]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/bpf/verifier.c
bpf: reduce verifier memory consumption
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / verifier.c
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23
24 #include "disasm.h"
25
26 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27 #define BPF_PROG_TYPE(_id, _name) \
28 [_id] = & _name ## _verifier_ops,
29 #define BPF_MAP_TYPE(_id, _ops)
30 #include <linux/bpf_types.h>
31 #undef BPF_PROG_TYPE
32 #undef BPF_MAP_TYPE
33 };
34
35 /* bpf_check() is a static code analyzer that walks eBPF program
36 * instruction by instruction and updates register/stack state.
37 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 *
39 * The first pass is depth-first-search to check that the program is a DAG.
40 * It rejects the following programs:
41 * - larger than BPF_MAXINSNS insns
42 * - if loop is present (detected via back-edge)
43 * - unreachable insns exist (shouldn't be a forest. program = one function)
44 * - out of bounds or malformed jumps
45 * The second pass is all possible path descent from the 1st insn.
46 * Since it's analyzing all pathes through the program, the length of the
47 * analysis is limited to 64k insn, which may be hit even if total number of
48 * insn is less then 4K, but there are too many branches that change stack/regs.
49 * Number of 'branches to be analyzed' is limited to 1k
50 *
51 * On entry to each instruction, each register has a type, and the instruction
52 * changes the types of the registers depending on instruction semantics.
53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54 * copied to R1.
55 *
56 * All registers are 64-bit.
57 * R0 - return register
58 * R1-R5 argument passing registers
59 * R6-R9 callee saved registers
60 * R10 - frame pointer read-only
61 *
62 * At the start of BPF program the register R1 contains a pointer to bpf_context
63 * and has type PTR_TO_CTX.
64 *
65 * Verifier tracks arithmetic operations on pointers in case:
66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68 * 1st insn copies R10 (which has FRAME_PTR) type into R1
69 * and 2nd arithmetic instruction is pattern matched to recognize
70 * that it wants to construct a pointer to some element within stack.
71 * So after 2nd insn, the register R1 has type PTR_TO_STACK
72 * (and -20 constant is saved for further stack bounds checking).
73 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 *
75 * Most of the time the registers have SCALAR_VALUE type, which
76 * means the register has some value, but it's not a valid pointer.
77 * (like pointer plus pointer becomes SCALAR_VALUE type)
78 *
79 * When verifier sees load or store instructions the type of base register
80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
81 * types recognized by check_mem_access() function.
82 *
83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84 * and the range of [ptr, ptr + map's value_size) is accessible.
85 *
86 * registers used to pass values to function calls are checked against
87 * function argument constraints.
88 *
89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90 * It means that the register type passed to this function must be
91 * PTR_TO_STACK and it will be used inside the function as
92 * 'pointer to map element key'
93 *
94 * For example the argument constraints for bpf_map_lookup_elem():
95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96 * .arg1_type = ARG_CONST_MAP_PTR,
97 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 *
99 * ret_type says that this function returns 'pointer to map elem value or null'
100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101 * 2nd argument should be a pointer to stack, which will be used inside
102 * the helper function as a pointer to map element key.
103 *
104 * On the kernel side the helper function looks like:
105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * {
107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108 * void *key = (void *) (unsigned long) r2;
109 * void *value;
110 *
111 * here kernel can access 'key' and 'map' pointers safely, knowing that
112 * [key, key + map->key_size) bytes are valid and were initialized on
113 * the stack of eBPF program.
114 * }
115 *
116 * Corresponding eBPF program may look like:
117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121 * here verifier looks at prototype of map_lookup_elem() and sees:
122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 *
125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127 * and were initialized prior to this call.
128 * If it's ok, then verifier allows this BPF_CALL insn and looks at
129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131 * returns ether pointer to map value or NULL.
132 *
133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134 * insn, the register holding that pointer in the true branch changes state to
135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136 * branch. See check_cond_jmp_op().
137 *
138 * After the call R0 is set to return type of the function and registers R1-R5
139 * are set to NOT_INIT to indicate that they are no longer readable.
140 */
141
142 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
143 struct bpf_verifier_stack_elem {
144 /* verifer state is 'st'
145 * before processing instruction 'insn_idx'
146 * and after processing instruction 'prev_insn_idx'
147 */
148 struct bpf_verifier_state st;
149 int insn_idx;
150 int prev_insn_idx;
151 struct bpf_verifier_stack_elem *next;
152 };
153
154 #define BPF_COMPLEXITY_LIMIT_INSNS 131072
155 #define BPF_COMPLEXITY_LIMIT_STACK 1024
156
157 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158
159 struct bpf_call_arg_meta {
160 struct bpf_map *map_ptr;
161 bool raw_mode;
162 bool pkt_access;
163 int regno;
164 int access_size;
165 };
166
167 static DEFINE_MUTEX(bpf_verifier_lock);
168
169 /* log_level controls verbosity level of eBPF verifier.
170 * verbose() is used to dump the verification trace to the log, so the user
171 * can figure out what's wrong with the program
172 */
173 static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 const char *fmt, ...)
175 {
176 struct bpf_verifer_log *log = &env->log;
177 unsigned int n;
178 va_list args;
179
180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
181 return;
182
183 va_start(args, fmt);
184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
185 va_end(args);
186
187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 "verifier log line truncated - local buffer too short\n");
189
190 n = min(log->len_total - log->len_used - 1, n);
191 log->kbuf[n] = '\0';
192
193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 log->len_used += n;
195 else
196 log->ubuf = NULL;
197 }
198
199 static bool type_is_pkt_pointer(enum bpf_reg_type type)
200 {
201 return type == PTR_TO_PACKET ||
202 type == PTR_TO_PACKET_META;
203 }
204
205 /* string representation of 'enum bpf_reg_type' */
206 static const char * const reg_type_str[] = {
207 [NOT_INIT] = "?",
208 [SCALAR_VALUE] = "inv",
209 [PTR_TO_CTX] = "ctx",
210 [CONST_PTR_TO_MAP] = "map_ptr",
211 [PTR_TO_MAP_VALUE] = "map_value",
212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
213 [PTR_TO_STACK] = "fp",
214 [PTR_TO_PACKET] = "pkt",
215 [PTR_TO_PACKET_META] = "pkt_meta",
216 [PTR_TO_PACKET_END] = "pkt_end",
217 };
218
219 static void print_verifier_state(struct bpf_verifier_env *env,
220 struct bpf_verifier_state *state)
221 {
222 struct bpf_reg_state *reg;
223 enum bpf_reg_type t;
224 int i;
225
226 for (i = 0; i < MAX_BPF_REG; i++) {
227 reg = &state->regs[i];
228 t = reg->type;
229 if (t == NOT_INIT)
230 continue;
231 verbose(env, " R%d=%s", i, reg_type_str[t]);
232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 tnum_is_const(reg->var_off)) {
234 /* reg->off should be 0 for SCALAR_VALUE */
235 verbose(env, "%lld", reg->var_off.value + reg->off);
236 } else {
237 verbose(env, "(id=%d", reg->id);
238 if (t != SCALAR_VALUE)
239 verbose(env, ",off=%d", reg->off);
240 if (type_is_pkt_pointer(t))
241 verbose(env, ",r=%d", reg->range);
242 else if (t == CONST_PTR_TO_MAP ||
243 t == PTR_TO_MAP_VALUE ||
244 t == PTR_TO_MAP_VALUE_OR_NULL)
245 verbose(env, ",ks=%d,vs=%d",
246 reg->map_ptr->key_size,
247 reg->map_ptr->value_size);
248 if (tnum_is_const(reg->var_off)) {
249 /* Typically an immediate SCALAR_VALUE, but
250 * could be a pointer whose offset is too big
251 * for reg->off
252 */
253 verbose(env, ",imm=%llx", reg->var_off.value);
254 } else {
255 if (reg->smin_value != reg->umin_value &&
256 reg->smin_value != S64_MIN)
257 verbose(env, ",smin_value=%lld",
258 (long long)reg->smin_value);
259 if (reg->smax_value != reg->umax_value &&
260 reg->smax_value != S64_MAX)
261 verbose(env, ",smax_value=%lld",
262 (long long)reg->smax_value);
263 if (reg->umin_value != 0)
264 verbose(env, ",umin_value=%llu",
265 (unsigned long long)reg->umin_value);
266 if (reg->umax_value != U64_MAX)
267 verbose(env, ",umax_value=%llu",
268 (unsigned long long)reg->umax_value);
269 if (!tnum_is_unknown(reg->var_off)) {
270 char tn_buf[48];
271
272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
273 verbose(env, ",var_off=%s", tn_buf);
274 }
275 }
276 verbose(env, ")");
277 }
278 }
279 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 if (state->stack[i].slot_type[0] == STACK_SPILL)
281 verbose(env, " fp%d=%s",
282 -MAX_BPF_STACK + i * BPF_REG_SIZE,
283 reg_type_str[state->stack[i].spilled_ptr.type]);
284 }
285 verbose(env, "\n");
286 }
287
288 static int copy_stack_state(struct bpf_verifier_state *dst,
289 const struct bpf_verifier_state *src)
290 {
291 if (!src->stack)
292 return 0;
293 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 /* internal bug, make state invalid to reject the program */
295 memset(dst, 0, sizeof(*dst));
296 return -EFAULT;
297 }
298 memcpy(dst->stack, src->stack,
299 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
300 return 0;
301 }
302
303 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304 * make it consume minimal amount of memory. check_stack_write() access from
305 * the program calls into realloc_verifier_state() to grow the stack size.
306 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307 * which this function copies over. It points to previous bpf_verifier_state
308 * which is never reallocated
309 */
310 static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
311 bool copy_old)
312 {
313 u32 old_size = state->allocated_stack;
314 struct bpf_stack_state *new_stack;
315 int slot = size / BPF_REG_SIZE;
316
317 if (size <= old_size || !size) {
318 if (copy_old)
319 return 0;
320 state->allocated_stack = slot * BPF_REG_SIZE;
321 if (!size && old_size) {
322 kfree(state->stack);
323 state->stack = NULL;
324 }
325 return 0;
326 }
327 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
328 GFP_KERNEL);
329 if (!new_stack)
330 return -ENOMEM;
331 if (copy_old) {
332 if (state->stack)
333 memcpy(new_stack, state->stack,
334 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
337 }
338 state->allocated_stack = slot * BPF_REG_SIZE;
339 kfree(state->stack);
340 state->stack = new_stack;
341 return 0;
342 }
343
344 static void free_verifier_state(struct bpf_verifier_state *state)
345 {
346 kfree(state->stack);
347 kfree(state);
348 }
349
350 /* copy verifier state from src to dst growing dst stack space
351 * when necessary to accommodate larger src stack
352 */
353 static int copy_verifier_state(struct bpf_verifier_state *dst,
354 const struct bpf_verifier_state *src)
355 {
356 int err;
357
358 err = realloc_verifier_state(dst, src->allocated_stack, false);
359 if (err)
360 return err;
361 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
362 return copy_stack_state(dst, src);
363 }
364
365 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
366 int *insn_idx)
367 {
368 struct bpf_verifier_state *cur = env->cur_state;
369 struct bpf_verifier_stack_elem *elem, *head = env->head;
370 int err;
371
372 if (env->head == NULL)
373 return -ENOENT;
374
375 if (cur) {
376 err = copy_verifier_state(cur, &head->st);
377 if (err)
378 return err;
379 }
380 if (insn_idx)
381 *insn_idx = head->insn_idx;
382 if (prev_insn_idx)
383 *prev_insn_idx = head->prev_insn_idx;
384 elem = head->next;
385 kfree(head);
386 env->head = elem;
387 env->stack_size--;
388 return 0;
389 }
390
391 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
392 int insn_idx, int prev_insn_idx)
393 {
394 struct bpf_verifier_state *cur = env->cur_state;
395 struct bpf_verifier_stack_elem *elem;
396 int err;
397
398 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
399 if (!elem)
400 goto err;
401
402 err = copy_verifier_state(&elem->st, cur);
403 if (err)
404 return NULL;
405 elem->insn_idx = insn_idx;
406 elem->prev_insn_idx = prev_insn_idx;
407 elem->next = env->head;
408 env->head = elem;
409 env->stack_size++;
410 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
411 verbose(env, "BPF program is too complex\n");
412 goto err;
413 }
414 return &elem->st;
415 err:
416 /* pop all elements and return */
417 while (!pop_stack(env, NULL, NULL));
418 return NULL;
419 }
420
421 #define CALLER_SAVED_REGS 6
422 static const int caller_saved[CALLER_SAVED_REGS] = {
423 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
424 };
425
426 static void __mark_reg_not_init(struct bpf_reg_state *reg);
427
428 /* Mark the unknown part of a register (variable offset or scalar value) as
429 * known to have the value @imm.
430 */
431 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
432 {
433 reg->id = 0;
434 reg->var_off = tnum_const(imm);
435 reg->smin_value = (s64)imm;
436 reg->smax_value = (s64)imm;
437 reg->umin_value = imm;
438 reg->umax_value = imm;
439 }
440
441 /* Mark the 'variable offset' part of a register as zero. This should be
442 * used only on registers holding a pointer type.
443 */
444 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
445 {
446 __mark_reg_known(reg, 0);
447 }
448
449 static void mark_reg_known_zero(struct bpf_verifier_env *env,
450 struct bpf_reg_state *regs, u32 regno)
451 {
452 if (WARN_ON(regno >= MAX_BPF_REG)) {
453 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
454 /* Something bad happened, let's kill all regs */
455 for (regno = 0; regno < MAX_BPF_REG; regno++)
456 __mark_reg_not_init(regs + regno);
457 return;
458 }
459 __mark_reg_known_zero(regs + regno);
460 }
461
462 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
463 {
464 return type_is_pkt_pointer(reg->type);
465 }
466
467 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
468 {
469 return reg_is_pkt_pointer(reg) ||
470 reg->type == PTR_TO_PACKET_END;
471 }
472
473 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
474 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
475 enum bpf_reg_type which)
476 {
477 /* The register can already have a range from prior markings.
478 * This is fine as long as it hasn't been advanced from its
479 * origin.
480 */
481 return reg->type == which &&
482 reg->id == 0 &&
483 reg->off == 0 &&
484 tnum_equals_const(reg->var_off, 0);
485 }
486
487 /* Attempts to improve min/max values based on var_off information */
488 static void __update_reg_bounds(struct bpf_reg_state *reg)
489 {
490 /* min signed is max(sign bit) | min(other bits) */
491 reg->smin_value = max_t(s64, reg->smin_value,
492 reg->var_off.value | (reg->var_off.mask & S64_MIN));
493 /* max signed is min(sign bit) | max(other bits) */
494 reg->smax_value = min_t(s64, reg->smax_value,
495 reg->var_off.value | (reg->var_off.mask & S64_MAX));
496 reg->umin_value = max(reg->umin_value, reg->var_off.value);
497 reg->umax_value = min(reg->umax_value,
498 reg->var_off.value | reg->var_off.mask);
499 }
500
501 /* Uses signed min/max values to inform unsigned, and vice-versa */
502 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
503 {
504 /* Learn sign from signed bounds.
505 * If we cannot cross the sign boundary, then signed and unsigned bounds
506 * are the same, so combine. This works even in the negative case, e.g.
507 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
508 */
509 if (reg->smin_value >= 0 || reg->smax_value < 0) {
510 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
511 reg->umin_value);
512 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
513 reg->umax_value);
514 return;
515 }
516 /* Learn sign from unsigned bounds. Signed bounds cross the sign
517 * boundary, so we must be careful.
518 */
519 if ((s64)reg->umax_value >= 0) {
520 /* Positive. We can't learn anything from the smin, but smax
521 * is positive, hence safe.
522 */
523 reg->smin_value = reg->umin_value;
524 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
525 reg->umax_value);
526 } else if ((s64)reg->umin_value < 0) {
527 /* Negative. We can't learn anything from the smax, but smin
528 * is negative, hence safe.
529 */
530 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
531 reg->umin_value);
532 reg->smax_value = reg->umax_value;
533 }
534 }
535
536 /* Attempts to improve var_off based on unsigned min/max information */
537 static void __reg_bound_offset(struct bpf_reg_state *reg)
538 {
539 reg->var_off = tnum_intersect(reg->var_off,
540 tnum_range(reg->umin_value,
541 reg->umax_value));
542 }
543
544 /* Reset the min/max bounds of a register */
545 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
546 {
547 reg->smin_value = S64_MIN;
548 reg->smax_value = S64_MAX;
549 reg->umin_value = 0;
550 reg->umax_value = U64_MAX;
551 }
552
553 /* Mark a register as having a completely unknown (scalar) value. */
554 static void __mark_reg_unknown(struct bpf_reg_state *reg)
555 {
556 reg->type = SCALAR_VALUE;
557 reg->id = 0;
558 reg->off = 0;
559 reg->var_off = tnum_unknown;
560 __mark_reg_unbounded(reg);
561 }
562
563 static void mark_reg_unknown(struct bpf_verifier_env *env,
564 struct bpf_reg_state *regs, u32 regno)
565 {
566 if (WARN_ON(regno >= MAX_BPF_REG)) {
567 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
568 /* Something bad happened, let's kill all regs */
569 for (regno = 0; regno < MAX_BPF_REG; regno++)
570 __mark_reg_not_init(regs + regno);
571 return;
572 }
573 __mark_reg_unknown(regs + regno);
574 }
575
576 static void __mark_reg_not_init(struct bpf_reg_state *reg)
577 {
578 __mark_reg_unknown(reg);
579 reg->type = NOT_INIT;
580 }
581
582 static void mark_reg_not_init(struct bpf_verifier_env *env,
583 struct bpf_reg_state *regs, u32 regno)
584 {
585 if (WARN_ON(regno >= MAX_BPF_REG)) {
586 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
587 /* Something bad happened, let's kill all regs */
588 for (regno = 0; regno < MAX_BPF_REG; regno++)
589 __mark_reg_not_init(regs + regno);
590 return;
591 }
592 __mark_reg_not_init(regs + regno);
593 }
594
595 static void init_reg_state(struct bpf_verifier_env *env,
596 struct bpf_reg_state *regs)
597 {
598 int i;
599
600 for (i = 0; i < MAX_BPF_REG; i++) {
601 mark_reg_not_init(env, regs, i);
602 regs[i].live = REG_LIVE_NONE;
603 }
604
605 /* frame pointer */
606 regs[BPF_REG_FP].type = PTR_TO_STACK;
607 mark_reg_known_zero(env, regs, BPF_REG_FP);
608
609 /* 1st arg to a function */
610 regs[BPF_REG_1].type = PTR_TO_CTX;
611 mark_reg_known_zero(env, regs, BPF_REG_1);
612 }
613
614 enum reg_arg_type {
615 SRC_OP, /* register is used as source operand */
616 DST_OP, /* register is used as destination operand */
617 DST_OP_NO_MARK /* same as above, check only, don't mark */
618 };
619
620 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
621 {
622 struct bpf_verifier_state *parent = state->parent;
623
624 if (regno == BPF_REG_FP)
625 /* We don't need to worry about FP liveness because it's read-only */
626 return;
627
628 while (parent) {
629 /* if read wasn't screened by an earlier write ... */
630 if (state->regs[regno].live & REG_LIVE_WRITTEN)
631 break;
632 /* ... then we depend on parent's value */
633 parent->regs[regno].live |= REG_LIVE_READ;
634 state = parent;
635 parent = state->parent;
636 }
637 }
638
639 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
640 enum reg_arg_type t)
641 {
642 struct bpf_reg_state *regs = env->cur_state->regs;
643
644 if (regno >= MAX_BPF_REG) {
645 verbose(env, "R%d is invalid\n", regno);
646 return -EINVAL;
647 }
648
649 if (t == SRC_OP) {
650 /* check whether register used as source operand can be read */
651 if (regs[regno].type == NOT_INIT) {
652 verbose(env, "R%d !read_ok\n", regno);
653 return -EACCES;
654 }
655 mark_reg_read(env->cur_state, regno);
656 } else {
657 /* check whether register used as dest operand can be written to */
658 if (regno == BPF_REG_FP) {
659 verbose(env, "frame pointer is read only\n");
660 return -EACCES;
661 }
662 regs[regno].live |= REG_LIVE_WRITTEN;
663 if (t == DST_OP)
664 mark_reg_unknown(env, regs, regno);
665 }
666 return 0;
667 }
668
669 static bool is_spillable_regtype(enum bpf_reg_type type)
670 {
671 switch (type) {
672 case PTR_TO_MAP_VALUE:
673 case PTR_TO_MAP_VALUE_OR_NULL:
674 case PTR_TO_STACK:
675 case PTR_TO_CTX:
676 case PTR_TO_PACKET:
677 case PTR_TO_PACKET_META:
678 case PTR_TO_PACKET_END:
679 case CONST_PTR_TO_MAP:
680 return true;
681 default:
682 return false;
683 }
684 }
685
686 /* check_stack_read/write functions track spill/fill of registers,
687 * stack boundary and alignment are checked in check_mem_access()
688 */
689 static int check_stack_write(struct bpf_verifier_env *env,
690 struct bpf_verifier_state *state, int off,
691 int size, int value_regno)
692 {
693 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
694
695 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
696 true);
697 if (err)
698 return err;
699 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
700 * so it's aligned access and [off, off + size) are within stack limits
701 */
702 if (!env->allow_ptr_leaks &&
703 state->stack[spi].slot_type[0] == STACK_SPILL &&
704 size != BPF_REG_SIZE) {
705 verbose(env, "attempt to corrupt spilled pointer on stack\n");
706 return -EACCES;
707 }
708
709 if (value_regno >= 0 &&
710 is_spillable_regtype(state->regs[value_regno].type)) {
711
712 /* register containing pointer is being spilled into stack */
713 if (size != BPF_REG_SIZE) {
714 verbose(env, "invalid size of register spill\n");
715 return -EACCES;
716 }
717
718 /* save register state */
719 state->stack[spi].spilled_ptr = state->regs[value_regno];
720 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
721
722 for (i = 0; i < BPF_REG_SIZE; i++)
723 state->stack[spi].slot_type[i] = STACK_SPILL;
724 } else {
725 /* regular write of data into stack */
726 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
727
728 for (i = 0; i < size; i++)
729 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
730 STACK_MISC;
731 }
732 return 0;
733 }
734
735 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
736 {
737 struct bpf_verifier_state *parent = state->parent;
738
739 while (parent) {
740 /* if read wasn't screened by an earlier write ... */
741 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
742 break;
743 /* ... then we depend on parent's value */
744 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
745 state = parent;
746 parent = state->parent;
747 }
748 }
749
750 static int check_stack_read(struct bpf_verifier_env *env,
751 struct bpf_verifier_state *state, int off, int size,
752 int value_regno)
753 {
754 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
755 u8 *stype;
756
757 if (state->allocated_stack <= slot) {
758 verbose(env, "invalid read from stack off %d+0 size %d\n",
759 off, size);
760 return -EACCES;
761 }
762 stype = state->stack[spi].slot_type;
763
764 if (stype[0] == STACK_SPILL) {
765 if (size != BPF_REG_SIZE) {
766 verbose(env, "invalid size of register spill\n");
767 return -EACCES;
768 }
769 for (i = 1; i < BPF_REG_SIZE; i++) {
770 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
771 verbose(env, "corrupted spill memory\n");
772 return -EACCES;
773 }
774 }
775
776 if (value_regno >= 0) {
777 /* restore register state from stack */
778 state->regs[value_regno] = state->stack[spi].spilled_ptr;
779 mark_stack_slot_read(state, spi);
780 }
781 return 0;
782 } else {
783 for (i = 0; i < size; i++) {
784 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
785 verbose(env, "invalid read from stack off %d+%d size %d\n",
786 off, i, size);
787 return -EACCES;
788 }
789 }
790 if (value_regno >= 0)
791 /* have read misc data from the stack */
792 mark_reg_unknown(env, state->regs, value_regno);
793 return 0;
794 }
795 }
796
797 /* check read/write into map element returned by bpf_map_lookup_elem() */
798 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
799 int size)
800 {
801 struct bpf_reg_state *regs = cur_regs(env);
802 struct bpf_map *map = regs[regno].map_ptr;
803
804 if (off < 0 || size <= 0 || off + size > map->value_size) {
805 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
806 map->value_size, off, size);
807 return -EACCES;
808 }
809 return 0;
810 }
811
812 /* check read/write into a map element with possible variable offset */
813 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
814 int off, int size)
815 {
816 struct bpf_verifier_state *state = env->cur_state;
817 struct bpf_reg_state *reg = &state->regs[regno];
818 int err;
819
820 /* We may have adjusted the register to this map value, so we
821 * need to try adding each of min_value and max_value to off
822 * to make sure our theoretical access will be safe.
823 */
824 if (env->log.level)
825 print_verifier_state(env, state);
826 /* The minimum value is only important with signed
827 * comparisons where we can't assume the floor of a
828 * value is 0. If we are using signed variables for our
829 * index'es we need to make sure that whatever we use
830 * will have a set floor within our range.
831 */
832 if (reg->smin_value < 0) {
833 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
834 regno);
835 return -EACCES;
836 }
837 err = __check_map_access(env, regno, reg->smin_value + off, size);
838 if (err) {
839 verbose(env, "R%d min value is outside of the array range\n",
840 regno);
841 return err;
842 }
843
844 /* If we haven't set a max value then we need to bail since we can't be
845 * sure we won't do bad things.
846 * If reg->umax_value + off could overflow, treat that as unbounded too.
847 */
848 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
849 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
850 regno);
851 return -EACCES;
852 }
853 err = __check_map_access(env, regno, reg->umax_value + off, size);
854 if (err)
855 verbose(env, "R%d max value is outside of the array range\n",
856 regno);
857 return err;
858 }
859
860 #define MAX_PACKET_OFF 0xffff
861
862 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
863 const struct bpf_call_arg_meta *meta,
864 enum bpf_access_type t)
865 {
866 switch (env->prog->type) {
867 case BPF_PROG_TYPE_LWT_IN:
868 case BPF_PROG_TYPE_LWT_OUT:
869 /* dst_input() and dst_output() can't write for now */
870 if (t == BPF_WRITE)
871 return false;
872 /* fallthrough */
873 case BPF_PROG_TYPE_SCHED_CLS:
874 case BPF_PROG_TYPE_SCHED_ACT:
875 case BPF_PROG_TYPE_XDP:
876 case BPF_PROG_TYPE_LWT_XMIT:
877 case BPF_PROG_TYPE_SK_SKB:
878 if (meta)
879 return meta->pkt_access;
880
881 env->seen_direct_write = true;
882 return true;
883 default:
884 return false;
885 }
886 }
887
888 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
889 int off, int size)
890 {
891 struct bpf_reg_state *regs = cur_regs(env);
892 struct bpf_reg_state *reg = &regs[regno];
893
894 if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
895 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
896 off, size, regno, reg->id, reg->off, reg->range);
897 return -EACCES;
898 }
899 return 0;
900 }
901
902 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
903 int size)
904 {
905 struct bpf_reg_state *regs = cur_regs(env);
906 struct bpf_reg_state *reg = &regs[regno];
907 int err;
908
909 /* We may have added a variable offset to the packet pointer; but any
910 * reg->range we have comes after that. We are only checking the fixed
911 * offset.
912 */
913
914 /* We don't allow negative numbers, because we aren't tracking enough
915 * detail to prove they're safe.
916 */
917 if (reg->smin_value < 0) {
918 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
919 regno);
920 return -EACCES;
921 }
922 err = __check_packet_access(env, regno, off, size);
923 if (err) {
924 verbose(env, "R%d offset is outside of the packet\n", regno);
925 return err;
926 }
927 return err;
928 }
929
930 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
931 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
932 enum bpf_access_type t, enum bpf_reg_type *reg_type)
933 {
934 struct bpf_insn_access_aux info = {
935 .reg_type = *reg_type,
936 };
937
938 if (env->ops->is_valid_access &&
939 env->ops->is_valid_access(off, size, t, &info)) {
940 /* A non zero info.ctx_field_size indicates that this field is a
941 * candidate for later verifier transformation to load the whole
942 * field and then apply a mask when accessed with a narrower
943 * access than actual ctx access size. A zero info.ctx_field_size
944 * will only allow for whole field access and rejects any other
945 * type of narrower access.
946 */
947 *reg_type = info.reg_type;
948
949 if (env->analyzer_ops)
950 return 0;
951
952 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
953 /* remember the offset of last byte accessed in ctx */
954 if (env->prog->aux->max_ctx_offset < off + size)
955 env->prog->aux->max_ctx_offset = off + size;
956 return 0;
957 }
958
959 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
960 return -EACCES;
961 }
962
963 static bool __is_pointer_value(bool allow_ptr_leaks,
964 const struct bpf_reg_state *reg)
965 {
966 if (allow_ptr_leaks)
967 return false;
968
969 return reg->type != SCALAR_VALUE;
970 }
971
972 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
973 {
974 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
975 }
976
977 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
978 const struct bpf_reg_state *reg,
979 int off, int size, bool strict)
980 {
981 struct tnum reg_off;
982 int ip_align;
983
984 /* Byte size accesses are always allowed. */
985 if (!strict || size == 1)
986 return 0;
987
988 /* For platforms that do not have a Kconfig enabling
989 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
990 * NET_IP_ALIGN is universally set to '2'. And on platforms
991 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
992 * to this code only in strict mode where we want to emulate
993 * the NET_IP_ALIGN==2 checking. Therefore use an
994 * unconditional IP align value of '2'.
995 */
996 ip_align = 2;
997
998 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
999 if (!tnum_is_aligned(reg_off, size)) {
1000 char tn_buf[48];
1001
1002 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1003 verbose(env,
1004 "misaligned packet access off %d+%s+%d+%d size %d\n",
1005 ip_align, tn_buf, reg->off, off, size);
1006 return -EACCES;
1007 }
1008
1009 return 0;
1010 }
1011
1012 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1013 const struct bpf_reg_state *reg,
1014 const char *pointer_desc,
1015 int off, int size, bool strict)
1016 {
1017 struct tnum reg_off;
1018
1019 /* Byte size accesses are always allowed. */
1020 if (!strict || size == 1)
1021 return 0;
1022
1023 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1024 if (!tnum_is_aligned(reg_off, size)) {
1025 char tn_buf[48];
1026
1027 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1028 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1029 pointer_desc, tn_buf, reg->off, off, size);
1030 return -EACCES;
1031 }
1032
1033 return 0;
1034 }
1035
1036 static int check_ptr_alignment(struct bpf_verifier_env *env,
1037 const struct bpf_reg_state *reg,
1038 int off, int size)
1039 {
1040 bool strict = env->strict_alignment;
1041 const char *pointer_desc = "";
1042
1043 switch (reg->type) {
1044 case PTR_TO_PACKET:
1045 case PTR_TO_PACKET_META:
1046 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1047 * right in front, treat it the very same way.
1048 */
1049 return check_pkt_ptr_alignment(env, reg, off, size, strict);
1050 case PTR_TO_MAP_VALUE:
1051 pointer_desc = "value ";
1052 break;
1053 case PTR_TO_CTX:
1054 pointer_desc = "context ";
1055 break;
1056 case PTR_TO_STACK:
1057 pointer_desc = "stack ";
1058 break;
1059 default:
1060 break;
1061 }
1062 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1063 strict);
1064 }
1065
1066 /* check whether memory at (regno + off) is accessible for t = (read | write)
1067 * if t==write, value_regno is a register which value is stored into memory
1068 * if t==read, value_regno is a register which will receive the value from memory
1069 * if t==write && value_regno==-1, some unknown value is stored into memory
1070 * if t==read && value_regno==-1, don't care what we read from memory
1071 */
1072 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1073 int bpf_size, enum bpf_access_type t,
1074 int value_regno)
1075 {
1076 struct bpf_verifier_state *state = env->cur_state;
1077 struct bpf_reg_state *regs = cur_regs(env);
1078 struct bpf_reg_state *reg = regs + regno;
1079 int size, err = 0;
1080
1081 size = bpf_size_to_bytes(bpf_size);
1082 if (size < 0)
1083 return size;
1084
1085 /* alignment checks will add in reg->off themselves */
1086 err = check_ptr_alignment(env, reg, off, size);
1087 if (err)
1088 return err;
1089
1090 /* for access checks, reg->off is just part of off */
1091 off += reg->off;
1092
1093 if (reg->type == PTR_TO_MAP_VALUE) {
1094 if (t == BPF_WRITE && value_regno >= 0 &&
1095 is_pointer_value(env, value_regno)) {
1096 verbose(env, "R%d leaks addr into map\n", value_regno);
1097 return -EACCES;
1098 }
1099
1100 err = check_map_access(env, regno, off, size);
1101 if (!err && t == BPF_READ && value_regno >= 0)
1102 mark_reg_unknown(env, regs, value_regno);
1103
1104 } else if (reg->type == PTR_TO_CTX) {
1105 enum bpf_reg_type reg_type = SCALAR_VALUE;
1106
1107 if (t == BPF_WRITE && value_regno >= 0 &&
1108 is_pointer_value(env, value_regno)) {
1109 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1110 return -EACCES;
1111 }
1112 /* ctx accesses must be at a fixed offset, so that we can
1113 * determine what type of data were returned.
1114 */
1115 if (reg->off) {
1116 verbose(env,
1117 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1118 regno, reg->off, off - reg->off);
1119 return -EACCES;
1120 }
1121 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1122 char tn_buf[48];
1123
1124 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1125 verbose(env,
1126 "variable ctx access var_off=%s off=%d size=%d",
1127 tn_buf, off, size);
1128 return -EACCES;
1129 }
1130 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1131 if (!err && t == BPF_READ && value_regno >= 0) {
1132 /* ctx access returns either a scalar, or a
1133 * PTR_TO_PACKET[_META,_END]. In the latter
1134 * case, we know the offset is zero.
1135 */
1136 if (reg_type == SCALAR_VALUE)
1137 mark_reg_unknown(env, regs, value_regno);
1138 else
1139 mark_reg_known_zero(env, regs,
1140 value_regno);
1141 regs[value_regno].id = 0;
1142 regs[value_regno].off = 0;
1143 regs[value_regno].range = 0;
1144 regs[value_regno].type = reg_type;
1145 }
1146
1147 } else if (reg->type == PTR_TO_STACK) {
1148 /* stack accesses must be at a fixed offset, so that we can
1149 * determine what type of data were returned.
1150 * See check_stack_read().
1151 */
1152 if (!tnum_is_const(reg->var_off)) {
1153 char tn_buf[48];
1154
1155 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1156 verbose(env, "variable stack access var_off=%s off=%d size=%d",
1157 tn_buf, off, size);
1158 return -EACCES;
1159 }
1160 off += reg->var_off.value;
1161 if (off >= 0 || off < -MAX_BPF_STACK) {
1162 verbose(env, "invalid stack off=%d size=%d\n", off,
1163 size);
1164 return -EACCES;
1165 }
1166
1167 if (env->prog->aux->stack_depth < -off)
1168 env->prog->aux->stack_depth = -off;
1169
1170 if (t == BPF_WRITE)
1171 err = check_stack_write(env, state, off, size,
1172 value_regno);
1173 else
1174 err = check_stack_read(env, state, off, size,
1175 value_regno);
1176 } else if (reg_is_pkt_pointer(reg)) {
1177 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1178 verbose(env, "cannot write into packet\n");
1179 return -EACCES;
1180 }
1181 if (t == BPF_WRITE && value_regno >= 0 &&
1182 is_pointer_value(env, value_regno)) {
1183 verbose(env, "R%d leaks addr into packet\n",
1184 value_regno);
1185 return -EACCES;
1186 }
1187 err = check_packet_access(env, regno, off, size);
1188 if (!err && t == BPF_READ && value_regno >= 0)
1189 mark_reg_unknown(env, regs, value_regno);
1190 } else {
1191 verbose(env, "R%d invalid mem access '%s'\n", regno,
1192 reg_type_str[reg->type]);
1193 return -EACCES;
1194 }
1195
1196 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1197 regs[value_regno].type == SCALAR_VALUE) {
1198 /* b/h/w load zero-extends, mark upper bits as known 0 */
1199 regs[value_regno].var_off =
1200 tnum_cast(regs[value_regno].var_off, size);
1201 __update_reg_bounds(&regs[value_regno]);
1202 }
1203 return err;
1204 }
1205
1206 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1207 {
1208 int err;
1209
1210 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1211 insn->imm != 0) {
1212 verbose(env, "BPF_XADD uses reserved fields\n");
1213 return -EINVAL;
1214 }
1215
1216 /* check src1 operand */
1217 err = check_reg_arg(env, insn->src_reg, SRC_OP);
1218 if (err)
1219 return err;
1220
1221 /* check src2 operand */
1222 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1223 if (err)
1224 return err;
1225
1226 if (is_pointer_value(env, insn->src_reg)) {
1227 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1228 return -EACCES;
1229 }
1230
1231 /* check whether atomic_add can read the memory */
1232 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1233 BPF_SIZE(insn->code), BPF_READ, -1);
1234 if (err)
1235 return err;
1236
1237 /* check whether atomic_add can write into the same memory */
1238 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1239 BPF_SIZE(insn->code), BPF_WRITE, -1);
1240 }
1241
1242 /* Does this register contain a constant zero? */
1243 static bool register_is_null(struct bpf_reg_state reg)
1244 {
1245 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1246 }
1247
1248 /* when register 'regno' is passed into function that will read 'access_size'
1249 * bytes from that pointer, make sure that it's within stack boundary
1250 * and all elements of stack are initialized.
1251 * Unlike most pointer bounds-checking functions, this one doesn't take an
1252 * 'off' argument, so it has to add in reg->off itself.
1253 */
1254 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1255 int access_size, bool zero_size_allowed,
1256 struct bpf_call_arg_meta *meta)
1257 {
1258 struct bpf_verifier_state *state = env->cur_state;
1259 struct bpf_reg_state *regs = state->regs;
1260 int off, i, slot, spi;
1261
1262 if (regs[regno].type != PTR_TO_STACK) {
1263 /* Allow zero-byte read from NULL, regardless of pointer type */
1264 if (zero_size_allowed && access_size == 0 &&
1265 register_is_null(regs[regno]))
1266 return 0;
1267
1268 verbose(env, "R%d type=%s expected=%s\n", regno,
1269 reg_type_str[regs[regno].type],
1270 reg_type_str[PTR_TO_STACK]);
1271 return -EACCES;
1272 }
1273
1274 /* Only allow fixed-offset stack reads */
1275 if (!tnum_is_const(regs[regno].var_off)) {
1276 char tn_buf[48];
1277
1278 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1279 verbose(env, "invalid variable stack read R%d var_off=%s\n",
1280 regno, tn_buf);
1281 }
1282 off = regs[regno].off + regs[regno].var_off.value;
1283 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1284 access_size <= 0) {
1285 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1286 regno, off, access_size);
1287 return -EACCES;
1288 }
1289
1290 if (env->prog->aux->stack_depth < -off)
1291 env->prog->aux->stack_depth = -off;
1292
1293 if (meta && meta->raw_mode) {
1294 meta->access_size = access_size;
1295 meta->regno = regno;
1296 return 0;
1297 }
1298
1299 for (i = 0; i < access_size; i++) {
1300 slot = -(off + i) - 1;
1301 spi = slot / BPF_REG_SIZE;
1302 if (state->allocated_stack <= slot ||
1303 state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1304 STACK_MISC) {
1305 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1306 off, i, access_size);
1307 return -EACCES;
1308 }
1309 }
1310 return 0;
1311 }
1312
1313 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1314 int access_size, bool zero_size_allowed,
1315 struct bpf_call_arg_meta *meta)
1316 {
1317 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1318
1319 switch (reg->type) {
1320 case PTR_TO_PACKET:
1321 case PTR_TO_PACKET_META:
1322 return check_packet_access(env, regno, reg->off, access_size);
1323 case PTR_TO_MAP_VALUE:
1324 return check_map_access(env, regno, reg->off, access_size);
1325 default: /* scalar_value|ptr_to_stack or invalid ptr */
1326 return check_stack_boundary(env, regno, access_size,
1327 zero_size_allowed, meta);
1328 }
1329 }
1330
1331 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1332 enum bpf_arg_type arg_type,
1333 struct bpf_call_arg_meta *meta)
1334 {
1335 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1336 enum bpf_reg_type expected_type, type = reg->type;
1337 int err = 0;
1338
1339 if (arg_type == ARG_DONTCARE)
1340 return 0;
1341
1342 err = check_reg_arg(env, regno, SRC_OP);
1343 if (err)
1344 return err;
1345
1346 if (arg_type == ARG_ANYTHING) {
1347 if (is_pointer_value(env, regno)) {
1348 verbose(env, "R%d leaks addr into helper function\n",
1349 regno);
1350 return -EACCES;
1351 }
1352 return 0;
1353 }
1354
1355 if (type_is_pkt_pointer(type) &&
1356 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1357 verbose(env, "helper access to the packet is not allowed\n");
1358 return -EACCES;
1359 }
1360
1361 if (arg_type == ARG_PTR_TO_MAP_KEY ||
1362 arg_type == ARG_PTR_TO_MAP_VALUE) {
1363 expected_type = PTR_TO_STACK;
1364 if (!type_is_pkt_pointer(type) &&
1365 type != expected_type)
1366 goto err_type;
1367 } else if (arg_type == ARG_CONST_SIZE ||
1368 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1369 expected_type = SCALAR_VALUE;
1370 if (type != expected_type)
1371 goto err_type;
1372 } else if (arg_type == ARG_CONST_MAP_PTR) {
1373 expected_type = CONST_PTR_TO_MAP;
1374 if (type != expected_type)
1375 goto err_type;
1376 } else if (arg_type == ARG_PTR_TO_CTX) {
1377 expected_type = PTR_TO_CTX;
1378 if (type != expected_type)
1379 goto err_type;
1380 } else if (arg_type == ARG_PTR_TO_MEM ||
1381 arg_type == ARG_PTR_TO_UNINIT_MEM) {
1382 expected_type = PTR_TO_STACK;
1383 /* One exception here. In case function allows for NULL to be
1384 * passed in as argument, it's a SCALAR_VALUE type. Final test
1385 * happens during stack boundary checking.
1386 */
1387 if (register_is_null(*reg))
1388 /* final test in check_stack_boundary() */;
1389 else if (!type_is_pkt_pointer(type) &&
1390 type != PTR_TO_MAP_VALUE &&
1391 type != expected_type)
1392 goto err_type;
1393 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1394 } else {
1395 verbose(env, "unsupported arg_type %d\n", arg_type);
1396 return -EFAULT;
1397 }
1398
1399 if (arg_type == ARG_CONST_MAP_PTR) {
1400 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1401 meta->map_ptr = reg->map_ptr;
1402 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1403 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1404 * check that [key, key + map->key_size) are within
1405 * stack limits and initialized
1406 */
1407 if (!meta->map_ptr) {
1408 /* in function declaration map_ptr must come before
1409 * map_key, so that it's verified and known before
1410 * we have to check map_key here. Otherwise it means
1411 * that kernel subsystem misconfigured verifier
1412 */
1413 verbose(env, "invalid map_ptr to access map->key\n");
1414 return -EACCES;
1415 }
1416 if (type_is_pkt_pointer(type))
1417 err = check_packet_access(env, regno, reg->off,
1418 meta->map_ptr->key_size);
1419 else
1420 err = check_stack_boundary(env, regno,
1421 meta->map_ptr->key_size,
1422 false, NULL);
1423 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1424 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1425 * check [value, value + map->value_size) validity
1426 */
1427 if (!meta->map_ptr) {
1428 /* kernel subsystem misconfigured verifier */
1429 verbose(env, "invalid map_ptr to access map->value\n");
1430 return -EACCES;
1431 }
1432 if (type_is_pkt_pointer(type))
1433 err = check_packet_access(env, regno, reg->off,
1434 meta->map_ptr->value_size);
1435 else
1436 err = check_stack_boundary(env, regno,
1437 meta->map_ptr->value_size,
1438 false, NULL);
1439 } else if (arg_type == ARG_CONST_SIZE ||
1440 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1441 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1442
1443 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1444 * from stack pointer 'buf'. Check it
1445 * note: regno == len, regno - 1 == buf
1446 */
1447 if (regno == 0) {
1448 /* kernel subsystem misconfigured verifier */
1449 verbose(env,
1450 "ARG_CONST_SIZE cannot be first argument\n");
1451 return -EACCES;
1452 }
1453
1454 /* The register is SCALAR_VALUE; the access check
1455 * happens using its boundaries.
1456 */
1457
1458 if (!tnum_is_const(reg->var_off))
1459 /* For unprivileged variable accesses, disable raw
1460 * mode so that the program is required to
1461 * initialize all the memory that the helper could
1462 * just partially fill up.
1463 */
1464 meta = NULL;
1465
1466 if (reg->smin_value < 0) {
1467 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1468 regno);
1469 return -EACCES;
1470 }
1471
1472 if (reg->umin_value == 0) {
1473 err = check_helper_mem_access(env, regno - 1, 0,
1474 zero_size_allowed,
1475 meta);
1476 if (err)
1477 return err;
1478 }
1479
1480 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1481 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1482 regno);
1483 return -EACCES;
1484 }
1485 err = check_helper_mem_access(env, regno - 1,
1486 reg->umax_value,
1487 zero_size_allowed, meta);
1488 }
1489
1490 return err;
1491 err_type:
1492 verbose(env, "R%d type=%s expected=%s\n", regno,
1493 reg_type_str[type], reg_type_str[expected_type]);
1494 return -EACCES;
1495 }
1496
1497 static int check_map_func_compatibility(struct bpf_verifier_env *env,
1498 struct bpf_map *map, int func_id)
1499 {
1500 if (!map)
1501 return 0;
1502
1503 /* We need a two way check, first is from map perspective ... */
1504 switch (map->map_type) {
1505 case BPF_MAP_TYPE_PROG_ARRAY:
1506 if (func_id != BPF_FUNC_tail_call)
1507 goto error;
1508 break;
1509 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1510 if (func_id != BPF_FUNC_perf_event_read &&
1511 func_id != BPF_FUNC_perf_event_output &&
1512 func_id != BPF_FUNC_perf_event_read_value)
1513 goto error;
1514 break;
1515 case BPF_MAP_TYPE_STACK_TRACE:
1516 if (func_id != BPF_FUNC_get_stackid)
1517 goto error;
1518 break;
1519 case BPF_MAP_TYPE_CGROUP_ARRAY:
1520 if (func_id != BPF_FUNC_skb_under_cgroup &&
1521 func_id != BPF_FUNC_current_task_under_cgroup)
1522 goto error;
1523 break;
1524 /* devmap returns a pointer to a live net_device ifindex that we cannot
1525 * allow to be modified from bpf side. So do not allow lookup elements
1526 * for now.
1527 */
1528 case BPF_MAP_TYPE_DEVMAP:
1529 if (func_id != BPF_FUNC_redirect_map)
1530 goto error;
1531 break;
1532 /* Restrict bpf side of cpumap, open when use-cases appear */
1533 case BPF_MAP_TYPE_CPUMAP:
1534 if (func_id != BPF_FUNC_redirect_map)
1535 goto error;
1536 break;
1537 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1538 case BPF_MAP_TYPE_HASH_OF_MAPS:
1539 if (func_id != BPF_FUNC_map_lookup_elem)
1540 goto error;
1541 break;
1542 case BPF_MAP_TYPE_SOCKMAP:
1543 if (func_id != BPF_FUNC_sk_redirect_map &&
1544 func_id != BPF_FUNC_sock_map_update &&
1545 func_id != BPF_FUNC_map_delete_elem)
1546 goto error;
1547 break;
1548 default:
1549 break;
1550 }
1551
1552 /* ... and second from the function itself. */
1553 switch (func_id) {
1554 case BPF_FUNC_tail_call:
1555 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1556 goto error;
1557 break;
1558 case BPF_FUNC_perf_event_read:
1559 case BPF_FUNC_perf_event_output:
1560 case BPF_FUNC_perf_event_read_value:
1561 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1562 goto error;
1563 break;
1564 case BPF_FUNC_get_stackid:
1565 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1566 goto error;
1567 break;
1568 case BPF_FUNC_current_task_under_cgroup:
1569 case BPF_FUNC_skb_under_cgroup:
1570 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1571 goto error;
1572 break;
1573 case BPF_FUNC_redirect_map:
1574 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1575 map->map_type != BPF_MAP_TYPE_CPUMAP)
1576 goto error;
1577 break;
1578 case BPF_FUNC_sk_redirect_map:
1579 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1580 goto error;
1581 break;
1582 case BPF_FUNC_sock_map_update:
1583 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1584 goto error;
1585 break;
1586 default:
1587 break;
1588 }
1589
1590 return 0;
1591 error:
1592 verbose(env, "cannot pass map_type %d into func %s#%d\n",
1593 map->map_type, func_id_name(func_id), func_id);
1594 return -EINVAL;
1595 }
1596
1597 static int check_raw_mode(const struct bpf_func_proto *fn)
1598 {
1599 int count = 0;
1600
1601 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1602 count++;
1603 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1604 count++;
1605 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1606 count++;
1607 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1608 count++;
1609 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1610 count++;
1611
1612 return count > 1 ? -EINVAL : 0;
1613 }
1614
1615 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1616 * are now invalid, so turn them into unknown SCALAR_VALUE.
1617 */
1618 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1619 {
1620 struct bpf_verifier_state *state = env->cur_state;
1621 struct bpf_reg_state *regs = state->regs, *reg;
1622 int i;
1623
1624 for (i = 0; i < MAX_BPF_REG; i++)
1625 if (reg_is_pkt_pointer_any(&regs[i]))
1626 mark_reg_unknown(env, regs, i);
1627
1628 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1629 if (state->stack[i].slot_type[0] != STACK_SPILL)
1630 continue;
1631 reg = &state->stack[i].spilled_ptr;
1632 if (reg_is_pkt_pointer_any(reg))
1633 __mark_reg_unknown(reg);
1634 }
1635 }
1636
1637 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1638 {
1639 const struct bpf_func_proto *fn = NULL;
1640 struct bpf_reg_state *regs;
1641 struct bpf_call_arg_meta meta;
1642 bool changes_data;
1643 int i, err;
1644
1645 /* find function prototype */
1646 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1647 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1648 func_id);
1649 return -EINVAL;
1650 }
1651
1652 if (env->ops->get_func_proto)
1653 fn = env->ops->get_func_proto(func_id);
1654
1655 if (!fn) {
1656 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1657 func_id);
1658 return -EINVAL;
1659 }
1660
1661 /* eBPF programs must be GPL compatible to use GPL-ed functions */
1662 if (!env->prog->gpl_compatible && fn->gpl_only) {
1663 verbose(env, "cannot call GPL only function from proprietary program\n");
1664 return -EINVAL;
1665 }
1666
1667 changes_data = bpf_helper_changes_pkt_data(fn->func);
1668
1669 memset(&meta, 0, sizeof(meta));
1670 meta.pkt_access = fn->pkt_access;
1671
1672 /* We only support one arg being in raw mode at the moment, which
1673 * is sufficient for the helper functions we have right now.
1674 */
1675 err = check_raw_mode(fn);
1676 if (err) {
1677 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1678 func_id_name(func_id), func_id);
1679 return err;
1680 }
1681
1682 /* check args */
1683 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1684 if (err)
1685 return err;
1686 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1687 if (err)
1688 return err;
1689 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1690 if (err)
1691 return err;
1692 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1693 if (err)
1694 return err;
1695 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1696 if (err)
1697 return err;
1698
1699 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1700 * is inferred from register state.
1701 */
1702 for (i = 0; i < meta.access_size; i++) {
1703 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1704 if (err)
1705 return err;
1706 }
1707
1708 regs = cur_regs(env);
1709 /* reset caller saved regs */
1710 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1711 mark_reg_not_init(env, regs, caller_saved[i]);
1712 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1713 }
1714
1715 /* update return register (already marked as written above) */
1716 if (fn->ret_type == RET_INTEGER) {
1717 /* sets type to SCALAR_VALUE */
1718 mark_reg_unknown(env, regs, BPF_REG_0);
1719 } else if (fn->ret_type == RET_VOID) {
1720 regs[BPF_REG_0].type = NOT_INIT;
1721 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1722 struct bpf_insn_aux_data *insn_aux;
1723
1724 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1725 /* There is no offset yet applied, variable or fixed */
1726 mark_reg_known_zero(env, regs, BPF_REG_0);
1727 regs[BPF_REG_0].off = 0;
1728 /* remember map_ptr, so that check_map_access()
1729 * can check 'value_size' boundary of memory access
1730 * to map element returned from bpf_map_lookup_elem()
1731 */
1732 if (meta.map_ptr == NULL) {
1733 verbose(env,
1734 "kernel subsystem misconfigured verifier\n");
1735 return -EINVAL;
1736 }
1737 regs[BPF_REG_0].map_ptr = meta.map_ptr;
1738 regs[BPF_REG_0].id = ++env->id_gen;
1739 insn_aux = &env->insn_aux_data[insn_idx];
1740 if (!insn_aux->map_ptr)
1741 insn_aux->map_ptr = meta.map_ptr;
1742 else if (insn_aux->map_ptr != meta.map_ptr)
1743 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1744 } else {
1745 verbose(env, "unknown return type %d of func %s#%d\n",
1746 fn->ret_type, func_id_name(func_id), func_id);
1747 return -EINVAL;
1748 }
1749
1750 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1751 if (err)
1752 return err;
1753
1754 if (changes_data)
1755 clear_all_pkt_pointers(env);
1756 return 0;
1757 }
1758
1759 static void coerce_reg_to_32(struct bpf_reg_state *reg)
1760 {
1761 /* clear high 32 bits */
1762 reg->var_off = tnum_cast(reg->var_off, 4);
1763 /* Update bounds */
1764 __update_reg_bounds(reg);
1765 }
1766
1767 static bool signed_add_overflows(s64 a, s64 b)
1768 {
1769 /* Do the add in u64, where overflow is well-defined */
1770 s64 res = (s64)((u64)a + (u64)b);
1771
1772 if (b < 0)
1773 return res > a;
1774 return res < a;
1775 }
1776
1777 static bool signed_sub_overflows(s64 a, s64 b)
1778 {
1779 /* Do the sub in u64, where overflow is well-defined */
1780 s64 res = (s64)((u64)a - (u64)b);
1781
1782 if (b < 0)
1783 return res < a;
1784 return res > a;
1785 }
1786
1787 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
1788 * Caller should also handle BPF_MOV case separately.
1789 * If we return -EACCES, caller may want to try again treating pointer as a
1790 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1791 */
1792 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1793 struct bpf_insn *insn,
1794 const struct bpf_reg_state *ptr_reg,
1795 const struct bpf_reg_state *off_reg)
1796 {
1797 struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
1798 bool known = tnum_is_const(off_reg->var_off);
1799 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1800 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1801 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1802 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
1803 u8 opcode = BPF_OP(insn->code);
1804 u32 dst = insn->dst_reg;
1805
1806 dst_reg = &regs[dst];
1807
1808 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1809 print_verifier_state(env, env->cur_state);
1810 verbose(env,
1811 "verifier internal error: known but bad sbounds\n");
1812 return -EINVAL;
1813 }
1814 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1815 print_verifier_state(env, env->cur_state);
1816 verbose(env,
1817 "verifier internal error: known but bad ubounds\n");
1818 return -EINVAL;
1819 }
1820
1821 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1822 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1823 if (!env->allow_ptr_leaks)
1824 verbose(env,
1825 "R%d 32-bit pointer arithmetic prohibited\n",
1826 dst);
1827 return -EACCES;
1828 }
1829
1830 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1831 if (!env->allow_ptr_leaks)
1832 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1833 dst);
1834 return -EACCES;
1835 }
1836 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1837 if (!env->allow_ptr_leaks)
1838 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1839 dst);
1840 return -EACCES;
1841 }
1842 if (ptr_reg->type == PTR_TO_PACKET_END) {
1843 if (!env->allow_ptr_leaks)
1844 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1845 dst);
1846 return -EACCES;
1847 }
1848
1849 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1850 * The id may be overwritten later if we create a new variable offset.
1851 */
1852 dst_reg->type = ptr_reg->type;
1853 dst_reg->id = ptr_reg->id;
1854
1855 switch (opcode) {
1856 case BPF_ADD:
1857 /* We can take a fixed offset as long as it doesn't overflow
1858 * the s32 'off' field
1859 */
1860 if (known && (ptr_reg->off + smin_val ==
1861 (s64)(s32)(ptr_reg->off + smin_val))) {
1862 /* pointer += K. Accumulate it into fixed offset */
1863 dst_reg->smin_value = smin_ptr;
1864 dst_reg->smax_value = smax_ptr;
1865 dst_reg->umin_value = umin_ptr;
1866 dst_reg->umax_value = umax_ptr;
1867 dst_reg->var_off = ptr_reg->var_off;
1868 dst_reg->off = ptr_reg->off + smin_val;
1869 dst_reg->range = ptr_reg->range;
1870 break;
1871 }
1872 /* A new variable offset is created. Note that off_reg->off
1873 * == 0, since it's a scalar.
1874 * dst_reg gets the pointer type and since some positive
1875 * integer value was added to the pointer, give it a new 'id'
1876 * if it's a PTR_TO_PACKET.
1877 * this creates a new 'base' pointer, off_reg (variable) gets
1878 * added into the variable offset, and we copy the fixed offset
1879 * from ptr_reg.
1880 */
1881 if (signed_add_overflows(smin_ptr, smin_val) ||
1882 signed_add_overflows(smax_ptr, smax_val)) {
1883 dst_reg->smin_value = S64_MIN;
1884 dst_reg->smax_value = S64_MAX;
1885 } else {
1886 dst_reg->smin_value = smin_ptr + smin_val;
1887 dst_reg->smax_value = smax_ptr + smax_val;
1888 }
1889 if (umin_ptr + umin_val < umin_ptr ||
1890 umax_ptr + umax_val < umax_ptr) {
1891 dst_reg->umin_value = 0;
1892 dst_reg->umax_value = U64_MAX;
1893 } else {
1894 dst_reg->umin_value = umin_ptr + umin_val;
1895 dst_reg->umax_value = umax_ptr + umax_val;
1896 }
1897 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1898 dst_reg->off = ptr_reg->off;
1899 if (reg_is_pkt_pointer(ptr_reg)) {
1900 dst_reg->id = ++env->id_gen;
1901 /* something was added to pkt_ptr, set range to zero */
1902 dst_reg->range = 0;
1903 }
1904 break;
1905 case BPF_SUB:
1906 if (dst_reg == off_reg) {
1907 /* scalar -= pointer. Creates an unknown scalar */
1908 if (!env->allow_ptr_leaks)
1909 verbose(env, "R%d tried to subtract pointer from scalar\n",
1910 dst);
1911 return -EACCES;
1912 }
1913 /* We don't allow subtraction from FP, because (according to
1914 * test_verifier.c test "invalid fp arithmetic", JITs might not
1915 * be able to deal with it.
1916 */
1917 if (ptr_reg->type == PTR_TO_STACK) {
1918 if (!env->allow_ptr_leaks)
1919 verbose(env, "R%d subtraction from stack pointer prohibited\n",
1920 dst);
1921 return -EACCES;
1922 }
1923 if (known && (ptr_reg->off - smin_val ==
1924 (s64)(s32)(ptr_reg->off - smin_val))) {
1925 /* pointer -= K. Subtract it from fixed offset */
1926 dst_reg->smin_value = smin_ptr;
1927 dst_reg->smax_value = smax_ptr;
1928 dst_reg->umin_value = umin_ptr;
1929 dst_reg->umax_value = umax_ptr;
1930 dst_reg->var_off = ptr_reg->var_off;
1931 dst_reg->id = ptr_reg->id;
1932 dst_reg->off = ptr_reg->off - smin_val;
1933 dst_reg->range = ptr_reg->range;
1934 break;
1935 }
1936 /* A new variable offset is created. If the subtrahend is known
1937 * nonnegative, then any reg->range we had before is still good.
1938 */
1939 if (signed_sub_overflows(smin_ptr, smax_val) ||
1940 signed_sub_overflows(smax_ptr, smin_val)) {
1941 /* Overflow possible, we know nothing */
1942 dst_reg->smin_value = S64_MIN;
1943 dst_reg->smax_value = S64_MAX;
1944 } else {
1945 dst_reg->smin_value = smin_ptr - smax_val;
1946 dst_reg->smax_value = smax_ptr - smin_val;
1947 }
1948 if (umin_ptr < umax_val) {
1949 /* Overflow possible, we know nothing */
1950 dst_reg->umin_value = 0;
1951 dst_reg->umax_value = U64_MAX;
1952 } else {
1953 /* Cannot overflow (as long as bounds are consistent) */
1954 dst_reg->umin_value = umin_ptr - umax_val;
1955 dst_reg->umax_value = umax_ptr - umin_val;
1956 }
1957 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1958 dst_reg->off = ptr_reg->off;
1959 if (reg_is_pkt_pointer(ptr_reg)) {
1960 dst_reg->id = ++env->id_gen;
1961 /* something was added to pkt_ptr, set range to zero */
1962 if (smin_val < 0)
1963 dst_reg->range = 0;
1964 }
1965 break;
1966 case BPF_AND:
1967 case BPF_OR:
1968 case BPF_XOR:
1969 /* bitwise ops on pointers are troublesome, prohibit for now.
1970 * (However, in principle we could allow some cases, e.g.
1971 * ptr &= ~3 which would reduce min_value by 3.)
1972 */
1973 if (!env->allow_ptr_leaks)
1974 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
1975 dst, bpf_alu_string[opcode >> 4]);
1976 return -EACCES;
1977 default:
1978 /* other operators (e.g. MUL,LSH) produce non-pointer results */
1979 if (!env->allow_ptr_leaks)
1980 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
1981 dst, bpf_alu_string[opcode >> 4]);
1982 return -EACCES;
1983 }
1984
1985 __update_reg_bounds(dst_reg);
1986 __reg_deduce_bounds(dst_reg);
1987 __reg_bound_offset(dst_reg);
1988 return 0;
1989 }
1990
1991 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
1992 struct bpf_insn *insn,
1993 struct bpf_reg_state *dst_reg,
1994 struct bpf_reg_state src_reg)
1995 {
1996 struct bpf_reg_state *regs = cur_regs(env);
1997 u8 opcode = BPF_OP(insn->code);
1998 bool src_known, dst_known;
1999 s64 smin_val, smax_val;
2000 u64 umin_val, umax_val;
2001
2002 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2003 /* 32-bit ALU ops are (32,32)->64 */
2004 coerce_reg_to_32(dst_reg);
2005 coerce_reg_to_32(&src_reg);
2006 }
2007 smin_val = src_reg.smin_value;
2008 smax_val = src_reg.smax_value;
2009 umin_val = src_reg.umin_value;
2010 umax_val = src_reg.umax_value;
2011 src_known = tnum_is_const(src_reg.var_off);
2012 dst_known = tnum_is_const(dst_reg->var_off);
2013
2014 switch (opcode) {
2015 case BPF_ADD:
2016 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2017 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2018 dst_reg->smin_value = S64_MIN;
2019 dst_reg->smax_value = S64_MAX;
2020 } else {
2021 dst_reg->smin_value += smin_val;
2022 dst_reg->smax_value += smax_val;
2023 }
2024 if (dst_reg->umin_value + umin_val < umin_val ||
2025 dst_reg->umax_value + umax_val < umax_val) {
2026 dst_reg->umin_value = 0;
2027 dst_reg->umax_value = U64_MAX;
2028 } else {
2029 dst_reg->umin_value += umin_val;
2030 dst_reg->umax_value += umax_val;
2031 }
2032 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2033 break;
2034 case BPF_SUB:
2035 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2036 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2037 /* Overflow possible, we know nothing */
2038 dst_reg->smin_value = S64_MIN;
2039 dst_reg->smax_value = S64_MAX;
2040 } else {
2041 dst_reg->smin_value -= smax_val;
2042 dst_reg->smax_value -= smin_val;
2043 }
2044 if (dst_reg->umin_value < umax_val) {
2045 /* Overflow possible, we know nothing */
2046 dst_reg->umin_value = 0;
2047 dst_reg->umax_value = U64_MAX;
2048 } else {
2049 /* Cannot overflow (as long as bounds are consistent) */
2050 dst_reg->umin_value -= umax_val;
2051 dst_reg->umax_value -= umin_val;
2052 }
2053 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2054 break;
2055 case BPF_MUL:
2056 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2057 if (smin_val < 0 || dst_reg->smin_value < 0) {
2058 /* Ain't nobody got time to multiply that sign */
2059 __mark_reg_unbounded(dst_reg);
2060 __update_reg_bounds(dst_reg);
2061 break;
2062 }
2063 /* Both values are positive, so we can work with unsigned and
2064 * copy the result to signed (unless it exceeds S64_MAX).
2065 */
2066 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2067 /* Potential overflow, we know nothing */
2068 __mark_reg_unbounded(dst_reg);
2069 /* (except what we can learn from the var_off) */
2070 __update_reg_bounds(dst_reg);
2071 break;
2072 }
2073 dst_reg->umin_value *= umin_val;
2074 dst_reg->umax_value *= umax_val;
2075 if (dst_reg->umax_value > S64_MAX) {
2076 /* Overflow possible, we know nothing */
2077 dst_reg->smin_value = S64_MIN;
2078 dst_reg->smax_value = S64_MAX;
2079 } else {
2080 dst_reg->smin_value = dst_reg->umin_value;
2081 dst_reg->smax_value = dst_reg->umax_value;
2082 }
2083 break;
2084 case BPF_AND:
2085 if (src_known && dst_known) {
2086 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2087 src_reg.var_off.value);
2088 break;
2089 }
2090 /* We get our minimum from the var_off, since that's inherently
2091 * bitwise. Our maximum is the minimum of the operands' maxima.
2092 */
2093 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2094 dst_reg->umin_value = dst_reg->var_off.value;
2095 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2096 if (dst_reg->smin_value < 0 || smin_val < 0) {
2097 /* Lose signed bounds when ANDing negative numbers,
2098 * ain't nobody got time for that.
2099 */
2100 dst_reg->smin_value = S64_MIN;
2101 dst_reg->smax_value = S64_MAX;
2102 } else {
2103 /* ANDing two positives gives a positive, so safe to
2104 * cast result into s64.
2105 */
2106 dst_reg->smin_value = dst_reg->umin_value;
2107 dst_reg->smax_value = dst_reg->umax_value;
2108 }
2109 /* We may learn something more from the var_off */
2110 __update_reg_bounds(dst_reg);
2111 break;
2112 case BPF_OR:
2113 if (src_known && dst_known) {
2114 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2115 src_reg.var_off.value);
2116 break;
2117 }
2118 /* We get our maximum from the var_off, and our minimum is the
2119 * maximum of the operands' minima
2120 */
2121 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2122 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2123 dst_reg->umax_value = dst_reg->var_off.value |
2124 dst_reg->var_off.mask;
2125 if (dst_reg->smin_value < 0 || smin_val < 0) {
2126 /* Lose signed bounds when ORing negative numbers,
2127 * ain't nobody got time for that.
2128 */
2129 dst_reg->smin_value = S64_MIN;
2130 dst_reg->smax_value = S64_MAX;
2131 } else {
2132 /* ORing two positives gives a positive, so safe to
2133 * cast result into s64.
2134 */
2135 dst_reg->smin_value = dst_reg->umin_value;
2136 dst_reg->smax_value = dst_reg->umax_value;
2137 }
2138 /* We may learn something more from the var_off */
2139 __update_reg_bounds(dst_reg);
2140 break;
2141 case BPF_LSH:
2142 if (umax_val > 63) {
2143 /* Shifts greater than 63 are undefined. This includes
2144 * shifts by a negative number.
2145 */
2146 mark_reg_unknown(env, regs, insn->dst_reg);
2147 break;
2148 }
2149 /* We lose all sign bit information (except what we can pick
2150 * up from var_off)
2151 */
2152 dst_reg->smin_value = S64_MIN;
2153 dst_reg->smax_value = S64_MAX;
2154 /* If we might shift our top bit out, then we know nothing */
2155 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2156 dst_reg->umin_value = 0;
2157 dst_reg->umax_value = U64_MAX;
2158 } else {
2159 dst_reg->umin_value <<= umin_val;
2160 dst_reg->umax_value <<= umax_val;
2161 }
2162 if (src_known)
2163 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2164 else
2165 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2166 /* We may learn something more from the var_off */
2167 __update_reg_bounds(dst_reg);
2168 break;
2169 case BPF_RSH:
2170 if (umax_val > 63) {
2171 /* Shifts greater than 63 are undefined. This includes
2172 * shifts by a negative number.
2173 */
2174 mark_reg_unknown(env, regs, insn->dst_reg);
2175 break;
2176 }
2177 /* BPF_RSH is an unsigned shift, so make the appropriate casts */
2178 if (dst_reg->smin_value < 0) {
2179 if (umin_val) {
2180 /* Sign bit will be cleared */
2181 dst_reg->smin_value = 0;
2182 } else {
2183 /* Lost sign bit information */
2184 dst_reg->smin_value = S64_MIN;
2185 dst_reg->smax_value = S64_MAX;
2186 }
2187 } else {
2188 dst_reg->smin_value =
2189 (u64)(dst_reg->smin_value) >> umax_val;
2190 }
2191 if (src_known)
2192 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2193 umin_val);
2194 else
2195 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2196 dst_reg->umin_value >>= umax_val;
2197 dst_reg->umax_value >>= umin_val;
2198 /* We may learn something more from the var_off */
2199 __update_reg_bounds(dst_reg);
2200 break;
2201 default:
2202 mark_reg_unknown(env, regs, insn->dst_reg);
2203 break;
2204 }
2205
2206 __reg_deduce_bounds(dst_reg);
2207 __reg_bound_offset(dst_reg);
2208 return 0;
2209 }
2210
2211 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2212 * and var_off.
2213 */
2214 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2215 struct bpf_insn *insn)
2216 {
2217 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
2218 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2219 u8 opcode = BPF_OP(insn->code);
2220 int rc;
2221
2222 dst_reg = &regs[insn->dst_reg];
2223 src_reg = NULL;
2224 if (dst_reg->type != SCALAR_VALUE)
2225 ptr_reg = dst_reg;
2226 if (BPF_SRC(insn->code) == BPF_X) {
2227 src_reg = &regs[insn->src_reg];
2228 if (src_reg->type != SCALAR_VALUE) {
2229 if (dst_reg->type != SCALAR_VALUE) {
2230 /* Combining two pointers by any ALU op yields
2231 * an arbitrary scalar.
2232 */
2233 if (!env->allow_ptr_leaks) {
2234 verbose(env, "R%d pointer %s pointer prohibited\n",
2235 insn->dst_reg,
2236 bpf_alu_string[opcode >> 4]);
2237 return -EACCES;
2238 }
2239 mark_reg_unknown(env, regs, insn->dst_reg);
2240 return 0;
2241 } else {
2242 /* scalar += pointer
2243 * This is legal, but we have to reverse our
2244 * src/dest handling in computing the range
2245 */
2246 rc = adjust_ptr_min_max_vals(env, insn,
2247 src_reg, dst_reg);
2248 if (rc == -EACCES && env->allow_ptr_leaks) {
2249 /* scalar += unknown scalar */
2250 __mark_reg_unknown(&off_reg);
2251 return adjust_scalar_min_max_vals(
2252 env, insn,
2253 dst_reg, off_reg);
2254 }
2255 return rc;
2256 }
2257 } else if (ptr_reg) {
2258 /* pointer += scalar */
2259 rc = adjust_ptr_min_max_vals(env, insn,
2260 dst_reg, src_reg);
2261 if (rc == -EACCES && env->allow_ptr_leaks) {
2262 /* unknown scalar += scalar */
2263 __mark_reg_unknown(dst_reg);
2264 return adjust_scalar_min_max_vals(
2265 env, insn, dst_reg, *src_reg);
2266 }
2267 return rc;
2268 }
2269 } else {
2270 /* Pretend the src is a reg with a known value, since we only
2271 * need to be able to read from this state.
2272 */
2273 off_reg.type = SCALAR_VALUE;
2274 __mark_reg_known(&off_reg, insn->imm);
2275 src_reg = &off_reg;
2276 if (ptr_reg) { /* pointer += K */
2277 rc = adjust_ptr_min_max_vals(env, insn,
2278 ptr_reg, src_reg);
2279 if (rc == -EACCES && env->allow_ptr_leaks) {
2280 /* unknown scalar += K */
2281 __mark_reg_unknown(dst_reg);
2282 return adjust_scalar_min_max_vals(
2283 env, insn, dst_reg, off_reg);
2284 }
2285 return rc;
2286 }
2287 }
2288
2289 /* Got here implies adding two SCALAR_VALUEs */
2290 if (WARN_ON_ONCE(ptr_reg)) {
2291 print_verifier_state(env, env->cur_state);
2292 verbose(env, "verifier internal error: unexpected ptr_reg\n");
2293 return -EINVAL;
2294 }
2295 if (WARN_ON(!src_reg)) {
2296 print_verifier_state(env, env->cur_state);
2297 verbose(env, "verifier internal error: no src_reg\n");
2298 return -EINVAL;
2299 }
2300 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2301 }
2302
2303 /* check validity of 32-bit and 64-bit arithmetic operations */
2304 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2305 {
2306 struct bpf_reg_state *regs = cur_regs(env);
2307 u8 opcode = BPF_OP(insn->code);
2308 int err;
2309
2310 if (opcode == BPF_END || opcode == BPF_NEG) {
2311 if (opcode == BPF_NEG) {
2312 if (BPF_SRC(insn->code) != 0 ||
2313 insn->src_reg != BPF_REG_0 ||
2314 insn->off != 0 || insn->imm != 0) {
2315 verbose(env, "BPF_NEG uses reserved fields\n");
2316 return -EINVAL;
2317 }
2318 } else {
2319 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2320 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2321 BPF_CLASS(insn->code) == BPF_ALU64) {
2322 verbose(env, "BPF_END uses reserved fields\n");
2323 return -EINVAL;
2324 }
2325 }
2326
2327 /* check src operand */
2328 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2329 if (err)
2330 return err;
2331
2332 if (is_pointer_value(env, insn->dst_reg)) {
2333 verbose(env, "R%d pointer arithmetic prohibited\n",
2334 insn->dst_reg);
2335 return -EACCES;
2336 }
2337
2338 /* check dest operand */
2339 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2340 if (err)
2341 return err;
2342
2343 } else if (opcode == BPF_MOV) {
2344
2345 if (BPF_SRC(insn->code) == BPF_X) {
2346 if (insn->imm != 0 || insn->off != 0) {
2347 verbose(env, "BPF_MOV uses reserved fields\n");
2348 return -EINVAL;
2349 }
2350
2351 /* check src operand */
2352 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2353 if (err)
2354 return err;
2355 } else {
2356 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2357 verbose(env, "BPF_MOV uses reserved fields\n");
2358 return -EINVAL;
2359 }
2360 }
2361
2362 /* check dest operand */
2363 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2364 if (err)
2365 return err;
2366
2367 if (BPF_SRC(insn->code) == BPF_X) {
2368 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2369 /* case: R1 = R2
2370 * copy register state to dest reg
2371 */
2372 regs[insn->dst_reg] = regs[insn->src_reg];
2373 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2374 } else {
2375 /* R1 = (u32) R2 */
2376 if (is_pointer_value(env, insn->src_reg)) {
2377 verbose(env,
2378 "R%d partial copy of pointer\n",
2379 insn->src_reg);
2380 return -EACCES;
2381 }
2382 mark_reg_unknown(env, regs, insn->dst_reg);
2383 /* high 32 bits are known zero. */
2384 regs[insn->dst_reg].var_off = tnum_cast(
2385 regs[insn->dst_reg].var_off, 4);
2386 __update_reg_bounds(&regs[insn->dst_reg]);
2387 }
2388 } else {
2389 /* case: R = imm
2390 * remember the value we stored into this reg
2391 */
2392 regs[insn->dst_reg].type = SCALAR_VALUE;
2393 __mark_reg_known(regs + insn->dst_reg, insn->imm);
2394 }
2395
2396 } else if (opcode > BPF_END) {
2397 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2398 return -EINVAL;
2399
2400 } else { /* all other ALU ops: and, sub, xor, add, ... */
2401
2402 if (BPF_SRC(insn->code) == BPF_X) {
2403 if (insn->imm != 0 || insn->off != 0) {
2404 verbose(env, "BPF_ALU uses reserved fields\n");
2405 return -EINVAL;
2406 }
2407 /* check src1 operand */
2408 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2409 if (err)
2410 return err;
2411 } else {
2412 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2413 verbose(env, "BPF_ALU uses reserved fields\n");
2414 return -EINVAL;
2415 }
2416 }
2417
2418 /* check src2 operand */
2419 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2420 if (err)
2421 return err;
2422
2423 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2424 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2425 verbose(env, "div by zero\n");
2426 return -EINVAL;
2427 }
2428
2429 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2430 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2431 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2432
2433 if (insn->imm < 0 || insn->imm >= size) {
2434 verbose(env, "invalid shift %d\n", insn->imm);
2435 return -EINVAL;
2436 }
2437 }
2438
2439 /* check dest operand */
2440 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
2441 if (err)
2442 return err;
2443
2444 return adjust_reg_min_max_vals(env, insn);
2445 }
2446
2447 return 0;
2448 }
2449
2450 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2451 struct bpf_reg_state *dst_reg,
2452 enum bpf_reg_type type,
2453 bool range_right_open)
2454 {
2455 struct bpf_reg_state *regs = state->regs, *reg;
2456 u16 new_range;
2457 int i;
2458
2459 if (dst_reg->off < 0 ||
2460 (dst_reg->off == 0 && range_right_open))
2461 /* This doesn't give us any range */
2462 return;
2463
2464 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2465 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2466 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2467 * than pkt_end, but that's because it's also less than pkt.
2468 */
2469 return;
2470
2471 new_range = dst_reg->off;
2472 if (range_right_open)
2473 new_range--;
2474
2475 /* Examples for register markings:
2476 *
2477 * pkt_data in dst register:
2478 *
2479 * r2 = r3;
2480 * r2 += 8;
2481 * if (r2 > pkt_end) goto <handle exception>
2482 * <access okay>
2483 *
2484 * r2 = r3;
2485 * r2 += 8;
2486 * if (r2 < pkt_end) goto <access okay>
2487 * <handle exception>
2488 *
2489 * Where:
2490 * r2 == dst_reg, pkt_end == src_reg
2491 * r2=pkt(id=n,off=8,r=0)
2492 * r3=pkt(id=n,off=0,r=0)
2493 *
2494 * pkt_data in src register:
2495 *
2496 * r2 = r3;
2497 * r2 += 8;
2498 * if (pkt_end >= r2) goto <access okay>
2499 * <handle exception>
2500 *
2501 * r2 = r3;
2502 * r2 += 8;
2503 * if (pkt_end <= r2) goto <handle exception>
2504 * <access okay>
2505 *
2506 * Where:
2507 * pkt_end == dst_reg, r2 == src_reg
2508 * r2=pkt(id=n,off=8,r=0)
2509 * r3=pkt(id=n,off=0,r=0)
2510 *
2511 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2512 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2513 * and [r3, r3 + 8-1) respectively is safe to access depending on
2514 * the check.
2515 */
2516
2517 /* If our ids match, then we must have the same max_value. And we
2518 * don't care about the other reg's fixed offset, since if it's too big
2519 * the range won't allow anything.
2520 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2521 */
2522 for (i = 0; i < MAX_BPF_REG; i++)
2523 if (regs[i].type == type && regs[i].id == dst_reg->id)
2524 /* keep the maximum range already checked */
2525 regs[i].range = max(regs[i].range, new_range);
2526
2527 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2528 if (state->stack[i].slot_type[0] != STACK_SPILL)
2529 continue;
2530 reg = &state->stack[i].spilled_ptr;
2531 if (reg->type == type && reg->id == dst_reg->id)
2532 reg->range = max_t(u16, reg->range, new_range);
2533 }
2534 }
2535
2536 /* Adjusts the register min/max values in the case that the dst_reg is the
2537 * variable register that we are working on, and src_reg is a constant or we're
2538 * simply doing a BPF_K check.
2539 * In JEQ/JNE cases we also adjust the var_off values.
2540 */
2541 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2542 struct bpf_reg_state *false_reg, u64 val,
2543 u8 opcode)
2544 {
2545 /* If the dst_reg is a pointer, we can't learn anything about its
2546 * variable offset from the compare (unless src_reg were a pointer into
2547 * the same object, but we don't bother with that.
2548 * Since false_reg and true_reg have the same type by construction, we
2549 * only need to check one of them for pointerness.
2550 */
2551 if (__is_pointer_value(false, false_reg))
2552 return;
2553
2554 switch (opcode) {
2555 case BPF_JEQ:
2556 /* If this is false then we know nothing Jon Snow, but if it is
2557 * true then we know for sure.
2558 */
2559 __mark_reg_known(true_reg, val);
2560 break;
2561 case BPF_JNE:
2562 /* If this is true we know nothing Jon Snow, but if it is false
2563 * we know the value for sure;
2564 */
2565 __mark_reg_known(false_reg, val);
2566 break;
2567 case BPF_JGT:
2568 false_reg->umax_value = min(false_reg->umax_value, val);
2569 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2570 break;
2571 case BPF_JSGT:
2572 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2573 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2574 break;
2575 case BPF_JLT:
2576 false_reg->umin_value = max(false_reg->umin_value, val);
2577 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2578 break;
2579 case BPF_JSLT:
2580 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2581 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2582 break;
2583 case BPF_JGE:
2584 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2585 true_reg->umin_value = max(true_reg->umin_value, val);
2586 break;
2587 case BPF_JSGE:
2588 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2589 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2590 break;
2591 case BPF_JLE:
2592 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2593 true_reg->umax_value = min(true_reg->umax_value, val);
2594 break;
2595 case BPF_JSLE:
2596 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2597 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2598 break;
2599 default:
2600 break;
2601 }
2602
2603 __reg_deduce_bounds(false_reg);
2604 __reg_deduce_bounds(true_reg);
2605 /* We might have learned some bits from the bounds. */
2606 __reg_bound_offset(false_reg);
2607 __reg_bound_offset(true_reg);
2608 /* Intersecting with the old var_off might have improved our bounds
2609 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2610 * then new var_off is (0; 0x7f...fc) which improves our umax.
2611 */
2612 __update_reg_bounds(false_reg);
2613 __update_reg_bounds(true_reg);
2614 }
2615
2616 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
2617 * the variable reg.
2618 */
2619 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2620 struct bpf_reg_state *false_reg, u64 val,
2621 u8 opcode)
2622 {
2623 if (__is_pointer_value(false, false_reg))
2624 return;
2625
2626 switch (opcode) {
2627 case BPF_JEQ:
2628 /* If this is false then we know nothing Jon Snow, but if it is
2629 * true then we know for sure.
2630 */
2631 __mark_reg_known(true_reg, val);
2632 break;
2633 case BPF_JNE:
2634 /* If this is true we know nothing Jon Snow, but if it is false
2635 * we know the value for sure;
2636 */
2637 __mark_reg_known(false_reg, val);
2638 break;
2639 case BPF_JGT:
2640 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2641 false_reg->umin_value = max(false_reg->umin_value, val);
2642 break;
2643 case BPF_JSGT:
2644 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2645 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2646 break;
2647 case BPF_JLT:
2648 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2649 false_reg->umax_value = min(false_reg->umax_value, val);
2650 break;
2651 case BPF_JSLT:
2652 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2653 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2654 break;
2655 case BPF_JGE:
2656 true_reg->umax_value = min(true_reg->umax_value, val);
2657 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2658 break;
2659 case BPF_JSGE:
2660 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2661 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2662 break;
2663 case BPF_JLE:
2664 true_reg->umin_value = max(true_reg->umin_value, val);
2665 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2666 break;
2667 case BPF_JSLE:
2668 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2669 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2670 break;
2671 default:
2672 break;
2673 }
2674
2675 __reg_deduce_bounds(false_reg);
2676 __reg_deduce_bounds(true_reg);
2677 /* We might have learned some bits from the bounds. */
2678 __reg_bound_offset(false_reg);
2679 __reg_bound_offset(true_reg);
2680 /* Intersecting with the old var_off might have improved our bounds
2681 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2682 * then new var_off is (0; 0x7f...fc) which improves our umax.
2683 */
2684 __update_reg_bounds(false_reg);
2685 __update_reg_bounds(true_reg);
2686 }
2687
2688 /* Regs are known to be equal, so intersect their min/max/var_off */
2689 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2690 struct bpf_reg_state *dst_reg)
2691 {
2692 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2693 dst_reg->umin_value);
2694 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2695 dst_reg->umax_value);
2696 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2697 dst_reg->smin_value);
2698 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2699 dst_reg->smax_value);
2700 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2701 dst_reg->var_off);
2702 /* We might have learned new bounds from the var_off. */
2703 __update_reg_bounds(src_reg);
2704 __update_reg_bounds(dst_reg);
2705 /* We might have learned something about the sign bit. */
2706 __reg_deduce_bounds(src_reg);
2707 __reg_deduce_bounds(dst_reg);
2708 /* We might have learned some bits from the bounds. */
2709 __reg_bound_offset(src_reg);
2710 __reg_bound_offset(dst_reg);
2711 /* Intersecting with the old var_off might have improved our bounds
2712 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2713 * then new var_off is (0; 0x7f...fc) which improves our umax.
2714 */
2715 __update_reg_bounds(src_reg);
2716 __update_reg_bounds(dst_reg);
2717 }
2718
2719 static void reg_combine_min_max(struct bpf_reg_state *true_src,
2720 struct bpf_reg_state *true_dst,
2721 struct bpf_reg_state *false_src,
2722 struct bpf_reg_state *false_dst,
2723 u8 opcode)
2724 {
2725 switch (opcode) {
2726 case BPF_JEQ:
2727 __reg_combine_min_max(true_src, true_dst);
2728 break;
2729 case BPF_JNE:
2730 __reg_combine_min_max(false_src, false_dst);
2731 break;
2732 }
2733 }
2734
2735 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2736 bool is_null)
2737 {
2738 struct bpf_reg_state *reg = &regs[regno];
2739
2740 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2741 /* Old offset (both fixed and variable parts) should
2742 * have been known-zero, because we don't allow pointer
2743 * arithmetic on pointers that might be NULL.
2744 */
2745 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2746 !tnum_equals_const(reg->var_off, 0) ||
2747 reg->off)) {
2748 __mark_reg_known_zero(reg);
2749 reg->off = 0;
2750 }
2751 if (is_null) {
2752 reg->type = SCALAR_VALUE;
2753 } else if (reg->map_ptr->inner_map_meta) {
2754 reg->type = CONST_PTR_TO_MAP;
2755 reg->map_ptr = reg->map_ptr->inner_map_meta;
2756 } else {
2757 reg->type = PTR_TO_MAP_VALUE;
2758 }
2759 /* We don't need id from this point onwards anymore, thus we
2760 * should better reset it, so that state pruning has chances
2761 * to take effect.
2762 */
2763 reg->id = 0;
2764 }
2765 }
2766
2767 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2768 * be folded together at some point.
2769 */
2770 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2771 bool is_null)
2772 {
2773 struct bpf_reg_state *regs = state->regs;
2774 u32 id = regs[regno].id;
2775 int i;
2776
2777 for (i = 0; i < MAX_BPF_REG; i++)
2778 mark_map_reg(regs, i, id, is_null);
2779
2780 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2781 if (state->stack[i].slot_type[0] != STACK_SPILL)
2782 continue;
2783 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
2784 }
2785 }
2786
2787 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2788 struct bpf_insn *insn, int *insn_idx)
2789 {
2790 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
2791 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2792 u8 opcode = BPF_OP(insn->code);
2793 int err;
2794
2795 if (opcode > BPF_JSLE) {
2796 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2797 return -EINVAL;
2798 }
2799
2800 if (BPF_SRC(insn->code) == BPF_X) {
2801 if (insn->imm != 0) {
2802 verbose(env, "BPF_JMP uses reserved fields\n");
2803 return -EINVAL;
2804 }
2805
2806 /* check src1 operand */
2807 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2808 if (err)
2809 return err;
2810
2811 if (is_pointer_value(env, insn->src_reg)) {
2812 verbose(env, "R%d pointer comparison prohibited\n",
2813 insn->src_reg);
2814 return -EACCES;
2815 }
2816 } else {
2817 if (insn->src_reg != BPF_REG_0) {
2818 verbose(env, "BPF_JMP uses reserved fields\n");
2819 return -EINVAL;
2820 }
2821 }
2822
2823 /* check src2 operand */
2824 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2825 if (err)
2826 return err;
2827
2828 dst_reg = &regs[insn->dst_reg];
2829
2830 /* detect if R == 0 where R was initialized to zero earlier */
2831 if (BPF_SRC(insn->code) == BPF_K &&
2832 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2833 dst_reg->type == SCALAR_VALUE &&
2834 tnum_equals_const(dst_reg->var_off, insn->imm)) {
2835 if (opcode == BPF_JEQ) {
2836 /* if (imm == imm) goto pc+off;
2837 * only follow the goto, ignore fall-through
2838 */
2839 *insn_idx += insn->off;
2840 return 0;
2841 } else {
2842 /* if (imm != imm) goto pc+off;
2843 * only follow fall-through branch, since
2844 * that's where the program will go
2845 */
2846 return 0;
2847 }
2848 }
2849
2850 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2851 if (!other_branch)
2852 return -EFAULT;
2853
2854 /* detect if we are comparing against a constant value so we can adjust
2855 * our min/max values for our dst register.
2856 * this is only legit if both are scalars (or pointers to the same
2857 * object, I suppose, but we don't support that right now), because
2858 * otherwise the different base pointers mean the offsets aren't
2859 * comparable.
2860 */
2861 if (BPF_SRC(insn->code) == BPF_X) {
2862 if (dst_reg->type == SCALAR_VALUE &&
2863 regs[insn->src_reg].type == SCALAR_VALUE) {
2864 if (tnum_is_const(regs[insn->src_reg].var_off))
2865 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2866 dst_reg, regs[insn->src_reg].var_off.value,
2867 opcode);
2868 else if (tnum_is_const(dst_reg->var_off))
2869 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2870 &regs[insn->src_reg],
2871 dst_reg->var_off.value, opcode);
2872 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2873 /* Comparing for equality, we can combine knowledge */
2874 reg_combine_min_max(&other_branch->regs[insn->src_reg],
2875 &other_branch->regs[insn->dst_reg],
2876 &regs[insn->src_reg],
2877 &regs[insn->dst_reg], opcode);
2878 }
2879 } else if (dst_reg->type == SCALAR_VALUE) {
2880 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2881 dst_reg, insn->imm, opcode);
2882 }
2883
2884 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2885 if (BPF_SRC(insn->code) == BPF_K &&
2886 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2887 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2888 /* Mark all identical map registers in each branch as either
2889 * safe or unknown depending R == 0 or R != 0 conditional.
2890 */
2891 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2892 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
2893 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2894 dst_reg->type == PTR_TO_PACKET &&
2895 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2896 /* pkt_data' > pkt_end */
2897 find_good_pkt_pointers(this_branch, dst_reg,
2898 PTR_TO_PACKET, false);
2899 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2900 dst_reg->type == PTR_TO_PACKET_END &&
2901 regs[insn->src_reg].type == PTR_TO_PACKET) {
2902 /* pkt_end > pkt_data' */
2903 find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2904 PTR_TO_PACKET, true);
2905 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2906 dst_reg->type == PTR_TO_PACKET &&
2907 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2908 /* pkt_data' < pkt_end */
2909 find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET,
2910 true);
2911 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2912 dst_reg->type == PTR_TO_PACKET_END &&
2913 regs[insn->src_reg].type == PTR_TO_PACKET) {
2914 /* pkt_end < pkt_data' */
2915 find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2916 PTR_TO_PACKET, false);
2917 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2918 dst_reg->type == PTR_TO_PACKET &&
2919 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2920 /* pkt_data' >= pkt_end */
2921 find_good_pkt_pointers(this_branch, dst_reg,
2922 PTR_TO_PACKET, true);
2923 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2924 dst_reg->type == PTR_TO_PACKET_END &&
2925 regs[insn->src_reg].type == PTR_TO_PACKET) {
2926 /* pkt_end >= pkt_data' */
2927 find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2928 PTR_TO_PACKET, false);
2929 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2930 dst_reg->type == PTR_TO_PACKET &&
2931 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2932 /* pkt_data' <= pkt_end */
2933 find_good_pkt_pointers(other_branch, dst_reg,
2934 PTR_TO_PACKET, false);
2935 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2936 dst_reg->type == PTR_TO_PACKET_END &&
2937 regs[insn->src_reg].type == PTR_TO_PACKET) {
2938 /* pkt_end <= pkt_data' */
2939 find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2940 PTR_TO_PACKET, true);
2941 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2942 dst_reg->type == PTR_TO_PACKET_META &&
2943 reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2944 find_good_pkt_pointers(this_branch, dst_reg,
2945 PTR_TO_PACKET_META, false);
2946 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2947 dst_reg->type == PTR_TO_PACKET_META &&
2948 reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2949 find_good_pkt_pointers(other_branch, dst_reg,
2950 PTR_TO_PACKET_META, false);
2951 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2952 reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2953 regs[insn->src_reg].type == PTR_TO_PACKET_META) {
2954 find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2955 PTR_TO_PACKET_META, false);
2956 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2957 reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2958 regs[insn->src_reg].type == PTR_TO_PACKET_META) {
2959 find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2960 PTR_TO_PACKET_META, false);
2961 } else if (is_pointer_value(env, insn->dst_reg)) {
2962 verbose(env, "R%d pointer comparison prohibited\n",
2963 insn->dst_reg);
2964 return -EACCES;
2965 }
2966 if (env->log.level)
2967 print_verifier_state(env, this_branch);
2968 return 0;
2969 }
2970
2971 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2972 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2973 {
2974 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2975
2976 return (struct bpf_map *) (unsigned long) imm64;
2977 }
2978
2979 /* verify BPF_LD_IMM64 instruction */
2980 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2981 {
2982 struct bpf_reg_state *regs = cur_regs(env);
2983 int err;
2984
2985 if (BPF_SIZE(insn->code) != BPF_DW) {
2986 verbose(env, "invalid BPF_LD_IMM insn\n");
2987 return -EINVAL;
2988 }
2989 if (insn->off != 0) {
2990 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
2991 return -EINVAL;
2992 }
2993
2994 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2995 if (err)
2996 return err;
2997
2998 if (insn->src_reg == 0) {
2999 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3000
3001 regs[insn->dst_reg].type = SCALAR_VALUE;
3002 __mark_reg_known(&regs[insn->dst_reg], imm);
3003 return 0;
3004 }
3005
3006 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3007 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3008
3009 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3010 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3011 return 0;
3012 }
3013
3014 static bool may_access_skb(enum bpf_prog_type type)
3015 {
3016 switch (type) {
3017 case BPF_PROG_TYPE_SOCKET_FILTER:
3018 case BPF_PROG_TYPE_SCHED_CLS:
3019 case BPF_PROG_TYPE_SCHED_ACT:
3020 return true;
3021 default:
3022 return false;
3023 }
3024 }
3025
3026 /* verify safety of LD_ABS|LD_IND instructions:
3027 * - they can only appear in the programs where ctx == skb
3028 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3029 * preserve R6-R9, and store return value into R0
3030 *
3031 * Implicit input:
3032 * ctx == skb == R6 == CTX
3033 *
3034 * Explicit input:
3035 * SRC == any register
3036 * IMM == 32-bit immediate
3037 *
3038 * Output:
3039 * R0 - 8/16/32-bit skb data converted to cpu endianness
3040 */
3041 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3042 {
3043 struct bpf_reg_state *regs = cur_regs(env);
3044 u8 mode = BPF_MODE(insn->code);
3045 int i, err;
3046
3047 if (!may_access_skb(env->prog->type)) {
3048 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3049 return -EINVAL;
3050 }
3051
3052 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3053 BPF_SIZE(insn->code) == BPF_DW ||
3054 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3055 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3056 return -EINVAL;
3057 }
3058
3059 /* check whether implicit source operand (register R6) is readable */
3060 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3061 if (err)
3062 return err;
3063
3064 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3065 verbose(env,
3066 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3067 return -EINVAL;
3068 }
3069
3070 if (mode == BPF_IND) {
3071 /* check explicit source operand */
3072 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3073 if (err)
3074 return err;
3075 }
3076
3077 /* reset caller saved regs to unreadable */
3078 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3079 mark_reg_not_init(env, regs, caller_saved[i]);
3080 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3081 }
3082
3083 /* mark destination R0 register as readable, since it contains
3084 * the value fetched from the packet.
3085 * Already marked as written above.
3086 */
3087 mark_reg_unknown(env, regs, BPF_REG_0);
3088 return 0;
3089 }
3090
3091 static int check_return_code(struct bpf_verifier_env *env)
3092 {
3093 struct bpf_reg_state *reg;
3094 struct tnum range = tnum_range(0, 1);
3095
3096 switch (env->prog->type) {
3097 case BPF_PROG_TYPE_CGROUP_SKB:
3098 case BPF_PROG_TYPE_CGROUP_SOCK:
3099 case BPF_PROG_TYPE_SOCK_OPS:
3100 break;
3101 default:
3102 return 0;
3103 }
3104
3105 reg = cur_regs(env) + BPF_REG_0;
3106 if (reg->type != SCALAR_VALUE) {
3107 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3108 reg_type_str[reg->type]);
3109 return -EINVAL;
3110 }
3111
3112 if (!tnum_in(range, reg->var_off)) {
3113 verbose(env, "At program exit the register R0 ");
3114 if (!tnum_is_unknown(reg->var_off)) {
3115 char tn_buf[48];
3116
3117 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3118 verbose(env, "has value %s", tn_buf);
3119 } else {
3120 verbose(env, "has unknown scalar value");
3121 }
3122 verbose(env, " should have been 0 or 1\n");
3123 return -EINVAL;
3124 }
3125 return 0;
3126 }
3127
3128 /* non-recursive DFS pseudo code
3129 * 1 procedure DFS-iterative(G,v):
3130 * 2 label v as discovered
3131 * 3 let S be a stack
3132 * 4 S.push(v)
3133 * 5 while S is not empty
3134 * 6 t <- S.pop()
3135 * 7 if t is what we're looking for:
3136 * 8 return t
3137 * 9 for all edges e in G.adjacentEdges(t) do
3138 * 10 if edge e is already labelled
3139 * 11 continue with the next edge
3140 * 12 w <- G.adjacentVertex(t,e)
3141 * 13 if vertex w is not discovered and not explored
3142 * 14 label e as tree-edge
3143 * 15 label w as discovered
3144 * 16 S.push(w)
3145 * 17 continue at 5
3146 * 18 else if vertex w is discovered
3147 * 19 label e as back-edge
3148 * 20 else
3149 * 21 // vertex w is explored
3150 * 22 label e as forward- or cross-edge
3151 * 23 label t as explored
3152 * 24 S.pop()
3153 *
3154 * convention:
3155 * 0x10 - discovered
3156 * 0x11 - discovered and fall-through edge labelled
3157 * 0x12 - discovered and fall-through and branch edges labelled
3158 * 0x20 - explored
3159 */
3160
3161 enum {
3162 DISCOVERED = 0x10,
3163 EXPLORED = 0x20,
3164 FALLTHROUGH = 1,
3165 BRANCH = 2,
3166 };
3167
3168 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3169
3170 static int *insn_stack; /* stack of insns to process */
3171 static int cur_stack; /* current stack index */
3172 static int *insn_state;
3173
3174 /* t, w, e - match pseudo-code above:
3175 * t - index of current instruction
3176 * w - next instruction
3177 * e - edge
3178 */
3179 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3180 {
3181 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3182 return 0;
3183
3184 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3185 return 0;
3186
3187 if (w < 0 || w >= env->prog->len) {
3188 verbose(env, "jump out of range from insn %d to %d\n", t, w);
3189 return -EINVAL;
3190 }
3191
3192 if (e == BRANCH)
3193 /* mark branch target for state pruning */
3194 env->explored_states[w] = STATE_LIST_MARK;
3195
3196 if (insn_state[w] == 0) {
3197 /* tree-edge */
3198 insn_state[t] = DISCOVERED | e;
3199 insn_state[w] = DISCOVERED;
3200 if (cur_stack >= env->prog->len)
3201 return -E2BIG;
3202 insn_stack[cur_stack++] = w;
3203 return 1;
3204 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3205 verbose(env, "back-edge from insn %d to %d\n", t, w);
3206 return -EINVAL;
3207 } else if (insn_state[w] == EXPLORED) {
3208 /* forward- or cross-edge */
3209 insn_state[t] = DISCOVERED | e;
3210 } else {
3211 verbose(env, "insn state internal bug\n");
3212 return -EFAULT;
3213 }
3214 return 0;
3215 }
3216
3217 /* non-recursive depth-first-search to detect loops in BPF program
3218 * loop == back-edge in directed graph
3219 */
3220 static int check_cfg(struct bpf_verifier_env *env)
3221 {
3222 struct bpf_insn *insns = env->prog->insnsi;
3223 int insn_cnt = env->prog->len;
3224 int ret = 0;
3225 int i, t;
3226
3227 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3228 if (!insn_state)
3229 return -ENOMEM;
3230
3231 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3232 if (!insn_stack) {
3233 kfree(insn_state);
3234 return -ENOMEM;
3235 }
3236
3237 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3238 insn_stack[0] = 0; /* 0 is the first instruction */
3239 cur_stack = 1;
3240
3241 peek_stack:
3242 if (cur_stack == 0)
3243 goto check_state;
3244 t = insn_stack[cur_stack - 1];
3245
3246 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3247 u8 opcode = BPF_OP(insns[t].code);
3248
3249 if (opcode == BPF_EXIT) {
3250 goto mark_explored;
3251 } else if (opcode == BPF_CALL) {
3252 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3253 if (ret == 1)
3254 goto peek_stack;
3255 else if (ret < 0)
3256 goto err_free;
3257 if (t + 1 < insn_cnt)
3258 env->explored_states[t + 1] = STATE_LIST_MARK;
3259 } else if (opcode == BPF_JA) {
3260 if (BPF_SRC(insns[t].code) != BPF_K) {
3261 ret = -EINVAL;
3262 goto err_free;
3263 }
3264 /* unconditional jump with single edge */
3265 ret = push_insn(t, t + insns[t].off + 1,
3266 FALLTHROUGH, env);
3267 if (ret == 1)
3268 goto peek_stack;
3269 else if (ret < 0)
3270 goto err_free;
3271 /* tell verifier to check for equivalent states
3272 * after every call and jump
3273 */
3274 if (t + 1 < insn_cnt)
3275 env->explored_states[t + 1] = STATE_LIST_MARK;
3276 } else {
3277 /* conditional jump with two edges */
3278 env->explored_states[t] = STATE_LIST_MARK;
3279 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3280 if (ret == 1)
3281 goto peek_stack;
3282 else if (ret < 0)
3283 goto err_free;
3284
3285 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3286 if (ret == 1)
3287 goto peek_stack;
3288 else if (ret < 0)
3289 goto err_free;
3290 }
3291 } else {
3292 /* all other non-branch instructions with single
3293 * fall-through edge
3294 */
3295 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3296 if (ret == 1)
3297 goto peek_stack;
3298 else if (ret < 0)
3299 goto err_free;
3300 }
3301
3302 mark_explored:
3303 insn_state[t] = EXPLORED;
3304 if (cur_stack-- <= 0) {
3305 verbose(env, "pop stack internal bug\n");
3306 ret = -EFAULT;
3307 goto err_free;
3308 }
3309 goto peek_stack;
3310
3311 check_state:
3312 for (i = 0; i < insn_cnt; i++) {
3313 if (insn_state[i] != EXPLORED) {
3314 verbose(env, "unreachable insn %d\n", i);
3315 ret = -EINVAL;
3316 goto err_free;
3317 }
3318 }
3319 ret = 0; /* cfg looks good */
3320
3321 err_free:
3322 kfree(insn_state);
3323 kfree(insn_stack);
3324 return ret;
3325 }
3326
3327 /* check %cur's range satisfies %old's */
3328 static bool range_within(struct bpf_reg_state *old,
3329 struct bpf_reg_state *cur)
3330 {
3331 return old->umin_value <= cur->umin_value &&
3332 old->umax_value >= cur->umax_value &&
3333 old->smin_value <= cur->smin_value &&
3334 old->smax_value >= cur->smax_value;
3335 }
3336
3337 /* Maximum number of register states that can exist at once */
3338 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3339 struct idpair {
3340 u32 old;
3341 u32 cur;
3342 };
3343
3344 /* If in the old state two registers had the same id, then they need to have
3345 * the same id in the new state as well. But that id could be different from
3346 * the old state, so we need to track the mapping from old to new ids.
3347 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3348 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3349 * regs with a different old id could still have new id 9, we don't care about
3350 * that.
3351 * So we look through our idmap to see if this old id has been seen before. If
3352 * so, we require the new id to match; otherwise, we add the id pair to the map.
3353 */
3354 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
3355 {
3356 unsigned int i;
3357
3358 for (i = 0; i < ID_MAP_SIZE; i++) {
3359 if (!idmap[i].old) {
3360 /* Reached an empty slot; haven't seen this id before */
3361 idmap[i].old = old_id;
3362 idmap[i].cur = cur_id;
3363 return true;
3364 }
3365 if (idmap[i].old == old_id)
3366 return idmap[i].cur == cur_id;
3367 }
3368 /* We ran out of idmap slots, which should be impossible */
3369 WARN_ON_ONCE(1);
3370 return false;
3371 }
3372
3373 /* Returns true if (rold safe implies rcur safe) */
3374 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3375 struct idpair *idmap)
3376 {
3377 if (!(rold->live & REG_LIVE_READ))
3378 /* explored state didn't use this */
3379 return true;
3380
3381 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
3382 return true;
3383
3384 if (rold->type == NOT_INIT)
3385 /* explored state can't have used this */
3386 return true;
3387 if (rcur->type == NOT_INIT)
3388 return false;
3389 switch (rold->type) {
3390 case SCALAR_VALUE:
3391 if (rcur->type == SCALAR_VALUE) {
3392 /* new val must satisfy old val knowledge */
3393 return range_within(rold, rcur) &&
3394 tnum_in(rold->var_off, rcur->var_off);
3395 } else {
3396 /* if we knew anything about the old value, we're not
3397 * equal, because we can't know anything about the
3398 * scalar value of the pointer in the new value.
3399 */
3400 return rold->umin_value == 0 &&
3401 rold->umax_value == U64_MAX &&
3402 rold->smin_value == S64_MIN &&
3403 rold->smax_value == S64_MAX &&
3404 tnum_is_unknown(rold->var_off);
3405 }
3406 case PTR_TO_MAP_VALUE:
3407 /* If the new min/max/var_off satisfy the old ones and
3408 * everything else matches, we are OK.
3409 * We don't care about the 'id' value, because nothing
3410 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3411 */
3412 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3413 range_within(rold, rcur) &&
3414 tnum_in(rold->var_off, rcur->var_off);
3415 case PTR_TO_MAP_VALUE_OR_NULL:
3416 /* a PTR_TO_MAP_VALUE could be safe to use as a
3417 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3418 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3419 * checked, doing so could have affected others with the same
3420 * id, and we can't check for that because we lost the id when
3421 * we converted to a PTR_TO_MAP_VALUE.
3422 */
3423 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3424 return false;
3425 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3426 return false;
3427 /* Check our ids match any regs they're supposed to */
3428 return check_ids(rold->id, rcur->id, idmap);
3429 case PTR_TO_PACKET_META:
3430 case PTR_TO_PACKET:
3431 if (rcur->type != rold->type)
3432 return false;
3433 /* We must have at least as much range as the old ptr
3434 * did, so that any accesses which were safe before are
3435 * still safe. This is true even if old range < old off,
3436 * since someone could have accessed through (ptr - k), or
3437 * even done ptr -= k in a register, to get a safe access.
3438 */
3439 if (rold->range > rcur->range)
3440 return false;
3441 /* If the offsets don't match, we can't trust our alignment;
3442 * nor can we be sure that we won't fall out of range.
3443 */
3444 if (rold->off != rcur->off)
3445 return false;
3446 /* id relations must be preserved */
3447 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3448 return false;
3449 /* new val must satisfy old val knowledge */
3450 return range_within(rold, rcur) &&
3451 tnum_in(rold->var_off, rcur->var_off);
3452 case PTR_TO_CTX:
3453 case CONST_PTR_TO_MAP:
3454 case PTR_TO_STACK:
3455 case PTR_TO_PACKET_END:
3456 /* Only valid matches are exact, which memcmp() above
3457 * would have accepted
3458 */
3459 default:
3460 /* Don't know what's going on, just say it's not safe */
3461 return false;
3462 }
3463
3464 /* Shouldn't get here; if we do, say it's not safe */
3465 WARN_ON_ONCE(1);
3466 return false;
3467 }
3468
3469 static bool stacksafe(struct bpf_verifier_state *old,
3470 struct bpf_verifier_state *cur,
3471 struct idpair *idmap)
3472 {
3473 int i, spi;
3474
3475 /* if explored stack has more populated slots than current stack
3476 * such stacks are not equivalent
3477 */
3478 if (old->allocated_stack > cur->allocated_stack)
3479 return false;
3480
3481 /* walk slots of the explored stack and ignore any additional
3482 * slots in the current stack, since explored(safe) state
3483 * didn't use them
3484 */
3485 for (i = 0; i < old->allocated_stack; i++) {
3486 spi = i / BPF_REG_SIZE;
3487
3488 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3489 continue;
3490 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3491 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3492 /* Ex: old explored (safe) state has STACK_SPILL in
3493 * this stack slot, but current has has STACK_MISC ->
3494 * this verifier states are not equivalent,
3495 * return false to continue verification of this path
3496 */
3497 return false;
3498 if (i % BPF_REG_SIZE)
3499 continue;
3500 if (old->stack[spi].slot_type[0] != STACK_SPILL)
3501 continue;
3502 if (!regsafe(&old->stack[spi].spilled_ptr,
3503 &cur->stack[spi].spilled_ptr,
3504 idmap))
3505 /* when explored and current stack slot are both storing
3506 * spilled registers, check that stored pointers types
3507 * are the same as well.
3508 * Ex: explored safe path could have stored
3509 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3510 * but current path has stored:
3511 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3512 * such verifier states are not equivalent.
3513 * return false to continue verification of this path
3514 */
3515 return false;
3516 }
3517 return true;
3518 }
3519
3520 /* compare two verifier states
3521 *
3522 * all states stored in state_list are known to be valid, since
3523 * verifier reached 'bpf_exit' instruction through them
3524 *
3525 * this function is called when verifier exploring different branches of
3526 * execution popped from the state stack. If it sees an old state that has
3527 * more strict register state and more strict stack state then this execution
3528 * branch doesn't need to be explored further, since verifier already
3529 * concluded that more strict state leads to valid finish.
3530 *
3531 * Therefore two states are equivalent if register state is more conservative
3532 * and explored stack state is more conservative than the current one.
3533 * Example:
3534 * explored current
3535 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3536 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3537 *
3538 * In other words if current stack state (one being explored) has more
3539 * valid slots than old one that already passed validation, it means
3540 * the verifier can stop exploring and conclude that current state is valid too
3541 *
3542 * Similarly with registers. If explored state has register type as invalid
3543 * whereas register type in current state is meaningful, it means that
3544 * the current state will reach 'bpf_exit' instruction safely
3545 */
3546 static bool states_equal(struct bpf_verifier_env *env,
3547 struct bpf_verifier_state *old,
3548 struct bpf_verifier_state *cur)
3549 {
3550 struct idpair *idmap;
3551 bool ret = false;
3552 int i;
3553
3554 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3555 /* If we failed to allocate the idmap, just say it's not safe */
3556 if (!idmap)
3557 return false;
3558
3559 for (i = 0; i < MAX_BPF_REG; i++) {
3560 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3561 goto out_free;
3562 }
3563
3564 if (!stacksafe(old, cur, idmap))
3565 goto out_free;
3566 ret = true;
3567 out_free:
3568 kfree(idmap);
3569 return ret;
3570 }
3571
3572 /* A write screens off any subsequent reads; but write marks come from the
3573 * straight-line code between a state and its parent. When we arrive at a
3574 * jump target (in the first iteration of the propagate_liveness() loop),
3575 * we didn't arrive by the straight-line code, so read marks in state must
3576 * propagate to parent regardless of state's write marks.
3577 */
3578 static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3579 struct bpf_verifier_state *parent)
3580 {
3581 bool writes = parent == state->parent; /* Observe write marks */
3582 bool touched = false; /* any changes made? */
3583 int i;
3584
3585 if (!parent)
3586 return touched;
3587 /* Propagate read liveness of registers... */
3588 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3589 /* We don't need to worry about FP liveness because it's read-only */
3590 for (i = 0; i < BPF_REG_FP; i++) {
3591 if (parent->regs[i].live & REG_LIVE_READ)
3592 continue;
3593 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3594 continue;
3595 if (state->regs[i].live & REG_LIVE_READ) {
3596 parent->regs[i].live |= REG_LIVE_READ;
3597 touched = true;
3598 }
3599 }
3600 /* ... and stack slots */
3601 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3602 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3603 if (parent->stack[i].slot_type[0] != STACK_SPILL)
3604 continue;
3605 if (state->stack[i].slot_type[0] != STACK_SPILL)
3606 continue;
3607 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
3608 continue;
3609 if (writes &&
3610 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
3611 continue;
3612 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3613 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
3614 touched = true;
3615 }
3616 }
3617 return touched;
3618 }
3619
3620 /* "parent" is "a state from which we reach the current state", but initially
3621 * it is not the state->parent (i.e. "the state whose straight-line code leads
3622 * to the current state"), instead it is the state that happened to arrive at
3623 * a (prunable) equivalent of the current state. See comment above
3624 * do_propagate_liveness() for consequences of this.
3625 * This function is just a more efficient way of calling mark_reg_read() or
3626 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3627 * though it requires that parent != state->parent in the call arguments.
3628 */
3629 static void propagate_liveness(const struct bpf_verifier_state *state,
3630 struct bpf_verifier_state *parent)
3631 {
3632 while (do_propagate_liveness(state, parent)) {
3633 /* Something changed, so we need to feed those changes onward */
3634 state = parent;
3635 parent = state->parent;
3636 }
3637 }
3638
3639 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3640 {
3641 struct bpf_verifier_state_list *new_sl;
3642 struct bpf_verifier_state_list *sl;
3643 struct bpf_verifier_state *cur = env->cur_state;
3644 int i;
3645
3646 sl = env->explored_states[insn_idx];
3647 if (!sl)
3648 /* this 'insn_idx' instruction wasn't marked, so we will not
3649 * be doing state search here
3650 */
3651 return 0;
3652
3653 while (sl != STATE_LIST_MARK) {
3654 if (states_equal(env, &sl->state, cur)) {
3655 /* reached equivalent register/stack state,
3656 * prune the search.
3657 * Registers read by the continuation are read by us.
3658 * If we have any write marks in env->cur_state, they
3659 * will prevent corresponding reads in the continuation
3660 * from reaching our parent (an explored_state). Our
3661 * own state will get the read marks recorded, but
3662 * they'll be immediately forgotten as we're pruning
3663 * this state and will pop a new one.
3664 */
3665 propagate_liveness(&sl->state, cur);
3666 return 1;
3667 }
3668 sl = sl->next;
3669 }
3670
3671 /* there were no equivalent states, remember current one.
3672 * technically the current state is not proven to be safe yet,
3673 * but it will either reach bpf_exit (which means it's safe) or
3674 * it will be rejected. Since there are no loops, we won't be
3675 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3676 */
3677 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
3678 if (!new_sl)
3679 return -ENOMEM;
3680
3681 /* add new state to the head of linked list */
3682 copy_verifier_state(&new_sl->state, cur);
3683 new_sl->next = env->explored_states[insn_idx];
3684 env->explored_states[insn_idx] = new_sl;
3685 /* connect new state to parentage chain */
3686 cur->parent = &new_sl->state;
3687 /* clear write marks in current state: the writes we did are not writes
3688 * our child did, so they don't screen off its reads from us.
3689 * (There are no read marks in current state, because reads always mark
3690 * their parent and current state never has children yet. Only
3691 * explored_states can get read marks.)
3692 */
3693 for (i = 0; i < BPF_REG_FP; i++)
3694 cur->regs[i].live = REG_LIVE_NONE;
3695 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3696 if (cur->stack[i].slot_type[0] == STACK_SPILL)
3697 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
3698 return 0;
3699 }
3700
3701 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3702 int insn_idx, int prev_insn_idx)
3703 {
3704 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3705 return 0;
3706
3707 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3708 }
3709
3710 static int do_check(struct bpf_verifier_env *env)
3711 {
3712 struct bpf_verifier_state *state;
3713 struct bpf_insn *insns = env->prog->insnsi;
3714 struct bpf_reg_state *regs;
3715 int insn_cnt = env->prog->len;
3716 int insn_idx, prev_insn_idx = 0;
3717 int insn_processed = 0;
3718 bool do_print_state = false;
3719
3720 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3721 if (!state)
3722 return -ENOMEM;
3723 env->cur_state = state;
3724 init_reg_state(env, state->regs);
3725 state->parent = NULL;
3726 insn_idx = 0;
3727 for (;;) {
3728 struct bpf_insn *insn;
3729 u8 class;
3730 int err;
3731
3732 if (insn_idx >= insn_cnt) {
3733 verbose(env, "invalid insn idx %d insn_cnt %d\n",
3734 insn_idx, insn_cnt);
3735 return -EFAULT;
3736 }
3737
3738 insn = &insns[insn_idx];
3739 class = BPF_CLASS(insn->code);
3740
3741 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3742 verbose(env,
3743 "BPF program is too large. Processed %d insn\n",
3744 insn_processed);
3745 return -E2BIG;
3746 }
3747
3748 err = is_state_visited(env, insn_idx);
3749 if (err < 0)
3750 return err;
3751 if (err == 1) {
3752 /* found equivalent state, can prune the search */
3753 if (env->log.level) {
3754 if (do_print_state)
3755 verbose(env, "\nfrom %d to %d: safe\n",
3756 prev_insn_idx, insn_idx);
3757 else
3758 verbose(env, "%d: safe\n", insn_idx);
3759 }
3760 goto process_bpf_exit;
3761 }
3762
3763 if (need_resched())
3764 cond_resched();
3765
3766 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3767 if (env->log.level > 1)
3768 verbose(env, "%d:", insn_idx);
3769 else
3770 verbose(env, "\nfrom %d to %d:",
3771 prev_insn_idx, insn_idx);
3772 print_verifier_state(env, state);
3773 do_print_state = false;
3774 }
3775
3776 if (env->log.level) {
3777 verbose(env, "%d: ", insn_idx);
3778 print_bpf_insn(verbose, env, insn,
3779 env->allow_ptr_leaks);
3780 }
3781
3782 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3783 if (err)
3784 return err;
3785
3786 regs = cur_regs(env);
3787 if (class == BPF_ALU || class == BPF_ALU64) {
3788 err = check_alu_op(env, insn);
3789 if (err)
3790 return err;
3791
3792 } else if (class == BPF_LDX) {
3793 enum bpf_reg_type *prev_src_type, src_reg_type;
3794
3795 /* check for reserved fields is already done */
3796
3797 /* check src operand */
3798 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3799 if (err)
3800 return err;
3801
3802 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3803 if (err)
3804 return err;
3805
3806 src_reg_type = regs[insn->src_reg].type;
3807
3808 /* check that memory (src_reg + off) is readable,
3809 * the state of dst_reg will be updated by this func
3810 */
3811 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3812 BPF_SIZE(insn->code), BPF_READ,
3813 insn->dst_reg);
3814 if (err)
3815 return err;
3816
3817 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3818
3819 if (*prev_src_type == NOT_INIT) {
3820 /* saw a valid insn
3821 * dst_reg = *(u32 *)(src_reg + off)
3822 * save type to validate intersecting paths
3823 */
3824 *prev_src_type = src_reg_type;
3825
3826 } else if (src_reg_type != *prev_src_type &&
3827 (src_reg_type == PTR_TO_CTX ||
3828 *prev_src_type == PTR_TO_CTX)) {
3829 /* ABuser program is trying to use the same insn
3830 * dst_reg = *(u32*) (src_reg + off)
3831 * with different pointer types:
3832 * src_reg == ctx in one branch and
3833 * src_reg == stack|map in some other branch.
3834 * Reject it.
3835 */
3836 verbose(env, "same insn cannot be used with different pointers\n");
3837 return -EINVAL;
3838 }
3839
3840 } else if (class == BPF_STX) {
3841 enum bpf_reg_type *prev_dst_type, dst_reg_type;
3842
3843 if (BPF_MODE(insn->code) == BPF_XADD) {
3844 err = check_xadd(env, insn_idx, insn);
3845 if (err)
3846 return err;
3847 insn_idx++;
3848 continue;
3849 }
3850
3851 /* check src1 operand */
3852 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3853 if (err)
3854 return err;
3855 /* check src2 operand */
3856 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3857 if (err)
3858 return err;
3859
3860 dst_reg_type = regs[insn->dst_reg].type;
3861
3862 /* check that memory (dst_reg + off) is writeable */
3863 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3864 BPF_SIZE(insn->code), BPF_WRITE,
3865 insn->src_reg);
3866 if (err)
3867 return err;
3868
3869 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3870
3871 if (*prev_dst_type == NOT_INIT) {
3872 *prev_dst_type = dst_reg_type;
3873 } else if (dst_reg_type != *prev_dst_type &&
3874 (dst_reg_type == PTR_TO_CTX ||
3875 *prev_dst_type == PTR_TO_CTX)) {
3876 verbose(env, "same insn cannot be used with different pointers\n");
3877 return -EINVAL;
3878 }
3879
3880 } else if (class == BPF_ST) {
3881 if (BPF_MODE(insn->code) != BPF_MEM ||
3882 insn->src_reg != BPF_REG_0) {
3883 verbose(env, "BPF_ST uses reserved fields\n");
3884 return -EINVAL;
3885 }
3886 /* check src operand */
3887 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3888 if (err)
3889 return err;
3890
3891 /* check that memory (dst_reg + off) is writeable */
3892 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3893 BPF_SIZE(insn->code), BPF_WRITE,
3894 -1);
3895 if (err)
3896 return err;
3897
3898 } else if (class == BPF_JMP) {
3899 u8 opcode = BPF_OP(insn->code);
3900
3901 if (opcode == BPF_CALL) {
3902 if (BPF_SRC(insn->code) != BPF_K ||
3903 insn->off != 0 ||
3904 insn->src_reg != BPF_REG_0 ||
3905 insn->dst_reg != BPF_REG_0) {
3906 verbose(env, "BPF_CALL uses reserved fields\n");
3907 return -EINVAL;
3908 }
3909
3910 err = check_call(env, insn->imm, insn_idx);
3911 if (err)
3912 return err;
3913
3914 } else if (opcode == BPF_JA) {
3915 if (BPF_SRC(insn->code) != BPF_K ||
3916 insn->imm != 0 ||
3917 insn->src_reg != BPF_REG_0 ||
3918 insn->dst_reg != BPF_REG_0) {
3919 verbose(env, "BPF_JA uses reserved fields\n");
3920 return -EINVAL;
3921 }
3922
3923 insn_idx += insn->off + 1;
3924 continue;
3925
3926 } else if (opcode == BPF_EXIT) {
3927 if (BPF_SRC(insn->code) != BPF_K ||
3928 insn->imm != 0 ||
3929 insn->src_reg != BPF_REG_0 ||
3930 insn->dst_reg != BPF_REG_0) {
3931 verbose(env, "BPF_EXIT uses reserved fields\n");
3932 return -EINVAL;
3933 }
3934
3935 /* eBPF calling convetion is such that R0 is used
3936 * to return the value from eBPF program.
3937 * Make sure that it's readable at this time
3938 * of bpf_exit, which means that program wrote
3939 * something into it earlier
3940 */
3941 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3942 if (err)
3943 return err;
3944
3945 if (is_pointer_value(env, BPF_REG_0)) {
3946 verbose(env, "R0 leaks addr as return value\n");
3947 return -EACCES;
3948 }
3949
3950 err = check_return_code(env);
3951 if (err)
3952 return err;
3953 process_bpf_exit:
3954 err = pop_stack(env, &prev_insn_idx, &insn_idx);
3955 if (err < 0) {
3956 if (err != -ENOENT)
3957 return err;
3958 break;
3959 } else {
3960 do_print_state = true;
3961 continue;
3962 }
3963 } else {
3964 err = check_cond_jmp_op(env, insn, &insn_idx);
3965 if (err)
3966 return err;
3967 }
3968 } else if (class == BPF_LD) {
3969 u8 mode = BPF_MODE(insn->code);
3970
3971 if (mode == BPF_ABS || mode == BPF_IND) {
3972 err = check_ld_abs(env, insn);
3973 if (err)
3974 return err;
3975
3976 } else if (mode == BPF_IMM) {
3977 err = check_ld_imm(env, insn);
3978 if (err)
3979 return err;
3980
3981 insn_idx++;
3982 } else {
3983 verbose(env, "invalid BPF_LD mode\n");
3984 return -EINVAL;
3985 }
3986 } else {
3987 verbose(env, "unknown insn class %d\n", class);
3988 return -EINVAL;
3989 }
3990
3991 insn_idx++;
3992 }
3993
3994 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
3995 env->prog->aux->stack_depth);
3996 return 0;
3997 }
3998
3999 static int check_map_prealloc(struct bpf_map *map)
4000 {
4001 return (map->map_type != BPF_MAP_TYPE_HASH &&
4002 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4003 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4004 !(map->map_flags & BPF_F_NO_PREALLOC);
4005 }
4006
4007 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4008 struct bpf_map *map,
4009 struct bpf_prog *prog)
4010
4011 {
4012 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4013 * preallocated hash maps, since doing memory allocation
4014 * in overflow_handler can crash depending on where nmi got
4015 * triggered.
4016 */
4017 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4018 if (!check_map_prealloc(map)) {
4019 verbose(env, "perf_event programs can only use preallocated hash map\n");
4020 return -EINVAL;
4021 }
4022 if (map->inner_map_meta &&
4023 !check_map_prealloc(map->inner_map_meta)) {
4024 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4025 return -EINVAL;
4026 }
4027 }
4028 return 0;
4029 }
4030
4031 /* look for pseudo eBPF instructions that access map FDs and
4032 * replace them with actual map pointers
4033 */
4034 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4035 {
4036 struct bpf_insn *insn = env->prog->insnsi;
4037 int insn_cnt = env->prog->len;
4038 int i, j, err;
4039
4040 err = bpf_prog_calc_tag(env->prog);
4041 if (err)
4042 return err;
4043
4044 for (i = 0; i < insn_cnt; i++, insn++) {
4045 if (BPF_CLASS(insn->code) == BPF_LDX &&
4046 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4047 verbose(env, "BPF_LDX uses reserved fields\n");
4048 return -EINVAL;
4049 }
4050
4051 if (BPF_CLASS(insn->code) == BPF_STX &&
4052 ((BPF_MODE(insn->code) != BPF_MEM &&
4053 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4054 verbose(env, "BPF_STX uses reserved fields\n");
4055 return -EINVAL;
4056 }
4057
4058 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4059 struct bpf_map *map;
4060 struct fd f;
4061
4062 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4063 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4064 insn[1].off != 0) {
4065 verbose(env, "invalid bpf_ld_imm64 insn\n");
4066 return -EINVAL;
4067 }
4068
4069 if (insn->src_reg == 0)
4070 /* valid generic load 64-bit imm */
4071 goto next_insn;
4072
4073 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4074 verbose(env,
4075 "unrecognized bpf_ld_imm64 insn\n");
4076 return -EINVAL;
4077 }
4078
4079 f = fdget(insn->imm);
4080 map = __bpf_map_get(f);
4081 if (IS_ERR(map)) {
4082 verbose(env, "fd %d is not pointing to valid bpf_map\n",
4083 insn->imm);
4084 return PTR_ERR(map);
4085 }
4086
4087 err = check_map_prog_compatibility(env, map, env->prog);
4088 if (err) {
4089 fdput(f);
4090 return err;
4091 }
4092
4093 /* store map pointer inside BPF_LD_IMM64 instruction */
4094 insn[0].imm = (u32) (unsigned long) map;
4095 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4096
4097 /* check whether we recorded this map already */
4098 for (j = 0; j < env->used_map_cnt; j++)
4099 if (env->used_maps[j] == map) {
4100 fdput(f);
4101 goto next_insn;
4102 }
4103
4104 if (env->used_map_cnt >= MAX_USED_MAPS) {
4105 fdput(f);
4106 return -E2BIG;
4107 }
4108
4109 /* hold the map. If the program is rejected by verifier,
4110 * the map will be released by release_maps() or it
4111 * will be used by the valid program until it's unloaded
4112 * and all maps are released in free_bpf_prog_info()
4113 */
4114 map = bpf_map_inc(map, false);
4115 if (IS_ERR(map)) {
4116 fdput(f);
4117 return PTR_ERR(map);
4118 }
4119 env->used_maps[env->used_map_cnt++] = map;
4120
4121 fdput(f);
4122 next_insn:
4123 insn++;
4124 i++;
4125 }
4126 }
4127
4128 /* now all pseudo BPF_LD_IMM64 instructions load valid
4129 * 'struct bpf_map *' into a register instead of user map_fd.
4130 * These pointers will be used later by verifier to validate map access.
4131 */
4132 return 0;
4133 }
4134
4135 /* drop refcnt of maps used by the rejected program */
4136 static void release_maps(struct bpf_verifier_env *env)
4137 {
4138 int i;
4139
4140 for (i = 0; i < env->used_map_cnt; i++)
4141 bpf_map_put(env->used_maps[i]);
4142 }
4143
4144 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4145 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4146 {
4147 struct bpf_insn *insn = env->prog->insnsi;
4148 int insn_cnt = env->prog->len;
4149 int i;
4150
4151 for (i = 0; i < insn_cnt; i++, insn++)
4152 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4153 insn->src_reg = 0;
4154 }
4155
4156 /* single env->prog->insni[off] instruction was replaced with the range
4157 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4158 * [0, off) and [off, end) to new locations, so the patched range stays zero
4159 */
4160 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4161 u32 off, u32 cnt)
4162 {
4163 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4164
4165 if (cnt == 1)
4166 return 0;
4167 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4168 if (!new_data)
4169 return -ENOMEM;
4170 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4171 memcpy(new_data + off + cnt - 1, old_data + off,
4172 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4173 env->insn_aux_data = new_data;
4174 vfree(old_data);
4175 return 0;
4176 }
4177
4178 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4179 const struct bpf_insn *patch, u32 len)
4180 {
4181 struct bpf_prog *new_prog;
4182
4183 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4184 if (!new_prog)
4185 return NULL;
4186 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4187 return NULL;
4188 return new_prog;
4189 }
4190
4191 /* convert load instructions that access fields of 'struct __sk_buff'
4192 * into sequence of instructions that access fields of 'struct sk_buff'
4193 */
4194 static int convert_ctx_accesses(struct bpf_verifier_env *env)
4195 {
4196 const struct bpf_verifier_ops *ops = env->ops;
4197 int i, cnt, size, ctx_field_size, delta = 0;
4198 const int insn_cnt = env->prog->len;
4199 struct bpf_insn insn_buf[16], *insn;
4200 struct bpf_prog *new_prog;
4201 enum bpf_access_type type;
4202 bool is_narrower_load;
4203 u32 target_size;
4204
4205 if (ops->gen_prologue) {
4206 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4207 env->prog);
4208 if (cnt >= ARRAY_SIZE(insn_buf)) {
4209 verbose(env, "bpf verifier is misconfigured\n");
4210 return -EINVAL;
4211 } else if (cnt) {
4212 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4213 if (!new_prog)
4214 return -ENOMEM;
4215
4216 env->prog = new_prog;
4217 delta += cnt - 1;
4218 }
4219 }
4220
4221 if (!ops->convert_ctx_access)
4222 return 0;
4223
4224 insn = env->prog->insnsi + delta;
4225
4226 for (i = 0; i < insn_cnt; i++, insn++) {
4227 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4228 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4229 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4230 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4231 type = BPF_READ;
4232 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4233 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4234 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4235 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4236 type = BPF_WRITE;
4237 else
4238 continue;
4239
4240 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4241 continue;
4242
4243 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4244 size = BPF_LDST_BYTES(insn);
4245
4246 /* If the read access is a narrower load of the field,
4247 * convert to a 4/8-byte load, to minimum program type specific
4248 * convert_ctx_access changes. If conversion is successful,
4249 * we will apply proper mask to the result.
4250 */
4251 is_narrower_load = size < ctx_field_size;
4252 if (is_narrower_load) {
4253 u32 off = insn->off;
4254 u8 size_code;
4255
4256 if (type == BPF_WRITE) {
4257 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4258 return -EINVAL;
4259 }
4260
4261 size_code = BPF_H;
4262 if (ctx_field_size == 4)
4263 size_code = BPF_W;
4264 else if (ctx_field_size == 8)
4265 size_code = BPF_DW;
4266
4267 insn->off = off & ~(ctx_field_size - 1);
4268 insn->code = BPF_LDX | BPF_MEM | size_code;
4269 }
4270
4271 target_size = 0;
4272 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4273 &target_size);
4274 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4275 (ctx_field_size && !target_size)) {
4276 verbose(env, "bpf verifier is misconfigured\n");
4277 return -EINVAL;
4278 }
4279
4280 if (is_narrower_load && size < target_size) {
4281 if (ctx_field_size <= 4)
4282 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4283 (1 << size * 8) - 1);
4284 else
4285 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4286 (1 << size * 8) - 1);
4287 }
4288
4289 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4290 if (!new_prog)
4291 return -ENOMEM;
4292
4293 delta += cnt - 1;
4294
4295 /* keep walking new program and skip insns we just inserted */
4296 env->prog = new_prog;
4297 insn = new_prog->insnsi + i + delta;
4298 }
4299
4300 return 0;
4301 }
4302
4303 /* fixup insn->imm field of bpf_call instructions
4304 * and inline eligible helpers as explicit sequence of BPF instructions
4305 *
4306 * this function is called after eBPF program passed verification
4307 */
4308 static int fixup_bpf_calls(struct bpf_verifier_env *env)
4309 {
4310 struct bpf_prog *prog = env->prog;
4311 struct bpf_insn *insn = prog->insnsi;
4312 const struct bpf_func_proto *fn;
4313 const int insn_cnt = prog->len;
4314 struct bpf_insn insn_buf[16];
4315 struct bpf_prog *new_prog;
4316 struct bpf_map *map_ptr;
4317 int i, cnt, delta = 0;
4318
4319 for (i = 0; i < insn_cnt; i++, insn++) {
4320 if (insn->code != (BPF_JMP | BPF_CALL))
4321 continue;
4322
4323 if (insn->imm == BPF_FUNC_get_route_realm)
4324 prog->dst_needed = 1;
4325 if (insn->imm == BPF_FUNC_get_prandom_u32)
4326 bpf_user_rnd_init_once();
4327 if (insn->imm == BPF_FUNC_tail_call) {
4328 /* If we tail call into other programs, we
4329 * cannot make any assumptions since they can
4330 * be replaced dynamically during runtime in
4331 * the program array.
4332 */
4333 prog->cb_access = 1;
4334 env->prog->aux->stack_depth = MAX_BPF_STACK;
4335
4336 /* mark bpf_tail_call as different opcode to avoid
4337 * conditional branch in the interpeter for every normal
4338 * call and to prevent accidental JITing by JIT compiler
4339 * that doesn't support bpf_tail_call yet
4340 */
4341 insn->imm = 0;
4342 insn->code = BPF_JMP | BPF_TAIL_CALL;
4343 continue;
4344 }
4345
4346 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4347 * handlers are currently limited to 64 bit only.
4348 */
4349 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4350 insn->imm == BPF_FUNC_map_lookup_elem) {
4351 map_ptr = env->insn_aux_data[i + delta].map_ptr;
4352 if (map_ptr == BPF_MAP_PTR_POISON ||
4353 !map_ptr->ops->map_gen_lookup)
4354 goto patch_call_imm;
4355
4356 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4357 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4358 verbose(env, "bpf verifier is misconfigured\n");
4359 return -EINVAL;
4360 }
4361
4362 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4363 cnt);
4364 if (!new_prog)
4365 return -ENOMEM;
4366
4367 delta += cnt - 1;
4368
4369 /* keep walking new program and skip insns we just inserted */
4370 env->prog = prog = new_prog;
4371 insn = new_prog->insnsi + i + delta;
4372 continue;
4373 }
4374
4375 if (insn->imm == BPF_FUNC_redirect_map) {
4376 /* Note, we cannot use prog directly as imm as subsequent
4377 * rewrites would still change the prog pointer. The only
4378 * stable address we can use is aux, which also works with
4379 * prog clones during blinding.
4380 */
4381 u64 addr = (unsigned long)prog->aux;
4382 struct bpf_insn r4_ld[] = {
4383 BPF_LD_IMM64(BPF_REG_4, addr),
4384 *insn,
4385 };
4386 cnt = ARRAY_SIZE(r4_ld);
4387
4388 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4389 if (!new_prog)
4390 return -ENOMEM;
4391
4392 delta += cnt - 1;
4393 env->prog = prog = new_prog;
4394 insn = new_prog->insnsi + i + delta;
4395 }
4396 patch_call_imm:
4397 fn = env->ops->get_func_proto(insn->imm);
4398 /* all functions that have prototype and verifier allowed
4399 * programs to call them, must be real in-kernel functions
4400 */
4401 if (!fn->func) {
4402 verbose(env,
4403 "kernel subsystem misconfigured func %s#%d\n",
4404 func_id_name(insn->imm), insn->imm);
4405 return -EFAULT;
4406 }
4407 insn->imm = fn->func - __bpf_call_base;
4408 }
4409
4410 return 0;
4411 }
4412
4413 static void free_states(struct bpf_verifier_env *env)
4414 {
4415 struct bpf_verifier_state_list *sl, *sln;
4416 int i;
4417
4418 if (!env->explored_states)
4419 return;
4420
4421 for (i = 0; i < env->prog->len; i++) {
4422 sl = env->explored_states[i];
4423
4424 if (sl)
4425 while (sl != STATE_LIST_MARK) {
4426 sln = sl->next;
4427 kfree(sl);
4428 sl = sln;
4429 }
4430 }
4431
4432 kfree(env->explored_states);
4433 }
4434
4435 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
4436 {
4437 struct bpf_verifier_env *env;
4438 struct bpf_verifer_log *log;
4439 int ret = -EINVAL;
4440
4441 /* 'struct bpf_verifier_env' can be global, but since it's not small,
4442 * allocate/free it every time bpf_check() is called
4443 */
4444 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4445 if (!env)
4446 return -ENOMEM;
4447 log = &env->log;
4448
4449 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4450 (*prog)->len);
4451 ret = -ENOMEM;
4452 if (!env->insn_aux_data)
4453 goto err_free_env;
4454 env->prog = *prog;
4455 env->ops = bpf_verifier_ops[env->prog->type];
4456
4457 /* grab the mutex to protect few globals used by verifier */
4458 mutex_lock(&bpf_verifier_lock);
4459
4460 if (attr->log_level || attr->log_buf || attr->log_size) {
4461 /* user requested verbose verifier output
4462 * and supplied buffer to store the verification trace
4463 */
4464 log->level = attr->log_level;
4465 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4466 log->len_total = attr->log_size;
4467
4468 ret = -EINVAL;
4469 /* log attributes have to be sane */
4470 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4471 !log->level || !log->ubuf)
4472 goto err_unlock;
4473 }
4474
4475 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4476 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4477 env->strict_alignment = true;
4478
4479 ret = replace_map_fd_with_map_ptr(env);
4480 if (ret < 0)
4481 goto skip_full_check;
4482
4483 env->explored_states = kcalloc(env->prog->len,
4484 sizeof(struct bpf_verifier_state_list *),
4485 GFP_USER);
4486 ret = -ENOMEM;
4487 if (!env->explored_states)
4488 goto skip_full_check;
4489
4490 ret = check_cfg(env);
4491 if (ret < 0)
4492 goto skip_full_check;
4493
4494 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4495
4496 ret = do_check(env);
4497 free_verifier_state(env->cur_state);
4498 env->cur_state = NULL;
4499
4500 skip_full_check:
4501 while (!pop_stack(env, NULL, NULL));
4502 free_states(env);
4503
4504 if (ret == 0)
4505 /* program is valid, convert *(u32*)(ctx + off) accesses */
4506 ret = convert_ctx_accesses(env);
4507
4508 if (ret == 0)
4509 ret = fixup_bpf_calls(env);
4510
4511 if (log->level && bpf_verifier_log_full(log))
4512 ret = -ENOSPC;
4513 if (log->level && !log->ubuf) {
4514 ret = -EFAULT;
4515 goto err_release_maps;
4516 }
4517
4518 if (ret == 0 && env->used_map_cnt) {
4519 /* if program passed verifier, update used_maps in bpf_prog_info */
4520 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4521 sizeof(env->used_maps[0]),
4522 GFP_KERNEL);
4523
4524 if (!env->prog->aux->used_maps) {
4525 ret = -ENOMEM;
4526 goto err_release_maps;
4527 }
4528
4529 memcpy(env->prog->aux->used_maps, env->used_maps,
4530 sizeof(env->used_maps[0]) * env->used_map_cnt);
4531 env->prog->aux->used_map_cnt = env->used_map_cnt;
4532
4533 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4534 * bpf_ld_imm64 instructions
4535 */
4536 convert_pseudo_ld_imm64(env);
4537 }
4538
4539 err_release_maps:
4540 if (!env->prog->aux->used_maps)
4541 /* if we didn't copy map pointers into bpf_prog_info, release
4542 * them now. Otherwise free_bpf_prog_info() will release them.
4543 */
4544 release_maps(env);
4545 *prog = env->prog;
4546 err_unlock:
4547 mutex_unlock(&bpf_verifier_lock);
4548 vfree(env->insn_aux_data);
4549 err_free_env:
4550 kfree(env);
4551 return ret;
4552 }
4553
4554 static const struct bpf_verifier_ops * const bpf_analyzer_ops[] = {
4555 [BPF_PROG_TYPE_XDP] = &xdp_analyzer_ops,
4556 [BPF_PROG_TYPE_SCHED_CLS] = &tc_cls_act_analyzer_ops,
4557 };
4558
4559 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
4560 void *priv)
4561 {
4562 struct bpf_verifier_env *env;
4563 int ret;
4564
4565 if (prog->type >= ARRAY_SIZE(bpf_analyzer_ops) ||
4566 !bpf_analyzer_ops[prog->type])
4567 return -EOPNOTSUPP;
4568
4569 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4570 if (!env)
4571 return -ENOMEM;
4572
4573 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4574 prog->len);
4575 ret = -ENOMEM;
4576 if (!env->insn_aux_data)
4577 goto err_free_env;
4578 env->prog = prog;
4579 env->ops = bpf_analyzer_ops[env->prog->type];
4580 env->analyzer_ops = ops;
4581 env->analyzer_priv = priv;
4582
4583 /* grab the mutex to protect few globals used by verifier */
4584 mutex_lock(&bpf_verifier_lock);
4585
4586 env->strict_alignment = false;
4587 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4588 env->strict_alignment = true;
4589
4590 env->explored_states = kcalloc(env->prog->len,
4591 sizeof(struct bpf_verifier_state_list *),
4592 GFP_KERNEL);
4593 ret = -ENOMEM;
4594 if (!env->explored_states)
4595 goto skip_full_check;
4596
4597 ret = check_cfg(env);
4598 if (ret < 0)
4599 goto skip_full_check;
4600
4601 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4602
4603 ret = do_check(env);
4604 free_verifier_state(env->cur_state);
4605 env->cur_state = NULL;
4606
4607 skip_full_check:
4608 while (!pop_stack(env, NULL, NULL));
4609 free_states(env);
4610
4611 mutex_unlock(&bpf_verifier_lock);
4612 vfree(env->insn_aux_data);
4613 err_free_env:
4614 kfree(env);
4615 return ret;
4616 }
4617 EXPORT_SYMBOL_GPL(bpf_analyzer);