]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/bpf/verifier.c
Merge tag 'wireless-drivers-next-for-davem-2017-10-18' of git://git.kernel.org/pub...
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23
24 #include "disasm.h"
25
26 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27 #define BPF_PROG_TYPE(_id, _name) \
28 [_id] = & _name ## _verifier_ops,
29 #define BPF_MAP_TYPE(_id, _ops)
30 #include <linux/bpf_types.h>
31 #undef BPF_PROG_TYPE
32 #undef BPF_MAP_TYPE
33 };
34
35 /* bpf_check() is a static code analyzer that walks eBPF program
36 * instruction by instruction and updates register/stack state.
37 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 *
39 * The first pass is depth-first-search to check that the program is a DAG.
40 * It rejects the following programs:
41 * - larger than BPF_MAXINSNS insns
42 * - if loop is present (detected via back-edge)
43 * - unreachable insns exist (shouldn't be a forest. program = one function)
44 * - out of bounds or malformed jumps
45 * The second pass is all possible path descent from the 1st insn.
46 * Since it's analyzing all pathes through the program, the length of the
47 * analysis is limited to 64k insn, which may be hit even if total number of
48 * insn is less then 4K, but there are too many branches that change stack/regs.
49 * Number of 'branches to be analyzed' is limited to 1k
50 *
51 * On entry to each instruction, each register has a type, and the instruction
52 * changes the types of the registers depending on instruction semantics.
53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54 * copied to R1.
55 *
56 * All registers are 64-bit.
57 * R0 - return register
58 * R1-R5 argument passing registers
59 * R6-R9 callee saved registers
60 * R10 - frame pointer read-only
61 *
62 * At the start of BPF program the register R1 contains a pointer to bpf_context
63 * and has type PTR_TO_CTX.
64 *
65 * Verifier tracks arithmetic operations on pointers in case:
66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68 * 1st insn copies R10 (which has FRAME_PTR) type into R1
69 * and 2nd arithmetic instruction is pattern matched to recognize
70 * that it wants to construct a pointer to some element within stack.
71 * So after 2nd insn, the register R1 has type PTR_TO_STACK
72 * (and -20 constant is saved for further stack bounds checking).
73 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 *
75 * Most of the time the registers have SCALAR_VALUE type, which
76 * means the register has some value, but it's not a valid pointer.
77 * (like pointer plus pointer becomes SCALAR_VALUE type)
78 *
79 * When verifier sees load or store instructions the type of base register
80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
81 * types recognized by check_mem_access() function.
82 *
83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84 * and the range of [ptr, ptr + map's value_size) is accessible.
85 *
86 * registers used to pass values to function calls are checked against
87 * function argument constraints.
88 *
89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90 * It means that the register type passed to this function must be
91 * PTR_TO_STACK and it will be used inside the function as
92 * 'pointer to map element key'
93 *
94 * For example the argument constraints for bpf_map_lookup_elem():
95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96 * .arg1_type = ARG_CONST_MAP_PTR,
97 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 *
99 * ret_type says that this function returns 'pointer to map elem value or null'
100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101 * 2nd argument should be a pointer to stack, which will be used inside
102 * the helper function as a pointer to map element key.
103 *
104 * On the kernel side the helper function looks like:
105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * {
107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108 * void *key = (void *) (unsigned long) r2;
109 * void *value;
110 *
111 * here kernel can access 'key' and 'map' pointers safely, knowing that
112 * [key, key + map->key_size) bytes are valid and were initialized on
113 * the stack of eBPF program.
114 * }
115 *
116 * Corresponding eBPF program may look like:
117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121 * here verifier looks at prototype of map_lookup_elem() and sees:
122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 *
125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127 * and were initialized prior to this call.
128 * If it's ok, then verifier allows this BPF_CALL insn and looks at
129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131 * returns ether pointer to map value or NULL.
132 *
133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134 * insn, the register holding that pointer in the true branch changes state to
135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136 * branch. See check_cond_jmp_op().
137 *
138 * After the call R0 is set to return type of the function and registers R1-R5
139 * are set to NOT_INIT to indicate that they are no longer readable.
140 */
141
142 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
143 struct bpf_verifier_stack_elem {
144 /* verifer state is 'st'
145 * before processing instruction 'insn_idx'
146 * and after processing instruction 'prev_insn_idx'
147 */
148 struct bpf_verifier_state st;
149 int insn_idx;
150 int prev_insn_idx;
151 struct bpf_verifier_stack_elem *next;
152 };
153
154 #define BPF_COMPLEXITY_LIMIT_INSNS 131072
155 #define BPF_COMPLEXITY_LIMIT_STACK 1024
156
157 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158
159 struct bpf_call_arg_meta {
160 struct bpf_map *map_ptr;
161 bool raw_mode;
162 bool pkt_access;
163 int regno;
164 int access_size;
165 };
166
167 static DEFINE_MUTEX(bpf_verifier_lock);
168
169 /* log_level controls verbosity level of eBPF verifier.
170 * verbose() is used to dump the verification trace to the log, so the user
171 * can figure out what's wrong with the program
172 */
173 static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 const char *fmt, ...)
175 {
176 struct bpf_verifer_log *log = &env->log;
177 unsigned int n;
178 va_list args;
179
180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
181 return;
182
183 va_start(args, fmt);
184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
185 va_end(args);
186
187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 "verifier log line truncated - local buffer too short\n");
189
190 n = min(log->len_total - log->len_used - 1, n);
191 log->kbuf[n] = '\0';
192
193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 log->len_used += n;
195 else
196 log->ubuf = NULL;
197 }
198
199 static bool type_is_pkt_pointer(enum bpf_reg_type type)
200 {
201 return type == PTR_TO_PACKET ||
202 type == PTR_TO_PACKET_META;
203 }
204
205 /* string representation of 'enum bpf_reg_type' */
206 static const char * const reg_type_str[] = {
207 [NOT_INIT] = "?",
208 [SCALAR_VALUE] = "inv",
209 [PTR_TO_CTX] = "ctx",
210 [CONST_PTR_TO_MAP] = "map_ptr",
211 [PTR_TO_MAP_VALUE] = "map_value",
212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
213 [PTR_TO_STACK] = "fp",
214 [PTR_TO_PACKET] = "pkt",
215 [PTR_TO_PACKET_META] = "pkt_meta",
216 [PTR_TO_PACKET_END] = "pkt_end",
217 };
218
219 static void print_verifier_state(struct bpf_verifier_env *env,
220 struct bpf_verifier_state *state)
221 {
222 struct bpf_reg_state *reg;
223 enum bpf_reg_type t;
224 int i;
225
226 for (i = 0; i < MAX_BPF_REG; i++) {
227 reg = &state->regs[i];
228 t = reg->type;
229 if (t == NOT_INIT)
230 continue;
231 verbose(env, " R%d=%s", i, reg_type_str[t]);
232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 tnum_is_const(reg->var_off)) {
234 /* reg->off should be 0 for SCALAR_VALUE */
235 verbose(env, "%lld", reg->var_off.value + reg->off);
236 } else {
237 verbose(env, "(id=%d", reg->id);
238 if (t != SCALAR_VALUE)
239 verbose(env, ",off=%d", reg->off);
240 if (type_is_pkt_pointer(t))
241 verbose(env, ",r=%d", reg->range);
242 else if (t == CONST_PTR_TO_MAP ||
243 t == PTR_TO_MAP_VALUE ||
244 t == PTR_TO_MAP_VALUE_OR_NULL)
245 verbose(env, ",ks=%d,vs=%d",
246 reg->map_ptr->key_size,
247 reg->map_ptr->value_size);
248 if (tnum_is_const(reg->var_off)) {
249 /* Typically an immediate SCALAR_VALUE, but
250 * could be a pointer whose offset is too big
251 * for reg->off
252 */
253 verbose(env, ",imm=%llx", reg->var_off.value);
254 } else {
255 if (reg->smin_value != reg->umin_value &&
256 reg->smin_value != S64_MIN)
257 verbose(env, ",smin_value=%lld",
258 (long long)reg->smin_value);
259 if (reg->smax_value != reg->umax_value &&
260 reg->smax_value != S64_MAX)
261 verbose(env, ",smax_value=%lld",
262 (long long)reg->smax_value);
263 if (reg->umin_value != 0)
264 verbose(env, ",umin_value=%llu",
265 (unsigned long long)reg->umin_value);
266 if (reg->umax_value != U64_MAX)
267 verbose(env, ",umax_value=%llu",
268 (unsigned long long)reg->umax_value);
269 if (!tnum_is_unknown(reg->var_off)) {
270 char tn_buf[48];
271
272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
273 verbose(env, ",var_off=%s", tn_buf);
274 }
275 }
276 verbose(env, ")");
277 }
278 }
279 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
280 if (state->stack_slot_type[i] == STACK_SPILL)
281 verbose(env, " fp%d=%s", -MAX_BPF_STACK + i,
282 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
283 }
284 verbose(env, "\n");
285 }
286
287 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
288 {
289 struct bpf_verifier_stack_elem *elem;
290 int insn_idx;
291
292 if (env->head == NULL)
293 return -1;
294
295 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
296 insn_idx = env->head->insn_idx;
297 if (prev_insn_idx)
298 *prev_insn_idx = env->head->prev_insn_idx;
299 elem = env->head->next;
300 kfree(env->head);
301 env->head = elem;
302 env->stack_size--;
303 return insn_idx;
304 }
305
306 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
307 int insn_idx, int prev_insn_idx)
308 {
309 struct bpf_verifier_stack_elem *elem;
310
311 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
312 if (!elem)
313 goto err;
314
315 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
316 elem->insn_idx = insn_idx;
317 elem->prev_insn_idx = prev_insn_idx;
318 elem->next = env->head;
319 env->head = elem;
320 env->stack_size++;
321 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
322 verbose(env, "BPF program is too complex\n");
323 goto err;
324 }
325 return &elem->st;
326 err:
327 /* pop all elements and return */
328 while (pop_stack(env, NULL) >= 0);
329 return NULL;
330 }
331
332 #define CALLER_SAVED_REGS 6
333 static const int caller_saved[CALLER_SAVED_REGS] = {
334 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
335 };
336
337 static void __mark_reg_not_init(struct bpf_reg_state *reg);
338
339 /* Mark the unknown part of a register (variable offset or scalar value) as
340 * known to have the value @imm.
341 */
342 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
343 {
344 reg->id = 0;
345 reg->var_off = tnum_const(imm);
346 reg->smin_value = (s64)imm;
347 reg->smax_value = (s64)imm;
348 reg->umin_value = imm;
349 reg->umax_value = imm;
350 }
351
352 /* Mark the 'variable offset' part of a register as zero. This should be
353 * used only on registers holding a pointer type.
354 */
355 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
356 {
357 __mark_reg_known(reg, 0);
358 }
359
360 static void mark_reg_known_zero(struct bpf_verifier_env *env,
361 struct bpf_reg_state *regs, u32 regno)
362 {
363 if (WARN_ON(regno >= MAX_BPF_REG)) {
364 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
365 /* Something bad happened, let's kill all regs */
366 for (regno = 0; regno < MAX_BPF_REG; regno++)
367 __mark_reg_not_init(regs + regno);
368 return;
369 }
370 __mark_reg_known_zero(regs + regno);
371 }
372
373 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
374 {
375 return type_is_pkt_pointer(reg->type);
376 }
377
378 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
379 {
380 return reg_is_pkt_pointer(reg) ||
381 reg->type == PTR_TO_PACKET_END;
382 }
383
384 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
385 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
386 enum bpf_reg_type which)
387 {
388 /* The register can already have a range from prior markings.
389 * This is fine as long as it hasn't been advanced from its
390 * origin.
391 */
392 return reg->type == which &&
393 reg->id == 0 &&
394 reg->off == 0 &&
395 tnum_equals_const(reg->var_off, 0);
396 }
397
398 /* Attempts to improve min/max values based on var_off information */
399 static void __update_reg_bounds(struct bpf_reg_state *reg)
400 {
401 /* min signed is max(sign bit) | min(other bits) */
402 reg->smin_value = max_t(s64, reg->smin_value,
403 reg->var_off.value | (reg->var_off.mask & S64_MIN));
404 /* max signed is min(sign bit) | max(other bits) */
405 reg->smax_value = min_t(s64, reg->smax_value,
406 reg->var_off.value | (reg->var_off.mask & S64_MAX));
407 reg->umin_value = max(reg->umin_value, reg->var_off.value);
408 reg->umax_value = min(reg->umax_value,
409 reg->var_off.value | reg->var_off.mask);
410 }
411
412 /* Uses signed min/max values to inform unsigned, and vice-versa */
413 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
414 {
415 /* Learn sign from signed bounds.
416 * If we cannot cross the sign boundary, then signed and unsigned bounds
417 * are the same, so combine. This works even in the negative case, e.g.
418 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
419 */
420 if (reg->smin_value >= 0 || reg->smax_value < 0) {
421 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
422 reg->umin_value);
423 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
424 reg->umax_value);
425 return;
426 }
427 /* Learn sign from unsigned bounds. Signed bounds cross the sign
428 * boundary, so we must be careful.
429 */
430 if ((s64)reg->umax_value >= 0) {
431 /* Positive. We can't learn anything from the smin, but smax
432 * is positive, hence safe.
433 */
434 reg->smin_value = reg->umin_value;
435 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
436 reg->umax_value);
437 } else if ((s64)reg->umin_value < 0) {
438 /* Negative. We can't learn anything from the smax, but smin
439 * is negative, hence safe.
440 */
441 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
442 reg->umin_value);
443 reg->smax_value = reg->umax_value;
444 }
445 }
446
447 /* Attempts to improve var_off based on unsigned min/max information */
448 static void __reg_bound_offset(struct bpf_reg_state *reg)
449 {
450 reg->var_off = tnum_intersect(reg->var_off,
451 tnum_range(reg->umin_value,
452 reg->umax_value));
453 }
454
455 /* Reset the min/max bounds of a register */
456 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
457 {
458 reg->smin_value = S64_MIN;
459 reg->smax_value = S64_MAX;
460 reg->umin_value = 0;
461 reg->umax_value = U64_MAX;
462 }
463
464 /* Mark a register as having a completely unknown (scalar) value. */
465 static void __mark_reg_unknown(struct bpf_reg_state *reg)
466 {
467 reg->type = SCALAR_VALUE;
468 reg->id = 0;
469 reg->off = 0;
470 reg->var_off = tnum_unknown;
471 __mark_reg_unbounded(reg);
472 }
473
474 static void mark_reg_unknown(struct bpf_verifier_env *env,
475 struct bpf_reg_state *regs, u32 regno)
476 {
477 if (WARN_ON(regno >= MAX_BPF_REG)) {
478 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
479 /* Something bad happened, let's kill all regs */
480 for (regno = 0; regno < MAX_BPF_REG; regno++)
481 __mark_reg_not_init(regs + regno);
482 return;
483 }
484 __mark_reg_unknown(regs + regno);
485 }
486
487 static void __mark_reg_not_init(struct bpf_reg_state *reg)
488 {
489 __mark_reg_unknown(reg);
490 reg->type = NOT_INIT;
491 }
492
493 static void mark_reg_not_init(struct bpf_verifier_env *env,
494 struct bpf_reg_state *regs, u32 regno)
495 {
496 if (WARN_ON(regno >= MAX_BPF_REG)) {
497 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
498 /* Something bad happened, let's kill all regs */
499 for (regno = 0; regno < MAX_BPF_REG; regno++)
500 __mark_reg_not_init(regs + regno);
501 return;
502 }
503 __mark_reg_not_init(regs + regno);
504 }
505
506 static void init_reg_state(struct bpf_verifier_env *env,
507 struct bpf_reg_state *regs)
508 {
509 int i;
510
511 for (i = 0; i < MAX_BPF_REG; i++) {
512 mark_reg_not_init(env, regs, i);
513 regs[i].live = REG_LIVE_NONE;
514 }
515
516 /* frame pointer */
517 regs[BPF_REG_FP].type = PTR_TO_STACK;
518 mark_reg_known_zero(env, regs, BPF_REG_FP);
519
520 /* 1st arg to a function */
521 regs[BPF_REG_1].type = PTR_TO_CTX;
522 mark_reg_known_zero(env, regs, BPF_REG_1);
523 }
524
525 enum reg_arg_type {
526 SRC_OP, /* register is used as source operand */
527 DST_OP, /* register is used as destination operand */
528 DST_OP_NO_MARK /* same as above, check only, don't mark */
529 };
530
531 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
532 {
533 struct bpf_verifier_state *parent = state->parent;
534
535 if (regno == BPF_REG_FP)
536 /* We don't need to worry about FP liveness because it's read-only */
537 return;
538
539 while (parent) {
540 /* if read wasn't screened by an earlier write ... */
541 if (state->regs[regno].live & REG_LIVE_WRITTEN)
542 break;
543 /* ... then we depend on parent's value */
544 parent->regs[regno].live |= REG_LIVE_READ;
545 state = parent;
546 parent = state->parent;
547 }
548 }
549
550 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
551 enum reg_arg_type t)
552 {
553 struct bpf_reg_state *regs = env->cur_state.regs;
554
555 if (regno >= MAX_BPF_REG) {
556 verbose(env, "R%d is invalid\n", regno);
557 return -EINVAL;
558 }
559
560 if (t == SRC_OP) {
561 /* check whether register used as source operand can be read */
562 if (regs[regno].type == NOT_INIT) {
563 verbose(env, "R%d !read_ok\n", regno);
564 return -EACCES;
565 }
566 mark_reg_read(&env->cur_state, regno);
567 } else {
568 /* check whether register used as dest operand can be written to */
569 if (regno == BPF_REG_FP) {
570 verbose(env, "frame pointer is read only\n");
571 return -EACCES;
572 }
573 regs[regno].live |= REG_LIVE_WRITTEN;
574 if (t == DST_OP)
575 mark_reg_unknown(env, regs, regno);
576 }
577 return 0;
578 }
579
580 static bool is_spillable_regtype(enum bpf_reg_type type)
581 {
582 switch (type) {
583 case PTR_TO_MAP_VALUE:
584 case PTR_TO_MAP_VALUE_OR_NULL:
585 case PTR_TO_STACK:
586 case PTR_TO_CTX:
587 case PTR_TO_PACKET:
588 case PTR_TO_PACKET_META:
589 case PTR_TO_PACKET_END:
590 case CONST_PTR_TO_MAP:
591 return true;
592 default:
593 return false;
594 }
595 }
596
597 /* check_stack_read/write functions track spill/fill of registers,
598 * stack boundary and alignment are checked in check_mem_access()
599 */
600 static int check_stack_write(struct bpf_verifier_env *env,
601 struct bpf_verifier_state *state, int off,
602 int size, int value_regno)
603 {
604 int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
605 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
606 * so it's aligned access and [off, off + size) are within stack limits
607 */
608
609 if (value_regno >= 0 &&
610 is_spillable_regtype(state->regs[value_regno].type)) {
611
612 /* register containing pointer is being spilled into stack */
613 if (size != BPF_REG_SIZE) {
614 verbose(env, "invalid size of register spill\n");
615 return -EACCES;
616 }
617
618 /* save register state */
619 state->spilled_regs[spi] = state->regs[value_regno];
620 state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
621
622 for (i = 0; i < BPF_REG_SIZE; i++)
623 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
624 } else {
625 /* regular write of data into stack */
626 state->spilled_regs[spi] = (struct bpf_reg_state) {};
627
628 for (i = 0; i < size; i++)
629 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
630 }
631 return 0;
632 }
633
634 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
635 {
636 struct bpf_verifier_state *parent = state->parent;
637
638 while (parent) {
639 /* if read wasn't screened by an earlier write ... */
640 if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
641 break;
642 /* ... then we depend on parent's value */
643 parent->spilled_regs[slot].live |= REG_LIVE_READ;
644 state = parent;
645 parent = state->parent;
646 }
647 }
648
649 static int check_stack_read(struct bpf_verifier_env *env,
650 struct bpf_verifier_state *state, int off, int size,
651 int value_regno)
652 {
653 u8 *slot_type;
654 int i, spi;
655
656 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
657
658 if (slot_type[0] == STACK_SPILL) {
659 if (size != BPF_REG_SIZE) {
660 verbose(env, "invalid size of register spill\n");
661 return -EACCES;
662 }
663 for (i = 1; i < BPF_REG_SIZE; i++) {
664 if (slot_type[i] != STACK_SPILL) {
665 verbose(env, "corrupted spill memory\n");
666 return -EACCES;
667 }
668 }
669
670 spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
671
672 if (value_regno >= 0) {
673 /* restore register state from stack */
674 state->regs[value_regno] = state->spilled_regs[spi];
675 mark_stack_slot_read(state, spi);
676 }
677 return 0;
678 } else {
679 for (i = 0; i < size; i++) {
680 if (slot_type[i] != STACK_MISC) {
681 verbose(env, "invalid read from stack off %d+%d size %d\n",
682 off, i, size);
683 return -EACCES;
684 }
685 }
686 if (value_regno >= 0)
687 /* have read misc data from the stack */
688 mark_reg_unknown(env, state->regs, value_regno);
689 return 0;
690 }
691 }
692
693 /* check read/write into map element returned by bpf_map_lookup_elem() */
694 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
695 int size)
696 {
697 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
698
699 if (off < 0 || size <= 0 || off + size > map->value_size) {
700 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
701 map->value_size, off, size);
702 return -EACCES;
703 }
704 return 0;
705 }
706
707 /* check read/write into a map element with possible variable offset */
708 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
709 int off, int size)
710 {
711 struct bpf_verifier_state *state = &env->cur_state;
712 struct bpf_reg_state *reg = &state->regs[regno];
713 int err;
714
715 /* We may have adjusted the register to this map value, so we
716 * need to try adding each of min_value and max_value to off
717 * to make sure our theoretical access will be safe.
718 */
719 if (env->log.level)
720 print_verifier_state(env, state);
721 /* The minimum value is only important with signed
722 * comparisons where we can't assume the floor of a
723 * value is 0. If we are using signed variables for our
724 * index'es we need to make sure that whatever we use
725 * will have a set floor within our range.
726 */
727 if (reg->smin_value < 0) {
728 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
729 regno);
730 return -EACCES;
731 }
732 err = __check_map_access(env, regno, reg->smin_value + off, size);
733 if (err) {
734 verbose(env, "R%d min value is outside of the array range\n",
735 regno);
736 return err;
737 }
738
739 /* If we haven't set a max value then we need to bail since we can't be
740 * sure we won't do bad things.
741 * If reg->umax_value + off could overflow, treat that as unbounded too.
742 */
743 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
744 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
745 regno);
746 return -EACCES;
747 }
748 err = __check_map_access(env, regno, reg->umax_value + off, size);
749 if (err)
750 verbose(env, "R%d max value is outside of the array range\n",
751 regno);
752 return err;
753 }
754
755 #define MAX_PACKET_OFF 0xffff
756
757 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
758 const struct bpf_call_arg_meta *meta,
759 enum bpf_access_type t)
760 {
761 switch (env->prog->type) {
762 case BPF_PROG_TYPE_LWT_IN:
763 case BPF_PROG_TYPE_LWT_OUT:
764 /* dst_input() and dst_output() can't write for now */
765 if (t == BPF_WRITE)
766 return false;
767 /* fallthrough */
768 case BPF_PROG_TYPE_SCHED_CLS:
769 case BPF_PROG_TYPE_SCHED_ACT:
770 case BPF_PROG_TYPE_XDP:
771 case BPF_PROG_TYPE_LWT_XMIT:
772 case BPF_PROG_TYPE_SK_SKB:
773 if (meta)
774 return meta->pkt_access;
775
776 env->seen_direct_write = true;
777 return true;
778 default:
779 return false;
780 }
781 }
782
783 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
784 int off, int size)
785 {
786 struct bpf_reg_state *regs = env->cur_state.regs;
787 struct bpf_reg_state *reg = &regs[regno];
788
789 if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
790 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
791 off, size, regno, reg->id, reg->off, reg->range);
792 return -EACCES;
793 }
794 return 0;
795 }
796
797 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
798 int size)
799 {
800 struct bpf_reg_state *regs = env->cur_state.regs;
801 struct bpf_reg_state *reg = &regs[regno];
802 int err;
803
804 /* We may have added a variable offset to the packet pointer; but any
805 * reg->range we have comes after that. We are only checking the fixed
806 * offset.
807 */
808
809 /* We don't allow negative numbers, because we aren't tracking enough
810 * detail to prove they're safe.
811 */
812 if (reg->smin_value < 0) {
813 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
814 regno);
815 return -EACCES;
816 }
817 err = __check_packet_access(env, regno, off, size);
818 if (err) {
819 verbose(env, "R%d offset is outside of the packet\n", regno);
820 return err;
821 }
822 return err;
823 }
824
825 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
826 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
827 enum bpf_access_type t, enum bpf_reg_type *reg_type)
828 {
829 struct bpf_insn_access_aux info = {
830 .reg_type = *reg_type,
831 };
832
833 if (env->ops->is_valid_access &&
834 env->ops->is_valid_access(off, size, t, &info)) {
835 /* A non zero info.ctx_field_size indicates that this field is a
836 * candidate for later verifier transformation to load the whole
837 * field and then apply a mask when accessed with a narrower
838 * access than actual ctx access size. A zero info.ctx_field_size
839 * will only allow for whole field access and rejects any other
840 * type of narrower access.
841 */
842 *reg_type = info.reg_type;
843
844 if (env->analyzer_ops)
845 return 0;
846
847 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
848 /* remember the offset of last byte accessed in ctx */
849 if (env->prog->aux->max_ctx_offset < off + size)
850 env->prog->aux->max_ctx_offset = off + size;
851 return 0;
852 }
853
854 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
855 return -EACCES;
856 }
857
858 static bool __is_pointer_value(bool allow_ptr_leaks,
859 const struct bpf_reg_state *reg)
860 {
861 if (allow_ptr_leaks)
862 return false;
863
864 return reg->type != SCALAR_VALUE;
865 }
866
867 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
868 {
869 return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
870 }
871
872 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
873 const struct bpf_reg_state *reg,
874 int off, int size, bool strict)
875 {
876 struct tnum reg_off;
877 int ip_align;
878
879 /* Byte size accesses are always allowed. */
880 if (!strict || size == 1)
881 return 0;
882
883 /* For platforms that do not have a Kconfig enabling
884 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
885 * NET_IP_ALIGN is universally set to '2'. And on platforms
886 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
887 * to this code only in strict mode where we want to emulate
888 * the NET_IP_ALIGN==2 checking. Therefore use an
889 * unconditional IP align value of '2'.
890 */
891 ip_align = 2;
892
893 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
894 if (!tnum_is_aligned(reg_off, size)) {
895 char tn_buf[48];
896
897 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
898 verbose(env,
899 "misaligned packet access off %d+%s+%d+%d size %d\n",
900 ip_align, tn_buf, reg->off, off, size);
901 return -EACCES;
902 }
903
904 return 0;
905 }
906
907 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
908 const struct bpf_reg_state *reg,
909 const char *pointer_desc,
910 int off, int size, bool strict)
911 {
912 struct tnum reg_off;
913
914 /* Byte size accesses are always allowed. */
915 if (!strict || size == 1)
916 return 0;
917
918 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
919 if (!tnum_is_aligned(reg_off, size)) {
920 char tn_buf[48];
921
922 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
923 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
924 pointer_desc, tn_buf, reg->off, off, size);
925 return -EACCES;
926 }
927
928 return 0;
929 }
930
931 static int check_ptr_alignment(struct bpf_verifier_env *env,
932 const struct bpf_reg_state *reg,
933 int off, int size)
934 {
935 bool strict = env->strict_alignment;
936 const char *pointer_desc = "";
937
938 switch (reg->type) {
939 case PTR_TO_PACKET:
940 case PTR_TO_PACKET_META:
941 /* Special case, because of NET_IP_ALIGN. Given metadata sits
942 * right in front, treat it the very same way.
943 */
944 return check_pkt_ptr_alignment(env, reg, off, size, strict);
945 case PTR_TO_MAP_VALUE:
946 pointer_desc = "value ";
947 break;
948 case PTR_TO_CTX:
949 pointer_desc = "context ";
950 break;
951 case PTR_TO_STACK:
952 pointer_desc = "stack ";
953 break;
954 default:
955 break;
956 }
957 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
958 strict);
959 }
960
961 /* check whether memory at (regno + off) is accessible for t = (read | write)
962 * if t==write, value_regno is a register which value is stored into memory
963 * if t==read, value_regno is a register which will receive the value from memory
964 * if t==write && value_regno==-1, some unknown value is stored into memory
965 * if t==read && value_regno==-1, don't care what we read from memory
966 */
967 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
968 int bpf_size, enum bpf_access_type t,
969 int value_regno)
970 {
971 struct bpf_verifier_state *state = &env->cur_state;
972 struct bpf_reg_state *reg = &state->regs[regno];
973 int size, err = 0;
974
975 size = bpf_size_to_bytes(bpf_size);
976 if (size < 0)
977 return size;
978
979 /* alignment checks will add in reg->off themselves */
980 err = check_ptr_alignment(env, reg, off, size);
981 if (err)
982 return err;
983
984 /* for access checks, reg->off is just part of off */
985 off += reg->off;
986
987 if (reg->type == PTR_TO_MAP_VALUE) {
988 if (t == BPF_WRITE && value_regno >= 0 &&
989 is_pointer_value(env, value_regno)) {
990 verbose(env, "R%d leaks addr into map\n", value_regno);
991 return -EACCES;
992 }
993
994 err = check_map_access(env, regno, off, size);
995 if (!err && t == BPF_READ && value_regno >= 0)
996 mark_reg_unknown(env, state->regs, value_regno);
997
998 } else if (reg->type == PTR_TO_CTX) {
999 enum bpf_reg_type reg_type = SCALAR_VALUE;
1000
1001 if (t == BPF_WRITE && value_regno >= 0 &&
1002 is_pointer_value(env, value_regno)) {
1003 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1004 return -EACCES;
1005 }
1006 /* ctx accesses must be at a fixed offset, so that we can
1007 * determine what type of data were returned.
1008 */
1009 if (!tnum_is_const(reg->var_off)) {
1010 char tn_buf[48];
1011
1012 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1013 verbose(env,
1014 "variable ctx access var_off=%s off=%d size=%d",
1015 tn_buf, off, size);
1016 return -EACCES;
1017 }
1018 off += reg->var_off.value;
1019 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1020 if (!err && t == BPF_READ && value_regno >= 0) {
1021 /* ctx access returns either a scalar, or a
1022 * PTR_TO_PACKET[_META,_END]. In the latter
1023 * case, we know the offset is zero.
1024 */
1025 if (reg_type == SCALAR_VALUE)
1026 mark_reg_unknown(env, state->regs, value_regno);
1027 else
1028 mark_reg_known_zero(env, state->regs,
1029 value_regno);
1030 state->regs[value_regno].id = 0;
1031 state->regs[value_regno].off = 0;
1032 state->regs[value_regno].range = 0;
1033 state->regs[value_regno].type = reg_type;
1034 }
1035
1036 } else if (reg->type == PTR_TO_STACK) {
1037 /* stack accesses must be at a fixed offset, so that we can
1038 * determine what type of data were returned.
1039 * See check_stack_read().
1040 */
1041 if (!tnum_is_const(reg->var_off)) {
1042 char tn_buf[48];
1043
1044 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1045 verbose(env, "variable stack access var_off=%s off=%d size=%d",
1046 tn_buf, off, size);
1047 return -EACCES;
1048 }
1049 off += reg->var_off.value;
1050 if (off >= 0 || off < -MAX_BPF_STACK) {
1051 verbose(env, "invalid stack off=%d size=%d\n", off,
1052 size);
1053 return -EACCES;
1054 }
1055
1056 if (env->prog->aux->stack_depth < -off)
1057 env->prog->aux->stack_depth = -off;
1058
1059 if (t == BPF_WRITE) {
1060 if (!env->allow_ptr_leaks &&
1061 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
1062 size != BPF_REG_SIZE) {
1063 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1064 return -EACCES;
1065 }
1066 err = check_stack_write(env, state, off, size,
1067 value_regno);
1068 } else {
1069 err = check_stack_read(env, state, off, size,
1070 value_regno);
1071 }
1072 } else if (reg_is_pkt_pointer(reg)) {
1073 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1074 verbose(env, "cannot write into packet\n");
1075 return -EACCES;
1076 }
1077 if (t == BPF_WRITE && value_regno >= 0 &&
1078 is_pointer_value(env, value_regno)) {
1079 verbose(env, "R%d leaks addr into packet\n",
1080 value_regno);
1081 return -EACCES;
1082 }
1083 err = check_packet_access(env, regno, off, size);
1084 if (!err && t == BPF_READ && value_regno >= 0)
1085 mark_reg_unknown(env, state->regs, value_regno);
1086 } else {
1087 verbose(env, "R%d invalid mem access '%s'\n", regno,
1088 reg_type_str[reg->type]);
1089 return -EACCES;
1090 }
1091
1092 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1093 state->regs[value_regno].type == SCALAR_VALUE) {
1094 /* b/h/w load zero-extends, mark upper bits as known 0 */
1095 state->regs[value_regno].var_off = tnum_cast(
1096 state->regs[value_regno].var_off, size);
1097 __update_reg_bounds(&state->regs[value_regno]);
1098 }
1099 return err;
1100 }
1101
1102 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1103 {
1104 int err;
1105
1106 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1107 insn->imm != 0) {
1108 verbose(env, "BPF_XADD uses reserved fields\n");
1109 return -EINVAL;
1110 }
1111
1112 /* check src1 operand */
1113 err = check_reg_arg(env, insn->src_reg, SRC_OP);
1114 if (err)
1115 return err;
1116
1117 /* check src2 operand */
1118 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1119 if (err)
1120 return err;
1121
1122 if (is_pointer_value(env, insn->src_reg)) {
1123 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1124 return -EACCES;
1125 }
1126
1127 /* check whether atomic_add can read the memory */
1128 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1129 BPF_SIZE(insn->code), BPF_READ, -1);
1130 if (err)
1131 return err;
1132
1133 /* check whether atomic_add can write into the same memory */
1134 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1135 BPF_SIZE(insn->code), BPF_WRITE, -1);
1136 }
1137
1138 /* Does this register contain a constant zero? */
1139 static bool register_is_null(struct bpf_reg_state reg)
1140 {
1141 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1142 }
1143
1144 /* when register 'regno' is passed into function that will read 'access_size'
1145 * bytes from that pointer, make sure that it's within stack boundary
1146 * and all elements of stack are initialized.
1147 * Unlike most pointer bounds-checking functions, this one doesn't take an
1148 * 'off' argument, so it has to add in reg->off itself.
1149 */
1150 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1151 int access_size, bool zero_size_allowed,
1152 struct bpf_call_arg_meta *meta)
1153 {
1154 struct bpf_verifier_state *state = &env->cur_state;
1155 struct bpf_reg_state *regs = state->regs;
1156 int off, i;
1157
1158 if (regs[regno].type != PTR_TO_STACK) {
1159 /* Allow zero-byte read from NULL, regardless of pointer type */
1160 if (zero_size_allowed && access_size == 0 &&
1161 register_is_null(regs[regno]))
1162 return 0;
1163
1164 verbose(env, "R%d type=%s expected=%s\n", regno,
1165 reg_type_str[regs[regno].type],
1166 reg_type_str[PTR_TO_STACK]);
1167 return -EACCES;
1168 }
1169
1170 /* Only allow fixed-offset stack reads */
1171 if (!tnum_is_const(regs[regno].var_off)) {
1172 char tn_buf[48];
1173
1174 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1175 verbose(env, "invalid variable stack read R%d var_off=%s\n",
1176 regno, tn_buf);
1177 }
1178 off = regs[regno].off + regs[regno].var_off.value;
1179 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1180 access_size <= 0) {
1181 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1182 regno, off, access_size);
1183 return -EACCES;
1184 }
1185
1186 if (env->prog->aux->stack_depth < -off)
1187 env->prog->aux->stack_depth = -off;
1188
1189 if (meta && meta->raw_mode) {
1190 meta->access_size = access_size;
1191 meta->regno = regno;
1192 return 0;
1193 }
1194
1195 for (i = 0; i < access_size; i++) {
1196 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
1197 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1198 off, i, access_size);
1199 return -EACCES;
1200 }
1201 }
1202 return 0;
1203 }
1204
1205 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1206 int access_size, bool zero_size_allowed,
1207 struct bpf_call_arg_meta *meta)
1208 {
1209 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1210
1211 switch (reg->type) {
1212 case PTR_TO_PACKET:
1213 case PTR_TO_PACKET_META:
1214 return check_packet_access(env, regno, reg->off, access_size);
1215 case PTR_TO_MAP_VALUE:
1216 return check_map_access(env, regno, reg->off, access_size);
1217 default: /* scalar_value|ptr_to_stack or invalid ptr */
1218 return check_stack_boundary(env, regno, access_size,
1219 zero_size_allowed, meta);
1220 }
1221 }
1222
1223 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1224 enum bpf_arg_type arg_type,
1225 struct bpf_call_arg_meta *meta)
1226 {
1227 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1228 enum bpf_reg_type expected_type, type = reg->type;
1229 int err = 0;
1230
1231 if (arg_type == ARG_DONTCARE)
1232 return 0;
1233
1234 err = check_reg_arg(env, regno, SRC_OP);
1235 if (err)
1236 return err;
1237
1238 if (arg_type == ARG_ANYTHING) {
1239 if (is_pointer_value(env, regno)) {
1240 verbose(env, "R%d leaks addr into helper function\n",
1241 regno);
1242 return -EACCES;
1243 }
1244 return 0;
1245 }
1246
1247 if (type_is_pkt_pointer(type) &&
1248 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1249 verbose(env, "helper access to the packet is not allowed\n");
1250 return -EACCES;
1251 }
1252
1253 if (arg_type == ARG_PTR_TO_MAP_KEY ||
1254 arg_type == ARG_PTR_TO_MAP_VALUE) {
1255 expected_type = PTR_TO_STACK;
1256 if (!type_is_pkt_pointer(type) &&
1257 type != expected_type)
1258 goto err_type;
1259 } else if (arg_type == ARG_CONST_SIZE ||
1260 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1261 expected_type = SCALAR_VALUE;
1262 if (type != expected_type)
1263 goto err_type;
1264 } else if (arg_type == ARG_CONST_MAP_PTR) {
1265 expected_type = CONST_PTR_TO_MAP;
1266 if (type != expected_type)
1267 goto err_type;
1268 } else if (arg_type == ARG_PTR_TO_CTX) {
1269 expected_type = PTR_TO_CTX;
1270 if (type != expected_type)
1271 goto err_type;
1272 } else if (arg_type == ARG_PTR_TO_MEM ||
1273 arg_type == ARG_PTR_TO_UNINIT_MEM) {
1274 expected_type = PTR_TO_STACK;
1275 /* One exception here. In case function allows for NULL to be
1276 * passed in as argument, it's a SCALAR_VALUE type. Final test
1277 * happens during stack boundary checking.
1278 */
1279 if (register_is_null(*reg))
1280 /* final test in check_stack_boundary() */;
1281 else if (!type_is_pkt_pointer(type) &&
1282 type != PTR_TO_MAP_VALUE &&
1283 type != expected_type)
1284 goto err_type;
1285 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1286 } else {
1287 verbose(env, "unsupported arg_type %d\n", arg_type);
1288 return -EFAULT;
1289 }
1290
1291 if (arg_type == ARG_CONST_MAP_PTR) {
1292 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1293 meta->map_ptr = reg->map_ptr;
1294 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1295 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1296 * check that [key, key + map->key_size) are within
1297 * stack limits and initialized
1298 */
1299 if (!meta->map_ptr) {
1300 /* in function declaration map_ptr must come before
1301 * map_key, so that it's verified and known before
1302 * we have to check map_key here. Otherwise it means
1303 * that kernel subsystem misconfigured verifier
1304 */
1305 verbose(env, "invalid map_ptr to access map->key\n");
1306 return -EACCES;
1307 }
1308 if (type_is_pkt_pointer(type))
1309 err = check_packet_access(env, regno, reg->off,
1310 meta->map_ptr->key_size);
1311 else
1312 err = check_stack_boundary(env, regno,
1313 meta->map_ptr->key_size,
1314 false, NULL);
1315 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1316 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1317 * check [value, value + map->value_size) validity
1318 */
1319 if (!meta->map_ptr) {
1320 /* kernel subsystem misconfigured verifier */
1321 verbose(env, "invalid map_ptr to access map->value\n");
1322 return -EACCES;
1323 }
1324 if (type_is_pkt_pointer(type))
1325 err = check_packet_access(env, regno, reg->off,
1326 meta->map_ptr->value_size);
1327 else
1328 err = check_stack_boundary(env, regno,
1329 meta->map_ptr->value_size,
1330 false, NULL);
1331 } else if (arg_type == ARG_CONST_SIZE ||
1332 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1333 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1334
1335 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1336 * from stack pointer 'buf'. Check it
1337 * note: regno == len, regno - 1 == buf
1338 */
1339 if (regno == 0) {
1340 /* kernel subsystem misconfigured verifier */
1341 verbose(env,
1342 "ARG_CONST_SIZE cannot be first argument\n");
1343 return -EACCES;
1344 }
1345
1346 /* The register is SCALAR_VALUE; the access check
1347 * happens using its boundaries.
1348 */
1349
1350 if (!tnum_is_const(reg->var_off))
1351 /* For unprivileged variable accesses, disable raw
1352 * mode so that the program is required to
1353 * initialize all the memory that the helper could
1354 * just partially fill up.
1355 */
1356 meta = NULL;
1357
1358 if (reg->smin_value < 0) {
1359 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1360 regno);
1361 return -EACCES;
1362 }
1363
1364 if (reg->umin_value == 0) {
1365 err = check_helper_mem_access(env, regno - 1, 0,
1366 zero_size_allowed,
1367 meta);
1368 if (err)
1369 return err;
1370 }
1371
1372 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1373 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1374 regno);
1375 return -EACCES;
1376 }
1377 err = check_helper_mem_access(env, regno - 1,
1378 reg->umax_value,
1379 zero_size_allowed, meta);
1380 }
1381
1382 return err;
1383 err_type:
1384 verbose(env, "R%d type=%s expected=%s\n", regno,
1385 reg_type_str[type], reg_type_str[expected_type]);
1386 return -EACCES;
1387 }
1388
1389 static int check_map_func_compatibility(struct bpf_verifier_env *env,
1390 struct bpf_map *map, int func_id)
1391 {
1392 if (!map)
1393 return 0;
1394
1395 /* We need a two way check, first is from map perspective ... */
1396 switch (map->map_type) {
1397 case BPF_MAP_TYPE_PROG_ARRAY:
1398 if (func_id != BPF_FUNC_tail_call)
1399 goto error;
1400 break;
1401 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1402 if (func_id != BPF_FUNC_perf_event_read &&
1403 func_id != BPF_FUNC_perf_event_output &&
1404 func_id != BPF_FUNC_perf_event_read_value)
1405 goto error;
1406 break;
1407 case BPF_MAP_TYPE_STACK_TRACE:
1408 if (func_id != BPF_FUNC_get_stackid)
1409 goto error;
1410 break;
1411 case BPF_MAP_TYPE_CGROUP_ARRAY:
1412 if (func_id != BPF_FUNC_skb_under_cgroup &&
1413 func_id != BPF_FUNC_current_task_under_cgroup)
1414 goto error;
1415 break;
1416 /* devmap returns a pointer to a live net_device ifindex that we cannot
1417 * allow to be modified from bpf side. So do not allow lookup elements
1418 * for now.
1419 */
1420 case BPF_MAP_TYPE_DEVMAP:
1421 if (func_id != BPF_FUNC_redirect_map)
1422 goto error;
1423 break;
1424 /* Restrict bpf side of cpumap, open when use-cases appear */
1425 case BPF_MAP_TYPE_CPUMAP:
1426 if (func_id != BPF_FUNC_redirect_map)
1427 goto error;
1428 break;
1429 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1430 case BPF_MAP_TYPE_HASH_OF_MAPS:
1431 if (func_id != BPF_FUNC_map_lookup_elem)
1432 goto error;
1433 break;
1434 case BPF_MAP_TYPE_SOCKMAP:
1435 if (func_id != BPF_FUNC_sk_redirect_map &&
1436 func_id != BPF_FUNC_sock_map_update &&
1437 func_id != BPF_FUNC_map_delete_elem)
1438 goto error;
1439 break;
1440 default:
1441 break;
1442 }
1443
1444 /* ... and second from the function itself. */
1445 switch (func_id) {
1446 case BPF_FUNC_tail_call:
1447 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1448 goto error;
1449 break;
1450 case BPF_FUNC_perf_event_read:
1451 case BPF_FUNC_perf_event_output:
1452 case BPF_FUNC_perf_event_read_value:
1453 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1454 goto error;
1455 break;
1456 case BPF_FUNC_get_stackid:
1457 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1458 goto error;
1459 break;
1460 case BPF_FUNC_current_task_under_cgroup:
1461 case BPF_FUNC_skb_under_cgroup:
1462 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1463 goto error;
1464 break;
1465 case BPF_FUNC_redirect_map:
1466 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1467 map->map_type != BPF_MAP_TYPE_CPUMAP)
1468 goto error;
1469 break;
1470 case BPF_FUNC_sk_redirect_map:
1471 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1472 goto error;
1473 break;
1474 case BPF_FUNC_sock_map_update:
1475 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1476 goto error;
1477 break;
1478 default:
1479 break;
1480 }
1481
1482 return 0;
1483 error:
1484 verbose(env, "cannot pass map_type %d into func %s#%d\n",
1485 map->map_type, func_id_name(func_id), func_id);
1486 return -EINVAL;
1487 }
1488
1489 static int check_raw_mode(const struct bpf_func_proto *fn)
1490 {
1491 int count = 0;
1492
1493 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1494 count++;
1495 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1496 count++;
1497 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1498 count++;
1499 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1500 count++;
1501 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1502 count++;
1503
1504 return count > 1 ? -EINVAL : 0;
1505 }
1506
1507 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1508 * are now invalid, so turn them into unknown SCALAR_VALUE.
1509 */
1510 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1511 {
1512 struct bpf_verifier_state *state = &env->cur_state;
1513 struct bpf_reg_state *regs = state->regs, *reg;
1514 int i;
1515
1516 for (i = 0; i < MAX_BPF_REG; i++)
1517 if (reg_is_pkt_pointer_any(&regs[i]))
1518 mark_reg_unknown(env, regs, i);
1519
1520 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1521 if (state->stack_slot_type[i] != STACK_SPILL)
1522 continue;
1523 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1524 if (reg_is_pkt_pointer_any(reg))
1525 __mark_reg_unknown(reg);
1526 }
1527 }
1528
1529 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1530 {
1531 struct bpf_verifier_state *state = &env->cur_state;
1532 const struct bpf_func_proto *fn = NULL;
1533 struct bpf_reg_state *regs = state->regs;
1534 struct bpf_call_arg_meta meta;
1535 bool changes_data;
1536 int i, err;
1537
1538 /* find function prototype */
1539 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1540 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1541 func_id);
1542 return -EINVAL;
1543 }
1544
1545 if (env->ops->get_func_proto)
1546 fn = env->ops->get_func_proto(func_id);
1547
1548 if (!fn) {
1549 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1550 func_id);
1551 return -EINVAL;
1552 }
1553
1554 /* eBPF programs must be GPL compatible to use GPL-ed functions */
1555 if (!env->prog->gpl_compatible && fn->gpl_only) {
1556 verbose(env, "cannot call GPL only function from proprietary program\n");
1557 return -EINVAL;
1558 }
1559
1560 changes_data = bpf_helper_changes_pkt_data(fn->func);
1561
1562 memset(&meta, 0, sizeof(meta));
1563 meta.pkt_access = fn->pkt_access;
1564
1565 /* We only support one arg being in raw mode at the moment, which
1566 * is sufficient for the helper functions we have right now.
1567 */
1568 err = check_raw_mode(fn);
1569 if (err) {
1570 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1571 func_id_name(func_id), func_id);
1572 return err;
1573 }
1574
1575 /* check args */
1576 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1577 if (err)
1578 return err;
1579 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1580 if (err)
1581 return err;
1582 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1583 if (err)
1584 return err;
1585 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1586 if (err)
1587 return err;
1588 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1589 if (err)
1590 return err;
1591
1592 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1593 * is inferred from register state.
1594 */
1595 for (i = 0; i < meta.access_size; i++) {
1596 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1597 if (err)
1598 return err;
1599 }
1600
1601 /* reset caller saved regs */
1602 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1603 mark_reg_not_init(env, regs, caller_saved[i]);
1604 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1605 }
1606
1607 /* update return register (already marked as written above) */
1608 if (fn->ret_type == RET_INTEGER) {
1609 /* sets type to SCALAR_VALUE */
1610 mark_reg_unknown(env, regs, BPF_REG_0);
1611 } else if (fn->ret_type == RET_VOID) {
1612 regs[BPF_REG_0].type = NOT_INIT;
1613 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1614 struct bpf_insn_aux_data *insn_aux;
1615
1616 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1617 /* There is no offset yet applied, variable or fixed */
1618 mark_reg_known_zero(env, regs, BPF_REG_0);
1619 regs[BPF_REG_0].off = 0;
1620 /* remember map_ptr, so that check_map_access()
1621 * can check 'value_size' boundary of memory access
1622 * to map element returned from bpf_map_lookup_elem()
1623 */
1624 if (meta.map_ptr == NULL) {
1625 verbose(env,
1626 "kernel subsystem misconfigured verifier\n");
1627 return -EINVAL;
1628 }
1629 regs[BPF_REG_0].map_ptr = meta.map_ptr;
1630 regs[BPF_REG_0].id = ++env->id_gen;
1631 insn_aux = &env->insn_aux_data[insn_idx];
1632 if (!insn_aux->map_ptr)
1633 insn_aux->map_ptr = meta.map_ptr;
1634 else if (insn_aux->map_ptr != meta.map_ptr)
1635 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1636 } else {
1637 verbose(env, "unknown return type %d of func %s#%d\n",
1638 fn->ret_type, func_id_name(func_id), func_id);
1639 return -EINVAL;
1640 }
1641
1642 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1643 if (err)
1644 return err;
1645
1646 if (changes_data)
1647 clear_all_pkt_pointers(env);
1648 return 0;
1649 }
1650
1651 static void coerce_reg_to_32(struct bpf_reg_state *reg)
1652 {
1653 /* clear high 32 bits */
1654 reg->var_off = tnum_cast(reg->var_off, 4);
1655 /* Update bounds */
1656 __update_reg_bounds(reg);
1657 }
1658
1659 static bool signed_add_overflows(s64 a, s64 b)
1660 {
1661 /* Do the add in u64, where overflow is well-defined */
1662 s64 res = (s64)((u64)a + (u64)b);
1663
1664 if (b < 0)
1665 return res > a;
1666 return res < a;
1667 }
1668
1669 static bool signed_sub_overflows(s64 a, s64 b)
1670 {
1671 /* Do the sub in u64, where overflow is well-defined */
1672 s64 res = (s64)((u64)a - (u64)b);
1673
1674 if (b < 0)
1675 return res < a;
1676 return res > a;
1677 }
1678
1679 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
1680 * Caller should also handle BPF_MOV case separately.
1681 * If we return -EACCES, caller may want to try again treating pointer as a
1682 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1683 */
1684 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1685 struct bpf_insn *insn,
1686 const struct bpf_reg_state *ptr_reg,
1687 const struct bpf_reg_state *off_reg)
1688 {
1689 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1690 bool known = tnum_is_const(off_reg->var_off);
1691 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1692 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1693 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1694 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
1695 u8 opcode = BPF_OP(insn->code);
1696 u32 dst = insn->dst_reg;
1697
1698 dst_reg = &regs[dst];
1699
1700 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1701 print_verifier_state(env, &env->cur_state);
1702 verbose(env,
1703 "verifier internal error: known but bad sbounds\n");
1704 return -EINVAL;
1705 }
1706 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1707 print_verifier_state(env, &env->cur_state);
1708 verbose(env,
1709 "verifier internal error: known but bad ubounds\n");
1710 return -EINVAL;
1711 }
1712
1713 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1714 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1715 if (!env->allow_ptr_leaks)
1716 verbose(env,
1717 "R%d 32-bit pointer arithmetic prohibited\n",
1718 dst);
1719 return -EACCES;
1720 }
1721
1722 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1723 if (!env->allow_ptr_leaks)
1724 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1725 dst);
1726 return -EACCES;
1727 }
1728 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1729 if (!env->allow_ptr_leaks)
1730 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1731 dst);
1732 return -EACCES;
1733 }
1734 if (ptr_reg->type == PTR_TO_PACKET_END) {
1735 if (!env->allow_ptr_leaks)
1736 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1737 dst);
1738 return -EACCES;
1739 }
1740
1741 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1742 * The id may be overwritten later if we create a new variable offset.
1743 */
1744 dst_reg->type = ptr_reg->type;
1745 dst_reg->id = ptr_reg->id;
1746
1747 switch (opcode) {
1748 case BPF_ADD:
1749 /* We can take a fixed offset as long as it doesn't overflow
1750 * the s32 'off' field
1751 */
1752 if (known && (ptr_reg->off + smin_val ==
1753 (s64)(s32)(ptr_reg->off + smin_val))) {
1754 /* pointer += K. Accumulate it into fixed offset */
1755 dst_reg->smin_value = smin_ptr;
1756 dst_reg->smax_value = smax_ptr;
1757 dst_reg->umin_value = umin_ptr;
1758 dst_reg->umax_value = umax_ptr;
1759 dst_reg->var_off = ptr_reg->var_off;
1760 dst_reg->off = ptr_reg->off + smin_val;
1761 dst_reg->range = ptr_reg->range;
1762 break;
1763 }
1764 /* A new variable offset is created. Note that off_reg->off
1765 * == 0, since it's a scalar.
1766 * dst_reg gets the pointer type and since some positive
1767 * integer value was added to the pointer, give it a new 'id'
1768 * if it's a PTR_TO_PACKET.
1769 * this creates a new 'base' pointer, off_reg (variable) gets
1770 * added into the variable offset, and we copy the fixed offset
1771 * from ptr_reg.
1772 */
1773 if (signed_add_overflows(smin_ptr, smin_val) ||
1774 signed_add_overflows(smax_ptr, smax_val)) {
1775 dst_reg->smin_value = S64_MIN;
1776 dst_reg->smax_value = S64_MAX;
1777 } else {
1778 dst_reg->smin_value = smin_ptr + smin_val;
1779 dst_reg->smax_value = smax_ptr + smax_val;
1780 }
1781 if (umin_ptr + umin_val < umin_ptr ||
1782 umax_ptr + umax_val < umax_ptr) {
1783 dst_reg->umin_value = 0;
1784 dst_reg->umax_value = U64_MAX;
1785 } else {
1786 dst_reg->umin_value = umin_ptr + umin_val;
1787 dst_reg->umax_value = umax_ptr + umax_val;
1788 }
1789 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1790 dst_reg->off = ptr_reg->off;
1791 if (reg_is_pkt_pointer(ptr_reg)) {
1792 dst_reg->id = ++env->id_gen;
1793 /* something was added to pkt_ptr, set range to zero */
1794 dst_reg->range = 0;
1795 }
1796 break;
1797 case BPF_SUB:
1798 if (dst_reg == off_reg) {
1799 /* scalar -= pointer. Creates an unknown scalar */
1800 if (!env->allow_ptr_leaks)
1801 verbose(env, "R%d tried to subtract pointer from scalar\n",
1802 dst);
1803 return -EACCES;
1804 }
1805 /* We don't allow subtraction from FP, because (according to
1806 * test_verifier.c test "invalid fp arithmetic", JITs might not
1807 * be able to deal with it.
1808 */
1809 if (ptr_reg->type == PTR_TO_STACK) {
1810 if (!env->allow_ptr_leaks)
1811 verbose(env, "R%d subtraction from stack pointer prohibited\n",
1812 dst);
1813 return -EACCES;
1814 }
1815 if (known && (ptr_reg->off - smin_val ==
1816 (s64)(s32)(ptr_reg->off - smin_val))) {
1817 /* pointer -= K. Subtract it from fixed offset */
1818 dst_reg->smin_value = smin_ptr;
1819 dst_reg->smax_value = smax_ptr;
1820 dst_reg->umin_value = umin_ptr;
1821 dst_reg->umax_value = umax_ptr;
1822 dst_reg->var_off = ptr_reg->var_off;
1823 dst_reg->id = ptr_reg->id;
1824 dst_reg->off = ptr_reg->off - smin_val;
1825 dst_reg->range = ptr_reg->range;
1826 break;
1827 }
1828 /* A new variable offset is created. If the subtrahend is known
1829 * nonnegative, then any reg->range we had before is still good.
1830 */
1831 if (signed_sub_overflows(smin_ptr, smax_val) ||
1832 signed_sub_overflows(smax_ptr, smin_val)) {
1833 /* Overflow possible, we know nothing */
1834 dst_reg->smin_value = S64_MIN;
1835 dst_reg->smax_value = S64_MAX;
1836 } else {
1837 dst_reg->smin_value = smin_ptr - smax_val;
1838 dst_reg->smax_value = smax_ptr - smin_val;
1839 }
1840 if (umin_ptr < umax_val) {
1841 /* Overflow possible, we know nothing */
1842 dst_reg->umin_value = 0;
1843 dst_reg->umax_value = U64_MAX;
1844 } else {
1845 /* Cannot overflow (as long as bounds are consistent) */
1846 dst_reg->umin_value = umin_ptr - umax_val;
1847 dst_reg->umax_value = umax_ptr - umin_val;
1848 }
1849 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1850 dst_reg->off = ptr_reg->off;
1851 if (reg_is_pkt_pointer(ptr_reg)) {
1852 dst_reg->id = ++env->id_gen;
1853 /* something was added to pkt_ptr, set range to zero */
1854 if (smin_val < 0)
1855 dst_reg->range = 0;
1856 }
1857 break;
1858 case BPF_AND:
1859 case BPF_OR:
1860 case BPF_XOR:
1861 /* bitwise ops on pointers are troublesome, prohibit for now.
1862 * (However, in principle we could allow some cases, e.g.
1863 * ptr &= ~3 which would reduce min_value by 3.)
1864 */
1865 if (!env->allow_ptr_leaks)
1866 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
1867 dst, bpf_alu_string[opcode >> 4]);
1868 return -EACCES;
1869 default:
1870 /* other operators (e.g. MUL,LSH) produce non-pointer results */
1871 if (!env->allow_ptr_leaks)
1872 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
1873 dst, bpf_alu_string[opcode >> 4]);
1874 return -EACCES;
1875 }
1876
1877 __update_reg_bounds(dst_reg);
1878 __reg_deduce_bounds(dst_reg);
1879 __reg_bound_offset(dst_reg);
1880 return 0;
1881 }
1882
1883 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
1884 struct bpf_insn *insn,
1885 struct bpf_reg_state *dst_reg,
1886 struct bpf_reg_state src_reg)
1887 {
1888 struct bpf_reg_state *regs = env->cur_state.regs;
1889 u8 opcode = BPF_OP(insn->code);
1890 bool src_known, dst_known;
1891 s64 smin_val, smax_val;
1892 u64 umin_val, umax_val;
1893
1894 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1895 /* 32-bit ALU ops are (32,32)->64 */
1896 coerce_reg_to_32(dst_reg);
1897 coerce_reg_to_32(&src_reg);
1898 }
1899 smin_val = src_reg.smin_value;
1900 smax_val = src_reg.smax_value;
1901 umin_val = src_reg.umin_value;
1902 umax_val = src_reg.umax_value;
1903 src_known = tnum_is_const(src_reg.var_off);
1904 dst_known = tnum_is_const(dst_reg->var_off);
1905
1906 switch (opcode) {
1907 case BPF_ADD:
1908 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
1909 signed_add_overflows(dst_reg->smax_value, smax_val)) {
1910 dst_reg->smin_value = S64_MIN;
1911 dst_reg->smax_value = S64_MAX;
1912 } else {
1913 dst_reg->smin_value += smin_val;
1914 dst_reg->smax_value += smax_val;
1915 }
1916 if (dst_reg->umin_value + umin_val < umin_val ||
1917 dst_reg->umax_value + umax_val < umax_val) {
1918 dst_reg->umin_value = 0;
1919 dst_reg->umax_value = U64_MAX;
1920 } else {
1921 dst_reg->umin_value += umin_val;
1922 dst_reg->umax_value += umax_val;
1923 }
1924 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
1925 break;
1926 case BPF_SUB:
1927 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
1928 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
1929 /* Overflow possible, we know nothing */
1930 dst_reg->smin_value = S64_MIN;
1931 dst_reg->smax_value = S64_MAX;
1932 } else {
1933 dst_reg->smin_value -= smax_val;
1934 dst_reg->smax_value -= smin_val;
1935 }
1936 if (dst_reg->umin_value < umax_val) {
1937 /* Overflow possible, we know nothing */
1938 dst_reg->umin_value = 0;
1939 dst_reg->umax_value = U64_MAX;
1940 } else {
1941 /* Cannot overflow (as long as bounds are consistent) */
1942 dst_reg->umin_value -= umax_val;
1943 dst_reg->umax_value -= umin_val;
1944 }
1945 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
1946 break;
1947 case BPF_MUL:
1948 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
1949 if (smin_val < 0 || dst_reg->smin_value < 0) {
1950 /* Ain't nobody got time to multiply that sign */
1951 __mark_reg_unbounded(dst_reg);
1952 __update_reg_bounds(dst_reg);
1953 break;
1954 }
1955 /* Both values are positive, so we can work with unsigned and
1956 * copy the result to signed (unless it exceeds S64_MAX).
1957 */
1958 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
1959 /* Potential overflow, we know nothing */
1960 __mark_reg_unbounded(dst_reg);
1961 /* (except what we can learn from the var_off) */
1962 __update_reg_bounds(dst_reg);
1963 break;
1964 }
1965 dst_reg->umin_value *= umin_val;
1966 dst_reg->umax_value *= umax_val;
1967 if (dst_reg->umax_value > S64_MAX) {
1968 /* Overflow possible, we know nothing */
1969 dst_reg->smin_value = S64_MIN;
1970 dst_reg->smax_value = S64_MAX;
1971 } else {
1972 dst_reg->smin_value = dst_reg->umin_value;
1973 dst_reg->smax_value = dst_reg->umax_value;
1974 }
1975 break;
1976 case BPF_AND:
1977 if (src_known && dst_known) {
1978 __mark_reg_known(dst_reg, dst_reg->var_off.value &
1979 src_reg.var_off.value);
1980 break;
1981 }
1982 /* We get our minimum from the var_off, since that's inherently
1983 * bitwise. Our maximum is the minimum of the operands' maxima.
1984 */
1985 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
1986 dst_reg->umin_value = dst_reg->var_off.value;
1987 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
1988 if (dst_reg->smin_value < 0 || smin_val < 0) {
1989 /* Lose signed bounds when ANDing negative numbers,
1990 * ain't nobody got time for that.
1991 */
1992 dst_reg->smin_value = S64_MIN;
1993 dst_reg->smax_value = S64_MAX;
1994 } else {
1995 /* ANDing two positives gives a positive, so safe to
1996 * cast result into s64.
1997 */
1998 dst_reg->smin_value = dst_reg->umin_value;
1999 dst_reg->smax_value = dst_reg->umax_value;
2000 }
2001 /* We may learn something more from the var_off */
2002 __update_reg_bounds(dst_reg);
2003 break;
2004 case BPF_OR:
2005 if (src_known && dst_known) {
2006 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2007 src_reg.var_off.value);
2008 break;
2009 }
2010 /* We get our maximum from the var_off, and our minimum is the
2011 * maximum of the operands' minima
2012 */
2013 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2014 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2015 dst_reg->umax_value = dst_reg->var_off.value |
2016 dst_reg->var_off.mask;
2017 if (dst_reg->smin_value < 0 || smin_val < 0) {
2018 /* Lose signed bounds when ORing negative numbers,
2019 * ain't nobody got time for that.
2020 */
2021 dst_reg->smin_value = S64_MIN;
2022 dst_reg->smax_value = S64_MAX;
2023 } else {
2024 /* ORing two positives gives a positive, so safe to
2025 * cast result into s64.
2026 */
2027 dst_reg->smin_value = dst_reg->umin_value;
2028 dst_reg->smax_value = dst_reg->umax_value;
2029 }
2030 /* We may learn something more from the var_off */
2031 __update_reg_bounds(dst_reg);
2032 break;
2033 case BPF_LSH:
2034 if (umax_val > 63) {
2035 /* Shifts greater than 63 are undefined. This includes
2036 * shifts by a negative number.
2037 */
2038 mark_reg_unknown(env, regs, insn->dst_reg);
2039 break;
2040 }
2041 /* We lose all sign bit information (except what we can pick
2042 * up from var_off)
2043 */
2044 dst_reg->smin_value = S64_MIN;
2045 dst_reg->smax_value = S64_MAX;
2046 /* If we might shift our top bit out, then we know nothing */
2047 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2048 dst_reg->umin_value = 0;
2049 dst_reg->umax_value = U64_MAX;
2050 } else {
2051 dst_reg->umin_value <<= umin_val;
2052 dst_reg->umax_value <<= umax_val;
2053 }
2054 if (src_known)
2055 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2056 else
2057 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2058 /* We may learn something more from the var_off */
2059 __update_reg_bounds(dst_reg);
2060 break;
2061 case BPF_RSH:
2062 if (umax_val > 63) {
2063 /* Shifts greater than 63 are undefined. This includes
2064 * shifts by a negative number.
2065 */
2066 mark_reg_unknown(env, regs, insn->dst_reg);
2067 break;
2068 }
2069 /* BPF_RSH is an unsigned shift, so make the appropriate casts */
2070 if (dst_reg->smin_value < 0) {
2071 if (umin_val) {
2072 /* Sign bit will be cleared */
2073 dst_reg->smin_value = 0;
2074 } else {
2075 /* Lost sign bit information */
2076 dst_reg->smin_value = S64_MIN;
2077 dst_reg->smax_value = S64_MAX;
2078 }
2079 } else {
2080 dst_reg->smin_value =
2081 (u64)(dst_reg->smin_value) >> umax_val;
2082 }
2083 if (src_known)
2084 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2085 umin_val);
2086 else
2087 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2088 dst_reg->umin_value >>= umax_val;
2089 dst_reg->umax_value >>= umin_val;
2090 /* We may learn something more from the var_off */
2091 __update_reg_bounds(dst_reg);
2092 break;
2093 default:
2094 mark_reg_unknown(env, regs, insn->dst_reg);
2095 break;
2096 }
2097
2098 __reg_deduce_bounds(dst_reg);
2099 __reg_bound_offset(dst_reg);
2100 return 0;
2101 }
2102
2103 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2104 * and var_off.
2105 */
2106 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2107 struct bpf_insn *insn)
2108 {
2109 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
2110 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2111 u8 opcode = BPF_OP(insn->code);
2112 int rc;
2113
2114 dst_reg = &regs[insn->dst_reg];
2115 src_reg = NULL;
2116 if (dst_reg->type != SCALAR_VALUE)
2117 ptr_reg = dst_reg;
2118 if (BPF_SRC(insn->code) == BPF_X) {
2119 src_reg = &regs[insn->src_reg];
2120 if (src_reg->type != SCALAR_VALUE) {
2121 if (dst_reg->type != SCALAR_VALUE) {
2122 /* Combining two pointers by any ALU op yields
2123 * an arbitrary scalar.
2124 */
2125 if (!env->allow_ptr_leaks) {
2126 verbose(env, "R%d pointer %s pointer prohibited\n",
2127 insn->dst_reg,
2128 bpf_alu_string[opcode >> 4]);
2129 return -EACCES;
2130 }
2131 mark_reg_unknown(env, regs, insn->dst_reg);
2132 return 0;
2133 } else {
2134 /* scalar += pointer
2135 * This is legal, but we have to reverse our
2136 * src/dest handling in computing the range
2137 */
2138 rc = adjust_ptr_min_max_vals(env, insn,
2139 src_reg, dst_reg);
2140 if (rc == -EACCES && env->allow_ptr_leaks) {
2141 /* scalar += unknown scalar */
2142 __mark_reg_unknown(&off_reg);
2143 return adjust_scalar_min_max_vals(
2144 env, insn,
2145 dst_reg, off_reg);
2146 }
2147 return rc;
2148 }
2149 } else if (ptr_reg) {
2150 /* pointer += scalar */
2151 rc = adjust_ptr_min_max_vals(env, insn,
2152 dst_reg, src_reg);
2153 if (rc == -EACCES && env->allow_ptr_leaks) {
2154 /* unknown scalar += scalar */
2155 __mark_reg_unknown(dst_reg);
2156 return adjust_scalar_min_max_vals(
2157 env, insn, dst_reg, *src_reg);
2158 }
2159 return rc;
2160 }
2161 } else {
2162 /* Pretend the src is a reg with a known value, since we only
2163 * need to be able to read from this state.
2164 */
2165 off_reg.type = SCALAR_VALUE;
2166 __mark_reg_known(&off_reg, insn->imm);
2167 src_reg = &off_reg;
2168 if (ptr_reg) { /* pointer += K */
2169 rc = adjust_ptr_min_max_vals(env, insn,
2170 ptr_reg, src_reg);
2171 if (rc == -EACCES && env->allow_ptr_leaks) {
2172 /* unknown scalar += K */
2173 __mark_reg_unknown(dst_reg);
2174 return adjust_scalar_min_max_vals(
2175 env, insn, dst_reg, off_reg);
2176 }
2177 return rc;
2178 }
2179 }
2180
2181 /* Got here implies adding two SCALAR_VALUEs */
2182 if (WARN_ON_ONCE(ptr_reg)) {
2183 print_verifier_state(env, &env->cur_state);
2184 verbose(env, "verifier internal error: unexpected ptr_reg\n");
2185 return -EINVAL;
2186 }
2187 if (WARN_ON(!src_reg)) {
2188 print_verifier_state(env, &env->cur_state);
2189 verbose(env, "verifier internal error: no src_reg\n");
2190 return -EINVAL;
2191 }
2192 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2193 }
2194
2195 /* check validity of 32-bit and 64-bit arithmetic operations */
2196 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2197 {
2198 struct bpf_reg_state *regs = env->cur_state.regs;
2199 u8 opcode = BPF_OP(insn->code);
2200 int err;
2201
2202 if (opcode == BPF_END || opcode == BPF_NEG) {
2203 if (opcode == BPF_NEG) {
2204 if (BPF_SRC(insn->code) != 0 ||
2205 insn->src_reg != BPF_REG_0 ||
2206 insn->off != 0 || insn->imm != 0) {
2207 verbose(env, "BPF_NEG uses reserved fields\n");
2208 return -EINVAL;
2209 }
2210 } else {
2211 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2212 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2213 BPF_CLASS(insn->code) == BPF_ALU64) {
2214 verbose(env, "BPF_END uses reserved fields\n");
2215 return -EINVAL;
2216 }
2217 }
2218
2219 /* check src operand */
2220 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2221 if (err)
2222 return err;
2223
2224 if (is_pointer_value(env, insn->dst_reg)) {
2225 verbose(env, "R%d pointer arithmetic prohibited\n",
2226 insn->dst_reg);
2227 return -EACCES;
2228 }
2229
2230 /* check dest operand */
2231 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2232 if (err)
2233 return err;
2234
2235 } else if (opcode == BPF_MOV) {
2236
2237 if (BPF_SRC(insn->code) == BPF_X) {
2238 if (insn->imm != 0 || insn->off != 0) {
2239 verbose(env, "BPF_MOV uses reserved fields\n");
2240 return -EINVAL;
2241 }
2242
2243 /* check src operand */
2244 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2245 if (err)
2246 return err;
2247 } else {
2248 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2249 verbose(env, "BPF_MOV uses reserved fields\n");
2250 return -EINVAL;
2251 }
2252 }
2253
2254 /* check dest operand */
2255 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2256 if (err)
2257 return err;
2258
2259 if (BPF_SRC(insn->code) == BPF_X) {
2260 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2261 /* case: R1 = R2
2262 * copy register state to dest reg
2263 */
2264 regs[insn->dst_reg] = regs[insn->src_reg];
2265 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2266 } else {
2267 /* R1 = (u32) R2 */
2268 if (is_pointer_value(env, insn->src_reg)) {
2269 verbose(env,
2270 "R%d partial copy of pointer\n",
2271 insn->src_reg);
2272 return -EACCES;
2273 }
2274 mark_reg_unknown(env, regs, insn->dst_reg);
2275 /* high 32 bits are known zero. */
2276 regs[insn->dst_reg].var_off = tnum_cast(
2277 regs[insn->dst_reg].var_off, 4);
2278 __update_reg_bounds(&regs[insn->dst_reg]);
2279 }
2280 } else {
2281 /* case: R = imm
2282 * remember the value we stored into this reg
2283 */
2284 regs[insn->dst_reg].type = SCALAR_VALUE;
2285 __mark_reg_known(regs + insn->dst_reg, insn->imm);
2286 }
2287
2288 } else if (opcode > BPF_END) {
2289 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2290 return -EINVAL;
2291
2292 } else { /* all other ALU ops: and, sub, xor, add, ... */
2293
2294 if (BPF_SRC(insn->code) == BPF_X) {
2295 if (insn->imm != 0 || insn->off != 0) {
2296 verbose(env, "BPF_ALU uses reserved fields\n");
2297 return -EINVAL;
2298 }
2299 /* check src1 operand */
2300 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2301 if (err)
2302 return err;
2303 } else {
2304 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2305 verbose(env, "BPF_ALU uses reserved fields\n");
2306 return -EINVAL;
2307 }
2308 }
2309
2310 /* check src2 operand */
2311 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2312 if (err)
2313 return err;
2314
2315 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2316 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2317 verbose(env, "div by zero\n");
2318 return -EINVAL;
2319 }
2320
2321 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2322 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2323 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2324
2325 if (insn->imm < 0 || insn->imm >= size) {
2326 verbose(env, "invalid shift %d\n", insn->imm);
2327 return -EINVAL;
2328 }
2329 }
2330
2331 /* check dest operand */
2332 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
2333 if (err)
2334 return err;
2335
2336 return adjust_reg_min_max_vals(env, insn);
2337 }
2338
2339 return 0;
2340 }
2341
2342 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2343 struct bpf_reg_state *dst_reg,
2344 enum bpf_reg_type type)
2345 {
2346 struct bpf_reg_state *regs = state->regs, *reg;
2347 int i;
2348
2349 if (dst_reg->off < 0)
2350 /* This doesn't give us any range */
2351 return;
2352
2353 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2354 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2355 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2356 * than pkt_end, but that's because it's also less than pkt.
2357 */
2358 return;
2359
2360 /* LLVM can generate four kind of checks:
2361 *
2362 * Type 1/2:
2363 *
2364 * r2 = r3;
2365 * r2 += 8;
2366 * if (r2 > pkt_end) goto <handle exception>
2367 * <access okay>
2368 *
2369 * r2 = r3;
2370 * r2 += 8;
2371 * if (r2 < pkt_end) goto <access okay>
2372 * <handle exception>
2373 *
2374 * Where:
2375 * r2 == dst_reg, pkt_end == src_reg
2376 * r2=pkt(id=n,off=8,r=0)
2377 * r3=pkt(id=n,off=0,r=0)
2378 *
2379 * Type 3/4:
2380 *
2381 * r2 = r3;
2382 * r2 += 8;
2383 * if (pkt_end >= r2) goto <access okay>
2384 * <handle exception>
2385 *
2386 * r2 = r3;
2387 * r2 += 8;
2388 * if (pkt_end <= r2) goto <handle exception>
2389 * <access okay>
2390 *
2391 * Where:
2392 * pkt_end == dst_reg, r2 == src_reg
2393 * r2=pkt(id=n,off=8,r=0)
2394 * r3=pkt(id=n,off=0,r=0)
2395 *
2396 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2397 * so that range of bytes [r3, r3 + 8) is safe to access.
2398 */
2399
2400 /* If our ids match, then we must have the same max_value. And we
2401 * don't care about the other reg's fixed offset, since if it's too big
2402 * the range won't allow anything.
2403 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2404 */
2405 for (i = 0; i < MAX_BPF_REG; i++)
2406 if (regs[i].type == type && regs[i].id == dst_reg->id)
2407 /* keep the maximum range already checked */
2408 regs[i].range = max_t(u16, regs[i].range, dst_reg->off);
2409
2410 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2411 if (state->stack_slot_type[i] != STACK_SPILL)
2412 continue;
2413 reg = &state->spilled_regs[i / BPF_REG_SIZE];
2414 if (reg->type == type && reg->id == dst_reg->id)
2415 reg->range = max_t(u16, reg->range, dst_reg->off);
2416 }
2417 }
2418
2419 /* Adjusts the register min/max values in the case that the dst_reg is the
2420 * variable register that we are working on, and src_reg is a constant or we're
2421 * simply doing a BPF_K check.
2422 * In JEQ/JNE cases we also adjust the var_off values.
2423 */
2424 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2425 struct bpf_reg_state *false_reg, u64 val,
2426 u8 opcode)
2427 {
2428 /* If the dst_reg is a pointer, we can't learn anything about its
2429 * variable offset from the compare (unless src_reg were a pointer into
2430 * the same object, but we don't bother with that.
2431 * Since false_reg and true_reg have the same type by construction, we
2432 * only need to check one of them for pointerness.
2433 */
2434 if (__is_pointer_value(false, false_reg))
2435 return;
2436
2437 switch (opcode) {
2438 case BPF_JEQ:
2439 /* If this is false then we know nothing Jon Snow, but if it is
2440 * true then we know for sure.
2441 */
2442 __mark_reg_known(true_reg, val);
2443 break;
2444 case BPF_JNE:
2445 /* If this is true we know nothing Jon Snow, but if it is false
2446 * we know the value for sure;
2447 */
2448 __mark_reg_known(false_reg, val);
2449 break;
2450 case BPF_JGT:
2451 false_reg->umax_value = min(false_reg->umax_value, val);
2452 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2453 break;
2454 case BPF_JSGT:
2455 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2456 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2457 break;
2458 case BPF_JLT:
2459 false_reg->umin_value = max(false_reg->umin_value, val);
2460 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2461 break;
2462 case BPF_JSLT:
2463 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2464 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2465 break;
2466 case BPF_JGE:
2467 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2468 true_reg->umin_value = max(true_reg->umin_value, val);
2469 break;
2470 case BPF_JSGE:
2471 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2472 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2473 break;
2474 case BPF_JLE:
2475 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2476 true_reg->umax_value = min(true_reg->umax_value, val);
2477 break;
2478 case BPF_JSLE:
2479 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2480 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2481 break;
2482 default:
2483 break;
2484 }
2485
2486 __reg_deduce_bounds(false_reg);
2487 __reg_deduce_bounds(true_reg);
2488 /* We might have learned some bits from the bounds. */
2489 __reg_bound_offset(false_reg);
2490 __reg_bound_offset(true_reg);
2491 /* Intersecting with the old var_off might have improved our bounds
2492 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2493 * then new var_off is (0; 0x7f...fc) which improves our umax.
2494 */
2495 __update_reg_bounds(false_reg);
2496 __update_reg_bounds(true_reg);
2497 }
2498
2499 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
2500 * the variable reg.
2501 */
2502 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2503 struct bpf_reg_state *false_reg, u64 val,
2504 u8 opcode)
2505 {
2506 if (__is_pointer_value(false, false_reg))
2507 return;
2508
2509 switch (opcode) {
2510 case BPF_JEQ:
2511 /* If this is false then we know nothing Jon Snow, but if it is
2512 * true then we know for sure.
2513 */
2514 __mark_reg_known(true_reg, val);
2515 break;
2516 case BPF_JNE:
2517 /* If this is true we know nothing Jon Snow, but if it is false
2518 * we know the value for sure;
2519 */
2520 __mark_reg_known(false_reg, val);
2521 break;
2522 case BPF_JGT:
2523 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2524 false_reg->umin_value = max(false_reg->umin_value, val);
2525 break;
2526 case BPF_JSGT:
2527 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2528 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2529 break;
2530 case BPF_JLT:
2531 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2532 false_reg->umax_value = min(false_reg->umax_value, val);
2533 break;
2534 case BPF_JSLT:
2535 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2536 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2537 break;
2538 case BPF_JGE:
2539 true_reg->umax_value = min(true_reg->umax_value, val);
2540 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2541 break;
2542 case BPF_JSGE:
2543 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2544 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2545 break;
2546 case BPF_JLE:
2547 true_reg->umin_value = max(true_reg->umin_value, val);
2548 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2549 break;
2550 case BPF_JSLE:
2551 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2552 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2553 break;
2554 default:
2555 break;
2556 }
2557
2558 __reg_deduce_bounds(false_reg);
2559 __reg_deduce_bounds(true_reg);
2560 /* We might have learned some bits from the bounds. */
2561 __reg_bound_offset(false_reg);
2562 __reg_bound_offset(true_reg);
2563 /* Intersecting with the old var_off might have improved our bounds
2564 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2565 * then new var_off is (0; 0x7f...fc) which improves our umax.
2566 */
2567 __update_reg_bounds(false_reg);
2568 __update_reg_bounds(true_reg);
2569 }
2570
2571 /* Regs are known to be equal, so intersect their min/max/var_off */
2572 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2573 struct bpf_reg_state *dst_reg)
2574 {
2575 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2576 dst_reg->umin_value);
2577 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2578 dst_reg->umax_value);
2579 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2580 dst_reg->smin_value);
2581 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2582 dst_reg->smax_value);
2583 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2584 dst_reg->var_off);
2585 /* We might have learned new bounds from the var_off. */
2586 __update_reg_bounds(src_reg);
2587 __update_reg_bounds(dst_reg);
2588 /* We might have learned something about the sign bit. */
2589 __reg_deduce_bounds(src_reg);
2590 __reg_deduce_bounds(dst_reg);
2591 /* We might have learned some bits from the bounds. */
2592 __reg_bound_offset(src_reg);
2593 __reg_bound_offset(dst_reg);
2594 /* Intersecting with the old var_off might have improved our bounds
2595 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2596 * then new var_off is (0; 0x7f...fc) which improves our umax.
2597 */
2598 __update_reg_bounds(src_reg);
2599 __update_reg_bounds(dst_reg);
2600 }
2601
2602 static void reg_combine_min_max(struct bpf_reg_state *true_src,
2603 struct bpf_reg_state *true_dst,
2604 struct bpf_reg_state *false_src,
2605 struct bpf_reg_state *false_dst,
2606 u8 opcode)
2607 {
2608 switch (opcode) {
2609 case BPF_JEQ:
2610 __reg_combine_min_max(true_src, true_dst);
2611 break;
2612 case BPF_JNE:
2613 __reg_combine_min_max(false_src, false_dst);
2614 break;
2615 }
2616 }
2617
2618 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2619 bool is_null)
2620 {
2621 struct bpf_reg_state *reg = &regs[regno];
2622
2623 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2624 /* Old offset (both fixed and variable parts) should
2625 * have been known-zero, because we don't allow pointer
2626 * arithmetic on pointers that might be NULL.
2627 */
2628 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2629 !tnum_equals_const(reg->var_off, 0) ||
2630 reg->off)) {
2631 __mark_reg_known_zero(reg);
2632 reg->off = 0;
2633 }
2634 if (is_null) {
2635 reg->type = SCALAR_VALUE;
2636 } else if (reg->map_ptr->inner_map_meta) {
2637 reg->type = CONST_PTR_TO_MAP;
2638 reg->map_ptr = reg->map_ptr->inner_map_meta;
2639 } else {
2640 reg->type = PTR_TO_MAP_VALUE;
2641 }
2642 /* We don't need id from this point onwards anymore, thus we
2643 * should better reset it, so that state pruning has chances
2644 * to take effect.
2645 */
2646 reg->id = 0;
2647 }
2648 }
2649
2650 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2651 * be folded together at some point.
2652 */
2653 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2654 bool is_null)
2655 {
2656 struct bpf_reg_state *regs = state->regs;
2657 u32 id = regs[regno].id;
2658 int i;
2659
2660 for (i = 0; i < MAX_BPF_REG; i++)
2661 mark_map_reg(regs, i, id, is_null);
2662
2663 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2664 if (state->stack_slot_type[i] != STACK_SPILL)
2665 continue;
2666 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
2667 }
2668 }
2669
2670 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2671 struct bpf_insn *insn, int *insn_idx)
2672 {
2673 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2674 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2675 u8 opcode = BPF_OP(insn->code);
2676 int err;
2677
2678 if (opcode > BPF_JSLE) {
2679 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2680 return -EINVAL;
2681 }
2682
2683 if (BPF_SRC(insn->code) == BPF_X) {
2684 if (insn->imm != 0) {
2685 verbose(env, "BPF_JMP uses reserved fields\n");
2686 return -EINVAL;
2687 }
2688
2689 /* check src1 operand */
2690 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2691 if (err)
2692 return err;
2693
2694 if (is_pointer_value(env, insn->src_reg)) {
2695 verbose(env, "R%d pointer comparison prohibited\n",
2696 insn->src_reg);
2697 return -EACCES;
2698 }
2699 } else {
2700 if (insn->src_reg != BPF_REG_0) {
2701 verbose(env, "BPF_JMP uses reserved fields\n");
2702 return -EINVAL;
2703 }
2704 }
2705
2706 /* check src2 operand */
2707 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2708 if (err)
2709 return err;
2710
2711 dst_reg = &regs[insn->dst_reg];
2712
2713 /* detect if R == 0 where R was initialized to zero earlier */
2714 if (BPF_SRC(insn->code) == BPF_K &&
2715 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2716 dst_reg->type == SCALAR_VALUE &&
2717 tnum_equals_const(dst_reg->var_off, insn->imm)) {
2718 if (opcode == BPF_JEQ) {
2719 /* if (imm == imm) goto pc+off;
2720 * only follow the goto, ignore fall-through
2721 */
2722 *insn_idx += insn->off;
2723 return 0;
2724 } else {
2725 /* if (imm != imm) goto pc+off;
2726 * only follow fall-through branch, since
2727 * that's where the program will go
2728 */
2729 return 0;
2730 }
2731 }
2732
2733 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2734 if (!other_branch)
2735 return -EFAULT;
2736
2737 /* detect if we are comparing against a constant value so we can adjust
2738 * our min/max values for our dst register.
2739 * this is only legit if both are scalars (or pointers to the same
2740 * object, I suppose, but we don't support that right now), because
2741 * otherwise the different base pointers mean the offsets aren't
2742 * comparable.
2743 */
2744 if (BPF_SRC(insn->code) == BPF_X) {
2745 if (dst_reg->type == SCALAR_VALUE &&
2746 regs[insn->src_reg].type == SCALAR_VALUE) {
2747 if (tnum_is_const(regs[insn->src_reg].var_off))
2748 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2749 dst_reg, regs[insn->src_reg].var_off.value,
2750 opcode);
2751 else if (tnum_is_const(dst_reg->var_off))
2752 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2753 &regs[insn->src_reg],
2754 dst_reg->var_off.value, opcode);
2755 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2756 /* Comparing for equality, we can combine knowledge */
2757 reg_combine_min_max(&other_branch->regs[insn->src_reg],
2758 &other_branch->regs[insn->dst_reg],
2759 &regs[insn->src_reg],
2760 &regs[insn->dst_reg], opcode);
2761 }
2762 } else if (dst_reg->type == SCALAR_VALUE) {
2763 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2764 dst_reg, insn->imm, opcode);
2765 }
2766
2767 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2768 if (BPF_SRC(insn->code) == BPF_K &&
2769 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2770 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2771 /* Mark all identical map registers in each branch as either
2772 * safe or unknown depending R == 0 or R != 0 conditional.
2773 */
2774 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2775 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
2776 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2777 dst_reg->type == PTR_TO_PACKET &&
2778 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2779 find_good_pkt_pointers(this_branch, dst_reg, PTR_TO_PACKET);
2780 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2781 dst_reg->type == PTR_TO_PACKET &&
2782 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2783 find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET);
2784 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2785 dst_reg->type == PTR_TO_PACKET_END &&
2786 regs[insn->src_reg].type == PTR_TO_PACKET) {
2787 find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2788 PTR_TO_PACKET);
2789 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2790 dst_reg->type == PTR_TO_PACKET_END &&
2791 regs[insn->src_reg].type == PTR_TO_PACKET) {
2792 find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2793 PTR_TO_PACKET);
2794 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2795 dst_reg->type == PTR_TO_PACKET_META &&
2796 reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2797 find_good_pkt_pointers(this_branch, dst_reg, PTR_TO_PACKET_META);
2798 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2799 dst_reg->type == PTR_TO_PACKET_META &&
2800 reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2801 find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET_META);
2802 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2803 reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2804 regs[insn->src_reg].type == PTR_TO_PACKET_META) {
2805 find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2806 PTR_TO_PACKET_META);
2807 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2808 reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2809 regs[insn->src_reg].type == PTR_TO_PACKET_META) {
2810 find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2811 PTR_TO_PACKET_META);
2812 } else if (is_pointer_value(env, insn->dst_reg)) {
2813 verbose(env, "R%d pointer comparison prohibited\n",
2814 insn->dst_reg);
2815 return -EACCES;
2816 }
2817 if (env->log.level)
2818 print_verifier_state(env, this_branch);
2819 return 0;
2820 }
2821
2822 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2823 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2824 {
2825 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2826
2827 return (struct bpf_map *) (unsigned long) imm64;
2828 }
2829
2830 /* verify BPF_LD_IMM64 instruction */
2831 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2832 {
2833 struct bpf_reg_state *regs = env->cur_state.regs;
2834 int err;
2835
2836 if (BPF_SIZE(insn->code) != BPF_DW) {
2837 verbose(env, "invalid BPF_LD_IMM insn\n");
2838 return -EINVAL;
2839 }
2840 if (insn->off != 0) {
2841 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
2842 return -EINVAL;
2843 }
2844
2845 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2846 if (err)
2847 return err;
2848
2849 if (insn->src_reg == 0) {
2850 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2851
2852 regs[insn->dst_reg].type = SCALAR_VALUE;
2853 __mark_reg_known(&regs[insn->dst_reg], imm);
2854 return 0;
2855 }
2856
2857 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2858 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2859
2860 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2861 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2862 return 0;
2863 }
2864
2865 static bool may_access_skb(enum bpf_prog_type type)
2866 {
2867 switch (type) {
2868 case BPF_PROG_TYPE_SOCKET_FILTER:
2869 case BPF_PROG_TYPE_SCHED_CLS:
2870 case BPF_PROG_TYPE_SCHED_ACT:
2871 return true;
2872 default:
2873 return false;
2874 }
2875 }
2876
2877 /* verify safety of LD_ABS|LD_IND instructions:
2878 * - they can only appear in the programs where ctx == skb
2879 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2880 * preserve R6-R9, and store return value into R0
2881 *
2882 * Implicit input:
2883 * ctx == skb == R6 == CTX
2884 *
2885 * Explicit input:
2886 * SRC == any register
2887 * IMM == 32-bit immediate
2888 *
2889 * Output:
2890 * R0 - 8/16/32-bit skb data converted to cpu endianness
2891 */
2892 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2893 {
2894 struct bpf_reg_state *regs = env->cur_state.regs;
2895 u8 mode = BPF_MODE(insn->code);
2896 int i, err;
2897
2898 if (!may_access_skb(env->prog->type)) {
2899 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2900 return -EINVAL;
2901 }
2902
2903 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2904 BPF_SIZE(insn->code) == BPF_DW ||
2905 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2906 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
2907 return -EINVAL;
2908 }
2909
2910 /* check whether implicit source operand (register R6) is readable */
2911 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
2912 if (err)
2913 return err;
2914
2915 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2916 verbose(env,
2917 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2918 return -EINVAL;
2919 }
2920
2921 if (mode == BPF_IND) {
2922 /* check explicit source operand */
2923 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2924 if (err)
2925 return err;
2926 }
2927
2928 /* reset caller saved regs to unreadable */
2929 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2930 mark_reg_not_init(env, regs, caller_saved[i]);
2931 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2932 }
2933
2934 /* mark destination R0 register as readable, since it contains
2935 * the value fetched from the packet.
2936 * Already marked as written above.
2937 */
2938 mark_reg_unknown(env, regs, BPF_REG_0);
2939 return 0;
2940 }
2941
2942 static int check_return_code(struct bpf_verifier_env *env)
2943 {
2944 struct bpf_reg_state *reg;
2945 struct tnum range = tnum_range(0, 1);
2946
2947 switch (env->prog->type) {
2948 case BPF_PROG_TYPE_CGROUP_SKB:
2949 case BPF_PROG_TYPE_CGROUP_SOCK:
2950 case BPF_PROG_TYPE_SOCK_OPS:
2951 break;
2952 default:
2953 return 0;
2954 }
2955
2956 reg = &env->cur_state.regs[BPF_REG_0];
2957 if (reg->type != SCALAR_VALUE) {
2958 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
2959 reg_type_str[reg->type]);
2960 return -EINVAL;
2961 }
2962
2963 if (!tnum_in(range, reg->var_off)) {
2964 verbose(env, "At program exit the register R0 ");
2965 if (!tnum_is_unknown(reg->var_off)) {
2966 char tn_buf[48];
2967
2968 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2969 verbose(env, "has value %s", tn_buf);
2970 } else {
2971 verbose(env, "has unknown scalar value");
2972 }
2973 verbose(env, " should have been 0 or 1\n");
2974 return -EINVAL;
2975 }
2976 return 0;
2977 }
2978
2979 /* non-recursive DFS pseudo code
2980 * 1 procedure DFS-iterative(G,v):
2981 * 2 label v as discovered
2982 * 3 let S be a stack
2983 * 4 S.push(v)
2984 * 5 while S is not empty
2985 * 6 t <- S.pop()
2986 * 7 if t is what we're looking for:
2987 * 8 return t
2988 * 9 for all edges e in G.adjacentEdges(t) do
2989 * 10 if edge e is already labelled
2990 * 11 continue with the next edge
2991 * 12 w <- G.adjacentVertex(t,e)
2992 * 13 if vertex w is not discovered and not explored
2993 * 14 label e as tree-edge
2994 * 15 label w as discovered
2995 * 16 S.push(w)
2996 * 17 continue at 5
2997 * 18 else if vertex w is discovered
2998 * 19 label e as back-edge
2999 * 20 else
3000 * 21 // vertex w is explored
3001 * 22 label e as forward- or cross-edge
3002 * 23 label t as explored
3003 * 24 S.pop()
3004 *
3005 * convention:
3006 * 0x10 - discovered
3007 * 0x11 - discovered and fall-through edge labelled
3008 * 0x12 - discovered and fall-through and branch edges labelled
3009 * 0x20 - explored
3010 */
3011
3012 enum {
3013 DISCOVERED = 0x10,
3014 EXPLORED = 0x20,
3015 FALLTHROUGH = 1,
3016 BRANCH = 2,
3017 };
3018
3019 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3020
3021 static int *insn_stack; /* stack of insns to process */
3022 static int cur_stack; /* current stack index */
3023 static int *insn_state;
3024
3025 /* t, w, e - match pseudo-code above:
3026 * t - index of current instruction
3027 * w - next instruction
3028 * e - edge
3029 */
3030 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3031 {
3032 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3033 return 0;
3034
3035 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3036 return 0;
3037
3038 if (w < 0 || w >= env->prog->len) {
3039 verbose(env, "jump out of range from insn %d to %d\n", t, w);
3040 return -EINVAL;
3041 }
3042
3043 if (e == BRANCH)
3044 /* mark branch target for state pruning */
3045 env->explored_states[w] = STATE_LIST_MARK;
3046
3047 if (insn_state[w] == 0) {
3048 /* tree-edge */
3049 insn_state[t] = DISCOVERED | e;
3050 insn_state[w] = DISCOVERED;
3051 if (cur_stack >= env->prog->len)
3052 return -E2BIG;
3053 insn_stack[cur_stack++] = w;
3054 return 1;
3055 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3056 verbose(env, "back-edge from insn %d to %d\n", t, w);
3057 return -EINVAL;
3058 } else if (insn_state[w] == EXPLORED) {
3059 /* forward- or cross-edge */
3060 insn_state[t] = DISCOVERED | e;
3061 } else {
3062 verbose(env, "insn state internal bug\n");
3063 return -EFAULT;
3064 }
3065 return 0;
3066 }
3067
3068 /* non-recursive depth-first-search to detect loops in BPF program
3069 * loop == back-edge in directed graph
3070 */
3071 static int check_cfg(struct bpf_verifier_env *env)
3072 {
3073 struct bpf_insn *insns = env->prog->insnsi;
3074 int insn_cnt = env->prog->len;
3075 int ret = 0;
3076 int i, t;
3077
3078 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3079 if (!insn_state)
3080 return -ENOMEM;
3081
3082 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3083 if (!insn_stack) {
3084 kfree(insn_state);
3085 return -ENOMEM;
3086 }
3087
3088 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3089 insn_stack[0] = 0; /* 0 is the first instruction */
3090 cur_stack = 1;
3091
3092 peek_stack:
3093 if (cur_stack == 0)
3094 goto check_state;
3095 t = insn_stack[cur_stack - 1];
3096
3097 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3098 u8 opcode = BPF_OP(insns[t].code);
3099
3100 if (opcode == BPF_EXIT) {
3101 goto mark_explored;
3102 } else if (opcode == BPF_CALL) {
3103 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3104 if (ret == 1)
3105 goto peek_stack;
3106 else if (ret < 0)
3107 goto err_free;
3108 if (t + 1 < insn_cnt)
3109 env->explored_states[t + 1] = STATE_LIST_MARK;
3110 } else if (opcode == BPF_JA) {
3111 if (BPF_SRC(insns[t].code) != BPF_K) {
3112 ret = -EINVAL;
3113 goto err_free;
3114 }
3115 /* unconditional jump with single edge */
3116 ret = push_insn(t, t + insns[t].off + 1,
3117 FALLTHROUGH, env);
3118 if (ret == 1)
3119 goto peek_stack;
3120 else if (ret < 0)
3121 goto err_free;
3122 /* tell verifier to check for equivalent states
3123 * after every call and jump
3124 */
3125 if (t + 1 < insn_cnt)
3126 env->explored_states[t + 1] = STATE_LIST_MARK;
3127 } else {
3128 /* conditional jump with two edges */
3129 env->explored_states[t] = STATE_LIST_MARK;
3130 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3131 if (ret == 1)
3132 goto peek_stack;
3133 else if (ret < 0)
3134 goto err_free;
3135
3136 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3137 if (ret == 1)
3138 goto peek_stack;
3139 else if (ret < 0)
3140 goto err_free;
3141 }
3142 } else {
3143 /* all other non-branch instructions with single
3144 * fall-through edge
3145 */
3146 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3147 if (ret == 1)
3148 goto peek_stack;
3149 else if (ret < 0)
3150 goto err_free;
3151 }
3152
3153 mark_explored:
3154 insn_state[t] = EXPLORED;
3155 if (cur_stack-- <= 0) {
3156 verbose(env, "pop stack internal bug\n");
3157 ret = -EFAULT;
3158 goto err_free;
3159 }
3160 goto peek_stack;
3161
3162 check_state:
3163 for (i = 0; i < insn_cnt; i++) {
3164 if (insn_state[i] != EXPLORED) {
3165 verbose(env, "unreachable insn %d\n", i);
3166 ret = -EINVAL;
3167 goto err_free;
3168 }
3169 }
3170 ret = 0; /* cfg looks good */
3171
3172 err_free:
3173 kfree(insn_state);
3174 kfree(insn_stack);
3175 return ret;
3176 }
3177
3178 /* check %cur's range satisfies %old's */
3179 static bool range_within(struct bpf_reg_state *old,
3180 struct bpf_reg_state *cur)
3181 {
3182 return old->umin_value <= cur->umin_value &&
3183 old->umax_value >= cur->umax_value &&
3184 old->smin_value <= cur->smin_value &&
3185 old->smax_value >= cur->smax_value;
3186 }
3187
3188 /* Maximum number of register states that can exist at once */
3189 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3190 struct idpair {
3191 u32 old;
3192 u32 cur;
3193 };
3194
3195 /* If in the old state two registers had the same id, then they need to have
3196 * the same id in the new state as well. But that id could be different from
3197 * the old state, so we need to track the mapping from old to new ids.
3198 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3199 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3200 * regs with a different old id could still have new id 9, we don't care about
3201 * that.
3202 * So we look through our idmap to see if this old id has been seen before. If
3203 * so, we require the new id to match; otherwise, we add the id pair to the map.
3204 */
3205 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
3206 {
3207 unsigned int i;
3208
3209 for (i = 0; i < ID_MAP_SIZE; i++) {
3210 if (!idmap[i].old) {
3211 /* Reached an empty slot; haven't seen this id before */
3212 idmap[i].old = old_id;
3213 idmap[i].cur = cur_id;
3214 return true;
3215 }
3216 if (idmap[i].old == old_id)
3217 return idmap[i].cur == cur_id;
3218 }
3219 /* We ran out of idmap slots, which should be impossible */
3220 WARN_ON_ONCE(1);
3221 return false;
3222 }
3223
3224 /* Returns true if (rold safe implies rcur safe) */
3225 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3226 struct idpair *idmap)
3227 {
3228 if (!(rold->live & REG_LIVE_READ))
3229 /* explored state didn't use this */
3230 return true;
3231
3232 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
3233 return true;
3234
3235 if (rold->type == NOT_INIT)
3236 /* explored state can't have used this */
3237 return true;
3238 if (rcur->type == NOT_INIT)
3239 return false;
3240 switch (rold->type) {
3241 case SCALAR_VALUE:
3242 if (rcur->type == SCALAR_VALUE) {
3243 /* new val must satisfy old val knowledge */
3244 return range_within(rold, rcur) &&
3245 tnum_in(rold->var_off, rcur->var_off);
3246 } else {
3247 /* if we knew anything about the old value, we're not
3248 * equal, because we can't know anything about the
3249 * scalar value of the pointer in the new value.
3250 */
3251 return rold->umin_value == 0 &&
3252 rold->umax_value == U64_MAX &&
3253 rold->smin_value == S64_MIN &&
3254 rold->smax_value == S64_MAX &&
3255 tnum_is_unknown(rold->var_off);
3256 }
3257 case PTR_TO_MAP_VALUE:
3258 /* If the new min/max/var_off satisfy the old ones and
3259 * everything else matches, we are OK.
3260 * We don't care about the 'id' value, because nothing
3261 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3262 */
3263 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3264 range_within(rold, rcur) &&
3265 tnum_in(rold->var_off, rcur->var_off);
3266 case PTR_TO_MAP_VALUE_OR_NULL:
3267 /* a PTR_TO_MAP_VALUE could be safe to use as a
3268 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3269 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3270 * checked, doing so could have affected others with the same
3271 * id, and we can't check for that because we lost the id when
3272 * we converted to a PTR_TO_MAP_VALUE.
3273 */
3274 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3275 return false;
3276 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3277 return false;
3278 /* Check our ids match any regs they're supposed to */
3279 return check_ids(rold->id, rcur->id, idmap);
3280 case PTR_TO_PACKET_META:
3281 case PTR_TO_PACKET:
3282 if (rcur->type != rold->type)
3283 return false;
3284 /* We must have at least as much range as the old ptr
3285 * did, so that any accesses which were safe before are
3286 * still safe. This is true even if old range < old off,
3287 * since someone could have accessed through (ptr - k), or
3288 * even done ptr -= k in a register, to get a safe access.
3289 */
3290 if (rold->range > rcur->range)
3291 return false;
3292 /* If the offsets don't match, we can't trust our alignment;
3293 * nor can we be sure that we won't fall out of range.
3294 */
3295 if (rold->off != rcur->off)
3296 return false;
3297 /* id relations must be preserved */
3298 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3299 return false;
3300 /* new val must satisfy old val knowledge */
3301 return range_within(rold, rcur) &&
3302 tnum_in(rold->var_off, rcur->var_off);
3303 case PTR_TO_CTX:
3304 case CONST_PTR_TO_MAP:
3305 case PTR_TO_STACK:
3306 case PTR_TO_PACKET_END:
3307 /* Only valid matches are exact, which memcmp() above
3308 * would have accepted
3309 */
3310 default:
3311 /* Don't know what's going on, just say it's not safe */
3312 return false;
3313 }
3314
3315 /* Shouldn't get here; if we do, say it's not safe */
3316 WARN_ON_ONCE(1);
3317 return false;
3318 }
3319
3320 /* compare two verifier states
3321 *
3322 * all states stored in state_list are known to be valid, since
3323 * verifier reached 'bpf_exit' instruction through them
3324 *
3325 * this function is called when verifier exploring different branches of
3326 * execution popped from the state stack. If it sees an old state that has
3327 * more strict register state and more strict stack state then this execution
3328 * branch doesn't need to be explored further, since verifier already
3329 * concluded that more strict state leads to valid finish.
3330 *
3331 * Therefore two states are equivalent if register state is more conservative
3332 * and explored stack state is more conservative than the current one.
3333 * Example:
3334 * explored current
3335 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3336 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3337 *
3338 * In other words if current stack state (one being explored) has more
3339 * valid slots than old one that already passed validation, it means
3340 * the verifier can stop exploring and conclude that current state is valid too
3341 *
3342 * Similarly with registers. If explored state has register type as invalid
3343 * whereas register type in current state is meaningful, it means that
3344 * the current state will reach 'bpf_exit' instruction safely
3345 */
3346 static bool states_equal(struct bpf_verifier_env *env,
3347 struct bpf_verifier_state *old,
3348 struct bpf_verifier_state *cur)
3349 {
3350 struct idpair *idmap;
3351 bool ret = false;
3352 int i;
3353
3354 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3355 /* If we failed to allocate the idmap, just say it's not safe */
3356 if (!idmap)
3357 return false;
3358
3359 for (i = 0; i < MAX_BPF_REG; i++) {
3360 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3361 goto out_free;
3362 }
3363
3364 for (i = 0; i < MAX_BPF_STACK; i++) {
3365 if (old->stack_slot_type[i] == STACK_INVALID)
3366 continue;
3367 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
3368 /* Ex: old explored (safe) state has STACK_SPILL in
3369 * this stack slot, but current has has STACK_MISC ->
3370 * this verifier states are not equivalent,
3371 * return false to continue verification of this path
3372 */
3373 goto out_free;
3374 if (i % BPF_REG_SIZE)
3375 continue;
3376 if (old->stack_slot_type[i] != STACK_SPILL)
3377 continue;
3378 if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
3379 &cur->spilled_regs[i / BPF_REG_SIZE],
3380 idmap))
3381 /* when explored and current stack slot are both storing
3382 * spilled registers, check that stored pointers types
3383 * are the same as well.
3384 * Ex: explored safe path could have stored
3385 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3386 * but current path has stored:
3387 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3388 * such verifier states are not equivalent.
3389 * return false to continue verification of this path
3390 */
3391 goto out_free;
3392 else
3393 continue;
3394 }
3395 ret = true;
3396 out_free:
3397 kfree(idmap);
3398 return ret;
3399 }
3400
3401 /* A write screens off any subsequent reads; but write marks come from the
3402 * straight-line code between a state and its parent. When we arrive at a
3403 * jump target (in the first iteration of the propagate_liveness() loop),
3404 * we didn't arrive by the straight-line code, so read marks in state must
3405 * propagate to parent regardless of state's write marks.
3406 */
3407 static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3408 struct bpf_verifier_state *parent)
3409 {
3410 bool writes = parent == state->parent; /* Observe write marks */
3411 bool touched = false; /* any changes made? */
3412 int i;
3413
3414 if (!parent)
3415 return touched;
3416 /* Propagate read liveness of registers... */
3417 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3418 /* We don't need to worry about FP liveness because it's read-only */
3419 for (i = 0; i < BPF_REG_FP; i++) {
3420 if (parent->regs[i].live & REG_LIVE_READ)
3421 continue;
3422 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3423 continue;
3424 if (state->regs[i].live & REG_LIVE_READ) {
3425 parent->regs[i].live |= REG_LIVE_READ;
3426 touched = true;
3427 }
3428 }
3429 /* ... and stack slots */
3430 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
3431 if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3432 continue;
3433 if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3434 continue;
3435 if (parent->spilled_regs[i].live & REG_LIVE_READ)
3436 continue;
3437 if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN))
3438 continue;
3439 if (state->spilled_regs[i].live & REG_LIVE_READ) {
3440 parent->spilled_regs[i].live |= REG_LIVE_READ;
3441 touched = true;
3442 }
3443 }
3444 return touched;
3445 }
3446
3447 /* "parent" is "a state from which we reach the current state", but initially
3448 * it is not the state->parent (i.e. "the state whose straight-line code leads
3449 * to the current state"), instead it is the state that happened to arrive at
3450 * a (prunable) equivalent of the current state. See comment above
3451 * do_propagate_liveness() for consequences of this.
3452 * This function is just a more efficient way of calling mark_reg_read() or
3453 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3454 * though it requires that parent != state->parent in the call arguments.
3455 */
3456 static void propagate_liveness(const struct bpf_verifier_state *state,
3457 struct bpf_verifier_state *parent)
3458 {
3459 while (do_propagate_liveness(state, parent)) {
3460 /* Something changed, so we need to feed those changes onward */
3461 state = parent;
3462 parent = state->parent;
3463 }
3464 }
3465
3466 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3467 {
3468 struct bpf_verifier_state_list *new_sl;
3469 struct bpf_verifier_state_list *sl;
3470 int i;
3471
3472 sl = env->explored_states[insn_idx];
3473 if (!sl)
3474 /* this 'insn_idx' instruction wasn't marked, so we will not
3475 * be doing state search here
3476 */
3477 return 0;
3478
3479 while (sl != STATE_LIST_MARK) {
3480 if (states_equal(env, &sl->state, &env->cur_state)) {
3481 /* reached equivalent register/stack state,
3482 * prune the search.
3483 * Registers read by the continuation are read by us.
3484 * If we have any write marks in env->cur_state, they
3485 * will prevent corresponding reads in the continuation
3486 * from reaching our parent (an explored_state). Our
3487 * own state will get the read marks recorded, but
3488 * they'll be immediately forgotten as we're pruning
3489 * this state and will pop a new one.
3490 */
3491 propagate_liveness(&sl->state, &env->cur_state);
3492 return 1;
3493 }
3494 sl = sl->next;
3495 }
3496
3497 /* there were no equivalent states, remember current one.
3498 * technically the current state is not proven to be safe yet,
3499 * but it will either reach bpf_exit (which means it's safe) or
3500 * it will be rejected. Since there are no loops, we won't be
3501 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3502 */
3503 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
3504 if (!new_sl)
3505 return -ENOMEM;
3506
3507 /* add new state to the head of linked list */
3508 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
3509 new_sl->next = env->explored_states[insn_idx];
3510 env->explored_states[insn_idx] = new_sl;
3511 /* connect new state to parentage chain */
3512 env->cur_state.parent = &new_sl->state;
3513 /* clear write marks in current state: the writes we did are not writes
3514 * our child did, so they don't screen off its reads from us.
3515 * (There are no read marks in current state, because reads always mark
3516 * their parent and current state never has children yet. Only
3517 * explored_states can get read marks.)
3518 */
3519 for (i = 0; i < BPF_REG_FP; i++)
3520 env->cur_state.regs[i].live = REG_LIVE_NONE;
3521 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
3522 if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
3523 env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
3524 return 0;
3525 }
3526
3527 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3528 int insn_idx, int prev_insn_idx)
3529 {
3530 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3531 return 0;
3532
3533 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3534 }
3535
3536 static int do_check(struct bpf_verifier_env *env)
3537 {
3538 struct bpf_verifier_state *state = &env->cur_state;
3539 struct bpf_insn *insns = env->prog->insnsi;
3540 struct bpf_reg_state *regs = state->regs;
3541 int insn_cnt = env->prog->len;
3542 int insn_idx, prev_insn_idx = 0;
3543 int insn_processed = 0;
3544 bool do_print_state = false;
3545
3546 init_reg_state(env, regs);
3547 state->parent = NULL;
3548 insn_idx = 0;
3549 for (;;) {
3550 struct bpf_insn *insn;
3551 u8 class;
3552 int err;
3553
3554 if (insn_idx >= insn_cnt) {
3555 verbose(env, "invalid insn idx %d insn_cnt %d\n",
3556 insn_idx, insn_cnt);
3557 return -EFAULT;
3558 }
3559
3560 insn = &insns[insn_idx];
3561 class = BPF_CLASS(insn->code);
3562
3563 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3564 verbose(env,
3565 "BPF program is too large. Processed %d insn\n",
3566 insn_processed);
3567 return -E2BIG;
3568 }
3569
3570 err = is_state_visited(env, insn_idx);
3571 if (err < 0)
3572 return err;
3573 if (err == 1) {
3574 /* found equivalent state, can prune the search */
3575 if (env->log.level) {
3576 if (do_print_state)
3577 verbose(env, "\nfrom %d to %d: safe\n",
3578 prev_insn_idx, insn_idx);
3579 else
3580 verbose(env, "%d: safe\n", insn_idx);
3581 }
3582 goto process_bpf_exit;
3583 }
3584
3585 if (need_resched())
3586 cond_resched();
3587
3588 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3589 if (env->log.level > 1)
3590 verbose(env, "%d:", insn_idx);
3591 else
3592 verbose(env, "\nfrom %d to %d:",
3593 prev_insn_idx, insn_idx);
3594 print_verifier_state(env, &env->cur_state);
3595 do_print_state = false;
3596 }
3597
3598 if (env->log.level) {
3599 verbose(env, "%d: ", insn_idx);
3600 print_bpf_insn(verbose, env, insn,
3601 env->allow_ptr_leaks);
3602 }
3603
3604 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3605 if (err)
3606 return err;
3607
3608 if (class == BPF_ALU || class == BPF_ALU64) {
3609 err = check_alu_op(env, insn);
3610 if (err)
3611 return err;
3612
3613 } else if (class == BPF_LDX) {
3614 enum bpf_reg_type *prev_src_type, src_reg_type;
3615
3616 /* check for reserved fields is already done */
3617
3618 /* check src operand */
3619 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3620 if (err)
3621 return err;
3622
3623 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3624 if (err)
3625 return err;
3626
3627 src_reg_type = regs[insn->src_reg].type;
3628
3629 /* check that memory (src_reg + off) is readable,
3630 * the state of dst_reg will be updated by this func
3631 */
3632 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3633 BPF_SIZE(insn->code), BPF_READ,
3634 insn->dst_reg);
3635 if (err)
3636 return err;
3637
3638 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3639
3640 if (*prev_src_type == NOT_INIT) {
3641 /* saw a valid insn
3642 * dst_reg = *(u32 *)(src_reg + off)
3643 * save type to validate intersecting paths
3644 */
3645 *prev_src_type = src_reg_type;
3646
3647 } else if (src_reg_type != *prev_src_type &&
3648 (src_reg_type == PTR_TO_CTX ||
3649 *prev_src_type == PTR_TO_CTX)) {
3650 /* ABuser program is trying to use the same insn
3651 * dst_reg = *(u32*) (src_reg + off)
3652 * with different pointer types:
3653 * src_reg == ctx in one branch and
3654 * src_reg == stack|map in some other branch.
3655 * Reject it.
3656 */
3657 verbose(env, "same insn cannot be used with different pointers\n");
3658 return -EINVAL;
3659 }
3660
3661 } else if (class == BPF_STX) {
3662 enum bpf_reg_type *prev_dst_type, dst_reg_type;
3663
3664 if (BPF_MODE(insn->code) == BPF_XADD) {
3665 err = check_xadd(env, insn_idx, insn);
3666 if (err)
3667 return err;
3668 insn_idx++;
3669 continue;
3670 }
3671
3672 /* check src1 operand */
3673 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3674 if (err)
3675 return err;
3676 /* check src2 operand */
3677 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3678 if (err)
3679 return err;
3680
3681 dst_reg_type = regs[insn->dst_reg].type;
3682
3683 /* check that memory (dst_reg + off) is writeable */
3684 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3685 BPF_SIZE(insn->code), BPF_WRITE,
3686 insn->src_reg);
3687 if (err)
3688 return err;
3689
3690 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3691
3692 if (*prev_dst_type == NOT_INIT) {
3693 *prev_dst_type = dst_reg_type;
3694 } else if (dst_reg_type != *prev_dst_type &&
3695 (dst_reg_type == PTR_TO_CTX ||
3696 *prev_dst_type == PTR_TO_CTX)) {
3697 verbose(env, "same insn cannot be used with different pointers\n");
3698 return -EINVAL;
3699 }
3700
3701 } else if (class == BPF_ST) {
3702 if (BPF_MODE(insn->code) != BPF_MEM ||
3703 insn->src_reg != BPF_REG_0) {
3704 verbose(env, "BPF_ST uses reserved fields\n");
3705 return -EINVAL;
3706 }
3707 /* check src operand */
3708 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3709 if (err)
3710 return err;
3711
3712 /* check that memory (dst_reg + off) is writeable */
3713 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3714 BPF_SIZE(insn->code), BPF_WRITE,
3715 -1);
3716 if (err)
3717 return err;
3718
3719 } else if (class == BPF_JMP) {
3720 u8 opcode = BPF_OP(insn->code);
3721
3722 if (opcode == BPF_CALL) {
3723 if (BPF_SRC(insn->code) != BPF_K ||
3724 insn->off != 0 ||
3725 insn->src_reg != BPF_REG_0 ||
3726 insn->dst_reg != BPF_REG_0) {
3727 verbose(env, "BPF_CALL uses reserved fields\n");
3728 return -EINVAL;
3729 }
3730
3731 err = check_call(env, insn->imm, insn_idx);
3732 if (err)
3733 return err;
3734
3735 } else if (opcode == BPF_JA) {
3736 if (BPF_SRC(insn->code) != BPF_K ||
3737 insn->imm != 0 ||
3738 insn->src_reg != BPF_REG_0 ||
3739 insn->dst_reg != BPF_REG_0) {
3740 verbose(env, "BPF_JA uses reserved fields\n");
3741 return -EINVAL;
3742 }
3743
3744 insn_idx += insn->off + 1;
3745 continue;
3746
3747 } else if (opcode == BPF_EXIT) {
3748 if (BPF_SRC(insn->code) != BPF_K ||
3749 insn->imm != 0 ||
3750 insn->src_reg != BPF_REG_0 ||
3751 insn->dst_reg != BPF_REG_0) {
3752 verbose(env, "BPF_EXIT uses reserved fields\n");
3753 return -EINVAL;
3754 }
3755
3756 /* eBPF calling convetion is such that R0 is used
3757 * to return the value from eBPF program.
3758 * Make sure that it's readable at this time
3759 * of bpf_exit, which means that program wrote
3760 * something into it earlier
3761 */
3762 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3763 if (err)
3764 return err;
3765
3766 if (is_pointer_value(env, BPF_REG_0)) {
3767 verbose(env, "R0 leaks addr as return value\n");
3768 return -EACCES;
3769 }
3770
3771 err = check_return_code(env);
3772 if (err)
3773 return err;
3774 process_bpf_exit:
3775 insn_idx = pop_stack(env, &prev_insn_idx);
3776 if (insn_idx < 0) {
3777 break;
3778 } else {
3779 do_print_state = true;
3780 continue;
3781 }
3782 } else {
3783 err = check_cond_jmp_op(env, insn, &insn_idx);
3784 if (err)
3785 return err;
3786 }
3787 } else if (class == BPF_LD) {
3788 u8 mode = BPF_MODE(insn->code);
3789
3790 if (mode == BPF_ABS || mode == BPF_IND) {
3791 err = check_ld_abs(env, insn);
3792 if (err)
3793 return err;
3794
3795 } else if (mode == BPF_IMM) {
3796 err = check_ld_imm(env, insn);
3797 if (err)
3798 return err;
3799
3800 insn_idx++;
3801 } else {
3802 verbose(env, "invalid BPF_LD mode\n");
3803 return -EINVAL;
3804 }
3805 } else {
3806 verbose(env, "unknown insn class %d\n", class);
3807 return -EINVAL;
3808 }
3809
3810 insn_idx++;
3811 }
3812
3813 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
3814 env->prog->aux->stack_depth);
3815 return 0;
3816 }
3817
3818 static int check_map_prealloc(struct bpf_map *map)
3819 {
3820 return (map->map_type != BPF_MAP_TYPE_HASH &&
3821 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3822 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3823 !(map->map_flags & BPF_F_NO_PREALLOC);
3824 }
3825
3826 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
3827 struct bpf_map *map,
3828 struct bpf_prog *prog)
3829
3830 {
3831 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3832 * preallocated hash maps, since doing memory allocation
3833 * in overflow_handler can crash depending on where nmi got
3834 * triggered.
3835 */
3836 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3837 if (!check_map_prealloc(map)) {
3838 verbose(env, "perf_event programs can only use preallocated hash map\n");
3839 return -EINVAL;
3840 }
3841 if (map->inner_map_meta &&
3842 !check_map_prealloc(map->inner_map_meta)) {
3843 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
3844 return -EINVAL;
3845 }
3846 }
3847 return 0;
3848 }
3849
3850 /* look for pseudo eBPF instructions that access map FDs and
3851 * replace them with actual map pointers
3852 */
3853 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3854 {
3855 struct bpf_insn *insn = env->prog->insnsi;
3856 int insn_cnt = env->prog->len;
3857 int i, j, err;
3858
3859 err = bpf_prog_calc_tag(env->prog);
3860 if (err)
3861 return err;
3862
3863 for (i = 0; i < insn_cnt; i++, insn++) {
3864 if (BPF_CLASS(insn->code) == BPF_LDX &&
3865 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3866 verbose(env, "BPF_LDX uses reserved fields\n");
3867 return -EINVAL;
3868 }
3869
3870 if (BPF_CLASS(insn->code) == BPF_STX &&
3871 ((BPF_MODE(insn->code) != BPF_MEM &&
3872 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3873 verbose(env, "BPF_STX uses reserved fields\n");
3874 return -EINVAL;
3875 }
3876
3877 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3878 struct bpf_map *map;
3879 struct fd f;
3880
3881 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3882 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3883 insn[1].off != 0) {
3884 verbose(env, "invalid bpf_ld_imm64 insn\n");
3885 return -EINVAL;
3886 }
3887
3888 if (insn->src_reg == 0)
3889 /* valid generic load 64-bit imm */
3890 goto next_insn;
3891
3892 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3893 verbose(env,
3894 "unrecognized bpf_ld_imm64 insn\n");
3895 return -EINVAL;
3896 }
3897
3898 f = fdget(insn->imm);
3899 map = __bpf_map_get(f);
3900 if (IS_ERR(map)) {
3901 verbose(env, "fd %d is not pointing to valid bpf_map\n",
3902 insn->imm);
3903 return PTR_ERR(map);
3904 }
3905
3906 err = check_map_prog_compatibility(env, map, env->prog);
3907 if (err) {
3908 fdput(f);
3909 return err;
3910 }
3911
3912 /* store map pointer inside BPF_LD_IMM64 instruction */
3913 insn[0].imm = (u32) (unsigned long) map;
3914 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3915
3916 /* check whether we recorded this map already */
3917 for (j = 0; j < env->used_map_cnt; j++)
3918 if (env->used_maps[j] == map) {
3919 fdput(f);
3920 goto next_insn;
3921 }
3922
3923 if (env->used_map_cnt >= MAX_USED_MAPS) {
3924 fdput(f);
3925 return -E2BIG;
3926 }
3927
3928 /* hold the map. If the program is rejected by verifier,
3929 * the map will be released by release_maps() or it
3930 * will be used by the valid program until it's unloaded
3931 * and all maps are released in free_bpf_prog_info()
3932 */
3933 map = bpf_map_inc(map, false);
3934 if (IS_ERR(map)) {
3935 fdput(f);
3936 return PTR_ERR(map);
3937 }
3938 env->used_maps[env->used_map_cnt++] = map;
3939
3940 fdput(f);
3941 next_insn:
3942 insn++;
3943 i++;
3944 }
3945 }
3946
3947 /* now all pseudo BPF_LD_IMM64 instructions load valid
3948 * 'struct bpf_map *' into a register instead of user map_fd.
3949 * These pointers will be used later by verifier to validate map access.
3950 */
3951 return 0;
3952 }
3953
3954 /* drop refcnt of maps used by the rejected program */
3955 static void release_maps(struct bpf_verifier_env *env)
3956 {
3957 int i;
3958
3959 for (i = 0; i < env->used_map_cnt; i++)
3960 bpf_map_put(env->used_maps[i]);
3961 }
3962
3963 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3964 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3965 {
3966 struct bpf_insn *insn = env->prog->insnsi;
3967 int insn_cnt = env->prog->len;
3968 int i;
3969
3970 for (i = 0; i < insn_cnt; i++, insn++)
3971 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3972 insn->src_reg = 0;
3973 }
3974
3975 /* single env->prog->insni[off] instruction was replaced with the range
3976 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
3977 * [0, off) and [off, end) to new locations, so the patched range stays zero
3978 */
3979 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3980 u32 off, u32 cnt)
3981 {
3982 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3983
3984 if (cnt == 1)
3985 return 0;
3986 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3987 if (!new_data)
3988 return -ENOMEM;
3989 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3990 memcpy(new_data + off + cnt - 1, old_data + off,
3991 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
3992 env->insn_aux_data = new_data;
3993 vfree(old_data);
3994 return 0;
3995 }
3996
3997 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
3998 const struct bpf_insn *patch, u32 len)
3999 {
4000 struct bpf_prog *new_prog;
4001
4002 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4003 if (!new_prog)
4004 return NULL;
4005 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4006 return NULL;
4007 return new_prog;
4008 }
4009
4010 /* convert load instructions that access fields of 'struct __sk_buff'
4011 * into sequence of instructions that access fields of 'struct sk_buff'
4012 */
4013 static int convert_ctx_accesses(struct bpf_verifier_env *env)
4014 {
4015 const struct bpf_verifier_ops *ops = env->ops;
4016 int i, cnt, size, ctx_field_size, delta = 0;
4017 const int insn_cnt = env->prog->len;
4018 struct bpf_insn insn_buf[16], *insn;
4019 struct bpf_prog *new_prog;
4020 enum bpf_access_type type;
4021 bool is_narrower_load;
4022 u32 target_size;
4023
4024 if (ops->gen_prologue) {
4025 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4026 env->prog);
4027 if (cnt >= ARRAY_SIZE(insn_buf)) {
4028 verbose(env, "bpf verifier is misconfigured\n");
4029 return -EINVAL;
4030 } else if (cnt) {
4031 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4032 if (!new_prog)
4033 return -ENOMEM;
4034
4035 env->prog = new_prog;
4036 delta += cnt - 1;
4037 }
4038 }
4039
4040 if (!ops->convert_ctx_access)
4041 return 0;
4042
4043 insn = env->prog->insnsi + delta;
4044
4045 for (i = 0; i < insn_cnt; i++, insn++) {
4046 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4047 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4048 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4049 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4050 type = BPF_READ;
4051 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4052 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4053 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4054 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4055 type = BPF_WRITE;
4056 else
4057 continue;
4058
4059 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4060 continue;
4061
4062 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4063 size = BPF_LDST_BYTES(insn);
4064
4065 /* If the read access is a narrower load of the field,
4066 * convert to a 4/8-byte load, to minimum program type specific
4067 * convert_ctx_access changes. If conversion is successful,
4068 * we will apply proper mask to the result.
4069 */
4070 is_narrower_load = size < ctx_field_size;
4071 if (is_narrower_load) {
4072 u32 off = insn->off;
4073 u8 size_code;
4074
4075 if (type == BPF_WRITE) {
4076 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4077 return -EINVAL;
4078 }
4079
4080 size_code = BPF_H;
4081 if (ctx_field_size == 4)
4082 size_code = BPF_W;
4083 else if (ctx_field_size == 8)
4084 size_code = BPF_DW;
4085
4086 insn->off = off & ~(ctx_field_size - 1);
4087 insn->code = BPF_LDX | BPF_MEM | size_code;
4088 }
4089
4090 target_size = 0;
4091 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4092 &target_size);
4093 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4094 (ctx_field_size && !target_size)) {
4095 verbose(env, "bpf verifier is misconfigured\n");
4096 return -EINVAL;
4097 }
4098
4099 if (is_narrower_load && size < target_size) {
4100 if (ctx_field_size <= 4)
4101 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4102 (1 << size * 8) - 1);
4103 else
4104 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4105 (1 << size * 8) - 1);
4106 }
4107
4108 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4109 if (!new_prog)
4110 return -ENOMEM;
4111
4112 delta += cnt - 1;
4113
4114 /* keep walking new program and skip insns we just inserted */
4115 env->prog = new_prog;
4116 insn = new_prog->insnsi + i + delta;
4117 }
4118
4119 return 0;
4120 }
4121
4122 /* fixup insn->imm field of bpf_call instructions
4123 * and inline eligible helpers as explicit sequence of BPF instructions
4124 *
4125 * this function is called after eBPF program passed verification
4126 */
4127 static int fixup_bpf_calls(struct bpf_verifier_env *env)
4128 {
4129 struct bpf_prog *prog = env->prog;
4130 struct bpf_insn *insn = prog->insnsi;
4131 const struct bpf_func_proto *fn;
4132 const int insn_cnt = prog->len;
4133 struct bpf_insn insn_buf[16];
4134 struct bpf_prog *new_prog;
4135 struct bpf_map *map_ptr;
4136 int i, cnt, delta = 0;
4137
4138 for (i = 0; i < insn_cnt; i++, insn++) {
4139 if (insn->code != (BPF_JMP | BPF_CALL))
4140 continue;
4141
4142 if (insn->imm == BPF_FUNC_get_route_realm)
4143 prog->dst_needed = 1;
4144 if (insn->imm == BPF_FUNC_get_prandom_u32)
4145 bpf_user_rnd_init_once();
4146 if (insn->imm == BPF_FUNC_tail_call) {
4147 /* If we tail call into other programs, we
4148 * cannot make any assumptions since they can
4149 * be replaced dynamically during runtime in
4150 * the program array.
4151 */
4152 prog->cb_access = 1;
4153 env->prog->aux->stack_depth = MAX_BPF_STACK;
4154
4155 /* mark bpf_tail_call as different opcode to avoid
4156 * conditional branch in the interpeter for every normal
4157 * call and to prevent accidental JITing by JIT compiler
4158 * that doesn't support bpf_tail_call yet
4159 */
4160 insn->imm = 0;
4161 insn->code = BPF_JMP | BPF_TAIL_CALL;
4162 continue;
4163 }
4164
4165 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4166 * handlers are currently limited to 64 bit only.
4167 */
4168 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4169 insn->imm == BPF_FUNC_map_lookup_elem) {
4170 map_ptr = env->insn_aux_data[i + delta].map_ptr;
4171 if (map_ptr == BPF_MAP_PTR_POISON ||
4172 !map_ptr->ops->map_gen_lookup)
4173 goto patch_call_imm;
4174
4175 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4176 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4177 verbose(env, "bpf verifier is misconfigured\n");
4178 return -EINVAL;
4179 }
4180
4181 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4182 cnt);
4183 if (!new_prog)
4184 return -ENOMEM;
4185
4186 delta += cnt - 1;
4187
4188 /* keep walking new program and skip insns we just inserted */
4189 env->prog = prog = new_prog;
4190 insn = new_prog->insnsi + i + delta;
4191 continue;
4192 }
4193
4194 if (insn->imm == BPF_FUNC_redirect_map) {
4195 /* Note, we cannot use prog directly as imm as subsequent
4196 * rewrites would still change the prog pointer. The only
4197 * stable address we can use is aux, which also works with
4198 * prog clones during blinding.
4199 */
4200 u64 addr = (unsigned long)prog->aux;
4201 struct bpf_insn r4_ld[] = {
4202 BPF_LD_IMM64(BPF_REG_4, addr),
4203 *insn,
4204 };
4205 cnt = ARRAY_SIZE(r4_ld);
4206
4207 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4208 if (!new_prog)
4209 return -ENOMEM;
4210
4211 delta += cnt - 1;
4212 env->prog = prog = new_prog;
4213 insn = new_prog->insnsi + i + delta;
4214 }
4215 patch_call_imm:
4216 fn = env->ops->get_func_proto(insn->imm);
4217 /* all functions that have prototype and verifier allowed
4218 * programs to call them, must be real in-kernel functions
4219 */
4220 if (!fn->func) {
4221 verbose(env,
4222 "kernel subsystem misconfigured func %s#%d\n",
4223 func_id_name(insn->imm), insn->imm);
4224 return -EFAULT;
4225 }
4226 insn->imm = fn->func - __bpf_call_base;
4227 }
4228
4229 return 0;
4230 }
4231
4232 static void free_states(struct bpf_verifier_env *env)
4233 {
4234 struct bpf_verifier_state_list *sl, *sln;
4235 int i;
4236
4237 if (!env->explored_states)
4238 return;
4239
4240 for (i = 0; i < env->prog->len; i++) {
4241 sl = env->explored_states[i];
4242
4243 if (sl)
4244 while (sl != STATE_LIST_MARK) {
4245 sln = sl->next;
4246 kfree(sl);
4247 sl = sln;
4248 }
4249 }
4250
4251 kfree(env->explored_states);
4252 }
4253
4254 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
4255 {
4256 struct bpf_verifier_env *env;
4257 struct bpf_verifer_log *log;
4258 int ret = -EINVAL;
4259
4260 /* 'struct bpf_verifier_env' can be global, but since it's not small,
4261 * allocate/free it every time bpf_check() is called
4262 */
4263 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4264 if (!env)
4265 return -ENOMEM;
4266 log = &env->log;
4267
4268 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4269 (*prog)->len);
4270 ret = -ENOMEM;
4271 if (!env->insn_aux_data)
4272 goto err_free_env;
4273 env->prog = *prog;
4274 env->ops = bpf_verifier_ops[env->prog->type];
4275
4276 /* grab the mutex to protect few globals used by verifier */
4277 mutex_lock(&bpf_verifier_lock);
4278
4279 if (attr->log_level || attr->log_buf || attr->log_size) {
4280 /* user requested verbose verifier output
4281 * and supplied buffer to store the verification trace
4282 */
4283 log->level = attr->log_level;
4284 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4285 log->len_total = attr->log_size;
4286
4287 ret = -EINVAL;
4288 /* log attributes have to be sane */
4289 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4290 !log->level || !log->ubuf)
4291 goto err_unlock;
4292 }
4293
4294 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4295 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4296 env->strict_alignment = true;
4297
4298 ret = replace_map_fd_with_map_ptr(env);
4299 if (ret < 0)
4300 goto skip_full_check;
4301
4302 env->explored_states = kcalloc(env->prog->len,
4303 sizeof(struct bpf_verifier_state_list *),
4304 GFP_USER);
4305 ret = -ENOMEM;
4306 if (!env->explored_states)
4307 goto skip_full_check;
4308
4309 ret = check_cfg(env);
4310 if (ret < 0)
4311 goto skip_full_check;
4312
4313 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4314
4315 ret = do_check(env);
4316
4317 skip_full_check:
4318 while (pop_stack(env, NULL) >= 0);
4319 free_states(env);
4320
4321 if (ret == 0)
4322 /* program is valid, convert *(u32*)(ctx + off) accesses */
4323 ret = convert_ctx_accesses(env);
4324
4325 if (ret == 0)
4326 ret = fixup_bpf_calls(env);
4327
4328 if (log->level && bpf_verifier_log_full(log))
4329 ret = -ENOSPC;
4330 if (log->level && !log->ubuf) {
4331 ret = -EFAULT;
4332 goto err_release_maps;
4333 }
4334
4335 if (ret == 0 && env->used_map_cnt) {
4336 /* if program passed verifier, update used_maps in bpf_prog_info */
4337 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4338 sizeof(env->used_maps[0]),
4339 GFP_KERNEL);
4340
4341 if (!env->prog->aux->used_maps) {
4342 ret = -ENOMEM;
4343 goto err_release_maps;
4344 }
4345
4346 memcpy(env->prog->aux->used_maps, env->used_maps,
4347 sizeof(env->used_maps[0]) * env->used_map_cnt);
4348 env->prog->aux->used_map_cnt = env->used_map_cnt;
4349
4350 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4351 * bpf_ld_imm64 instructions
4352 */
4353 convert_pseudo_ld_imm64(env);
4354 }
4355
4356 err_release_maps:
4357 if (!env->prog->aux->used_maps)
4358 /* if we didn't copy map pointers into bpf_prog_info, release
4359 * them now. Otherwise free_bpf_prog_info() will release them.
4360 */
4361 release_maps(env);
4362 *prog = env->prog;
4363 err_unlock:
4364 mutex_unlock(&bpf_verifier_lock);
4365 vfree(env->insn_aux_data);
4366 err_free_env:
4367 kfree(env);
4368 return ret;
4369 }
4370
4371 static const struct bpf_verifier_ops * const bpf_analyzer_ops[] = {
4372 [BPF_PROG_TYPE_XDP] = &xdp_analyzer_ops,
4373 [BPF_PROG_TYPE_SCHED_CLS] = &tc_cls_act_analyzer_ops,
4374 };
4375
4376 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
4377 void *priv)
4378 {
4379 struct bpf_verifier_env *env;
4380 int ret;
4381
4382 if (prog->type >= ARRAY_SIZE(bpf_analyzer_ops) ||
4383 !bpf_analyzer_ops[prog->type])
4384 return -EOPNOTSUPP;
4385
4386 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4387 if (!env)
4388 return -ENOMEM;
4389
4390 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4391 prog->len);
4392 ret = -ENOMEM;
4393 if (!env->insn_aux_data)
4394 goto err_free_env;
4395 env->prog = prog;
4396 env->ops = bpf_analyzer_ops[env->prog->type];
4397 env->analyzer_ops = ops;
4398 env->analyzer_priv = priv;
4399
4400 /* grab the mutex to protect few globals used by verifier */
4401 mutex_lock(&bpf_verifier_lock);
4402
4403 env->strict_alignment = false;
4404 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4405 env->strict_alignment = true;
4406
4407 env->explored_states = kcalloc(env->prog->len,
4408 sizeof(struct bpf_verifier_state_list *),
4409 GFP_KERNEL);
4410 ret = -ENOMEM;
4411 if (!env->explored_states)
4412 goto skip_full_check;
4413
4414 ret = check_cfg(env);
4415 if (ret < 0)
4416 goto skip_full_check;
4417
4418 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4419
4420 ret = do_check(env);
4421
4422 skip_full_check:
4423 while (pop_stack(env, NULL) >= 0);
4424 free_states(env);
4425
4426 mutex_unlock(&bpf_verifier_lock);
4427 vfree(env->insn_aux_data);
4428 err_free_env:
4429 kfree(env);
4430 return ret;
4431 }
4432 EXPORT_SYMBOL_GPL(bpf_analyzer);