 - right_shift_bits));
1483 upper_num = upper_num >> right_shift_bits;
1484 }
1485
1486 #ifdef __BIG_ENDIAN_BITFIELD
1487 print_num[0] = upper_num;
1488 print_num[1] = lower_num;
1489 #else
1490 print_num[0] = lower_num;
1491 print_num[1] = upper_num;
1492 #endif
1493 }
1494
1495 static void btf_bitfield_seq_show(void *data, u8 bits_offset,
1496 u8 nr_bits, struct seq_file *m)
1497 {
1498 u16 left_shift_bits, right_shift_bits;
1499 u8 nr_copy_bytes;
1500 u8 nr_copy_bits;
1501 u64 print_num[2] = {};
1502
1503 nr_copy_bits = nr_bits + bits_offset;
1504 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1505
1506 memcpy(print_num, data, nr_copy_bytes);
1507
1508 #ifdef __BIG_ENDIAN_BITFIELD
1509 left_shift_bits = bits_offset;
1510 #else
1511 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
1512 #endif
1513 right_shift_bits = BITS_PER_U128 - nr_bits;
1514
1515 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
1516 btf_int128_print(m, print_num);
1517 }
1518
1519
1520 static void btf_int_bits_seq_show(const struct btf *btf,
1521 const struct btf_type *t,
1522 void *data, u8 bits_offset,
1523 struct seq_file *m)
1524 {
1525 u32 int_data = btf_type_int(t);
1526 u8 nr_bits = BTF_INT_BITS(int_data);
1527 u8 total_bits_offset;
1528
1529 /*
1530 * bits_offset is at most 7.
1531 * BTF_INT_OFFSET() cannot exceed 128 bits.
1532 */
1533 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1534 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1535 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1536 btf_bitfield_seq_show(data, bits_offset, nr_bits, m);
1537 }
1538
1539 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1540 u32 type_id, void *data, u8 bits_offset,
1541 struct seq_file *m)
1542 {
1543 u32 int_data = btf_type_int(t);
1544 u8 encoding = BTF_INT_ENCODING(int_data);
1545 bool sign = encoding & BTF_INT_SIGNED;
1546 u8 nr_bits = BTF_INT_BITS(int_data);
1547
1548 if (bits_offset || BTF_INT_OFFSET(int_data) ||
1549 BITS_PER_BYTE_MASKED(nr_bits)) {
1550 btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1551 return;
1552 }
1553
1554 switch (nr_bits) {
1555 case 128:
1556 btf_int128_print(m, data);
1557 break;
1558 case 64:
1559 if (sign)
1560 seq_printf(m, "%lld", *(s64 *)data);
1561 else
1562 seq_printf(m, "%llu", *(u64 *)data);
1563 break;
1564 case 32:
1565 if (sign)
1566 seq_printf(m, "%d", *(s32 *)data);
1567 else
1568 seq_printf(m, "%u", *(u32 *)data);
1569 break;
1570 case 16:
1571 if (sign)
1572 seq_printf(m, "%d", *(s16 *)data);
1573 else
1574 seq_printf(m, "%u", *(u16 *)data);
1575 break;
1576 case 8:
1577 if (sign)
1578 seq_printf(m, "%d", *(s8 *)data);
1579 else
1580 seq_printf(m, "%u", *(u8 *)data);
1581 break;
1582 default:
1583 btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1584 }
1585 }
1586
1587 static const struct btf_kind_operations int_ops = {
1588 .check_meta = btf_int_check_meta,
1589 .resolve = btf_df_resolve,
1590 .check_member = btf_int_check_member,
1591 .check_kflag_member = btf_int_check_kflag_member,
1592 .log_details = btf_int_log,
1593 .seq_show = btf_int_seq_show,
1594 };
1595
1596 static int btf_modifier_check_member(struct btf_verifier_env *env,
1597 const struct btf_type *struct_type,
1598 const struct btf_member *member,
1599 const struct btf_type *member_type)
1600 {
1601 const struct btf_type *resolved_type;
1602 u32 resolved_type_id = member->type;
1603 struct btf_member resolved_member;
1604 struct btf *btf = env->btf;
1605
1606 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1607 if (!resolved_type) {
1608 btf_verifier_log_member(env, struct_type, member,
1609 "Invalid member");
1610 return -EINVAL;
1611 }
1612
1613 resolved_member = *member;
1614 resolved_member.type = resolved_type_id;
1615
1616 return btf_type_ops(resolved_type)->check_member(env, struct_type,
1617 &resolved_member,
1618 resolved_type);
1619 }
1620
1621 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
1622 const struct btf_type *struct_type,
1623 const struct btf_member *member,
1624 const struct btf_type *member_type)
1625 {
1626 const struct btf_type *resolved_type;
1627 u32 resolved_type_id = member->type;
1628 struct btf_member resolved_member;
1629 struct btf *btf = env->btf;
1630
1631 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1632 if (!resolved_type) {
1633 btf_verifier_log_member(env, struct_type, member,
1634 "Invalid member");
1635 return -EINVAL;
1636 }
1637
1638 resolved_member = *member;
1639 resolved_member.type = resolved_type_id;
1640
1641 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
1642 &resolved_member,
1643 resolved_type);
1644 }
1645
1646 static int btf_ptr_check_member(struct btf_verifier_env *env,
1647 const struct btf_type *struct_type,
1648 const struct btf_member *member,
1649 const struct btf_type *member_type)
1650 {
1651 u32 struct_size, struct_bits_off, bytes_offset;
1652
1653 struct_size = struct_type->size;
1654 struct_bits_off = member->offset;
1655 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1656
1657 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1658 btf_verifier_log_member(env, struct_type, member,
1659 "Member is not byte aligned");
1660 return -EINVAL;
1661 }
1662
1663 if (struct_size - bytes_offset < sizeof(void *)) {
1664 btf_verifier_log_member(env, struct_type, member,
1665 "Member exceeds struct_size");
1666 return -EINVAL;
1667 }
1668
1669 return 0;
1670 }
1671
1672 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1673 const struct btf_type *t,
1674 u32 meta_left)
1675 {
1676 if (btf_type_vlen(t)) {
1677 btf_verifier_log_type(env, t, "vlen != 0");
1678 return -EINVAL;
1679 }
1680
1681 if (btf_type_kflag(t)) {
1682 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1683 return -EINVAL;
1684 }
1685
1686 if (!BTF_TYPE_ID_VALID(t->type)) {
1687 btf_verifier_log_type(env, t, "Invalid type_id");
1688 return -EINVAL;
1689 }
1690
1691 /* typedef type must have a valid name, and other ref types,
1692 * volatile, const, restrict, should have a null name.
1693 */
1694 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
1695 if (!t->name_off ||
1696 !btf_name_valid_identifier(env->btf, t->name_off)) {
1697 btf_verifier_log_type(env, t, "Invalid name");
1698 return -EINVAL;
1699 }
1700 } else {
1701 if (t->name_off) {
1702 btf_verifier_log_type(env, t, "Invalid name");
1703 return -EINVAL;
1704 }
1705 }
1706
1707 btf_verifier_log_type(env, t, NULL);
1708
1709 return 0;
1710 }
1711
1712 static int btf_modifier_resolve(struct btf_verifier_env *env,
1713 const struct resolve_vertex *v)
1714 {
1715 const struct btf_type *t = v->t;
1716 const struct btf_type *next_type;
1717 u32 next_type_id = t->type;
1718 struct btf *btf = env->btf;
1719
1720 next_type = btf_type_by_id(btf, next_type_id);
1721 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1722 btf_verifier_log_type(env, v->t, "Invalid type_id");
1723 return -EINVAL;
1724 }
1725
1726 if (!env_type_is_resolve_sink(env, next_type) &&
1727 !env_type_is_resolved(env, next_type_id))
1728 return env_stack_push(env, next_type, next_type_id);
1729
1730 /* Figure out the resolved next_type_id with size.
1731 * They will be stored in the current modifier's
1732 * resolved_ids and resolved_sizes such that it can
1733 * save us a few type-following when we use it later (e.g. in
1734 * pretty print).
1735 */
1736 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1737 if (env_type_is_resolved(env, next_type_id))
1738 next_type = btf_type_id_resolve(btf, &next_type_id);
1739
1740 /* "typedef void new_void", "const void"...etc */
1741 if (!btf_type_is_void(next_type) &&
1742 !btf_type_is_fwd(next_type) &&
1743 !btf_type_is_func_proto(next_type)) {
1744 btf_verifier_log_type(env, v->t, "Invalid type_id");
1745 return -EINVAL;
1746 }
1747 }
1748
1749 env_stack_pop_resolved(env, next_type_id, 0);
1750
1751 return 0;
1752 }
1753
1754 static int btf_var_resolve(struct btf_verifier_env *env,
1755 const struct resolve_vertex *v)
1756 {
1757 const struct btf_type *next_type;
1758 const struct btf_type *t = v->t;
1759 u32 next_type_id = t->type;
1760 struct btf *btf = env->btf;
1761
1762 next_type = btf_type_by_id(btf, next_type_id);
1763 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1764 btf_verifier_log_type(env, v->t, "Invalid type_id");
1765 return -EINVAL;
1766 }
1767
1768 if (!env_type_is_resolve_sink(env, next_type) &&
1769 !env_type_is_resolved(env, next_type_id))
1770 return env_stack_push(env, next_type, next_type_id);
1771
1772 if (btf_type_is_modifier(next_type)) {
1773 const struct btf_type *resolved_type;
1774 u32 resolved_type_id;
1775
1776 resolved_type_id = next_type_id;
1777 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1778
1779 if (btf_type_is_ptr(resolved_type) &&
1780 !env_type_is_resolve_sink(env, resolved_type) &&
1781 !env_type_is_resolved(env, resolved_type_id))
1782 return env_stack_push(env, resolved_type,
1783 resolved_type_id);
1784 }
1785
1786 /* We must resolve to something concrete at this point, no
1787 * forward types or similar that would resolve to size of
1788 * zero is allowed.
1789 */
1790 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1791 btf_verifier_log_type(env, v->t, "Invalid type_id");
1792 return -EINVAL;
1793 }
1794
1795 env_stack_pop_resolved(env, next_type_id, 0);
1796
1797 return 0;
1798 }
1799
1800 static int btf_ptr_resolve(struct btf_verifier_env *env,
1801 const struct resolve_vertex *v)
1802 {
1803 const struct btf_type *next_type;
1804 const struct btf_type *t = v->t;
1805 u32 next_type_id = t->type;
1806 struct btf *btf = env->btf;
1807
1808 next_type = btf_type_by_id(btf, next_type_id);
1809 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1810 btf_verifier_log_type(env, v->t, "Invalid type_id");
1811 return -EINVAL;
1812 }
1813
1814 if (!env_type_is_resolve_sink(env, next_type) &&
1815 !env_type_is_resolved(env, next_type_id))
1816 return env_stack_push(env, next_type, next_type_id);
1817
1818 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1819 * the modifier may have stopped resolving when it was resolved
1820 * to a ptr (last-resolved-ptr).
1821 *
1822 * We now need to continue from the last-resolved-ptr to
1823 * ensure the last-resolved-ptr will not referring back to
1824 * the currenct ptr (t).
1825 */
1826 if (btf_type_is_modifier(next_type)) {
1827 const struct btf_type *resolved_type;
1828 u32 resolved_type_id;
1829
1830 resolved_type_id = next_type_id;
1831 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1832
1833 if (btf_type_is_ptr(resolved_type) &&
1834 !env_type_is_resolve_sink(env, resolved_type) &&
1835 !env_type_is_resolved(env, resolved_type_id))
1836 return env_stack_push(env, resolved_type,
1837 resolved_type_id);
1838 }
1839
1840 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1841 if (env_type_is_resolved(env, next_type_id))
1842 next_type = btf_type_id_resolve(btf, &next_type_id);
1843
1844 if (!btf_type_is_void(next_type) &&
1845 !btf_type_is_fwd(next_type) &&
1846 !btf_type_is_func_proto(next_type)) {
1847 btf_verifier_log_type(env, v->t, "Invalid type_id");
1848 return -EINVAL;
1849 }
1850 }
1851
1852 env_stack_pop_resolved(env, next_type_id, 0);
1853
1854 return 0;
1855 }
1856
1857 static void btf_modifier_seq_show(const struct btf *btf,
1858 const struct btf_type *t,
1859 u32 type_id, void *data,
1860 u8 bits_offset, struct seq_file *m)
1861 {
1862 if (btf->resolved_ids)
1863 t = btf_type_id_resolve(btf, &type_id);
1864 else
1865 t = btf_type_skip_modifiers(btf, type_id, NULL);
1866
1867 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1868 }
1869
1870 static void btf_var_seq_show(const struct btf *btf, const struct btf_type *t,
1871 u32 type_id, void *data, u8 bits_offset,
1872 struct seq_file *m)
1873 {
1874 t = btf_type_id_resolve(btf, &type_id);
1875
1876 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1877 }
1878
1879 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1880 u32 type_id, void *data, u8 bits_offset,
1881 struct seq_file *m)
1882 {
1883 /* It is a hashed value */
1884 seq_printf(m, "%p", *(void **)data);
1885 }
1886
1887 static void btf_ref_type_log(struct btf_verifier_env *env,
1888 const struct btf_type *t)
1889 {
1890 btf_verifier_log(env, "type_id=%u", t->type);
1891 }
1892
1893 static struct btf_kind_operations modifier_ops = {
1894 .check_meta = btf_ref_type_check_meta,
1895 .resolve = btf_modifier_resolve,
1896 .check_member = btf_modifier_check_member,
1897 .check_kflag_member = btf_modifier_check_kflag_member,
1898 .log_details = btf_ref_type_log,
1899 .seq_show = btf_modifier_seq_show,
1900 };
1901
1902 static struct btf_kind_operations ptr_ops = {
1903 .check_meta = btf_ref_type_check_meta,
1904 .resolve = btf_ptr_resolve,
1905 .check_member = btf_ptr_check_member,
1906 .check_kflag_member = btf_generic_check_kflag_member,
1907 .log_details = btf_ref_type_log,
1908 .seq_show = btf_ptr_seq_show,
1909 };
1910
1911 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1912 const struct btf_type *t,
1913 u32 meta_left)
1914 {
1915 if (btf_type_vlen(t)) {
1916 btf_verifier_log_type(env, t, "vlen != 0");
1917 return -EINVAL;
1918 }
1919
1920 if (t->type) {
1921 btf_verifier_log_type(env, t, "type != 0");
1922 return -EINVAL;
1923 }
1924
1925 /* fwd type must have a valid name */
1926 if (!t->name_off ||
1927 !btf_name_valid_identifier(env->btf, t->name_off)) {
1928 btf_verifier_log_type(env, t, "Invalid name");
1929 return -EINVAL;
1930 }
1931
1932 btf_verifier_log_type(env, t, NULL);
1933
1934 return 0;
1935 }
1936
1937 static void btf_fwd_type_log(struct btf_verifier_env *env,
1938 const struct btf_type *t)
1939 {
1940 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
1941 }
1942
1943 static struct btf_kind_operations fwd_ops = {
1944 .check_meta = btf_fwd_check_meta,
1945 .resolve = btf_df_resolve,
1946 .check_member = btf_df_check_member,
1947 .check_kflag_member = btf_df_check_kflag_member,
1948 .log_details = btf_fwd_type_log,
1949 .seq_show = btf_df_seq_show,
1950 };
1951
1952 static int btf_array_check_member(struct btf_verifier_env *env,
1953 const struct btf_type *struct_type,
1954 const struct btf_member *member,
1955 const struct btf_type *member_type)
1956 {
1957 u32 struct_bits_off = member->offset;
1958 u32 struct_size, bytes_offset;
1959 u32 array_type_id, array_size;
1960 struct btf *btf = env->btf;
1961
1962 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1963 btf_verifier_log_member(env, struct_type, member,
1964 "Member is not byte aligned");
1965 return -EINVAL;
1966 }
1967
1968 array_type_id = member->type;
1969 btf_type_id_size(btf, &array_type_id, &array_size);
1970 struct_size = struct_type->size;
1971 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1972 if (struct_size - bytes_offset < array_size) {
1973 btf_verifier_log_member(env, struct_type, member,
1974 "Member exceeds struct_size");
1975 return -EINVAL;
1976 }
1977
1978 return 0;
1979 }
1980
1981 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1982 const struct btf_type *t,
1983 u32 meta_left)
1984 {
1985 const struct btf_array *array = btf_type_array(t);
1986 u32 meta_needed = sizeof(*array);
1987
1988 if (meta_left < meta_needed) {
1989 btf_verifier_log_basic(env, t,
1990 "meta_left:%u meta_needed:%u",
1991 meta_left, meta_needed);
1992 return -EINVAL;
1993 }
1994
1995 /* array type should not have a name */
1996 if (t->name_off) {
1997 btf_verifier_log_type(env, t, "Invalid name");
1998 return -EINVAL;
1999 }
2000
2001 if (btf_type_vlen(t)) {
2002 btf_verifier_log_type(env, t, "vlen != 0");
2003 return -EINVAL;
2004 }
2005
2006 if (btf_type_kflag(t)) {
2007 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2008 return -EINVAL;
2009 }
2010
2011 if (t->size) {
2012 btf_verifier_log_type(env, t, "size != 0");
2013 return -EINVAL;
2014 }
2015
2016 /* Array elem type and index type cannot be in type void,
2017 * so !array->type and !array->index_type are not allowed.
2018 */
2019 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2020 btf_verifier_log_type(env, t, "Invalid elem");
2021 return -EINVAL;
2022 }
2023
2024 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2025 btf_verifier_log_type(env, t, "Invalid index");
2026 return -EINVAL;
2027 }
2028
2029 btf_verifier_log_type(env, t, NULL);
2030
2031 return meta_needed;
2032 }
2033
2034 static int btf_array_resolve(struct btf_verifier_env *env,
2035 const struct resolve_vertex *v)
2036 {
2037 const struct btf_array *array = btf_type_array(v->t);
2038 const struct btf_type *elem_type, *index_type;
2039 u32 elem_type_id, index_type_id;
2040 struct btf *btf = env->btf;
2041 u32 elem_size;
2042
2043 /* Check array->index_type */
2044 index_type_id = array->index_type;
2045 index_type = btf_type_by_id(btf, index_type_id);
2046 if (btf_type_nosize_or_null(index_type) ||
2047 btf_type_is_resolve_source_only(index_type)) {
2048 btf_verifier_log_type(env, v->t, "Invalid index");
2049 return -EINVAL;
2050 }
2051
2052 if (!env_type_is_resolve_sink(env, index_type) &&
2053 !env_type_is_resolved(env, index_type_id))
2054 return env_stack_push(env, index_type, index_type_id);
2055
2056 index_type = btf_type_id_size(btf, &index_type_id, NULL);
2057 if (!index_type || !btf_type_is_int(index_type) ||
2058 !btf_type_int_is_regular(index_type)) {
2059 btf_verifier_log_type(env, v->t, "Invalid index");
2060 return -EINVAL;
2061 }
2062
2063 /* Check array->type */
2064 elem_type_id = array->type;
2065 elem_type = btf_type_by_id(btf, elem_type_id);
2066 if (btf_type_nosize_or_null(elem_type) ||
2067 btf_type_is_resolve_source_only(elem_type)) {
2068 btf_verifier_log_type(env, v->t,
2069 "Invalid elem");
2070 return -EINVAL;
2071 }
2072
2073 if (!env_type_is_resolve_sink(env, elem_type) &&
2074 !env_type_is_resolved(env, elem_type_id))
2075 return env_stack_push(env, elem_type, elem_type_id);
2076
2077 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2078 if (!elem_type) {
2079 btf_verifier_log_type(env, v->t, "Invalid elem");
2080 return -EINVAL;
2081 }
2082
2083 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2084 btf_verifier_log_type(env, v->t, "Invalid array of int");
2085 return -EINVAL;
2086 }
2087
2088 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2089 btf_verifier_log_type(env, v->t,
2090 "Array size overflows U32_MAX");
2091 return -EINVAL;
2092 }
2093
2094 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2095
2096 return 0;
2097 }
2098
2099 static void btf_array_log(struct btf_verifier_env *env,
2100 const struct btf_type *t)
2101 {
2102 const struct btf_array *array = btf_type_array(t);
2103
2104 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2105 array->type, array->index_type, array->nelems);
2106 }
2107
2108 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
2109 u32 type_id, void *data, u8 bits_offset,
2110 struct seq_file *m)
2111 {
2112 const struct btf_array *array = btf_type_array(t);
2113 const struct btf_kind_operations *elem_ops;
2114 const struct btf_type *elem_type;
2115 u32 i, elem_size, elem_type_id;
2116
2117 elem_type_id = array->type;
2118 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2119 elem_ops = btf_type_ops(elem_type);
2120 seq_puts(m, "[");
2121 for (i = 0; i < array->nelems; i++) {
2122 if (i)
2123 seq_puts(m, ",");
2124
2125 elem_ops->seq_show(btf, elem_type, elem_type_id, data,
2126 bits_offset, m);
2127 data += elem_size;
2128 }
2129 seq_puts(m, "]");
2130 }
2131
2132 static struct btf_kind_operations array_ops = {
2133 .check_meta = btf_array_check_meta,
2134 .resolve = btf_array_resolve,
2135 .check_member = btf_array_check_member,
2136 .check_kflag_member = btf_generic_check_kflag_member,
2137 .log_details = btf_array_log,
2138 .seq_show = btf_array_seq_show,
2139 };
2140
2141 static int btf_struct_check_member(struct btf_verifier_env *env,
2142 const struct btf_type *struct_type,
2143 const struct btf_member *member,
2144 const struct btf_type *member_type)
2145 {
2146 u32 struct_bits_off = member->offset;
2147 u32 struct_size, bytes_offset;
2148
2149 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2150 btf_verifier_log_member(env, struct_type, member,
2151 "Member is not byte aligned");
2152 return -EINVAL;
2153 }
2154
2155 struct_size = struct_type->size;
2156 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2157 if (struct_size - bytes_offset < member_type->size) {
2158 btf_verifier_log_member(env, struct_type, member,
2159 "Member exceeds struct_size");
2160 return -EINVAL;
2161 }
2162
2163 return 0;
2164 }
2165
2166 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2167 const struct btf_type *t,
2168 u32 meta_left)
2169 {
2170 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2171 const struct btf_member *member;
2172 u32 meta_needed, last_offset;
2173 struct btf *btf = env->btf;
2174 u32 struct_size = t->size;
2175 u32 offset;
2176 u16 i;
2177
2178 meta_needed = btf_type_vlen(t) * sizeof(*member);
2179 if (meta_left < meta_needed) {
2180 btf_verifier_log_basic(env, t,
2181 "meta_left:%u meta_needed:%u",
2182 meta_left, meta_needed);
2183 return -EINVAL;
2184 }
2185
2186 /* struct type either no name or a valid one */
2187 if (t->name_off &&
2188 !btf_name_valid_identifier(env->btf, t->name_off)) {
2189 btf_verifier_log_type(env, t, "Invalid name");
2190 return -EINVAL;
2191 }
2192
2193 btf_verifier_log_type(env, t, NULL);
2194
2195 last_offset = 0;
2196 for_each_member(i, t, member) {
2197 if (!btf_name_offset_valid(btf, member->name_off)) {
2198 btf_verifier_log_member(env, t, member,
2199 "Invalid member name_offset:%u",
2200 member->name_off);
2201 return -EINVAL;
2202 }
2203
2204 /* struct member either no name or a valid one */
2205 if (member->name_off &&
2206 !btf_name_valid_identifier(btf, member->name_off)) {
2207 btf_verifier_log_member(env, t, member, "Invalid name");
2208 return -EINVAL;
2209 }
2210 /* A member cannot be in type void */
2211 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2212 btf_verifier_log_member(env, t, member,
2213 "Invalid type_id");
2214 return -EINVAL;
2215 }
2216
2217 offset = btf_member_bit_offset(t, member);
2218 if (is_union && offset) {
2219 btf_verifier_log_member(env, t, member,
2220 "Invalid member bits_offset");
2221 return -EINVAL;
2222 }
2223
2224 /*
2225 * ">" instead of ">=" because the last member could be
2226 * "char a[0];"
2227 */
2228 if (last_offset > offset) {
2229 btf_verifier_log_member(env, t, member,
2230 "Invalid member bits_offset");
2231 return -EINVAL;
2232 }
2233
2234 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2235 btf_verifier_log_member(env, t, member,
2236 "Member bits_offset exceeds its struct size");
2237 return -EINVAL;
2238 }
2239
2240 btf_verifier_log_member(env, t, member, NULL);
2241 last_offset = offset;
2242 }
2243
2244 return meta_needed;
2245 }
2246
2247 static int btf_struct_resolve(struct btf_verifier_env *env,
2248 const struct resolve_vertex *v)
2249 {
2250 const struct btf_member *member;
2251 int err;
2252 u16 i;
2253
2254 /* Before continue resolving the next_member,
2255 * ensure the last member is indeed resolved to a
2256 * type with size info.
2257 */
2258 if (v->next_member) {
2259 const struct btf_type *last_member_type;
2260 const struct btf_member *last_member;
2261 u16 last_member_type_id;
2262
2263 last_member = btf_type_member(v->t) + v->next_member - 1;
2264 last_member_type_id = last_member->type;
2265 if (WARN_ON_ONCE(!env_type_is_resolved(env,
2266 last_member_type_id)))
2267 return -EINVAL;
2268
2269 last_member_type = btf_type_by_id(env->btf,
2270 last_member_type_id);
2271 if (btf_type_kflag(v->t))
2272 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2273 last_member,
2274 last_member_type);
2275 else
2276 err = btf_type_ops(last_member_type)->check_member(env, v->t,
2277 last_member,
2278 last_member_type);
2279 if (err)
2280 return err;
2281 }
2282
2283 for_each_member_from(i, v->next_member, v->t, member) {
2284 u32 member_type_id = member->type;
2285 const struct btf_type *member_type = btf_type_by_id(env->btf,
2286 member_type_id);
2287
2288 if (btf_type_nosize_or_null(member_type) ||
2289 btf_type_is_resolve_source_only(member_type)) {
2290 btf_verifier_log_member(env, v->t, member,
2291 "Invalid member");
2292 return -EINVAL;
2293 }
2294
2295 if (!env_type_is_resolve_sink(env, member_type) &&
2296 !env_type_is_resolved(env, member_type_id)) {
2297 env_stack_set_next_member(env, i + 1);
2298 return env_stack_push(env, member_type, member_type_id);
2299 }
2300
2301 if (btf_type_kflag(v->t))
2302 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
2303 member,
2304 member_type);
2305 else
2306 err = btf_type_ops(member_type)->check_member(env, v->t,
2307 member,
2308 member_type);
2309 if (err)
2310 return err;
2311 }
2312
2313 env_stack_pop_resolved(env, 0, 0);
2314
2315 return 0;
2316 }
2317
2318 static void btf_struct_log(struct btf_verifier_env *env,
2319 const struct btf_type *t)
2320 {
2321 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2322 }
2323
2324 /* find 'struct bpf_spin_lock' in map value.
2325 * return >= 0 offset if found
2326 * and < 0 in case of error
2327 */
2328 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
2329 {
2330 const struct btf_member *member;
2331 u32 i, off = -ENOENT;
2332
2333 if (!__btf_type_is_struct(t))
2334 return -EINVAL;
2335
2336 for_each_member(i, t, member) {
2337 const struct btf_type *member_type = btf_type_by_id(btf,
2338 member->type);
2339 if (!__btf_type_is_struct(member_type))
2340 continue;
2341 if (member_type->size != sizeof(struct bpf_spin_lock))
2342 continue;
2343 if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
2344 "bpf_spin_lock"))
2345 continue;
2346 if (off != -ENOENT)
2347 /* only one 'struct bpf_spin_lock' is allowed */
2348 return -E2BIG;
2349 off = btf_member_bit_offset(t, member);
2350 if (off % 8)
2351 /* valid C code cannot generate such BTF */
2352 return -EINVAL;
2353 off /= 8;
2354 if (off % __alignof__(struct bpf_spin_lock))
2355 /* valid struct bpf_spin_lock will be 4 byte aligned */
2356 return -EINVAL;
2357 }
2358 return off;
2359 }
2360
2361 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
2362 u32 type_id, void *data, u8 bits_offset,
2363 struct seq_file *m)
2364 {
2365 const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
2366 const struct btf_member *member;
2367 u32 i;
2368
2369 seq_puts(m, "{");
2370 for_each_member(i, t, member) {
2371 const struct btf_type *member_type = btf_type_by_id(btf,
2372 member->type);
2373 const struct btf_kind_operations *ops;
2374 u32 member_offset, bitfield_size;
2375 u32 bytes_offset;
2376 u8 bits8_offset;
2377
2378 if (i)
2379 seq_puts(m, seq);
2380
2381 member_offset = btf_member_bit_offset(t, member);
2382 bitfield_size = btf_member_bitfield_size(t, member);
2383 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
2384 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
2385 if (bitfield_size) {
2386 btf_bitfield_seq_show(data + bytes_offset, bits8_offset,
2387 bitfield_size, m);
2388 } else {
2389 ops = btf_type_ops(member_type);
2390 ops->seq_show(btf, member_type, member->type,
2391 data + bytes_offset, bits8_offset, m);
2392 }
2393 }
2394 seq_puts(m, "}");
2395 }
2396
2397 static struct btf_kind_operations struct_ops = {
2398 .check_meta = btf_struct_check_meta,
2399 .resolve = btf_struct_resolve,
2400 .check_member = btf_struct_check_member,
2401 .check_kflag_member = btf_generic_check_kflag_member,
2402 .log_details = btf_struct_log,
2403 .seq_show = btf_struct_seq_show,
2404 };
2405
2406 static int btf_enum_check_member(struct btf_verifier_env *env,
2407 const struct btf_type *struct_type,
2408 const struct btf_member *member,
2409 const struct btf_type *member_type)
2410 {
2411 u32 struct_bits_off = member->offset;
2412 u32 struct_size, bytes_offset;
2413
2414 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2415 btf_verifier_log_member(env, struct_type, member,
2416 "Member is not byte aligned");
2417 return -EINVAL;
2418 }
2419
2420 struct_size = struct_type->size;
2421 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2422 if (struct_size - bytes_offset < member_type->size) {
2423 btf_verifier_log_member(env, struct_type, member,
2424 "Member exceeds struct_size");
2425 return -EINVAL;
2426 }
2427
2428 return 0;
2429 }
2430
2431 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
2432 const struct btf_type *struct_type,
2433 const struct btf_member *member,
2434 const struct btf_type *member_type)
2435 {
2436 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
2437 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
2438
2439 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2440 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2441 if (!nr_bits) {
2442 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2443 btf_verifier_log_member(env, struct_type, member,
2444 "Member is not byte aligned");
2445 return -EINVAL;
2446 }
2447
2448 nr_bits = int_bitsize;
2449 } else if (nr_bits > int_bitsize) {
2450 btf_verifier_log_member(env, struct_type, member,
2451 "Invalid member bitfield_size");
2452 return -EINVAL;
2453 }
2454
2455 struct_size = struct_type->size;
2456 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
2457 if (struct_size < bytes_end) {
2458 btf_verifier_log_member(env, struct_type, member,
2459 "Member exceeds struct_size");
2460 return -EINVAL;
2461 }
2462
2463 return 0;
2464 }
2465
2466 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
2467 const struct btf_type *t,
2468 u32 meta_left)
2469 {
2470 const struct btf_enum *enums = btf_type_enum(t);
2471 struct btf *btf = env->btf;
2472 u16 i, nr_enums;
2473 u32 meta_needed;
2474
2475 nr_enums = btf_type_vlen(t);
2476 meta_needed = nr_enums * sizeof(*enums);
2477
2478 if (meta_left < meta_needed) {
2479 btf_verifier_log_basic(env, t,
2480 "meta_left:%u meta_needed:%u",
2481 meta_left, meta_needed);
2482 return -EINVAL;
2483 }
2484
2485 if (btf_type_kflag(t)) {
2486 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2487 return -EINVAL;
2488 }
2489
2490 if (t->size > 8 || !is_power_of_2(t->size)) {
2491 btf_verifier_log_type(env, t, "Unexpected size");
2492 return -EINVAL;
2493 }
2494
2495 /* enum type either no name or a valid one */
2496 if (t->name_off &&
2497 !btf_name_valid_identifier(env->btf, t->name_off)) {
2498 btf_verifier_log_type(env, t, "Invalid name");
2499 return -EINVAL;
2500 }
2501
2502 btf_verifier_log_type(env, t, NULL);
2503
2504 for (i = 0; i < nr_enums; i++) {
2505 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
2506 btf_verifier_log(env, "\tInvalid name_offset:%u",
2507 enums[i].name_off);
2508 return -EINVAL;
2509 }
2510
2511 /* enum member must have a valid name */
2512 if (!enums[i].name_off ||
2513 !btf_name_valid_identifier(btf, enums[i].name_off)) {
2514 btf_verifier_log_type(env, t, "Invalid name");
2515 return -EINVAL;
2516 }
2517
2518 if (env->log.level == BPF_LOG_KERNEL)
2519 continue;
2520 btf_verifier_log(env, "\t%s val=%d\n",
2521 __btf_name_by_offset(btf, enums[i].name_off),
2522 enums[i].val);
2523 }
2524
2525 return meta_needed;
2526 }
2527
2528 static void btf_enum_log(struct btf_verifier_env *env,
2529 const struct btf_type *t)
2530 {
2531 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2532 }
2533
2534 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
2535 u32 type_id, void *data, u8 bits_offset,
2536 struct seq_file *m)
2537 {
2538 const struct btf_enum *enums = btf_type_enum(t);
2539 u32 i, nr_enums = btf_type_vlen(t);
2540 int v = *(int *)data;
2541
2542 for (i = 0; i < nr_enums; i++) {
2543 if (v == enums[i].val) {
2544 seq_printf(m, "%s",
2545 __btf_name_by_offset(btf,
2546 enums[i].name_off));
2547 return;
2548 }
2549 }
2550
2551 seq_printf(m, "%d", v);
2552 }
2553
2554 static struct btf_kind_operations enum_ops = {
2555 .check_meta = btf_enum_check_meta,
2556 .resolve = btf_df_resolve,
2557 .check_member = btf_enum_check_member,
2558 .check_kflag_member = btf_enum_check_kflag_member,
2559 .log_details = btf_enum_log,
2560 .seq_show = btf_enum_seq_show,
2561 };
2562
2563 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
2564 const struct btf_type *t,
2565 u32 meta_left)
2566 {
2567 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
2568
2569 if (meta_left < meta_needed) {
2570 btf_verifier_log_basic(env, t,
2571 "meta_left:%u meta_needed:%u",
2572 meta_left, meta_needed);
2573 return -EINVAL;
2574 }
2575
2576 if (t->name_off) {
2577 btf_verifier_log_type(env, t, "Invalid name");
2578 return -EINVAL;
2579 }
2580
2581 if (btf_type_kflag(t)) {
2582 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2583 return -EINVAL;
2584 }
2585
2586 btf_verifier_log_type(env, t, NULL);
2587
2588 return meta_needed;
2589 }
2590
2591 static void btf_func_proto_log(struct btf_verifier_env *env,
2592 const struct btf_type *t)
2593 {
2594 const struct btf_param *args = (const struct btf_param *)(t + 1);
2595 u16 nr_args = btf_type_vlen(t), i;
2596
2597 btf_verifier_log(env, "return=%u args=(", t->type);
2598 if (!nr_args) {
2599 btf_verifier_log(env, "void");
2600 goto done;
2601 }
2602
2603 if (nr_args == 1 && !args[0].type) {
2604 /* Only one vararg */
2605 btf_verifier_log(env, "vararg");
2606 goto done;
2607 }
2608
2609 btf_verifier_log(env, "%u %s", args[0].type,
2610 __btf_name_by_offset(env->btf,
2611 args[0].name_off));
2612 for (i = 1; i < nr_args - 1; i++)
2613 btf_verifier_log(env, ", %u %s", args[i].type,
2614 __btf_name_by_offset(env->btf,
2615 args[i].name_off));
2616
2617 if (nr_args > 1) {
2618 const struct btf_param *last_arg = &args[nr_args - 1];
2619
2620 if (last_arg->type)
2621 btf_verifier_log(env, ", %u %s", last_arg->type,
2622 __btf_name_by_offset(env->btf,
2623 last_arg->name_off));
2624 else
2625 btf_verifier_log(env, ", vararg");
2626 }
2627
2628 done:
2629 btf_verifier_log(env, ")");
2630 }
2631
2632 static struct btf_kind_operations func_proto_ops = {
2633 .check_meta = btf_func_proto_check_meta,
2634 .resolve = btf_df_resolve,
2635 /*
2636 * BTF_KIND_FUNC_PROTO cannot be directly referred by
2637 * a struct's member.
2638 *
2639 * It should be a funciton pointer instead.
2640 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
2641 *
2642 * Hence, there is no btf_func_check_member().
2643 */
2644 .check_member = btf_df_check_member,
2645 .check_kflag_member = btf_df_check_kflag_member,
2646 .log_details = btf_func_proto_log,
2647 .seq_show = btf_df_seq_show,
2648 };
2649
2650 static s32 btf_func_check_meta(struct btf_verifier_env *env,
2651 const struct btf_type *t,
2652 u32 meta_left)
2653 {
2654 if (!t->name_off ||
2655 !btf_name_valid_identifier(env->btf, t->name_off)) {
2656 btf_verifier_log_type(env, t, "Invalid name");
2657 return -EINVAL;
2658 }
2659
2660 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
2661 btf_verifier_log_type(env, t, "Invalid func linkage");
2662 return -EINVAL;
2663 }
2664
2665 if (btf_type_kflag(t)) {
2666 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2667 return -EINVAL;
2668 }
2669
2670 btf_verifier_log_type(env, t, NULL);
2671
2672 return 0;
2673 }
2674
2675 static struct btf_kind_operations func_ops = {
2676 .check_meta = btf_func_check_meta,
2677 .resolve = btf_df_resolve,
2678 .check_member = btf_df_check_member,
2679 .check_kflag_member = btf_df_check_kflag_member,
2680 .log_details = btf_ref_type_log,
2681 .seq_show = btf_df_seq_show,
2682 };
2683
2684 static s32 btf_var_check_meta(struct btf_verifier_env *env,
2685 const struct btf_type *t,
2686 u32 meta_left)
2687 {
2688 const struct btf_var *var;
2689 u32 meta_needed = sizeof(*var);
2690
2691 if (meta_left < meta_needed) {
2692 btf_verifier_log_basic(env, t,
2693 "meta_left:%u meta_needed:%u",
2694 meta_left, meta_needed);
2695 return -EINVAL;
2696 }
2697
2698 if (btf_type_vlen(t)) {
2699 btf_verifier_log_type(env, t, "vlen != 0");
2700 return -EINVAL;
2701 }
2702
2703 if (btf_type_kflag(t)) {
2704 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2705 return -EINVAL;
2706 }
2707
2708 if (!t->name_off ||
2709 !__btf_name_valid(env->btf, t->name_off, true)) {
2710 btf_verifier_log_type(env, t, "Invalid name");
2711 return -EINVAL;
2712 }
2713
2714 /* A var cannot be in type void */
2715 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
2716 btf_verifier_log_type(env, t, "Invalid type_id");
2717 return -EINVAL;
2718 }
2719
2720 var = btf_type_var(t);
2721 if (var->linkage != BTF_VAR_STATIC &&
2722 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2723 btf_verifier_log_type(env, t, "Linkage not supported");
2724 return -EINVAL;
2725 }
2726
2727 btf_verifier_log_type(env, t, NULL);
2728
2729 return meta_needed;
2730 }
2731
2732 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
2733 {
2734 const struct btf_var *var = btf_type_var(t);
2735
2736 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
2737 }
2738
2739 static const struct btf_kind_operations var_ops = {
2740 .check_meta = btf_var_check_meta,
2741 .resolve = btf_var_resolve,
2742 .check_member = btf_df_check_member,
2743 .check_kflag_member = btf_df_check_kflag_member,
2744 .log_details = btf_var_log,
2745 .seq_show = btf_var_seq_show,
2746 };
2747
2748 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
2749 const struct btf_type *t,
2750 u32 meta_left)
2751 {
2752 const struct btf_var_secinfo *vsi;
2753 u64 last_vsi_end_off = 0, sum = 0;
2754 u32 i, meta_needed;
2755
2756 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
2757 if (meta_left < meta_needed) {
2758 btf_verifier_log_basic(env, t,
2759 "meta_left:%u meta_needed:%u",
2760 meta_left, meta_needed);
2761 return -EINVAL;
2762 }
2763
2764 if (!btf_type_vlen(t)) {
2765 btf_verifier_log_type(env, t, "vlen == 0");
2766 return -EINVAL;
2767 }
2768
2769 if (!t->size) {
2770 btf_verifier_log_type(env, t, "size == 0");
2771 return -EINVAL;
2772 }
2773
2774 if (btf_type_kflag(t)) {
2775 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2776 return -EINVAL;
2777 }
2778
2779 if (!t->name_off ||
2780 !btf_name_valid_section(env->btf, t->name_off)) {
2781 btf_verifier_log_type(env, t, "Invalid name");
2782 return -EINVAL;
2783 }
2784
2785 btf_verifier_log_type(env, t, NULL);
2786
2787 for_each_vsi(i, t, vsi) {
2788 /* A var cannot be in type void */
2789 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
2790 btf_verifier_log_vsi(env, t, vsi,
2791 "Invalid type_id");
2792 return -EINVAL;
2793 }
2794
2795 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
2796 btf_verifier_log_vsi(env, t, vsi,
2797 "Invalid offset");
2798 return -EINVAL;
2799 }
2800
2801 if (!vsi->size || vsi->size > t->size) {
2802 btf_verifier_log_vsi(env, t, vsi,
2803 "Invalid size");
2804 return -EINVAL;
2805 }
2806
2807 last_vsi_end_off = vsi->offset + vsi->size;
2808 if (last_vsi_end_off > t->size) {
2809 btf_verifier_log_vsi(env, t, vsi,
2810 "Invalid offset+size");
2811 return -EINVAL;
2812 }
2813
2814 btf_verifier_log_vsi(env, t, vsi, NULL);
2815 sum += vsi->size;
2816 }
2817
2818 if (t->size < sum) {
2819 btf_verifier_log_type(env, t, "Invalid btf_info size");
2820 return -EINVAL;
2821 }
2822
2823 return meta_needed;
2824 }
2825
2826 static int btf_datasec_resolve(struct btf_verifier_env *env,
2827 const struct resolve_vertex *v)
2828 {
2829 const struct btf_var_secinfo *vsi;
2830 struct btf *btf = env->btf;
2831 u16 i;
2832
2833 for_each_vsi_from(i, v->next_member, v->t, vsi) {
2834 u32 var_type_id = vsi->type, type_id, type_size = 0;
2835 const struct btf_type *var_type = btf_type_by_id(env->btf,
2836 var_type_id);
2837 if (!var_type || !btf_type_is_var(var_type)) {
2838 btf_verifier_log_vsi(env, v->t, vsi,
2839 "Not a VAR kind member");
2840 return -EINVAL;
2841 }
2842
2843 if (!env_type_is_resolve_sink(env, var_type) &&
2844 !env_type_is_resolved(env, var_type_id)) {
2845 env_stack_set_next_member(env, i + 1);
2846 return env_stack_push(env, var_type, var_type_id);
2847 }
2848
2849 type_id = var_type->type;
2850 if (!btf_type_id_size(btf, &type_id, &type_size)) {
2851 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
2852 return -EINVAL;
2853 }
2854
2855 if (vsi->size < type_size) {
2856 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
2857 return -EINVAL;
2858 }
2859 }
2860
2861 env_stack_pop_resolved(env, 0, 0);
2862 return 0;
2863 }
2864
2865 static void btf_datasec_log(struct btf_verifier_env *env,
2866 const struct btf_type *t)
2867 {
2868 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2869 }
2870
2871 static void btf_datasec_seq_show(const struct btf *btf,
2872 const struct btf_type *t, u32 type_id,
2873 void *data, u8 bits_offset,
2874 struct seq_file *m)
2875 {
2876 const struct btf_var_secinfo *vsi;
2877 const struct btf_type *var;
2878 u32 i;
2879
2880 seq_printf(m, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off));
2881 for_each_vsi(i, t, vsi) {
2882 var = btf_type_by_id(btf, vsi->type);
2883 if (i)
2884 seq_puts(m, ",");
2885 btf_type_ops(var)->seq_show(btf, var, vsi->type,
2886 data + vsi->offset, bits_offset, m);
2887 }
2888 seq_puts(m, "}");
2889 }
2890
2891 static const struct btf_kind_operations datasec_ops = {
2892 .check_meta = btf_datasec_check_meta,
2893 .resolve = btf_datasec_resolve,
2894 .check_member = btf_df_check_member,
2895 .check_kflag_member = btf_df_check_kflag_member,
2896 .log_details = btf_datasec_log,
2897 .seq_show = btf_datasec_seq_show,
2898 };
2899
2900 static int btf_func_proto_check(struct btf_verifier_env *env,
2901 const struct btf_type *t)
2902 {
2903 const struct btf_type *ret_type;
2904 const struct btf_param *args;
2905 const struct btf *btf;
2906 u16 nr_args, i;
2907 int err;
2908
2909 btf = env->btf;
2910 args = (const struct btf_param *)(t + 1);
2911 nr_args = btf_type_vlen(t);
2912
2913 /* Check func return type which could be "void" (t->type == 0) */
2914 if (t->type) {
2915 u32 ret_type_id = t->type;
2916
2917 ret_type = btf_type_by_id(btf, ret_type_id);
2918 if (!ret_type) {
2919 btf_verifier_log_type(env, t, "Invalid return type");
2920 return -EINVAL;
2921 }
2922
2923 if (btf_type_needs_resolve(ret_type) &&
2924 !env_type_is_resolved(env, ret_type_id)) {
2925 err = btf_resolve(env, ret_type, ret_type_id);
2926 if (err)
2927 return err;
2928 }
2929
2930 /* Ensure the return type is a type that has a size */
2931 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
2932 btf_verifier_log_type(env, t, "Invalid return type");
2933 return -EINVAL;
2934 }
2935 }
2936
2937 if (!nr_args)
2938 return 0;
2939
2940 /* Last func arg type_id could be 0 if it is a vararg */
2941 if (!args[nr_args - 1].type) {
2942 if (args[nr_args - 1].name_off) {
2943 btf_verifier_log_type(env, t, "Invalid arg#%u",
2944 nr_args);
2945 return -EINVAL;
2946 }
2947 nr_args--;
2948 }
2949
2950 err = 0;
2951 for (i = 0; i < nr_args; i++) {
2952 const struct btf_type *arg_type;
2953 u32 arg_type_id;
2954
2955 arg_type_id = args[i].type;
2956 arg_type = btf_type_by_id(btf, arg_type_id);
2957 if (!arg_type) {
2958 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2959 err = -EINVAL;
2960 break;
2961 }
2962
2963 if (args[i].name_off &&
2964 (!btf_name_offset_valid(btf, args[i].name_off) ||
2965 !btf_name_valid_identifier(btf, args[i].name_off))) {
2966 btf_verifier_log_type(env, t,
2967 "Invalid arg#%u", i + 1);
2968 err = -EINVAL;
2969 break;
2970 }
2971
2972 if (btf_type_needs_resolve(arg_type) &&
2973 !env_type_is_resolved(env, arg_type_id)) {
2974 err = btf_resolve(env, arg_type, arg_type_id);
2975 if (err)
2976 break;
2977 }
2978
2979 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
2980 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2981 err = -EINVAL;
2982 break;
2983 }
2984 }
2985
2986 return err;
2987 }
2988
2989 static int btf_func_check(struct btf_verifier_env *env,
2990 const struct btf_type *t)
2991 {
2992 const struct btf_type *proto_type;
2993 const struct btf_param *args;
2994 const struct btf *btf;
2995 u16 nr_args, i;
2996
2997 btf = env->btf;
2998 proto_type = btf_type_by_id(btf, t->type);
2999
3000 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3001 btf_verifier_log_type(env, t, "Invalid type_id");
3002 return -EINVAL;
3003 }
3004
3005 args = (const struct btf_param *)(proto_type + 1);
3006 nr_args = btf_type_vlen(proto_type);
3007 for (i = 0; i < nr_args; i++) {
3008 if (!args[i].name_off && args[i].type) {
3009 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3010 return -EINVAL;
3011 }
3012 }
3013
3014 return 0;
3015 }
3016
3017 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3018 [BTF_KIND_INT] = &int_ops,
3019 [BTF_KIND_PTR] = &ptr_ops,
3020 [BTF_KIND_ARRAY] = &array_ops,
3021 [BTF_KIND_STRUCT] = &struct_ops,
3022 [BTF_KIND_UNION] = &struct_ops,
3023 [BTF_KIND_ENUM] = &enum_ops,
3024 [BTF_KIND_FWD] = &fwd_ops,
3025 [BTF_KIND_TYPEDEF] = &modifier_ops,
3026 [BTF_KIND_VOLATILE] = &modifier_ops,
3027 [BTF_KIND_CONST] = &modifier_ops,
3028 [BTF_KIND_RESTRICT] = &modifier_ops,
3029 [BTF_KIND_FUNC] = &func_ops,
3030 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
3031 [BTF_KIND_VAR] = &var_ops,
3032 [BTF_KIND_DATASEC] = &datasec_ops,
3033 };
3034
3035 static s32 btf_check_meta(struct btf_verifier_env *env,
3036 const struct btf_type *t,
3037 u32 meta_left)
3038 {
3039 u32 saved_meta_left = meta_left;
3040 s32 var_meta_size;
3041
3042 if (meta_left < sizeof(*t)) {
3043 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3044 env->log_type_id, meta_left, sizeof(*t));
3045 return -EINVAL;
3046 }
3047 meta_left -= sizeof(*t);
3048
3049 if (t->info & ~BTF_INFO_MASK) {
3050 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3051 env->log_type_id, t->info);
3052 return -EINVAL;
3053 }
3054
3055 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3056 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3057 btf_verifier_log(env, "[%u] Invalid kind:%u",
3058 env->log_type_id, BTF_INFO_KIND(t->info));
3059 return -EINVAL;
3060 }
3061
3062 if (!btf_name_offset_valid(env->btf, t->name_off)) {
3063 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3064 env->log_type_id, t->name_off);
3065 return -EINVAL;
3066 }
3067
3068 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3069 if (var_meta_size < 0)
3070 return var_meta_size;
3071
3072 meta_left -= var_meta_size;
3073
3074 return saved_meta_left - meta_left;
3075 }
3076
3077 static int btf_check_all_metas(struct btf_verifier_env *env)
3078 {
3079 struct btf *btf = env->btf;
3080 struct btf_header *hdr;
3081 void *cur, *end;
3082
3083 hdr = &btf->hdr;
3084 cur = btf->nohdr_data + hdr->type_off;
3085 end = cur + hdr->type_len;
3086
3087 env->log_type_id = 1;
3088 while (cur < end) {
3089 struct btf_type *t = cur;
3090 s32 meta_size;
3091
3092 meta_size = btf_check_meta(env, t, end - cur);
3093 if (meta_size < 0)
3094 return meta_size;
3095
3096 btf_add_type(env, t);
3097 cur += meta_size;
3098 env->log_type_id++;
3099 }
3100
3101 return 0;
3102 }
3103
3104 static bool btf_resolve_valid(struct btf_verifier_env *env,
3105 const struct btf_type *t,
3106 u32 type_id)
3107 {
3108 struct btf *btf = env->btf;
3109
3110 if (!env_type_is_resolved(env, type_id))
3111 return false;
3112
3113 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3114 return !btf->resolved_ids[type_id] &&
3115 !btf->resolved_sizes[type_id];
3116
3117 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3118 btf_type_is_var(t)) {
3119 t = btf_type_id_resolve(btf, &type_id);
3120 return t &&
3121 !btf_type_is_modifier(t) &&
3122 !btf_type_is_var(t) &&
3123 !btf_type_is_datasec(t);
3124 }
3125
3126 if (btf_type_is_array(t)) {
3127 const struct btf_array *array = btf_type_array(t);
3128 const struct btf_type *elem_type;
3129 u32 elem_type_id = array->type;
3130 u32 elem_size;
3131
3132 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3133 return elem_type && !btf_type_is_modifier(elem_type) &&
3134 (array->nelems * elem_size ==
3135 btf->resolved_sizes[type_id]);
3136 }
3137
3138 return false;
3139 }
3140
3141 static int btf_resolve(struct btf_verifier_env *env,
3142 const struct btf_type *t, u32 type_id)
3143 {
3144 u32 save_log_type_id = env->log_type_id;
3145 const struct resolve_vertex *v;
3146 int err = 0;
3147
3148 env->resolve_mode = RESOLVE_TBD;
3149 env_stack_push(env, t, type_id);
3150 while (!err && (v = env_stack_peak(env))) {
3151 env->log_type_id = v->type_id;
3152 err = btf_type_ops(v->t)->resolve(env, v);
3153 }
3154
3155 env->log_type_id = type_id;
3156 if (err == -E2BIG) {
3157 btf_verifier_log_type(env, t,
3158 "Exceeded max resolving depth:%u",
3159 MAX_RESOLVE_DEPTH);
3160 } else if (err == -EEXIST) {
3161 btf_verifier_log_type(env, t, "Loop detected");
3162 }
3163
3164 /* Final sanity check */
3165 if (!err && !btf_resolve_valid(env, t, type_id)) {
3166 btf_verifier_log_type(env, t, "Invalid resolve state");
3167 err = -EINVAL;
3168 }
3169
3170 env->log_type_id = save_log_type_id;
3171 return err;
3172 }
3173
3174 static int btf_check_all_types(struct btf_verifier_env *env)
3175 {
3176 struct btf *btf = env->btf;
3177 u32 type_id;
3178 int err;
3179
3180 err = env_resolve_init(env);
3181 if (err)
3182 return err;
3183
3184 env->phase++;
3185 for (type_id = 1; type_id <= btf->nr_types; type_id++) {
3186 const struct btf_type *t = btf_type_by_id(btf, type_id);
3187
3188 env->log_type_id = type_id;
3189 if (btf_type_needs_resolve(t) &&
3190 !env_type_is_resolved(env, type_id)) {
3191 err = btf_resolve(env, t, type_id);
3192 if (err)
3193 return err;
3194 }
3195
3196 if (btf_type_is_func_proto(t)) {
3197 err = btf_func_proto_check(env, t);
3198 if (err)
3199 return err;
3200 }
3201
3202 if (btf_type_is_func(t)) {
3203 err = btf_func_check(env, t);
3204 if (err)
3205 return err;
3206 }
3207 }
3208
3209 return 0;
3210 }
3211
3212 static int btf_parse_type_sec(struct btf_verifier_env *env)
3213 {
3214 const struct btf_header *hdr = &env->btf->hdr;
3215 int err;
3216
3217 /* Type section must align to 4 bytes */
3218 if (hdr->type_off & (sizeof(u32) - 1)) {
3219 btf_verifier_log(env, "Unaligned type_off");
3220 return -EINVAL;
3221 }
3222
3223 if (!hdr->type_len) {
3224 btf_verifier_log(env, "No type found");
3225 return -EINVAL;
3226 }
3227
3228 err = btf_check_all_metas(env);
3229 if (err)
3230 return err;
3231
3232 return btf_check_all_types(env);
3233 }
3234
3235 static int btf_parse_str_sec(struct btf_verifier_env *env)
3236 {
3237 const struct btf_header *hdr;
3238 struct btf *btf = env->btf;
3239 const char *start, *end;
3240
3241 hdr = &btf->hdr;
3242 start = btf->nohdr_data + hdr->str_off;
3243 end = start + hdr->str_len;
3244
3245 if (end != btf->data + btf->data_size) {
3246 btf_verifier_log(env, "String section is not at the end");
3247 return -EINVAL;
3248 }
3249
3250 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
3251 start[0] || end[-1]) {
3252 btf_verifier_log(env, "Invalid string section");
3253 return -EINVAL;
3254 }
3255
3256 btf->strings = start;
3257
3258 return 0;
3259 }
3260
3261 static const size_t btf_sec_info_offset[] = {
3262 offsetof(struct btf_header, type_off),
3263 offsetof(struct btf_header, str_off),
3264 };
3265
3266 static int btf_sec_info_cmp(const void *a, const void *b)
3267 {
3268 const struct btf_sec_info *x = a;
3269 const struct btf_sec_info *y = b;
3270
3271 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
3272 }
3273
3274 static int btf_check_sec_info(struct btf_verifier_env *env,
3275 u32 btf_data_size)
3276 {
3277 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
3278 u32 total, expected_total, i;
3279 const struct btf_header *hdr;
3280 const struct btf *btf;
3281
3282 btf = env->btf;
3283 hdr = &btf->hdr;
3284
3285 /* Populate the secs from hdr */
3286 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
3287 secs[i] = *(struct btf_sec_info *)((void *)hdr +
3288 btf_sec_info_offset[i]);
3289
3290 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
3291 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
3292
3293 /* Check for gaps and overlap among sections */
3294 total = 0;
3295 expected_total = btf_data_size - hdr->hdr_len;
3296 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
3297 if (expected_total < secs[i].off) {
3298 btf_verifier_log(env, "Invalid section offset");
3299 return -EINVAL;
3300 }
3301 if (total < secs[i].off) {
3302 /* gap */
3303 btf_verifier_log(env, "Unsupported section found");
3304 return -EINVAL;
3305 }
3306 if (total > secs[i].off) {
3307 btf_verifier_log(env, "Section overlap found");
3308 return -EINVAL;
3309 }
3310 if (expected_total - total < secs[i].len) {
3311 btf_verifier_log(env,
3312 "Total section length too long");
3313 return -EINVAL;
3314 }
3315 total += secs[i].len;
3316 }
3317
3318 /* There is data other than hdr and known sections */
3319 if (expected_total != total) {
3320 btf_verifier_log(env, "Unsupported section found");
3321 return -EINVAL;
3322 }
3323
3324 return 0;
3325 }
3326
3327 static int btf_parse_hdr(struct btf_verifier_env *env)
3328 {
3329 u32 hdr_len, hdr_copy, btf_data_size;
3330 const struct btf_header *hdr;
3331 struct btf *btf;
3332 int err;
3333
3334 btf = env->btf;
3335 btf_data_size = btf->data_size;
3336
3337 if (btf_data_size <
3338 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
3339 btf_verifier_log(env, "hdr_len not found");
3340 return -EINVAL;
3341 }
3342
3343 hdr = btf->data;
3344 hdr_len = hdr->hdr_len;
3345 if (btf_data_size < hdr_len) {
3346 btf_verifier_log(env, "btf_header not found");
3347 return -EINVAL;
3348 }
3349
3350 /* Ensure the unsupported header fields are zero */
3351 if (hdr_len > sizeof(btf->hdr)) {
3352 u8 *expected_zero = btf->data + sizeof(btf->hdr);
3353 u8 *end = btf->data + hdr_len;
3354
3355 for (; expected_zero < end; expected_zero++) {
3356 if (*expected_zero) {
3357 btf_verifier_log(env, "Unsupported btf_header");
3358 return -E2BIG;
3359 }
3360 }
3361 }
3362
3363 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
3364 memcpy(&btf->hdr, btf->data, hdr_copy);
3365
3366 hdr = &btf->hdr;
3367
3368 btf_verifier_log_hdr(env, btf_data_size);
3369
3370 if (hdr->magic != BTF_MAGIC) {
3371 btf_verifier_log(env, "Invalid magic");
3372 return -EINVAL;
3373 }
3374
3375 if (hdr->version != BTF_VERSION) {
3376 btf_verifier_log(env, "Unsupported version");
3377 return -ENOTSUPP;
3378 }
3379
3380 if (hdr->flags) {
3381 btf_verifier_log(env, "Unsupported flags");
3382 return -ENOTSUPP;
3383 }
3384
3385 if (btf_data_size == hdr->hdr_len) {
3386 btf_verifier_log(env, "No data");
3387 return -EINVAL;
3388 }
3389
3390 err = btf_check_sec_info(env, btf_data_size);
3391 if (err)
3392 return err;
3393
3394 return 0;
3395 }
3396
3397 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
3398 u32 log_level, char __user *log_ubuf, u32 log_size)
3399 {
3400 struct btf_verifier_env *env = NULL;
3401 struct bpf_verifier_log *log;
3402 struct btf *btf = NULL;
3403 u8 *data;
3404 int err;
3405
3406 if (btf_data_size > BTF_MAX_SIZE)
3407 return ERR_PTR(-E2BIG);
3408
3409 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
3410 if (!env)
3411 return ERR_PTR(-ENOMEM);
3412
3413 log = &env->log;
3414 if (log_level || log_ubuf || log_size) {
3415 /* user requested verbose verifier output
3416 * and supplied buffer to store the verification trace
3417 */
3418 log->level = log_level;
3419 log->ubuf = log_ubuf;
3420 log->len_total = log_size;
3421
3422 /* log attributes have to be sane */
3423 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
3424 !log->level || !log->ubuf) {
3425 err = -EINVAL;
3426 goto errout;
3427 }
3428 }
3429
3430 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
3431 if (!btf) {
3432 err = -ENOMEM;
3433 goto errout;
3434 }
3435 env->btf = btf;
3436
3437 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
3438 if (!data) {
3439 err = -ENOMEM;
3440 goto errout;
3441 }
3442
3443 btf->data = data;
3444 btf->data_size = btf_data_size;
3445
3446 if (copy_from_user(data, btf_data, btf_data_size)) {
3447 err = -EFAULT;
3448 goto errout;
3449 }
3450
3451 err = btf_parse_hdr(env);
3452 if (err)
3453 goto errout;
3454
3455 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
3456
3457 err = btf_parse_str_sec(env);
3458 if (err)
3459 goto errout;
3460
3461 err = btf_parse_type_sec(env);
3462 if (err)
3463 goto errout;
3464
3465 if (log->level && bpf_verifier_log_full(log)) {
3466 err = -ENOSPC;
3467 goto errout;
3468 }
3469
3470 btf_verifier_env_free(env);
3471 refcount_set(&btf->refcnt, 1);
3472 return btf;
3473
3474 errout:
3475 btf_verifier_env_free(env);
3476 if (btf)
3477 btf_free(btf);
3478 return ERR_PTR(err);
3479 }
3480
3481 extern char __weak __start_BTF[];
3482 extern char __weak __stop_BTF[];
3483 extern struct btf *btf_vmlinux;
3484
3485 #define BPF_MAP_TYPE(_id, _ops)
3486 #define BPF_LINK_TYPE(_id, _name)
3487 static union {
3488 struct bpf_ctx_convert {
3489 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3490 prog_ctx_type _id##_prog; \
3491 kern_ctx_type _id##_kern;
3492 #include <linux/bpf_types.h>
3493 #undef BPF_PROG_TYPE
3494 } *__t;
3495 /* 't' is written once under lock. Read many times. */
3496 const struct btf_type *t;
3497 } bpf_ctx_convert;
3498 enum {
3499 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3500 __ctx_convert##_id,
3501 #include <linux/bpf_types.h>
3502 #undef BPF_PROG_TYPE
3503 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
3504 };
3505 static u8 bpf_ctx_convert_map[] = {
3506 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3507 [_id] = __ctx_convert##_id,
3508 #include <linux/bpf_types.h>
3509 #undef BPF_PROG_TYPE
3510 0, /* avoid empty array */
3511 };
3512 #undef BPF_MAP_TYPE
3513 #undef BPF_LINK_TYPE
3514
3515 static const struct btf_member *
3516 btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
3517 const struct btf_type *t, enum bpf_prog_type prog_type,
3518 int arg)
3519 {
3520 const struct btf_type *conv_struct;
3521 const struct btf_type *ctx_struct;
3522 const struct btf_member *ctx_type;
3523 const char *tname, *ctx_tname;
3524
3525 conv_struct = bpf_ctx_convert.t;
3526 if (!conv_struct) {
3527 bpf_log(log, "btf_vmlinux is malformed\n");
3528 return NULL;
3529 }
3530 t = btf_type_by_id(btf, t->type);
3531 while (btf_type_is_modifier(t))
3532 t = btf_type_by_id(btf, t->type);
3533 if (!btf_type_is_struct(t)) {
3534 /* Only pointer to struct is supported for now.
3535 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
3536 * is not supported yet.
3537 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
3538 */
3539 if (log->level & BPF_LOG_LEVEL)
3540 bpf_log(log, "arg#%d type is not a struct\n", arg);
3541 return NULL;
3542 }
3543 tname = btf_name_by_offset(btf, t->name_off);
3544 if (!tname) {
3545 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
3546 return NULL;
3547 }
3548 /* prog_type is valid bpf program type. No need for bounds check. */
3549 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
3550 /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
3551 * Like 'struct __sk_buff'
3552 */
3553 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
3554 if (!ctx_struct)
3555 /* should not happen */
3556 return NULL;
3557 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
3558 if (!ctx_tname) {
3559 /* should not happen */
3560 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
3561 return NULL;
3562 }
3563 /* only compare that prog's ctx type name is the same as
3564 * kernel expects. No need to compare field by field.
3565 * It's ok for bpf prog to do:
3566 * struct __sk_buff {};
3567 * int socket_filter_bpf_prog(struct __sk_buff *skb)
3568 * { // no fields of skb are ever used }
3569 */
3570 if (strcmp(ctx_tname, tname))
3571 return NULL;
3572 return ctx_type;
3573 }
3574
3575 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
3576 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
3577 #define BPF_LINK_TYPE(_id, _name)
3578 #define BPF_MAP_TYPE(_id, _ops) \
3579 [_id] = &_ops,
3580 #include <linux/bpf_types.h>
3581 #undef BPF_PROG_TYPE
3582 #undef BPF_LINK_TYPE
3583 #undef BPF_MAP_TYPE
3584 };
3585
3586 static int btf_vmlinux_map_ids_init(const struct btf *btf,
3587 struct bpf_verifier_log *log)
3588 {
3589 const struct bpf_map_ops *ops;
3590 int i, btf_id;
3591
3592 for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
3593 ops = btf_vmlinux_map_ops[i];
3594 if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
3595 continue;
3596 if (!ops->map_btf_name || !ops->map_btf_id) {
3597 bpf_log(log, "map type %d is misconfigured\n", i);
3598 return -EINVAL;
3599 }
3600 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
3601 BTF_KIND_STRUCT);
3602 if (btf_id < 0)
3603 return btf_id;
3604 *ops->map_btf_id = btf_id;
3605 }
3606
3607 return 0;
3608 }
3609
3610 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
3611 struct btf *btf,
3612 const struct btf_type *t,
3613 enum bpf_prog_type prog_type,
3614 int arg)
3615 {
3616 const struct btf_member *prog_ctx_type, *kern_ctx_type;
3617
3618 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
3619 if (!prog_ctx_type)
3620 return -ENOENT;
3621 kern_ctx_type = prog_ctx_type + 1;
3622 return kern_ctx_type->type;
3623 }
3624
3625 BTF_ID_LIST(bpf_ctx_convert_btf_id)
3626 BTF_ID(struct, bpf_ctx_convert)
3627
3628 struct btf *btf_parse_vmlinux(void)
3629 {
3630 struct btf_verifier_env *env = NULL;
3631 struct bpf_verifier_log *log;
3632 struct btf *btf = NULL;
3633 int err;
3634
3635 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
3636 if (!env)
3637 return ERR_PTR(-ENOMEM);
3638
3639 log = &env->log;
3640 log->level = BPF_LOG_KERNEL;
3641
3642 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
3643 if (!btf) {
3644 err = -ENOMEM;
3645 goto errout;
3646 }
3647 env->btf = btf;
3648
3649 btf->data = __start_BTF;
3650 btf->data_size = __stop_BTF - __start_BTF;
3651
3652 err = btf_parse_hdr(env);
3653 if (err)
3654 goto errout;
3655
3656 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
3657
3658 err = btf_parse_str_sec(env);
3659 if (err)
3660 goto errout;
3661
3662 err = btf_check_all_metas(env);
3663 if (err)
3664 goto errout;
3665
3666 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
3667 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
3668
3669 /* find bpf map structs for map_ptr access checking */
3670 err = btf_vmlinux_map_ids_init(btf, log);
3671 if (err < 0)
3672 goto errout;
3673
3674 bpf_struct_ops_init(btf, log);
3675
3676 btf_verifier_env_free(env);
3677 refcount_set(&btf->refcnt, 1);
3678 return btf;
3679
3680 errout:
3681 btf_verifier_env_free(env);
3682 if (btf) {
3683 kvfree(btf->types);
3684 kfree(btf);
3685 }
3686 return ERR_PTR(err);
3687 }
3688
3689 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
3690 {
3691 struct bpf_prog *tgt_prog = prog->aux->linked_prog;
3692
3693 if (tgt_prog) {
3694 return tgt_prog->aux->btf;
3695 } else {
3696 return btf_vmlinux;
3697 }
3698 }
3699
3700 static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
3701 {
3702 /* t comes in already as a pointer */
3703 t = btf_type_by_id(btf, t->type);
3704
3705 /* allow const */
3706 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
3707 t = btf_type_by_id(btf, t->type);
3708
3709 /* char, signed char, unsigned char */
3710 return btf_type_is_int(t) && t->size == 1;
3711 }
3712
3713 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
3714 const struct bpf_prog *prog,
3715 struct bpf_insn_access_aux *info)
3716 {
3717 const struct btf_type *t = prog->aux->attach_func_proto;
3718 struct bpf_prog *tgt_prog = prog->aux->linked_prog;
3719 struct btf *btf = bpf_prog_get_target_btf(prog);
3720 const char *tname = prog->aux->attach_func_name;
3721 struct bpf_verifier_log *log = info->log;
3722 const struct btf_param *args;
3723 u32 nr_args, arg;
3724 int i, ret;
3725
3726 if (off % 8) {
3727 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
3728 tname, off);
3729 return false;
3730 }
3731 arg = off / 8;
3732 args = (const struct btf_param *)(t + 1);
3733 /* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */
3734 nr_args = t ? btf_type_vlen(t) : 5;
3735 if (prog->aux->attach_btf_trace) {
3736 /* skip first 'void *__data' argument in btf_trace_##name typedef */
3737 args++;
3738 nr_args--;
3739 }
3740
3741 if (arg > nr_args) {
3742 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
3743 tname, arg + 1);
3744 return false;
3745 }
3746
3747 if (arg == nr_args) {
3748 switch (prog->expected_attach_type) {
3749 case BPF_LSM_MAC:
3750 case BPF_TRACE_FEXIT:
3751 /* When LSM programs are attached to void LSM hooks
3752 * they use FEXIT trampolines and when attached to
3753 * int LSM hooks, they use MODIFY_RETURN trampolines.
3754 *
3755 * While the LSM programs are BPF_MODIFY_RETURN-like
3756 * the check:
3757 *
3758 * if (ret_type != 'int')
3759 * return -EINVAL;
3760 *
3761 * is _not_ done here. This is still safe as LSM hooks
3762 * have only void and int return types.
3763 */
3764 if (!t)
3765 return true;
3766 t = btf_type_by_id(btf, t->type);
3767 break;
3768 case BPF_MODIFY_RETURN:
3769 /* For now the BPF_MODIFY_RETURN can only be attached to
3770 * functions that return an int.
3771 */
3772 if (!t)
3773 return false;
3774
3775 t = btf_type_skip_modifiers(btf, t->type, NULL);
3776 if (!btf_type_is_small_int(t)) {
3777 bpf_log(log,
3778 "ret type %s not allowed for fmod_ret\n",
3779 btf_kind_str[BTF_INFO_KIND(t->info)]);
3780 return false;
3781 }
3782 break;
3783 default:
3784 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
3785 tname, arg + 1);
3786 return false;
3787 }
3788 } else {
3789 if (!t)
3790 /* Default prog with 5 args */
3791 return true;
3792 t = btf_type_by_id(btf, args[arg].type);
3793 }
3794
3795 /* skip modifiers */
3796 while (btf_type_is_modifier(t))
3797 t = btf_type_by_id(btf, t->type);
3798 if (btf_type_is_small_int(t) || btf_type_is_enum(t))
3799 /* accessing a scalar */
3800 return true;
3801 if (!btf_type_is_ptr(t)) {
3802 bpf_log(log,
3803 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
3804 tname, arg,
3805 __btf_name_by_offset(btf, t->name_off),
3806 btf_kind_str[BTF_INFO_KIND(t->info)]);
3807 return false;
3808 }
3809
3810 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
3811 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
3812 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
3813
3814 if (ctx_arg_info->offset == off &&
3815 (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
3816 ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
3817 info->reg_type = ctx_arg_info->reg_type;
3818 return true;
3819 }
3820 }
3821
3822 if (t->type == 0)
3823 /* This is a pointer to void.
3824 * It is the same as scalar from the verifier safety pov.
3825 * No further pointer walking is allowed.
3826 */
3827 return true;
3828
3829 if (is_string_ptr(btf, t))
3830 return true;
3831
3832 /* this is a pointer to another type */
3833 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
3834 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
3835
3836 if (ctx_arg_info->offset == off) {
3837 info->reg_type = ctx_arg_info->reg_type;
3838 info->btf_id = ctx_arg_info->btf_id;
3839 return true;
3840 }
3841 }
3842
3843 info->reg_type = PTR_TO_BTF_ID;
3844 if (tgt_prog) {
3845 ret = btf_translate_to_vmlinux(log, btf, t, tgt_prog->type, arg);
3846 if (ret > 0) {
3847 info->btf_id = ret;
3848 return true;
3849 } else {
3850 return false;
3851 }
3852 }
3853
3854 info->btf_id = t->type;
3855 t = btf_type_by_id(btf, t->type);
3856 /* skip modifiers */
3857 while (btf_type_is_modifier(t)) {
3858 info->btf_id = t->type;
3859 t = btf_type_by_id(btf, t->type);
3860 }
3861 if (!btf_type_is_struct(t)) {
3862 bpf_log(log,
3863 "func '%s' arg%d type %s is not a struct\n",
3864 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
3865 return false;
3866 }
3867 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
3868 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
3869 __btf_name_by_offset(btf, t->name_off));
3870 return true;
3871 }
3872
3873 int btf_struct_access(struct bpf_verifier_log *log,
3874 const struct btf_type *t, int off, int size,
3875 enum bpf_access_type atype,
3876 u32 *next_btf_id)
3877 {
3878 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
3879 const struct btf_type *mtype, *elem_type = NULL;
3880 const struct btf_member *member;
3881 const char *tname, *mname;
3882 u32 vlen;
3883
3884 again:
3885 tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
3886 if (!btf_type_is_struct(t)) {
3887 bpf_log(log, "Type '%s' is not a struct\n", tname);
3888 return -EINVAL;
3889 }
3890
3891 vlen = btf_type_vlen(t);
3892 if (off + size > t->size) {
3893 /* If the last element is a variable size array, we may
3894 * need to relax the rule.
3895 */
3896 struct btf_array *array_elem;
3897
3898 if (vlen == 0)
3899 goto error;
3900
3901 member = btf_type_member(t) + vlen - 1;
3902 mtype = btf_type_skip_modifiers(btf_vmlinux, member->type,
3903 NULL);
3904 if (!btf_type_is_array(mtype))
3905 goto error;
3906
3907 array_elem = (struct btf_array *)(mtype + 1);
3908 if (array_elem->nelems != 0)
3909 goto error;
3910
3911 moff = btf_member_bit_offset(t, member) / 8;
3912 if (off < moff)
3913 goto error;
3914
3915 /* Only allow structure for now, can be relaxed for
3916 * other types later.
3917 */
3918 elem_type = btf_type_skip_modifiers(btf_vmlinux,
3919 array_elem->type, NULL);
3920 if (!btf_type_is_struct(elem_type))
3921 goto error;
3922
3923 off = (off - moff) % elem_type->size;
3924 return btf_struct_access(log, elem_type, off, size, atype,
3925 next_btf_id);
3926
3927 error:
3928 bpf_log(log, "access beyond struct %s at off %u size %u\n",
3929 tname, off, size);
3930 return -EACCES;
3931 }
3932
3933 for_each_member(i, t, member) {
3934 /* offset of the field in bytes */
3935 moff = btf_member_bit_offset(t, member) / 8;
3936 if (off + size <= moff)
3937 /* won't find anything, field is already too far */
3938 break;
3939
3940 if (btf_member_bitfield_size(t, member)) {
3941 u32 end_bit = btf_member_bit_offset(t, member) +
3942 btf_member_bitfield_size(t, member);
3943
3944 /* off <= moff instead of off == moff because clang
3945 * does not generate a BTF member for anonymous
3946 * bitfield like the ":16" here:
3947 * struct {
3948 * int :16;
3949 * int x:8;
3950 * };
3951 */
3952 if (off <= moff &&
3953 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
3954 return SCALAR_VALUE;
3955
3956 /* off may be accessing a following member
3957 *
3958 * or
3959 *
3960 * Doing partial access at either end of this
3961 * bitfield. Continue on this case also to
3962 * treat it as not accessing this bitfield
3963 * and eventually error out as field not
3964 * found to keep it simple.
3965 * It could be relaxed if there was a legit
3966 * partial access case later.
3967 */
3968 continue;
3969 }
3970
3971 /* In case of "off" is pointing to holes of a struct */
3972 if (off < moff)
3973 break;
3974
3975 /* type of the field */
3976 mtype = btf_type_by_id(btf_vmlinux, member->type);
3977 mname = __btf_name_by_offset(btf_vmlinux, member->name_off);
3978
3979 mtype = btf_resolve_size(btf_vmlinux, mtype, &msize,
3980 &elem_type, &total_nelems);
3981 if (IS_ERR(mtype)) {
3982 bpf_log(log, "field %s doesn't have size\n", mname);
3983 return -EFAULT;
3984 }
3985
3986 mtrue_end = moff + msize;
3987 if (off >= mtrue_end)
3988 /* no overlap with member, keep iterating */
3989 continue;
3990
3991 if (btf_type_is_array(mtype)) {
3992 u32 elem_idx;
3993
3994 /* btf_resolve_size() above helps to
3995 * linearize a multi-dimensional array.
3996 *
3997 * The logic here is treating an array
3998 * in a struct as the following way:
3999 *
4000 * struct outer {
4001 * struct inner array[2][2];
4002 * };
4003 *
4004 * looks like:
4005 *
4006 * struct outer {
4007 * struct inner array_elem0;
4008 * struct inner array_elem1;
4009 * struct inner array_elem2;
4010 * struct inner array_elem3;
4011 * };
4012 *
4013 * When accessing outer->array[1][0], it moves
4014 * moff to "array_elem2", set mtype to
4015 * "struct inner", and msize also becomes
4016 * sizeof(struct inner). Then most of the
4017 * remaining logic will fall through without
4018 * caring the current member is an array or
4019 * not.
4020 *
4021 * Unlike mtype/msize/moff, mtrue_end does not
4022 * change. The naming difference ("_true") tells
4023 * that it is not always corresponding to
4024 * the current mtype/msize/moff.
4025 * It is the true end of the current
4026 * member (i.e. array in this case). That
4027 * will allow an int array to be accessed like
4028 * a scratch space,
4029 * i.e. allow access beyond the size of
4030 * the array's element as long as it is
4031 * within the mtrue_end boundary.
4032 */
4033
4034 /* skip empty array */
4035 if (moff == mtrue_end)
4036 continue;
4037
4038 msize /= total_nelems;
4039 elem_idx = (off - moff) / msize;
4040 moff += elem_idx * msize;
4041 mtype = elem_type;
4042 }
4043
4044 /* the 'off' we're looking for is either equal to start
4045 * of this field or inside of this struct
4046 */
4047 if (btf_type_is_struct(mtype)) {
4048 /* our field must be inside that union or struct */
4049 t = mtype;
4050
4051 /* adjust offset we're looking for */
4052 off -= moff;
4053 goto again;
4054 }
4055
4056 if (btf_type_is_ptr(mtype)) {
4057 const struct btf_type *stype;
4058 u32 id;
4059
4060 if (msize != size || off != moff) {
4061 bpf_log(log,
4062 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
4063 mname, moff, tname, off, size);
4064 return -EACCES;
4065 }
4066
4067 stype = btf_type_skip_modifiers(btf_vmlinux, mtype->type, &id);
4068 if (btf_type_is_struct(stype)) {
4069 *next_btf_id = id;
4070 return PTR_TO_BTF_ID;
4071 }
4072 }
4073
4074 /* Allow more flexible access within an int as long as
4075 * it is within mtrue_end.
4076 * Since mtrue_end could be the end of an array,
4077 * that also allows using an array of int as a scratch
4078 * space. e.g. skb->cb[].
4079 */
4080 if (off + size > mtrue_end) {
4081 bpf_log(log,
4082 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
4083 mname, mtrue_end, tname, off, size);
4084 return -EACCES;
4085 }
4086
4087 return SCALAR_VALUE;
4088 }
4089 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
4090 return -EINVAL;
4091 }
4092
4093 int btf_resolve_helper_id(struct bpf_verifier_log *log,
4094 const struct bpf_func_proto *fn, int arg)
4095 {
4096 int id;
4097
4098 if (fn->arg_type[arg] != ARG_PTR_TO_BTF_ID)
4099 return -EINVAL;
4100 id = fn->btf_id[arg];
4101 if (!id || id > btf_vmlinux->nr_types)
4102 return -EINVAL;
4103 return id;
4104 }
4105
4106 static int __get_type_size(struct btf *btf, u32 btf_id,
4107 const struct btf_type **bad_type)
4108 {
4109 const struct btf_type *t;
4110
4111 if (!btf_id)
4112 /* void */
4113 return 0;
4114 t = btf_type_by_id(btf, btf_id);
4115 while (t && btf_type_is_modifier(t))
4116 t = btf_type_by_id(btf, t->type);
4117 if (!t) {
4118 *bad_type = btf->types[0];
4119 return -EINVAL;
4120 }
4121 if (btf_type_is_ptr(t))
4122 /* kernel size of pointer. Not BPF's size of pointer*/
4123 return sizeof(void *);
4124 if (btf_type_is_int(t) || btf_type_is_enum(t))
4125 return t->size;
4126 *bad_type = t;
4127 return -EINVAL;
4128 }
4129
4130 int btf_distill_func_proto(struct bpf_verifier_log *log,
4131 struct btf *btf,
4132 const struct btf_type *func,
4133 const char *tname,
4134 struct btf_func_model *m)
4135 {
4136 const struct btf_param *args;
4137 const struct btf_type *t;
4138 u32 i, nargs;
4139 int ret;
4140
4141 if (!func) {
4142 /* BTF function prototype doesn't match the verifier types.
4143 * Fall back to 5 u64 args.
4144 */
4145 for (i = 0; i < 5; i++)
4146 m->arg_size[i] = 8;
4147 m->ret_size = 8;
4148 m->nr_args = 5;
4149 return 0;
4150 }
4151 args = (const struct btf_param *)(func + 1);
4152 nargs = btf_type_vlen(func);
4153 if (nargs >= MAX_BPF_FUNC_ARGS) {
4154 bpf_log(log,
4155 "The function %s has %d arguments. Too many.\n",
4156 tname, nargs);
4157 return -EINVAL;
4158 }
4159 ret = __get_type_size(btf, func->type, &t);
4160 if (ret < 0) {
4161 bpf_log(log,
4162 "The function %s return type %s is unsupported.\n",
4163 tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
4164 return -EINVAL;
4165 }
4166 m->ret_size = ret;
4167
4168 for (i = 0; i < nargs; i++) {
4169 ret = __get_type_size(btf, args[i].type, &t);
4170 if (ret < 0) {
4171 bpf_log(log,
4172 "The function %s arg%d type %s is unsupported.\n",
4173 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4174 return -EINVAL;
4175 }
4176 m->arg_size[i] = ret;
4177 }
4178 m->nr_args = nargs;
4179 return 0;
4180 }
4181
4182 /* Compare BTFs of two functions assuming only scalars and pointers to context.
4183 * t1 points to BTF_KIND_FUNC in btf1
4184 * t2 points to BTF_KIND_FUNC in btf2
4185 * Returns:
4186 * EINVAL - function prototype mismatch
4187 * EFAULT - verifier bug
4188 * 0 - 99% match. The last 1% is validated by the verifier.
4189 */
4190 static int btf_check_func_type_match(struct bpf_verifier_log *log,
4191 struct btf *btf1, const struct btf_type *t1,
4192 struct btf *btf2, const struct btf_type *t2)
4193 {
4194 const struct btf_param *args1, *args2;
4195 const char *fn1, *fn2, *s1, *s2;
4196 u32 nargs1, nargs2, i;
4197
4198 fn1 = btf_name_by_offset(btf1, t1->name_off);
4199 fn2 = btf_name_by_offset(btf2, t2->name_off);
4200
4201 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
4202 bpf_log(log, "%s() is not a global function\n", fn1);
4203 return -EINVAL;
4204 }
4205 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
4206 bpf_log(log, "%s() is not a global function\n", fn2);
4207 return -EINVAL;
4208 }
4209
4210 t1 = btf_type_by_id(btf1, t1->type);
4211 if (!t1 || !btf_type_is_func_proto(t1))
4212 return -EFAULT;
4213 t2 = btf_type_by_id(btf2, t2->type);
4214 if (!t2 || !btf_type_is_func_proto(t2))
4215 return -EFAULT;
4216
4217 args1 = (const struct btf_param *)(t1 + 1);
4218 nargs1 = btf_type_vlen(t1);
4219 args2 = (const struct btf_param *)(t2 + 1);
4220 nargs2 = btf_type_vlen(t2);
4221
4222 if (nargs1 != nargs2) {
4223 bpf_log(log, "%s() has %d args while %s() has %d args\n",
4224 fn1, nargs1, fn2, nargs2);
4225 return -EINVAL;
4226 }
4227
4228 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
4229 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
4230 if (t1->info != t2->info) {
4231 bpf_log(log,
4232 "Return type %s of %s() doesn't match type %s of %s()\n",
4233 btf_type_str(t1), fn1,
4234 btf_type_str(t2), fn2);
4235 return -EINVAL;
4236 }
4237
4238 for (i = 0; i < nargs1; i++) {
4239 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
4240 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
4241
4242 if (t1->info != t2->info) {
4243 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
4244 i, fn1, btf_type_str(t1),
4245 fn2, btf_type_str(t2));
4246 return -EINVAL;
4247 }
4248 if (btf_type_has_size(t1) && t1->size != t2->size) {
4249 bpf_log(log,
4250 "arg%d in %s() has size %d while %s() has %d\n",
4251 i, fn1, t1->size,
4252 fn2, t2->size);
4253 return -EINVAL;
4254 }
4255
4256 /* global functions are validated with scalars and pointers
4257 * to context only. And only global functions can be replaced.
4258 * Hence type check only those types.
4259 */
4260 if (btf_type_is_int(t1) || btf_type_is_enum(t1))
4261 continue;
4262 if (!btf_type_is_ptr(t1)) {
4263 bpf_log(log,
4264 "arg%d in %s() has unrecognized type\n",
4265 i, fn1);
4266 return -EINVAL;
4267 }
4268 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
4269 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
4270 if (!btf_type_is_struct(t1)) {
4271 bpf_log(log,
4272 "arg%d in %s() is not a pointer to context\n",
4273 i, fn1);
4274 return -EINVAL;
4275 }
4276 if (!btf_type_is_struct(t2)) {
4277 bpf_log(log,
4278 "arg%d in %s() is not a pointer to context\n",
4279 i, fn2);
4280 return -EINVAL;
4281 }
4282 /* This is an optional check to make program writing easier.
4283 * Compare names of structs and report an error to the user.
4284 * btf_prepare_func_args() already checked that t2 struct
4285 * is a context type. btf_prepare_func_args() will check
4286 * later that t1 struct is a context type as well.
4287 */
4288 s1 = btf_name_by_offset(btf1, t1->name_off);
4289 s2 = btf_name_by_offset(btf2, t2->name_off);
4290 if (strcmp(s1, s2)) {
4291 bpf_log(log,
4292 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
4293 i, fn1, s1, fn2, s2);
4294 return -EINVAL;
4295 }
4296 }
4297 return 0;
4298 }
4299
4300 /* Compare BTFs of given program with BTF of target program */
4301 int btf_check_type_match(struct bpf_verifier_env *env, struct bpf_prog *prog,
4302 struct btf *btf2, const struct btf_type *t2)
4303 {
4304 struct btf *btf1 = prog->aux->btf;
4305 const struct btf_type *t1;
4306 u32 btf_id = 0;
4307
4308 if (!prog->aux->func_info) {
4309 bpf_log(&env->log, "Program extension requires BTF\n");
4310 return -EINVAL;
4311 }
4312
4313 btf_id = prog->aux->func_info[0].type_id;
4314 if (!btf_id)
4315 return -EFAULT;
4316
4317 t1 = btf_type_by_id(btf1, btf_id);
4318 if (!t1 || !btf_type_is_func(t1))
4319 return -EFAULT;
4320
4321 return btf_check_func_type_match(&env->log, btf1, t1, btf2, t2);
4322 }
4323
4324 /* Compare BTF of a function with given bpf_reg_state.
4325 * Returns:
4326 * EFAULT - there is a verifier bug. Abort verification.
4327 * EINVAL - there is a type mismatch or BTF is not available.
4328 * 0 - BTF matches with what bpf_reg_state expects.
4329 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
4330 */
4331 int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
4332 struct bpf_reg_state *reg)
4333 {
4334 struct bpf_verifier_log *log = &env->log;
4335 struct bpf_prog *prog = env->prog;
4336 struct btf *btf = prog->aux->btf;
4337 const struct btf_param *args;
4338 const struct btf_type *t;
4339 u32 i, nargs, btf_id;
4340 const char *tname;
4341
4342 if (!prog->aux->func_info)
4343 return -EINVAL;
4344
4345 btf_id = prog->aux->func_info[subprog].type_id;
4346 if (!btf_id)
4347 return -EFAULT;
4348
4349 if (prog->aux->func_info_aux[subprog].unreliable)
4350 return -EINVAL;
4351
4352 t = btf_type_by_id(btf, btf_id);
4353 if (!t || !btf_type_is_func(t)) {
4354 /* These checks were already done by the verifier while loading
4355 * struct bpf_func_info
4356 */
4357 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
4358 subprog);
4359 return -EFAULT;
4360 }
4361 tname = btf_name_by_offset(btf, t->name_off);
4362
4363 t = btf_type_by_id(btf, t->type);
4364 if (!t || !btf_type_is_func_proto(t)) {
4365 bpf_log(log, "Invalid BTF of func %s\n", tname);
4366 return -EFAULT;
4367 }
4368 args = (const struct btf_param *)(t + 1);
4369 nargs = btf_type_vlen(t);
4370 if (nargs > 5) {
4371 bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs);
4372 goto out;
4373 }
4374 /* check that BTF function arguments match actual types that the
4375 * verifier sees.
4376 */
4377 for (i = 0; i < nargs; i++) {
4378 t = btf_type_by_id(btf, args[i].type);
4379 while (btf_type_is_modifier(t))
4380 t = btf_type_by_id(btf, t->type);
4381 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
4382 if (reg[i + 1].type == SCALAR_VALUE)
4383 continue;
4384 bpf_log(log, "R%d is not a scalar\n", i + 1);
4385 goto out;
4386 }
4387 if (btf_type_is_ptr(t)) {
4388 if (reg[i + 1].type == SCALAR_VALUE) {
4389 bpf_log(log, "R%d is not a pointer\n", i + 1);
4390 goto out;
4391 }
4392 /* If function expects ctx type in BTF check that caller
4393 * is passing PTR_TO_CTX.
4394 */
4395 if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) {
4396 if (reg[i + 1].type != PTR_TO_CTX) {
4397 bpf_log(log,
4398 "arg#%d expected pointer to ctx, but got %s\n",
4399 i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4400 goto out;
4401 }
4402 if (check_ctx_reg(env, &reg[i + 1], i + 1))
4403 goto out;
4404 continue;
4405 }
4406 }
4407 bpf_log(log, "Unrecognized arg#%d type %s\n",
4408 i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4409 goto out;
4410 }
4411 return 0;
4412 out:
4413 /* Compiler optimizations can remove arguments from static functions
4414 * or mismatched type can be passed into a global function.
4415 * In such cases mark the function as unreliable from BTF point of view.
4416 */
4417 prog->aux->func_info_aux[subprog].unreliable = true;
4418 return -EINVAL;
4419 }
4420
4421 /* Convert BTF of a function into bpf_reg_state if possible
4422 * Returns:
4423 * EFAULT - there is a verifier bug. Abort verification.
4424 * EINVAL - cannot convert BTF.
4425 * 0 - Successfully converted BTF into bpf_reg_state
4426 * (either PTR_TO_CTX or SCALAR_VALUE).
4427 */
4428 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
4429 struct bpf_reg_state *reg)
4430 {
4431 struct bpf_verifier_log *log = &env->log;
4432 struct bpf_prog *prog = env->prog;
4433 enum bpf_prog_type prog_type = prog->type;
4434 struct btf *btf = prog->aux->btf;
4435 const struct btf_param *args;
4436 const struct btf_type *t;
4437 u32 i, nargs, btf_id;
4438 const char *tname;
4439
4440 if (!prog->aux->func_info ||
4441 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
4442 bpf_log(log, "Verifier bug\n");
4443 return -EFAULT;
4444 }
4445
4446 btf_id = prog->aux->func_info[subprog].type_id;
4447 if (!btf_id) {
4448 bpf_log(log, "Global functions need valid BTF\n");
4449 return -EFAULT;
4450 }
4451
4452 t = btf_type_by_id(btf, btf_id);
4453 if (!t || !btf_type_is_func(t)) {
4454 /* These checks were already done by the verifier while loading
4455 * struct bpf_func_info
4456 */
4457 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
4458 subprog);
4459 return -EFAULT;
4460 }
4461 tname = btf_name_by_offset(btf, t->name_off);
4462
4463 if (log->level & BPF_LOG_LEVEL)
4464 bpf_log(log, "Validating %s() func#%d...\n",
4465 tname, subprog);
4466
4467 if (prog->aux->func_info_aux[subprog].unreliable) {
4468 bpf_log(log, "Verifier bug in function %s()\n", tname);
4469 return -EFAULT;
4470 }
4471 if (prog_type == BPF_PROG_TYPE_EXT)
4472 prog_type = prog->aux->linked_prog->type;
4473
4474 t = btf_type_by_id(btf, t->type);
4475 if (!t || !btf_type_is_func_proto(t)) {
4476 bpf_log(log, "Invalid type of function %s()\n", tname);
4477 return -EFAULT;
4478 }
4479 args = (const struct btf_param *)(t + 1);
4480 nargs = btf_type_vlen(t);
4481 if (nargs > 5) {
4482 bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n",
4483 tname, nargs);
4484 return -EINVAL;
4485 }
4486 /* check that function returns int */
4487 t = btf_type_by_id(btf, t->type);
4488 while (btf_type_is_modifier(t))
4489 t = btf_type_by_id(btf, t->type);
4490 if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
4491 bpf_log(log,
4492 "Global function %s() doesn't return scalar. Only those are supported.\n",
4493 tname);
4494 return -EINVAL;
4495 }
4496 /* Convert BTF function arguments into verifier types.
4497 * Only PTR_TO_CTX and SCALAR are supported atm.
4498 */
4499 for (i = 0; i < nargs; i++) {
4500 t = btf_type_by_id(btf, args[i].type);
4501 while (btf_type_is_modifier(t))
4502 t = btf_type_by_id(btf, t->type);
4503 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
4504 reg[i + 1].type = SCALAR_VALUE;
4505 continue;
4506 }
4507 if (btf_type_is_ptr(t) &&
4508 btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
4509 reg[i + 1].type = PTR_TO_CTX;
4510 continue;
4511 }
4512 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
4513 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
4514 return -EINVAL;
4515 }
4516 return 0;
4517 }
4518
4519 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
4520 struct seq_file *m)
4521 {
4522 const struct btf_type *t = btf_type_by_id(btf, type_id);
4523
4524 btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
4525 }
4526
4527 #ifdef CONFIG_PROC_FS
4528 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
4529 {
4530 const struct btf *btf = filp->private_data;
4531
4532 seq_printf(m, "btf_id:\t%u\n", btf->id);
4533 }
4534 #endif
4535
4536 static int btf_release(struct inode *inode, struct file *filp)
4537 {
4538 btf_put(filp->private_data);
4539 return 0;
4540 }
4541
4542 const struct file_operations btf_fops = {
4543 #ifdef CONFIG_PROC_FS
4544 .show_fdinfo = bpf_btf_show_fdinfo,
4545 #endif
4546 .release = btf_release,
4547 };
4548
4549 static int __btf_new_fd(struct btf *btf)
4550 {
4551 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
4552 }
4553
4554 int btf_new_fd(const union bpf_attr *attr)
4555 {
4556 struct btf *btf;
4557 int ret;
4558
4559 btf = btf_parse(u64_to_user_ptr(attr->btf),
4560 attr->btf_size, attr->btf_log_level,
4561 u64_to_user_ptr(attr->btf_log_buf),
4562 attr->btf_log_size);
4563 if (IS_ERR(btf))
4564 return PTR_ERR(btf);
4565
4566 ret = btf_alloc_id(btf);
4567 if (ret) {
4568 btf_free(btf);
4569 return ret;
4570 }
4571
4572 /*
4573 * The BTF ID is published to the userspace.
4574 * All BTF free must go through call_rcu() from
4575 * now on (i.e. free by calling btf_put()).
4576 */
4577
4578 ret = __btf_new_fd(btf);
4579 if (ret < 0)
4580 btf_put(btf);
4581
4582 return ret;
4583 }
4584
4585 struct btf *btf_get_by_fd(int fd)
4586 {
4587 struct btf *btf;
4588 struct fd f;
4589
4590 f = fdget(fd);
4591
4592 if (!f.file)
4593 return ERR_PTR(-EBADF);
4594
4595 if (f.file->f_op != &btf_fops) {
4596 fdput(f);
4597 return ERR_PTR(-EINVAL);
4598 }
4599
4600 btf = f.file->private_data;
4601 refcount_inc(&btf->refcnt);
4602 fdput(f);
4603
4604 return btf;
4605 }
4606
4607 int btf_get_info_by_fd(const struct btf *btf,
4608 const union bpf_attr *attr,
4609 union bpf_attr __user *uattr)
4610 {
4611 struct bpf_btf_info __user *uinfo;
4612 struct bpf_btf_info info;
4613 u32 info_copy, btf_copy;
4614 void __user *ubtf;
4615 u32 uinfo_len;
4616
4617 uinfo = u64_to_user_ptr(attr->info.info);
4618 uinfo_len = attr->info.info_len;
4619
4620 info_copy = min_t(u32, uinfo_len, sizeof(info));
4621 memset(&info, 0, sizeof(info));
4622 if (copy_from_user(&info, uinfo, info_copy))
4623 return -EFAULT;
4624
4625 info.id = btf->id;
4626 ubtf = u64_to_user_ptr(info.btf);
4627 btf_copy = min_t(u32, btf->data_size, info.btf_size);
4628 if (copy_to_user(ubtf, btf->data, btf_copy))
4629 return -EFAULT;
4630 info.btf_size = btf->data_size;
4631
4632 if (copy_to_user(uinfo, &info, info_copy) ||
4633 put_user(info_copy, &uattr->info.info_len))
4634 return -EFAULT;
4635
4636 return 0;
4637 }
4638
4639 int btf_get_fd_by_id(u32 id)
4640 {
4641 struct btf *btf;
4642 int fd;
4643
4644 rcu_read_lock();
4645 btf = idr_find(&btf_idr, id);
4646 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
4647 btf = ERR_PTR(-ENOENT);
4648 rcu_read_unlock();
4649
4650 if (IS_ERR(btf))
4651 return PTR_ERR(btf);
4652
4653 fd = __btf_new_fd(btf);
4654 if (fd < 0)
4655 btf_put(btf);
4656
4657 return fd;
4658 }
4659
4660 u32 btf_id(const struct btf *btf)
4661 {
4662 return btf->id;
4663 }