]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/cgroup.c
cgroup: don't hold css_set_rwsem across css task iteration
[mirror_ubuntu-zesty-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/percpu-rwsem.h>
50 #include <linux/string.h>
51 #include <linux/sort.h>
52 #include <linux/kmod.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hashtable.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/kthread.h>
60 #include <linux/delay.h>
61
62 #include <linux/atomic.h>
63
64 /*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
72 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
75 /*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
81 *
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
84 */
85 #ifdef CONFIG_PROVE_RCU
86 DEFINE_MUTEX(cgroup_mutex);
87 DECLARE_RWSEM(css_set_rwsem);
88 EXPORT_SYMBOL_GPL(cgroup_mutex);
89 EXPORT_SYMBOL_GPL(css_set_rwsem);
90 #else
91 static DEFINE_MUTEX(cgroup_mutex);
92 static DECLARE_RWSEM(css_set_rwsem);
93 #endif
94
95 /*
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
98 */
99 static DEFINE_SPINLOCK(cgroup_idr_lock);
100
101 /*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105 static DEFINE_SPINLOCK(release_agent_path_lock);
106
107 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
109 #define cgroup_assert_mutex_or_rcu_locked() \
110 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
111 !lockdep_is_held(&cgroup_mutex), \
112 "cgroup_mutex or RCU read lock required");
113
114 /*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120 static struct workqueue_struct *cgroup_destroy_wq;
121
122 /*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
128 /* generate an array of cgroup subsystem pointers */
129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
130 static struct cgroup_subsys *cgroup_subsys[] = {
131 #include <linux/cgroup_subsys.h>
132 };
133 #undef SUBSYS
134
135 /* array of cgroup subsystem names */
136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137 static const char *cgroup_subsys_name[] = {
138 #include <linux/cgroup_subsys.h>
139 };
140 #undef SUBSYS
141
142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143 #define SUBSYS(_x) \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148 #include <linux/cgroup_subsys.h>
149 #undef SUBSYS
150
151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152 static struct static_key_true *cgroup_subsys_enabled_key[] = {
153 #include <linux/cgroup_subsys.h>
154 };
155 #undef SUBSYS
156
157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159 #include <linux/cgroup_subsys.h>
160 };
161 #undef SUBSYS
162
163 /*
164 * The default hierarchy, reserved for the subsystems that are otherwise
165 * unattached - it never has more than a single cgroup, and all tasks are
166 * part of that cgroup.
167 */
168 struct cgroup_root cgrp_dfl_root;
169 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
170
171 /*
172 * The default hierarchy always exists but is hidden until mounted for the
173 * first time. This is for backward compatibility.
174 */
175 static bool cgrp_dfl_root_visible;
176
177 /*
178 * Set by the boot param of the same name and makes subsystems with NULL
179 * ->dfl_files to use ->legacy_files on the default hierarchy.
180 */
181 static bool cgroup_legacy_files_on_dfl;
182
183 /* some controllers are not supported in the default hierarchy */
184 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
185
186 /* The list of hierarchy roots */
187
188 static LIST_HEAD(cgroup_roots);
189 static int cgroup_root_count;
190
191 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
192 static DEFINE_IDR(cgroup_hierarchy_idr);
193
194 /*
195 * Assign a monotonically increasing serial number to csses. It guarantees
196 * cgroups with bigger numbers are newer than those with smaller numbers.
197 * Also, as csses are always appended to the parent's ->children list, it
198 * guarantees that sibling csses are always sorted in the ascending serial
199 * number order on the list. Protected by cgroup_mutex.
200 */
201 static u64 css_serial_nr_next = 1;
202
203 /*
204 * These bitmask flags indicate whether tasks in the fork and exit paths have
205 * fork/exit handlers to call. This avoids us having to do extra work in the
206 * fork/exit path to check which subsystems have fork/exit callbacks.
207 */
208 static unsigned long have_fork_callback __read_mostly;
209 static unsigned long have_exit_callback __read_mostly;
210
211 /* Ditto for the can_fork callback. */
212 static unsigned long have_canfork_callback __read_mostly;
213
214 static struct cftype cgroup_dfl_base_files[];
215 static struct cftype cgroup_legacy_base_files[];
216
217 static int rebind_subsystems(struct cgroup_root *dst_root,
218 unsigned long ss_mask);
219 static void css_task_iter_advance(struct css_task_iter *it);
220 static int cgroup_destroy_locked(struct cgroup *cgrp);
221 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
222 bool visible);
223 static void css_release(struct percpu_ref *ref);
224 static void kill_css(struct cgroup_subsys_state *css);
225 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
226 struct cgroup *cgrp, struct cftype cfts[],
227 bool is_add);
228
229 /**
230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231 * @ssid: subsys ID of interest
232 *
233 * cgroup_subsys_enabled() can only be used with literal subsys names which
234 * is fine for individual subsystems but unsuitable for cgroup core. This
235 * is slower static_key_enabled() based test indexed by @ssid.
236 */
237 static bool cgroup_ssid_enabled(int ssid)
238 {
239 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
240 }
241
242 /**
243 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
244 * @cgrp: the cgroup of interest
245 *
246 * The default hierarchy is the v2 interface of cgroup and this function
247 * can be used to test whether a cgroup is on the default hierarchy for
248 * cases where a subsystem should behave differnetly depending on the
249 * interface version.
250 *
251 * The set of behaviors which change on the default hierarchy are still
252 * being determined and the mount option is prefixed with __DEVEL__.
253 *
254 * List of changed behaviors:
255 *
256 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
257 * and "name" are disallowed.
258 *
259 * - When mounting an existing superblock, mount options should match.
260 *
261 * - Remount is disallowed.
262 *
263 * - rename(2) is disallowed.
264 *
265 * - "tasks" is removed. Everything should be at process granularity. Use
266 * "cgroup.procs" instead.
267 *
268 * - "cgroup.procs" is not sorted. pids will be unique unless they got
269 * recycled inbetween reads.
270 *
271 * - "release_agent" and "notify_on_release" are removed. Replacement
272 * notification mechanism will be implemented.
273 *
274 * - "cgroup.clone_children" is removed.
275 *
276 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
277 * and its descendants contain no task; otherwise, 1. The file also
278 * generates kernfs notification which can be monitored through poll and
279 * [di]notify when the value of the file changes.
280 *
281 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
282 * take masks of ancestors with non-empty cpus/mems, instead of being
283 * moved to an ancestor.
284 *
285 * - cpuset: a task can be moved into an empty cpuset, and again it takes
286 * masks of ancestors.
287 *
288 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
289 * is not created.
290 *
291 * - blkcg: blk-throttle becomes properly hierarchical.
292 *
293 * - debug: disallowed on the default hierarchy.
294 */
295 static bool cgroup_on_dfl(const struct cgroup *cgrp)
296 {
297 return cgrp->root == &cgrp_dfl_root;
298 }
299
300 /* IDR wrappers which synchronize using cgroup_idr_lock */
301 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
302 gfp_t gfp_mask)
303 {
304 int ret;
305
306 idr_preload(gfp_mask);
307 spin_lock_bh(&cgroup_idr_lock);
308 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
309 spin_unlock_bh(&cgroup_idr_lock);
310 idr_preload_end();
311 return ret;
312 }
313
314 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
315 {
316 void *ret;
317
318 spin_lock_bh(&cgroup_idr_lock);
319 ret = idr_replace(idr, ptr, id);
320 spin_unlock_bh(&cgroup_idr_lock);
321 return ret;
322 }
323
324 static void cgroup_idr_remove(struct idr *idr, int id)
325 {
326 spin_lock_bh(&cgroup_idr_lock);
327 idr_remove(idr, id);
328 spin_unlock_bh(&cgroup_idr_lock);
329 }
330
331 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
332 {
333 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
334
335 if (parent_css)
336 return container_of(parent_css, struct cgroup, self);
337 return NULL;
338 }
339
340 /**
341 * cgroup_css - obtain a cgroup's css for the specified subsystem
342 * @cgrp: the cgroup of interest
343 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
344 *
345 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
346 * function must be called either under cgroup_mutex or rcu_read_lock() and
347 * the caller is responsible for pinning the returned css if it wants to
348 * keep accessing it outside the said locks. This function may return
349 * %NULL if @cgrp doesn't have @subsys_id enabled.
350 */
351 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
352 struct cgroup_subsys *ss)
353 {
354 if (ss)
355 return rcu_dereference_check(cgrp->subsys[ss->id],
356 lockdep_is_held(&cgroup_mutex));
357 else
358 return &cgrp->self;
359 }
360
361 /**
362 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
363 * @cgrp: the cgroup of interest
364 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
365 *
366 * Similar to cgroup_css() but returns the effective css, which is defined
367 * as the matching css of the nearest ancestor including self which has @ss
368 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
369 * function is guaranteed to return non-NULL css.
370 */
371 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
372 struct cgroup_subsys *ss)
373 {
374 lockdep_assert_held(&cgroup_mutex);
375
376 if (!ss)
377 return &cgrp->self;
378
379 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
380 return NULL;
381
382 /*
383 * This function is used while updating css associations and thus
384 * can't test the csses directly. Use ->child_subsys_mask.
385 */
386 while (cgroup_parent(cgrp) &&
387 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
388 cgrp = cgroup_parent(cgrp);
389
390 return cgroup_css(cgrp, ss);
391 }
392
393 /**
394 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
395 * @cgrp: the cgroup of interest
396 * @ss: the subsystem of interest
397 *
398 * Find and get the effective css of @cgrp for @ss. The effective css is
399 * defined as the matching css of the nearest ancestor including self which
400 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
401 * the root css is returned, so this function always returns a valid css.
402 * The returned css must be put using css_put().
403 */
404 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
405 struct cgroup_subsys *ss)
406 {
407 struct cgroup_subsys_state *css;
408
409 rcu_read_lock();
410
411 do {
412 css = cgroup_css(cgrp, ss);
413
414 if (css && css_tryget_online(css))
415 goto out_unlock;
416 cgrp = cgroup_parent(cgrp);
417 } while (cgrp);
418
419 css = init_css_set.subsys[ss->id];
420 css_get(css);
421 out_unlock:
422 rcu_read_unlock();
423 return css;
424 }
425
426 /* convenient tests for these bits */
427 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
428 {
429 return !(cgrp->self.flags & CSS_ONLINE);
430 }
431
432 static void cgroup_get(struct cgroup *cgrp)
433 {
434 WARN_ON_ONCE(cgroup_is_dead(cgrp));
435 css_get(&cgrp->self);
436 }
437
438 static bool cgroup_tryget(struct cgroup *cgrp)
439 {
440 return css_tryget(&cgrp->self);
441 }
442
443 static void cgroup_put(struct cgroup *cgrp)
444 {
445 css_put(&cgrp->self);
446 }
447
448 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
449 {
450 struct cgroup *cgrp = of->kn->parent->priv;
451 struct cftype *cft = of_cft(of);
452
453 /*
454 * This is open and unprotected implementation of cgroup_css().
455 * seq_css() is only called from a kernfs file operation which has
456 * an active reference on the file. Because all the subsystem
457 * files are drained before a css is disassociated with a cgroup,
458 * the matching css from the cgroup's subsys table is guaranteed to
459 * be and stay valid until the enclosing operation is complete.
460 */
461 if (cft->ss)
462 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
463 else
464 return &cgrp->self;
465 }
466 EXPORT_SYMBOL_GPL(of_css);
467
468 /**
469 * cgroup_is_descendant - test ancestry
470 * @cgrp: the cgroup to be tested
471 * @ancestor: possible ancestor of @cgrp
472 *
473 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
474 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
475 * and @ancestor are accessible.
476 */
477 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
478 {
479 while (cgrp) {
480 if (cgrp == ancestor)
481 return true;
482 cgrp = cgroup_parent(cgrp);
483 }
484 return false;
485 }
486
487 static int notify_on_release(const struct cgroup *cgrp)
488 {
489 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
490 }
491
492 /**
493 * for_each_css - iterate all css's of a cgroup
494 * @css: the iteration cursor
495 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
496 * @cgrp: the target cgroup to iterate css's of
497 *
498 * Should be called under cgroup_[tree_]mutex.
499 */
500 #define for_each_css(css, ssid, cgrp) \
501 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
502 if (!((css) = rcu_dereference_check( \
503 (cgrp)->subsys[(ssid)], \
504 lockdep_is_held(&cgroup_mutex)))) { } \
505 else
506
507 /**
508 * for_each_e_css - iterate all effective css's of a cgroup
509 * @css: the iteration cursor
510 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
511 * @cgrp: the target cgroup to iterate css's of
512 *
513 * Should be called under cgroup_[tree_]mutex.
514 */
515 #define for_each_e_css(css, ssid, cgrp) \
516 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
517 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
518 ; \
519 else
520
521 /**
522 * for_each_subsys - iterate all enabled cgroup subsystems
523 * @ss: the iteration cursor
524 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
525 */
526 #define for_each_subsys(ss, ssid) \
527 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
528 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
529
530 /**
531 * for_each_subsys_which - filter for_each_subsys with a bitmask
532 * @ss: the iteration cursor
533 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
534 * @ss_maskp: a pointer to the bitmask
535 *
536 * The block will only run for cases where the ssid-th bit (1 << ssid) of
537 * mask is set to 1.
538 */
539 #define for_each_subsys_which(ss, ssid, ss_maskp) \
540 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
541 (ssid) = 0; \
542 else \
543 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
544 if (((ss) = cgroup_subsys[ssid]) && false) \
545 break; \
546 else
547
548 /* iterate across the hierarchies */
549 #define for_each_root(root) \
550 list_for_each_entry((root), &cgroup_roots, root_list)
551
552 /* iterate over child cgrps, lock should be held throughout iteration */
553 #define cgroup_for_each_live_child(child, cgrp) \
554 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
555 if (({ lockdep_assert_held(&cgroup_mutex); \
556 cgroup_is_dead(child); })) \
557 ; \
558 else
559
560 static void cgroup_release_agent(struct work_struct *work);
561 static void check_for_release(struct cgroup *cgrp);
562
563 /*
564 * A cgroup can be associated with multiple css_sets as different tasks may
565 * belong to different cgroups on different hierarchies. In the other
566 * direction, a css_set is naturally associated with multiple cgroups.
567 * This M:N relationship is represented by the following link structure
568 * which exists for each association and allows traversing the associations
569 * from both sides.
570 */
571 struct cgrp_cset_link {
572 /* the cgroup and css_set this link associates */
573 struct cgroup *cgrp;
574 struct css_set *cset;
575
576 /* list of cgrp_cset_links anchored at cgrp->cset_links */
577 struct list_head cset_link;
578
579 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
580 struct list_head cgrp_link;
581 };
582
583 /*
584 * The default css_set - used by init and its children prior to any
585 * hierarchies being mounted. It contains a pointer to the root state
586 * for each subsystem. Also used to anchor the list of css_sets. Not
587 * reference-counted, to improve performance when child cgroups
588 * haven't been created.
589 */
590 struct css_set init_css_set = {
591 .refcount = ATOMIC_INIT(1),
592 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
593 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
594 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
595 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
596 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
597 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
598 };
599
600 static int css_set_count = 1; /* 1 for init_css_set */
601
602 /**
603 * css_set_populated - does a css_set contain any tasks?
604 * @cset: target css_set
605 */
606 static bool css_set_populated(struct css_set *cset)
607 {
608 lockdep_assert_held(&css_set_rwsem);
609
610 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
611 }
612
613 /**
614 * cgroup_update_populated - updated populated count of a cgroup
615 * @cgrp: the target cgroup
616 * @populated: inc or dec populated count
617 *
618 * One of the css_sets associated with @cgrp is either getting its first
619 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
620 * count is propagated towards root so that a given cgroup's populated_cnt
621 * is zero iff the cgroup and all its descendants don't contain any tasks.
622 *
623 * @cgrp's interface file "cgroup.populated" is zero if
624 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
625 * changes from or to zero, userland is notified that the content of the
626 * interface file has changed. This can be used to detect when @cgrp and
627 * its descendants become populated or empty.
628 */
629 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
630 {
631 lockdep_assert_held(&css_set_rwsem);
632
633 do {
634 bool trigger;
635
636 if (populated)
637 trigger = !cgrp->populated_cnt++;
638 else
639 trigger = !--cgrp->populated_cnt;
640
641 if (!trigger)
642 break;
643
644 check_for_release(cgrp);
645 cgroup_file_notify(&cgrp->events_file);
646
647 cgrp = cgroup_parent(cgrp);
648 } while (cgrp);
649 }
650
651 /**
652 * css_set_update_populated - update populated state of a css_set
653 * @cset: target css_set
654 * @populated: whether @cset is populated or depopulated
655 *
656 * @cset is either getting the first task or losing the last. Update the
657 * ->populated_cnt of all associated cgroups accordingly.
658 */
659 static void css_set_update_populated(struct css_set *cset, bool populated)
660 {
661 struct cgrp_cset_link *link;
662
663 lockdep_assert_held(&css_set_rwsem);
664
665 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
666 cgroup_update_populated(link->cgrp, populated);
667 }
668
669 /**
670 * css_set_move_task - move a task from one css_set to another
671 * @task: task being moved
672 * @from_cset: css_set @task currently belongs to (may be NULL)
673 * @to_cset: new css_set @task is being moved to (may be NULL)
674 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
675 *
676 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
677 * css_set, @from_cset can be NULL. If @task is being disassociated
678 * instead of moved, @to_cset can be NULL.
679 *
680 * This function automatically handles populated_cnt updates and
681 * css_task_iter adjustments but the caller is responsible for managing
682 * @from_cset and @to_cset's reference counts.
683 */
684 static void css_set_move_task(struct task_struct *task,
685 struct css_set *from_cset, struct css_set *to_cset,
686 bool use_mg_tasks)
687 {
688 lockdep_assert_held(&css_set_rwsem);
689
690 if (from_cset) {
691 struct css_task_iter *it, *pos;
692
693 WARN_ON_ONCE(list_empty(&task->cg_list));
694
695 /*
696 * @task is leaving, advance task iterators which are
697 * pointing to it so that they can resume at the next
698 * position. Advancing an iterator might remove it from
699 * the list, use safe walk. See css_task_iter_advance*()
700 * for details.
701 */
702 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
703 iters_node)
704 if (it->task_pos == &task->cg_list)
705 css_task_iter_advance(it);
706
707 list_del_init(&task->cg_list);
708 if (!css_set_populated(from_cset))
709 css_set_update_populated(from_cset, false);
710 } else {
711 WARN_ON_ONCE(!list_empty(&task->cg_list));
712 }
713
714 if (to_cset) {
715 /*
716 * We are synchronized through cgroup_threadgroup_rwsem
717 * against PF_EXITING setting such that we can't race
718 * against cgroup_exit() changing the css_set to
719 * init_css_set and dropping the old one.
720 */
721 WARN_ON_ONCE(task->flags & PF_EXITING);
722
723 if (!css_set_populated(to_cset))
724 css_set_update_populated(to_cset, true);
725 rcu_assign_pointer(task->cgroups, to_cset);
726 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
727 &to_cset->tasks);
728 }
729 }
730
731 /*
732 * hash table for cgroup groups. This improves the performance to find
733 * an existing css_set. This hash doesn't (currently) take into
734 * account cgroups in empty hierarchies.
735 */
736 #define CSS_SET_HASH_BITS 7
737 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
738
739 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
740 {
741 unsigned long key = 0UL;
742 struct cgroup_subsys *ss;
743 int i;
744
745 for_each_subsys(ss, i)
746 key += (unsigned long)css[i];
747 key = (key >> 16) ^ key;
748
749 return key;
750 }
751
752 static void put_css_set_locked(struct css_set *cset)
753 {
754 struct cgrp_cset_link *link, *tmp_link;
755 struct cgroup_subsys *ss;
756 int ssid;
757
758 lockdep_assert_held(&css_set_rwsem);
759
760 if (!atomic_dec_and_test(&cset->refcount))
761 return;
762
763 /* This css_set is dead. unlink it and release cgroup refcounts */
764 for_each_subsys(ss, ssid)
765 list_del(&cset->e_cset_node[ssid]);
766 hash_del(&cset->hlist);
767 css_set_count--;
768
769 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
770 list_del(&link->cset_link);
771 list_del(&link->cgrp_link);
772 if (cgroup_parent(link->cgrp))
773 cgroup_put(link->cgrp);
774 kfree(link);
775 }
776
777 kfree_rcu(cset, rcu_head);
778 }
779
780 static void put_css_set(struct css_set *cset)
781 {
782 /*
783 * Ensure that the refcount doesn't hit zero while any readers
784 * can see it. Similar to atomic_dec_and_lock(), but for an
785 * rwlock
786 */
787 if (atomic_add_unless(&cset->refcount, -1, 1))
788 return;
789
790 down_write(&css_set_rwsem);
791 put_css_set_locked(cset);
792 up_write(&css_set_rwsem);
793 }
794
795 /*
796 * refcounted get/put for css_set objects
797 */
798 static inline void get_css_set(struct css_set *cset)
799 {
800 atomic_inc(&cset->refcount);
801 }
802
803 /**
804 * compare_css_sets - helper function for find_existing_css_set().
805 * @cset: candidate css_set being tested
806 * @old_cset: existing css_set for a task
807 * @new_cgrp: cgroup that's being entered by the task
808 * @template: desired set of css pointers in css_set (pre-calculated)
809 *
810 * Returns true if "cset" matches "old_cset" except for the hierarchy
811 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
812 */
813 static bool compare_css_sets(struct css_set *cset,
814 struct css_set *old_cset,
815 struct cgroup *new_cgrp,
816 struct cgroup_subsys_state *template[])
817 {
818 struct list_head *l1, *l2;
819
820 /*
821 * On the default hierarchy, there can be csets which are
822 * associated with the same set of cgroups but different csses.
823 * Let's first ensure that csses match.
824 */
825 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
826 return false;
827
828 /*
829 * Compare cgroup pointers in order to distinguish between
830 * different cgroups in hierarchies. As different cgroups may
831 * share the same effective css, this comparison is always
832 * necessary.
833 */
834 l1 = &cset->cgrp_links;
835 l2 = &old_cset->cgrp_links;
836 while (1) {
837 struct cgrp_cset_link *link1, *link2;
838 struct cgroup *cgrp1, *cgrp2;
839
840 l1 = l1->next;
841 l2 = l2->next;
842 /* See if we reached the end - both lists are equal length. */
843 if (l1 == &cset->cgrp_links) {
844 BUG_ON(l2 != &old_cset->cgrp_links);
845 break;
846 } else {
847 BUG_ON(l2 == &old_cset->cgrp_links);
848 }
849 /* Locate the cgroups associated with these links. */
850 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
851 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
852 cgrp1 = link1->cgrp;
853 cgrp2 = link2->cgrp;
854 /* Hierarchies should be linked in the same order. */
855 BUG_ON(cgrp1->root != cgrp2->root);
856
857 /*
858 * If this hierarchy is the hierarchy of the cgroup
859 * that's changing, then we need to check that this
860 * css_set points to the new cgroup; if it's any other
861 * hierarchy, then this css_set should point to the
862 * same cgroup as the old css_set.
863 */
864 if (cgrp1->root == new_cgrp->root) {
865 if (cgrp1 != new_cgrp)
866 return false;
867 } else {
868 if (cgrp1 != cgrp2)
869 return false;
870 }
871 }
872 return true;
873 }
874
875 /**
876 * find_existing_css_set - init css array and find the matching css_set
877 * @old_cset: the css_set that we're using before the cgroup transition
878 * @cgrp: the cgroup that we're moving into
879 * @template: out param for the new set of csses, should be clear on entry
880 */
881 static struct css_set *find_existing_css_set(struct css_set *old_cset,
882 struct cgroup *cgrp,
883 struct cgroup_subsys_state *template[])
884 {
885 struct cgroup_root *root = cgrp->root;
886 struct cgroup_subsys *ss;
887 struct css_set *cset;
888 unsigned long key;
889 int i;
890
891 /*
892 * Build the set of subsystem state objects that we want to see in the
893 * new css_set. while subsystems can change globally, the entries here
894 * won't change, so no need for locking.
895 */
896 for_each_subsys(ss, i) {
897 if (root->subsys_mask & (1UL << i)) {
898 /*
899 * @ss is in this hierarchy, so we want the
900 * effective css from @cgrp.
901 */
902 template[i] = cgroup_e_css(cgrp, ss);
903 } else {
904 /*
905 * @ss is not in this hierarchy, so we don't want
906 * to change the css.
907 */
908 template[i] = old_cset->subsys[i];
909 }
910 }
911
912 key = css_set_hash(template);
913 hash_for_each_possible(css_set_table, cset, hlist, key) {
914 if (!compare_css_sets(cset, old_cset, cgrp, template))
915 continue;
916
917 /* This css_set matches what we need */
918 return cset;
919 }
920
921 /* No existing cgroup group matched */
922 return NULL;
923 }
924
925 static void free_cgrp_cset_links(struct list_head *links_to_free)
926 {
927 struct cgrp_cset_link *link, *tmp_link;
928
929 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
930 list_del(&link->cset_link);
931 kfree(link);
932 }
933 }
934
935 /**
936 * allocate_cgrp_cset_links - allocate cgrp_cset_links
937 * @count: the number of links to allocate
938 * @tmp_links: list_head the allocated links are put on
939 *
940 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
941 * through ->cset_link. Returns 0 on success or -errno.
942 */
943 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
944 {
945 struct cgrp_cset_link *link;
946 int i;
947
948 INIT_LIST_HEAD(tmp_links);
949
950 for (i = 0; i < count; i++) {
951 link = kzalloc(sizeof(*link), GFP_KERNEL);
952 if (!link) {
953 free_cgrp_cset_links(tmp_links);
954 return -ENOMEM;
955 }
956 list_add(&link->cset_link, tmp_links);
957 }
958 return 0;
959 }
960
961 /**
962 * link_css_set - a helper function to link a css_set to a cgroup
963 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
964 * @cset: the css_set to be linked
965 * @cgrp: the destination cgroup
966 */
967 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
968 struct cgroup *cgrp)
969 {
970 struct cgrp_cset_link *link;
971
972 BUG_ON(list_empty(tmp_links));
973
974 if (cgroup_on_dfl(cgrp))
975 cset->dfl_cgrp = cgrp;
976
977 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
978 link->cset = cset;
979 link->cgrp = cgrp;
980
981 /*
982 * Always add links to the tail of the lists so that the lists are
983 * in choronological order.
984 */
985 list_move_tail(&link->cset_link, &cgrp->cset_links);
986 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
987
988 if (cgroup_parent(cgrp))
989 cgroup_get(cgrp);
990 }
991
992 /**
993 * find_css_set - return a new css_set with one cgroup updated
994 * @old_cset: the baseline css_set
995 * @cgrp: the cgroup to be updated
996 *
997 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
998 * substituted into the appropriate hierarchy.
999 */
1000 static struct css_set *find_css_set(struct css_set *old_cset,
1001 struct cgroup *cgrp)
1002 {
1003 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1004 struct css_set *cset;
1005 struct list_head tmp_links;
1006 struct cgrp_cset_link *link;
1007 struct cgroup_subsys *ss;
1008 unsigned long key;
1009 int ssid;
1010
1011 lockdep_assert_held(&cgroup_mutex);
1012
1013 /* First see if we already have a cgroup group that matches
1014 * the desired set */
1015 down_read(&css_set_rwsem);
1016 cset = find_existing_css_set(old_cset, cgrp, template);
1017 if (cset)
1018 get_css_set(cset);
1019 up_read(&css_set_rwsem);
1020
1021 if (cset)
1022 return cset;
1023
1024 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1025 if (!cset)
1026 return NULL;
1027
1028 /* Allocate all the cgrp_cset_link objects that we'll need */
1029 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1030 kfree(cset);
1031 return NULL;
1032 }
1033
1034 atomic_set(&cset->refcount, 1);
1035 INIT_LIST_HEAD(&cset->cgrp_links);
1036 INIT_LIST_HEAD(&cset->tasks);
1037 INIT_LIST_HEAD(&cset->mg_tasks);
1038 INIT_LIST_HEAD(&cset->mg_preload_node);
1039 INIT_LIST_HEAD(&cset->mg_node);
1040 INIT_LIST_HEAD(&cset->task_iters);
1041 INIT_HLIST_NODE(&cset->hlist);
1042
1043 /* Copy the set of subsystem state objects generated in
1044 * find_existing_css_set() */
1045 memcpy(cset->subsys, template, sizeof(cset->subsys));
1046
1047 down_write(&css_set_rwsem);
1048 /* Add reference counts and links from the new css_set. */
1049 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1050 struct cgroup *c = link->cgrp;
1051
1052 if (c->root == cgrp->root)
1053 c = cgrp;
1054 link_css_set(&tmp_links, cset, c);
1055 }
1056
1057 BUG_ON(!list_empty(&tmp_links));
1058
1059 css_set_count++;
1060
1061 /* Add @cset to the hash table */
1062 key = css_set_hash(cset->subsys);
1063 hash_add(css_set_table, &cset->hlist, key);
1064
1065 for_each_subsys(ss, ssid)
1066 list_add_tail(&cset->e_cset_node[ssid],
1067 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
1068
1069 up_write(&css_set_rwsem);
1070
1071 return cset;
1072 }
1073
1074 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1075 {
1076 struct cgroup *root_cgrp = kf_root->kn->priv;
1077
1078 return root_cgrp->root;
1079 }
1080
1081 static int cgroup_init_root_id(struct cgroup_root *root)
1082 {
1083 int id;
1084
1085 lockdep_assert_held(&cgroup_mutex);
1086
1087 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1088 if (id < 0)
1089 return id;
1090
1091 root->hierarchy_id = id;
1092 return 0;
1093 }
1094
1095 static void cgroup_exit_root_id(struct cgroup_root *root)
1096 {
1097 lockdep_assert_held(&cgroup_mutex);
1098
1099 if (root->hierarchy_id) {
1100 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1101 root->hierarchy_id = 0;
1102 }
1103 }
1104
1105 static void cgroup_free_root(struct cgroup_root *root)
1106 {
1107 if (root) {
1108 /* hierarchy ID should already have been released */
1109 WARN_ON_ONCE(root->hierarchy_id);
1110
1111 idr_destroy(&root->cgroup_idr);
1112 kfree(root);
1113 }
1114 }
1115
1116 static void cgroup_destroy_root(struct cgroup_root *root)
1117 {
1118 struct cgroup *cgrp = &root->cgrp;
1119 struct cgrp_cset_link *link, *tmp_link;
1120
1121 mutex_lock(&cgroup_mutex);
1122
1123 BUG_ON(atomic_read(&root->nr_cgrps));
1124 BUG_ON(!list_empty(&cgrp->self.children));
1125
1126 /* Rebind all subsystems back to the default hierarchy */
1127 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
1128
1129 /*
1130 * Release all the links from cset_links to this hierarchy's
1131 * root cgroup
1132 */
1133 down_write(&css_set_rwsem);
1134
1135 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1136 list_del(&link->cset_link);
1137 list_del(&link->cgrp_link);
1138 kfree(link);
1139 }
1140 up_write(&css_set_rwsem);
1141
1142 if (!list_empty(&root->root_list)) {
1143 list_del(&root->root_list);
1144 cgroup_root_count--;
1145 }
1146
1147 cgroup_exit_root_id(root);
1148
1149 mutex_unlock(&cgroup_mutex);
1150
1151 kernfs_destroy_root(root->kf_root);
1152 cgroup_free_root(root);
1153 }
1154
1155 /* look up cgroup associated with given css_set on the specified hierarchy */
1156 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1157 struct cgroup_root *root)
1158 {
1159 struct cgroup *res = NULL;
1160
1161 lockdep_assert_held(&cgroup_mutex);
1162 lockdep_assert_held(&css_set_rwsem);
1163
1164 if (cset == &init_css_set) {
1165 res = &root->cgrp;
1166 } else {
1167 struct cgrp_cset_link *link;
1168
1169 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1170 struct cgroup *c = link->cgrp;
1171
1172 if (c->root == root) {
1173 res = c;
1174 break;
1175 }
1176 }
1177 }
1178
1179 BUG_ON(!res);
1180 return res;
1181 }
1182
1183 /*
1184 * Return the cgroup for "task" from the given hierarchy. Must be
1185 * called with cgroup_mutex and css_set_rwsem held.
1186 */
1187 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1188 struct cgroup_root *root)
1189 {
1190 /*
1191 * No need to lock the task - since we hold cgroup_mutex the
1192 * task can't change groups, so the only thing that can happen
1193 * is that it exits and its css is set back to init_css_set.
1194 */
1195 return cset_cgroup_from_root(task_css_set(task), root);
1196 }
1197
1198 /*
1199 * A task must hold cgroup_mutex to modify cgroups.
1200 *
1201 * Any task can increment and decrement the count field without lock.
1202 * So in general, code holding cgroup_mutex can't rely on the count
1203 * field not changing. However, if the count goes to zero, then only
1204 * cgroup_attach_task() can increment it again. Because a count of zero
1205 * means that no tasks are currently attached, therefore there is no
1206 * way a task attached to that cgroup can fork (the other way to
1207 * increment the count). So code holding cgroup_mutex can safely
1208 * assume that if the count is zero, it will stay zero. Similarly, if
1209 * a task holds cgroup_mutex on a cgroup with zero count, it
1210 * knows that the cgroup won't be removed, as cgroup_rmdir()
1211 * needs that mutex.
1212 *
1213 * A cgroup can only be deleted if both its 'count' of using tasks
1214 * is zero, and its list of 'children' cgroups is empty. Since all
1215 * tasks in the system use _some_ cgroup, and since there is always at
1216 * least one task in the system (init, pid == 1), therefore, root cgroup
1217 * always has either children cgroups and/or using tasks. So we don't
1218 * need a special hack to ensure that root cgroup cannot be deleted.
1219 *
1220 * P.S. One more locking exception. RCU is used to guard the
1221 * update of a tasks cgroup pointer by cgroup_attach_task()
1222 */
1223
1224 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1225 static const struct file_operations proc_cgroupstats_operations;
1226
1227 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1228 char *buf)
1229 {
1230 struct cgroup_subsys *ss = cft->ss;
1231
1232 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1233 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1234 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1235 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1236 cft->name);
1237 else
1238 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1239 return buf;
1240 }
1241
1242 /**
1243 * cgroup_file_mode - deduce file mode of a control file
1244 * @cft: the control file in question
1245 *
1246 * S_IRUGO for read, S_IWUSR for write.
1247 */
1248 static umode_t cgroup_file_mode(const struct cftype *cft)
1249 {
1250 umode_t mode = 0;
1251
1252 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1253 mode |= S_IRUGO;
1254
1255 if (cft->write_u64 || cft->write_s64 || cft->write) {
1256 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1257 mode |= S_IWUGO;
1258 else
1259 mode |= S_IWUSR;
1260 }
1261
1262 return mode;
1263 }
1264
1265 /**
1266 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1267 * @cgrp: the target cgroup
1268 * @subtree_control: the new subtree_control mask to consider
1269 *
1270 * On the default hierarchy, a subsystem may request other subsystems to be
1271 * enabled together through its ->depends_on mask. In such cases, more
1272 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1273 *
1274 * This function calculates which subsystems need to be enabled if
1275 * @subtree_control is to be applied to @cgrp. The returned mask is always
1276 * a superset of @subtree_control and follows the usual hierarchy rules.
1277 */
1278 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1279 unsigned long subtree_control)
1280 {
1281 struct cgroup *parent = cgroup_parent(cgrp);
1282 unsigned long cur_ss_mask = subtree_control;
1283 struct cgroup_subsys *ss;
1284 int ssid;
1285
1286 lockdep_assert_held(&cgroup_mutex);
1287
1288 if (!cgroup_on_dfl(cgrp))
1289 return cur_ss_mask;
1290
1291 while (true) {
1292 unsigned long new_ss_mask = cur_ss_mask;
1293
1294 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1295 new_ss_mask |= ss->depends_on;
1296
1297 /*
1298 * Mask out subsystems which aren't available. This can
1299 * happen only if some depended-upon subsystems were bound
1300 * to non-default hierarchies.
1301 */
1302 if (parent)
1303 new_ss_mask &= parent->child_subsys_mask;
1304 else
1305 new_ss_mask &= cgrp->root->subsys_mask;
1306
1307 if (new_ss_mask == cur_ss_mask)
1308 break;
1309 cur_ss_mask = new_ss_mask;
1310 }
1311
1312 return cur_ss_mask;
1313 }
1314
1315 /**
1316 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1317 * @cgrp: the target cgroup
1318 *
1319 * Update @cgrp->child_subsys_mask according to the current
1320 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1321 */
1322 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1323 {
1324 cgrp->child_subsys_mask =
1325 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1326 }
1327
1328 /**
1329 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1330 * @kn: the kernfs_node being serviced
1331 *
1332 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1333 * the method finishes if locking succeeded. Note that once this function
1334 * returns the cgroup returned by cgroup_kn_lock_live() may become
1335 * inaccessible any time. If the caller intends to continue to access the
1336 * cgroup, it should pin it before invoking this function.
1337 */
1338 static void cgroup_kn_unlock(struct kernfs_node *kn)
1339 {
1340 struct cgroup *cgrp;
1341
1342 if (kernfs_type(kn) == KERNFS_DIR)
1343 cgrp = kn->priv;
1344 else
1345 cgrp = kn->parent->priv;
1346
1347 mutex_unlock(&cgroup_mutex);
1348
1349 kernfs_unbreak_active_protection(kn);
1350 cgroup_put(cgrp);
1351 }
1352
1353 /**
1354 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1355 * @kn: the kernfs_node being serviced
1356 *
1357 * This helper is to be used by a cgroup kernfs method currently servicing
1358 * @kn. It breaks the active protection, performs cgroup locking and
1359 * verifies that the associated cgroup is alive. Returns the cgroup if
1360 * alive; otherwise, %NULL. A successful return should be undone by a
1361 * matching cgroup_kn_unlock() invocation.
1362 *
1363 * Any cgroup kernfs method implementation which requires locking the
1364 * associated cgroup should use this helper. It avoids nesting cgroup
1365 * locking under kernfs active protection and allows all kernfs operations
1366 * including self-removal.
1367 */
1368 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1369 {
1370 struct cgroup *cgrp;
1371
1372 if (kernfs_type(kn) == KERNFS_DIR)
1373 cgrp = kn->priv;
1374 else
1375 cgrp = kn->parent->priv;
1376
1377 /*
1378 * We're gonna grab cgroup_mutex which nests outside kernfs
1379 * active_ref. cgroup liveliness check alone provides enough
1380 * protection against removal. Ensure @cgrp stays accessible and
1381 * break the active_ref protection.
1382 */
1383 if (!cgroup_tryget(cgrp))
1384 return NULL;
1385 kernfs_break_active_protection(kn);
1386
1387 mutex_lock(&cgroup_mutex);
1388
1389 if (!cgroup_is_dead(cgrp))
1390 return cgrp;
1391
1392 cgroup_kn_unlock(kn);
1393 return NULL;
1394 }
1395
1396 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1397 {
1398 char name[CGROUP_FILE_NAME_MAX];
1399
1400 lockdep_assert_held(&cgroup_mutex);
1401 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1402 }
1403
1404 /**
1405 * css_clear_dir - remove subsys files in a cgroup directory
1406 * @css: taget css
1407 * @cgrp_override: specify if target cgroup is different from css->cgroup
1408 */
1409 static void css_clear_dir(struct cgroup_subsys_state *css,
1410 struct cgroup *cgrp_override)
1411 {
1412 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1413 struct cftype *cfts;
1414
1415 list_for_each_entry(cfts, &css->ss->cfts, node)
1416 cgroup_addrm_files(css, cgrp, cfts, false);
1417 }
1418
1419 /**
1420 * css_populate_dir - create subsys files in a cgroup directory
1421 * @css: target css
1422 * @cgrp_overried: specify if target cgroup is different from css->cgroup
1423 *
1424 * On failure, no file is added.
1425 */
1426 static int css_populate_dir(struct cgroup_subsys_state *css,
1427 struct cgroup *cgrp_override)
1428 {
1429 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1430 struct cftype *cfts, *failed_cfts;
1431 int ret;
1432
1433 if (!css->ss) {
1434 if (cgroup_on_dfl(cgrp))
1435 cfts = cgroup_dfl_base_files;
1436 else
1437 cfts = cgroup_legacy_base_files;
1438
1439 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1440 }
1441
1442 list_for_each_entry(cfts, &css->ss->cfts, node) {
1443 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1444 if (ret < 0) {
1445 failed_cfts = cfts;
1446 goto err;
1447 }
1448 }
1449 return 0;
1450 err:
1451 list_for_each_entry(cfts, &css->ss->cfts, node) {
1452 if (cfts == failed_cfts)
1453 break;
1454 cgroup_addrm_files(css, cgrp, cfts, false);
1455 }
1456 return ret;
1457 }
1458
1459 static int rebind_subsystems(struct cgroup_root *dst_root,
1460 unsigned long ss_mask)
1461 {
1462 struct cgroup *dcgrp = &dst_root->cgrp;
1463 struct cgroup_subsys *ss;
1464 unsigned long tmp_ss_mask;
1465 int ssid, i, ret;
1466
1467 lockdep_assert_held(&cgroup_mutex);
1468
1469 for_each_subsys_which(ss, ssid, &ss_mask) {
1470 /* if @ss has non-root csses attached to it, can't move */
1471 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1472 return -EBUSY;
1473
1474 /* can't move between two non-dummy roots either */
1475 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1476 return -EBUSY;
1477 }
1478
1479 /* skip creating root files on dfl_root for inhibited subsystems */
1480 tmp_ss_mask = ss_mask;
1481 if (dst_root == &cgrp_dfl_root)
1482 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1483
1484 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1485 struct cgroup *scgrp = &ss->root->cgrp;
1486 int tssid;
1487
1488 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1489 if (!ret)
1490 continue;
1491
1492 /*
1493 * Rebinding back to the default root is not allowed to
1494 * fail. Using both default and non-default roots should
1495 * be rare. Moving subsystems back and forth even more so.
1496 * Just warn about it and continue.
1497 */
1498 if (dst_root == &cgrp_dfl_root) {
1499 if (cgrp_dfl_root_visible) {
1500 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1501 ret, ss_mask);
1502 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1503 }
1504 continue;
1505 }
1506
1507 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1508 if (tssid == ssid)
1509 break;
1510 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1511 }
1512 return ret;
1513 }
1514
1515 /*
1516 * Nothing can fail from this point on. Remove files for the
1517 * removed subsystems and rebind each subsystem.
1518 */
1519 for_each_subsys_which(ss, ssid, &ss_mask) {
1520 struct cgroup_root *src_root = ss->root;
1521 struct cgroup *scgrp = &src_root->cgrp;
1522 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1523 struct css_set *cset;
1524
1525 WARN_ON(!css || cgroup_css(dcgrp, ss));
1526
1527 css_clear_dir(css, NULL);
1528
1529 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1530 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1531 ss->root = dst_root;
1532 css->cgroup = dcgrp;
1533
1534 down_write(&css_set_rwsem);
1535 hash_for_each(css_set_table, i, cset, hlist)
1536 list_move_tail(&cset->e_cset_node[ss->id],
1537 &dcgrp->e_csets[ss->id]);
1538 up_write(&css_set_rwsem);
1539
1540 src_root->subsys_mask &= ~(1 << ssid);
1541 scgrp->subtree_control &= ~(1 << ssid);
1542 cgroup_refresh_child_subsys_mask(scgrp);
1543
1544 /* default hierarchy doesn't enable controllers by default */
1545 dst_root->subsys_mask |= 1 << ssid;
1546 if (dst_root == &cgrp_dfl_root) {
1547 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1548 } else {
1549 dcgrp->subtree_control |= 1 << ssid;
1550 cgroup_refresh_child_subsys_mask(dcgrp);
1551 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1552 }
1553
1554 if (ss->bind)
1555 ss->bind(css);
1556 }
1557
1558 kernfs_activate(dcgrp->kn);
1559 return 0;
1560 }
1561
1562 static int cgroup_show_options(struct seq_file *seq,
1563 struct kernfs_root *kf_root)
1564 {
1565 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1566 struct cgroup_subsys *ss;
1567 int ssid;
1568
1569 if (root != &cgrp_dfl_root)
1570 for_each_subsys(ss, ssid)
1571 if (root->subsys_mask & (1 << ssid))
1572 seq_show_option(seq, ss->legacy_name, NULL);
1573 if (root->flags & CGRP_ROOT_NOPREFIX)
1574 seq_puts(seq, ",noprefix");
1575 if (root->flags & CGRP_ROOT_XATTR)
1576 seq_puts(seq, ",xattr");
1577
1578 spin_lock(&release_agent_path_lock);
1579 if (strlen(root->release_agent_path))
1580 seq_show_option(seq, "release_agent",
1581 root->release_agent_path);
1582 spin_unlock(&release_agent_path_lock);
1583
1584 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1585 seq_puts(seq, ",clone_children");
1586 if (strlen(root->name))
1587 seq_show_option(seq, "name", root->name);
1588 return 0;
1589 }
1590
1591 struct cgroup_sb_opts {
1592 unsigned long subsys_mask;
1593 unsigned int flags;
1594 char *release_agent;
1595 bool cpuset_clone_children;
1596 char *name;
1597 /* User explicitly requested empty subsystem */
1598 bool none;
1599 };
1600
1601 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1602 {
1603 char *token, *o = data;
1604 bool all_ss = false, one_ss = false;
1605 unsigned long mask = -1UL;
1606 struct cgroup_subsys *ss;
1607 int nr_opts = 0;
1608 int i;
1609
1610 #ifdef CONFIG_CPUSETS
1611 mask = ~(1U << cpuset_cgrp_id);
1612 #endif
1613
1614 memset(opts, 0, sizeof(*opts));
1615
1616 while ((token = strsep(&o, ",")) != NULL) {
1617 nr_opts++;
1618
1619 if (!*token)
1620 return -EINVAL;
1621 if (!strcmp(token, "none")) {
1622 /* Explicitly have no subsystems */
1623 opts->none = true;
1624 continue;
1625 }
1626 if (!strcmp(token, "all")) {
1627 /* Mutually exclusive option 'all' + subsystem name */
1628 if (one_ss)
1629 return -EINVAL;
1630 all_ss = true;
1631 continue;
1632 }
1633 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1634 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1635 continue;
1636 }
1637 if (!strcmp(token, "noprefix")) {
1638 opts->flags |= CGRP_ROOT_NOPREFIX;
1639 continue;
1640 }
1641 if (!strcmp(token, "clone_children")) {
1642 opts->cpuset_clone_children = true;
1643 continue;
1644 }
1645 if (!strcmp(token, "xattr")) {
1646 opts->flags |= CGRP_ROOT_XATTR;
1647 continue;
1648 }
1649 if (!strncmp(token, "release_agent=", 14)) {
1650 /* Specifying two release agents is forbidden */
1651 if (opts->release_agent)
1652 return -EINVAL;
1653 opts->release_agent =
1654 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1655 if (!opts->release_agent)
1656 return -ENOMEM;
1657 continue;
1658 }
1659 if (!strncmp(token, "name=", 5)) {
1660 const char *name = token + 5;
1661 /* Can't specify an empty name */
1662 if (!strlen(name))
1663 return -EINVAL;
1664 /* Must match [\w.-]+ */
1665 for (i = 0; i < strlen(name); i++) {
1666 char c = name[i];
1667 if (isalnum(c))
1668 continue;
1669 if ((c == '.') || (c == '-') || (c == '_'))
1670 continue;
1671 return -EINVAL;
1672 }
1673 /* Specifying two names is forbidden */
1674 if (opts->name)
1675 return -EINVAL;
1676 opts->name = kstrndup(name,
1677 MAX_CGROUP_ROOT_NAMELEN - 1,
1678 GFP_KERNEL);
1679 if (!opts->name)
1680 return -ENOMEM;
1681
1682 continue;
1683 }
1684
1685 for_each_subsys(ss, i) {
1686 if (strcmp(token, ss->legacy_name))
1687 continue;
1688 if (!cgroup_ssid_enabled(i))
1689 continue;
1690
1691 /* Mutually exclusive option 'all' + subsystem name */
1692 if (all_ss)
1693 return -EINVAL;
1694 opts->subsys_mask |= (1 << i);
1695 one_ss = true;
1696
1697 break;
1698 }
1699 if (i == CGROUP_SUBSYS_COUNT)
1700 return -ENOENT;
1701 }
1702
1703 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1704 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1705 if (nr_opts != 1) {
1706 pr_err("sane_behavior: no other mount options allowed\n");
1707 return -EINVAL;
1708 }
1709 return 0;
1710 }
1711
1712 /*
1713 * If the 'all' option was specified select all the subsystems,
1714 * otherwise if 'none', 'name=' and a subsystem name options were
1715 * not specified, let's default to 'all'
1716 */
1717 if (all_ss || (!one_ss && !opts->none && !opts->name))
1718 for_each_subsys(ss, i)
1719 if (cgroup_ssid_enabled(i))
1720 opts->subsys_mask |= (1 << i);
1721
1722 /*
1723 * We either have to specify by name or by subsystems. (So all
1724 * empty hierarchies must have a name).
1725 */
1726 if (!opts->subsys_mask && !opts->name)
1727 return -EINVAL;
1728
1729 /*
1730 * Option noprefix was introduced just for backward compatibility
1731 * with the old cpuset, so we allow noprefix only if mounting just
1732 * the cpuset subsystem.
1733 */
1734 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1735 return -EINVAL;
1736
1737 /* Can't specify "none" and some subsystems */
1738 if (opts->subsys_mask && opts->none)
1739 return -EINVAL;
1740
1741 return 0;
1742 }
1743
1744 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1745 {
1746 int ret = 0;
1747 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1748 struct cgroup_sb_opts opts;
1749 unsigned long added_mask, removed_mask;
1750
1751 if (root == &cgrp_dfl_root) {
1752 pr_err("remount is not allowed\n");
1753 return -EINVAL;
1754 }
1755
1756 mutex_lock(&cgroup_mutex);
1757
1758 /* See what subsystems are wanted */
1759 ret = parse_cgroupfs_options(data, &opts);
1760 if (ret)
1761 goto out_unlock;
1762
1763 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1764 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1765 task_tgid_nr(current), current->comm);
1766
1767 added_mask = opts.subsys_mask & ~root->subsys_mask;
1768 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1769
1770 /* Don't allow flags or name to change at remount */
1771 if ((opts.flags ^ root->flags) ||
1772 (opts.name && strcmp(opts.name, root->name))) {
1773 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1774 opts.flags, opts.name ?: "", root->flags, root->name);
1775 ret = -EINVAL;
1776 goto out_unlock;
1777 }
1778
1779 /* remounting is not allowed for populated hierarchies */
1780 if (!list_empty(&root->cgrp.self.children)) {
1781 ret = -EBUSY;
1782 goto out_unlock;
1783 }
1784
1785 ret = rebind_subsystems(root, added_mask);
1786 if (ret)
1787 goto out_unlock;
1788
1789 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1790
1791 if (opts.release_agent) {
1792 spin_lock(&release_agent_path_lock);
1793 strcpy(root->release_agent_path, opts.release_agent);
1794 spin_unlock(&release_agent_path_lock);
1795 }
1796 out_unlock:
1797 kfree(opts.release_agent);
1798 kfree(opts.name);
1799 mutex_unlock(&cgroup_mutex);
1800 return ret;
1801 }
1802
1803 /*
1804 * To reduce the fork() overhead for systems that are not actually using
1805 * their cgroups capability, we don't maintain the lists running through
1806 * each css_set to its tasks until we see the list actually used - in other
1807 * words after the first mount.
1808 */
1809 static bool use_task_css_set_links __read_mostly;
1810
1811 static void cgroup_enable_task_cg_lists(void)
1812 {
1813 struct task_struct *p, *g;
1814
1815 down_write(&css_set_rwsem);
1816
1817 if (use_task_css_set_links)
1818 goto out_unlock;
1819
1820 use_task_css_set_links = true;
1821
1822 /*
1823 * We need tasklist_lock because RCU is not safe against
1824 * while_each_thread(). Besides, a forking task that has passed
1825 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1826 * is not guaranteed to have its child immediately visible in the
1827 * tasklist if we walk through it with RCU.
1828 */
1829 read_lock(&tasklist_lock);
1830 do_each_thread(g, p) {
1831 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1832 task_css_set(p) != &init_css_set);
1833
1834 /*
1835 * We should check if the process is exiting, otherwise
1836 * it will race with cgroup_exit() in that the list
1837 * entry won't be deleted though the process has exited.
1838 * Do it while holding siglock so that we don't end up
1839 * racing against cgroup_exit().
1840 */
1841 spin_lock_irq(&p->sighand->siglock);
1842 if (!(p->flags & PF_EXITING)) {
1843 struct css_set *cset = task_css_set(p);
1844
1845 if (!css_set_populated(cset))
1846 css_set_update_populated(cset, true);
1847 list_add_tail(&p->cg_list, &cset->tasks);
1848 get_css_set(cset);
1849 }
1850 spin_unlock_irq(&p->sighand->siglock);
1851 } while_each_thread(g, p);
1852 read_unlock(&tasklist_lock);
1853 out_unlock:
1854 up_write(&css_set_rwsem);
1855 }
1856
1857 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1858 {
1859 struct cgroup_subsys *ss;
1860 int ssid;
1861
1862 INIT_LIST_HEAD(&cgrp->self.sibling);
1863 INIT_LIST_HEAD(&cgrp->self.children);
1864 INIT_LIST_HEAD(&cgrp->self.files);
1865 INIT_LIST_HEAD(&cgrp->cset_links);
1866 INIT_LIST_HEAD(&cgrp->pidlists);
1867 mutex_init(&cgrp->pidlist_mutex);
1868 cgrp->self.cgroup = cgrp;
1869 cgrp->self.flags |= CSS_ONLINE;
1870
1871 for_each_subsys(ss, ssid)
1872 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1873
1874 init_waitqueue_head(&cgrp->offline_waitq);
1875 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1876 }
1877
1878 static void init_cgroup_root(struct cgroup_root *root,
1879 struct cgroup_sb_opts *opts)
1880 {
1881 struct cgroup *cgrp = &root->cgrp;
1882
1883 INIT_LIST_HEAD(&root->root_list);
1884 atomic_set(&root->nr_cgrps, 1);
1885 cgrp->root = root;
1886 init_cgroup_housekeeping(cgrp);
1887 idr_init(&root->cgroup_idr);
1888
1889 root->flags = opts->flags;
1890 if (opts->release_agent)
1891 strcpy(root->release_agent_path, opts->release_agent);
1892 if (opts->name)
1893 strcpy(root->name, opts->name);
1894 if (opts->cpuset_clone_children)
1895 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1896 }
1897
1898 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1899 {
1900 LIST_HEAD(tmp_links);
1901 struct cgroup *root_cgrp = &root->cgrp;
1902 struct css_set *cset;
1903 int i, ret;
1904
1905 lockdep_assert_held(&cgroup_mutex);
1906
1907 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1908 if (ret < 0)
1909 goto out;
1910 root_cgrp->id = ret;
1911
1912 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1913 GFP_KERNEL);
1914 if (ret)
1915 goto out;
1916
1917 /*
1918 * We're accessing css_set_count without locking css_set_rwsem here,
1919 * but that's OK - it can only be increased by someone holding
1920 * cgroup_lock, and that's us. The worst that can happen is that we
1921 * have some link structures left over
1922 */
1923 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1924 if (ret)
1925 goto cancel_ref;
1926
1927 ret = cgroup_init_root_id(root);
1928 if (ret)
1929 goto cancel_ref;
1930
1931 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1932 KERNFS_ROOT_CREATE_DEACTIVATED,
1933 root_cgrp);
1934 if (IS_ERR(root->kf_root)) {
1935 ret = PTR_ERR(root->kf_root);
1936 goto exit_root_id;
1937 }
1938 root_cgrp->kn = root->kf_root->kn;
1939
1940 ret = css_populate_dir(&root_cgrp->self, NULL);
1941 if (ret)
1942 goto destroy_root;
1943
1944 ret = rebind_subsystems(root, ss_mask);
1945 if (ret)
1946 goto destroy_root;
1947
1948 /*
1949 * There must be no failure case after here, since rebinding takes
1950 * care of subsystems' refcounts, which are explicitly dropped in
1951 * the failure exit path.
1952 */
1953 list_add(&root->root_list, &cgroup_roots);
1954 cgroup_root_count++;
1955
1956 /*
1957 * Link the root cgroup in this hierarchy into all the css_set
1958 * objects.
1959 */
1960 down_write(&css_set_rwsem);
1961 hash_for_each(css_set_table, i, cset, hlist) {
1962 link_css_set(&tmp_links, cset, root_cgrp);
1963 if (css_set_populated(cset))
1964 cgroup_update_populated(root_cgrp, true);
1965 }
1966 up_write(&css_set_rwsem);
1967
1968 BUG_ON(!list_empty(&root_cgrp->self.children));
1969 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1970
1971 kernfs_activate(root_cgrp->kn);
1972 ret = 0;
1973 goto out;
1974
1975 destroy_root:
1976 kernfs_destroy_root(root->kf_root);
1977 root->kf_root = NULL;
1978 exit_root_id:
1979 cgroup_exit_root_id(root);
1980 cancel_ref:
1981 percpu_ref_exit(&root_cgrp->self.refcnt);
1982 out:
1983 free_cgrp_cset_links(&tmp_links);
1984 return ret;
1985 }
1986
1987 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1988 int flags, const char *unused_dev_name,
1989 void *data)
1990 {
1991 struct super_block *pinned_sb = NULL;
1992 struct cgroup_subsys *ss;
1993 struct cgroup_root *root;
1994 struct cgroup_sb_opts opts;
1995 struct dentry *dentry;
1996 int ret;
1997 int i;
1998 bool new_sb;
1999
2000 /*
2001 * The first time anyone tries to mount a cgroup, enable the list
2002 * linking each css_set to its tasks and fix up all existing tasks.
2003 */
2004 if (!use_task_css_set_links)
2005 cgroup_enable_task_cg_lists();
2006
2007 mutex_lock(&cgroup_mutex);
2008
2009 /* First find the desired set of subsystems */
2010 ret = parse_cgroupfs_options(data, &opts);
2011 if (ret)
2012 goto out_unlock;
2013
2014 /* look for a matching existing root */
2015 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
2016 cgrp_dfl_root_visible = true;
2017 root = &cgrp_dfl_root;
2018 cgroup_get(&root->cgrp);
2019 ret = 0;
2020 goto out_unlock;
2021 }
2022
2023 /*
2024 * Destruction of cgroup root is asynchronous, so subsystems may
2025 * still be dying after the previous unmount. Let's drain the
2026 * dying subsystems. We just need to ensure that the ones
2027 * unmounted previously finish dying and don't care about new ones
2028 * starting. Testing ref liveliness is good enough.
2029 */
2030 for_each_subsys(ss, i) {
2031 if (!(opts.subsys_mask & (1 << i)) ||
2032 ss->root == &cgrp_dfl_root)
2033 continue;
2034
2035 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2036 mutex_unlock(&cgroup_mutex);
2037 msleep(10);
2038 ret = restart_syscall();
2039 goto out_free;
2040 }
2041 cgroup_put(&ss->root->cgrp);
2042 }
2043
2044 for_each_root(root) {
2045 bool name_match = false;
2046
2047 if (root == &cgrp_dfl_root)
2048 continue;
2049
2050 /*
2051 * If we asked for a name then it must match. Also, if
2052 * name matches but sybsys_mask doesn't, we should fail.
2053 * Remember whether name matched.
2054 */
2055 if (opts.name) {
2056 if (strcmp(opts.name, root->name))
2057 continue;
2058 name_match = true;
2059 }
2060
2061 /*
2062 * If we asked for subsystems (or explicitly for no
2063 * subsystems) then they must match.
2064 */
2065 if ((opts.subsys_mask || opts.none) &&
2066 (opts.subsys_mask != root->subsys_mask)) {
2067 if (!name_match)
2068 continue;
2069 ret = -EBUSY;
2070 goto out_unlock;
2071 }
2072
2073 if (root->flags ^ opts.flags)
2074 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2075
2076 /*
2077 * We want to reuse @root whose lifetime is governed by its
2078 * ->cgrp. Let's check whether @root is alive and keep it
2079 * that way. As cgroup_kill_sb() can happen anytime, we
2080 * want to block it by pinning the sb so that @root doesn't
2081 * get killed before mount is complete.
2082 *
2083 * With the sb pinned, tryget_live can reliably indicate
2084 * whether @root can be reused. If it's being killed,
2085 * drain it. We can use wait_queue for the wait but this
2086 * path is super cold. Let's just sleep a bit and retry.
2087 */
2088 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2089 if (IS_ERR(pinned_sb) ||
2090 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2091 mutex_unlock(&cgroup_mutex);
2092 if (!IS_ERR_OR_NULL(pinned_sb))
2093 deactivate_super(pinned_sb);
2094 msleep(10);
2095 ret = restart_syscall();
2096 goto out_free;
2097 }
2098
2099 ret = 0;
2100 goto out_unlock;
2101 }
2102
2103 /*
2104 * No such thing, create a new one. name= matching without subsys
2105 * specification is allowed for already existing hierarchies but we
2106 * can't create new one without subsys specification.
2107 */
2108 if (!opts.subsys_mask && !opts.none) {
2109 ret = -EINVAL;
2110 goto out_unlock;
2111 }
2112
2113 root = kzalloc(sizeof(*root), GFP_KERNEL);
2114 if (!root) {
2115 ret = -ENOMEM;
2116 goto out_unlock;
2117 }
2118
2119 init_cgroup_root(root, &opts);
2120
2121 ret = cgroup_setup_root(root, opts.subsys_mask);
2122 if (ret)
2123 cgroup_free_root(root);
2124
2125 out_unlock:
2126 mutex_unlock(&cgroup_mutex);
2127 out_free:
2128 kfree(opts.release_agent);
2129 kfree(opts.name);
2130
2131 if (ret)
2132 return ERR_PTR(ret);
2133
2134 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2135 CGROUP_SUPER_MAGIC, &new_sb);
2136 if (IS_ERR(dentry) || !new_sb)
2137 cgroup_put(&root->cgrp);
2138
2139 /*
2140 * If @pinned_sb, we're reusing an existing root and holding an
2141 * extra ref on its sb. Mount is complete. Put the extra ref.
2142 */
2143 if (pinned_sb) {
2144 WARN_ON(new_sb);
2145 deactivate_super(pinned_sb);
2146 }
2147
2148 return dentry;
2149 }
2150
2151 static void cgroup_kill_sb(struct super_block *sb)
2152 {
2153 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2154 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2155
2156 /*
2157 * If @root doesn't have any mounts or children, start killing it.
2158 * This prevents new mounts by disabling percpu_ref_tryget_live().
2159 * cgroup_mount() may wait for @root's release.
2160 *
2161 * And don't kill the default root.
2162 */
2163 if (!list_empty(&root->cgrp.self.children) ||
2164 root == &cgrp_dfl_root)
2165 cgroup_put(&root->cgrp);
2166 else
2167 percpu_ref_kill(&root->cgrp.self.refcnt);
2168
2169 kernfs_kill_sb(sb);
2170 }
2171
2172 static struct file_system_type cgroup_fs_type = {
2173 .name = "cgroup",
2174 .mount = cgroup_mount,
2175 .kill_sb = cgroup_kill_sb,
2176 };
2177
2178 /**
2179 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2180 * @task: target task
2181 * @buf: the buffer to write the path into
2182 * @buflen: the length of the buffer
2183 *
2184 * Determine @task's cgroup on the first (the one with the lowest non-zero
2185 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2186 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2187 * cgroup controller callbacks.
2188 *
2189 * Return value is the same as kernfs_path().
2190 */
2191 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2192 {
2193 struct cgroup_root *root;
2194 struct cgroup *cgrp;
2195 int hierarchy_id = 1;
2196 char *path = NULL;
2197
2198 mutex_lock(&cgroup_mutex);
2199 down_read(&css_set_rwsem);
2200
2201 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2202
2203 if (root) {
2204 cgrp = task_cgroup_from_root(task, root);
2205 path = cgroup_path(cgrp, buf, buflen);
2206 } else {
2207 /* if no hierarchy exists, everyone is in "/" */
2208 if (strlcpy(buf, "/", buflen) < buflen)
2209 path = buf;
2210 }
2211
2212 up_read(&css_set_rwsem);
2213 mutex_unlock(&cgroup_mutex);
2214 return path;
2215 }
2216 EXPORT_SYMBOL_GPL(task_cgroup_path);
2217
2218 /* used to track tasks and other necessary states during migration */
2219 struct cgroup_taskset {
2220 /* the src and dst cset list running through cset->mg_node */
2221 struct list_head src_csets;
2222 struct list_head dst_csets;
2223
2224 /*
2225 * Fields for cgroup_taskset_*() iteration.
2226 *
2227 * Before migration is committed, the target migration tasks are on
2228 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2229 * the csets on ->dst_csets. ->csets point to either ->src_csets
2230 * or ->dst_csets depending on whether migration is committed.
2231 *
2232 * ->cur_csets and ->cur_task point to the current task position
2233 * during iteration.
2234 */
2235 struct list_head *csets;
2236 struct css_set *cur_cset;
2237 struct task_struct *cur_task;
2238 };
2239
2240 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2241 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2242 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2243 .csets = &tset.src_csets, \
2244 }
2245
2246 /**
2247 * cgroup_taskset_add - try to add a migration target task to a taskset
2248 * @task: target task
2249 * @tset: target taskset
2250 *
2251 * Add @task, which is a migration target, to @tset. This function becomes
2252 * noop if @task doesn't need to be migrated. @task's css_set should have
2253 * been added as a migration source and @task->cg_list will be moved from
2254 * the css_set's tasks list to mg_tasks one.
2255 */
2256 static void cgroup_taskset_add(struct task_struct *task,
2257 struct cgroup_taskset *tset)
2258 {
2259 struct css_set *cset;
2260
2261 lockdep_assert_held(&css_set_rwsem);
2262
2263 /* @task either already exited or can't exit until the end */
2264 if (task->flags & PF_EXITING)
2265 return;
2266
2267 /* leave @task alone if post_fork() hasn't linked it yet */
2268 if (list_empty(&task->cg_list))
2269 return;
2270
2271 cset = task_css_set(task);
2272 if (!cset->mg_src_cgrp)
2273 return;
2274
2275 list_move_tail(&task->cg_list, &cset->mg_tasks);
2276 if (list_empty(&cset->mg_node))
2277 list_add_tail(&cset->mg_node, &tset->src_csets);
2278 if (list_empty(&cset->mg_dst_cset->mg_node))
2279 list_move_tail(&cset->mg_dst_cset->mg_node,
2280 &tset->dst_csets);
2281 }
2282
2283 /**
2284 * cgroup_taskset_first - reset taskset and return the first task
2285 * @tset: taskset of interest
2286 *
2287 * @tset iteration is initialized and the first task is returned.
2288 */
2289 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2290 {
2291 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2292 tset->cur_task = NULL;
2293
2294 return cgroup_taskset_next(tset);
2295 }
2296
2297 /**
2298 * cgroup_taskset_next - iterate to the next task in taskset
2299 * @tset: taskset of interest
2300 *
2301 * Return the next task in @tset. Iteration must have been initialized
2302 * with cgroup_taskset_first().
2303 */
2304 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2305 {
2306 struct css_set *cset = tset->cur_cset;
2307 struct task_struct *task = tset->cur_task;
2308
2309 while (&cset->mg_node != tset->csets) {
2310 if (!task)
2311 task = list_first_entry(&cset->mg_tasks,
2312 struct task_struct, cg_list);
2313 else
2314 task = list_next_entry(task, cg_list);
2315
2316 if (&task->cg_list != &cset->mg_tasks) {
2317 tset->cur_cset = cset;
2318 tset->cur_task = task;
2319 return task;
2320 }
2321
2322 cset = list_next_entry(cset, mg_node);
2323 task = NULL;
2324 }
2325
2326 return NULL;
2327 }
2328
2329 /**
2330 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2331 * @tset: taget taskset
2332 * @dst_cgrp: destination cgroup
2333 *
2334 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2335 * ->can_attach callbacks fails and guarantees that either all or none of
2336 * the tasks in @tset are migrated. @tset is consumed regardless of
2337 * success.
2338 */
2339 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2340 struct cgroup *dst_cgrp)
2341 {
2342 struct cgroup_subsys_state *css, *failed_css = NULL;
2343 struct task_struct *task, *tmp_task;
2344 struct css_set *cset, *tmp_cset;
2345 int i, ret;
2346
2347 /* methods shouldn't be called if no task is actually migrating */
2348 if (list_empty(&tset->src_csets))
2349 return 0;
2350
2351 /* check that we can legitimately attach to the cgroup */
2352 for_each_e_css(css, i, dst_cgrp) {
2353 if (css->ss->can_attach) {
2354 ret = css->ss->can_attach(css, tset);
2355 if (ret) {
2356 failed_css = css;
2357 goto out_cancel_attach;
2358 }
2359 }
2360 }
2361
2362 /*
2363 * Now that we're guaranteed success, proceed to move all tasks to
2364 * the new cgroup. There are no failure cases after here, so this
2365 * is the commit point.
2366 */
2367 down_write(&css_set_rwsem);
2368 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2369 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2370 struct css_set *from_cset = task_css_set(task);
2371 struct css_set *to_cset = cset->mg_dst_cset;
2372
2373 get_css_set(to_cset);
2374 css_set_move_task(task, from_cset, to_cset, true);
2375 put_css_set_locked(from_cset);
2376 }
2377 }
2378 up_write(&css_set_rwsem);
2379
2380 /*
2381 * Migration is committed, all target tasks are now on dst_csets.
2382 * Nothing is sensitive to fork() after this point. Notify
2383 * controllers that migration is complete.
2384 */
2385 tset->csets = &tset->dst_csets;
2386
2387 for_each_e_css(css, i, dst_cgrp)
2388 if (css->ss->attach)
2389 css->ss->attach(css, tset);
2390
2391 ret = 0;
2392 goto out_release_tset;
2393
2394 out_cancel_attach:
2395 for_each_e_css(css, i, dst_cgrp) {
2396 if (css == failed_css)
2397 break;
2398 if (css->ss->cancel_attach)
2399 css->ss->cancel_attach(css, tset);
2400 }
2401 out_release_tset:
2402 down_write(&css_set_rwsem);
2403 list_splice_init(&tset->dst_csets, &tset->src_csets);
2404 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2405 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2406 list_del_init(&cset->mg_node);
2407 }
2408 up_write(&css_set_rwsem);
2409 return ret;
2410 }
2411
2412 /**
2413 * cgroup_migrate_finish - cleanup after attach
2414 * @preloaded_csets: list of preloaded css_sets
2415 *
2416 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2417 * those functions for details.
2418 */
2419 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2420 {
2421 struct css_set *cset, *tmp_cset;
2422
2423 lockdep_assert_held(&cgroup_mutex);
2424
2425 down_write(&css_set_rwsem);
2426 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2427 cset->mg_src_cgrp = NULL;
2428 cset->mg_dst_cset = NULL;
2429 list_del_init(&cset->mg_preload_node);
2430 put_css_set_locked(cset);
2431 }
2432 up_write(&css_set_rwsem);
2433 }
2434
2435 /**
2436 * cgroup_migrate_add_src - add a migration source css_set
2437 * @src_cset: the source css_set to add
2438 * @dst_cgrp: the destination cgroup
2439 * @preloaded_csets: list of preloaded css_sets
2440 *
2441 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2442 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2443 * up by cgroup_migrate_finish().
2444 *
2445 * This function may be called without holding cgroup_threadgroup_rwsem
2446 * even if the target is a process. Threads may be created and destroyed
2447 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2448 * into play and the preloaded css_sets are guaranteed to cover all
2449 * migrations.
2450 */
2451 static void cgroup_migrate_add_src(struct css_set *src_cset,
2452 struct cgroup *dst_cgrp,
2453 struct list_head *preloaded_csets)
2454 {
2455 struct cgroup *src_cgrp;
2456
2457 lockdep_assert_held(&cgroup_mutex);
2458 lockdep_assert_held(&css_set_rwsem);
2459
2460 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2461
2462 if (!list_empty(&src_cset->mg_preload_node))
2463 return;
2464
2465 WARN_ON(src_cset->mg_src_cgrp);
2466 WARN_ON(!list_empty(&src_cset->mg_tasks));
2467 WARN_ON(!list_empty(&src_cset->mg_node));
2468
2469 src_cset->mg_src_cgrp = src_cgrp;
2470 get_css_set(src_cset);
2471 list_add(&src_cset->mg_preload_node, preloaded_csets);
2472 }
2473
2474 /**
2475 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2476 * @dst_cgrp: the destination cgroup (may be %NULL)
2477 * @preloaded_csets: list of preloaded source css_sets
2478 *
2479 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2480 * have been preloaded to @preloaded_csets. This function looks up and
2481 * pins all destination css_sets, links each to its source, and append them
2482 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2483 * source css_set is assumed to be its cgroup on the default hierarchy.
2484 *
2485 * This function must be called after cgroup_migrate_add_src() has been
2486 * called on each migration source css_set. After migration is performed
2487 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2488 * @preloaded_csets.
2489 */
2490 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2491 struct list_head *preloaded_csets)
2492 {
2493 LIST_HEAD(csets);
2494 struct css_set *src_cset, *tmp_cset;
2495
2496 lockdep_assert_held(&cgroup_mutex);
2497
2498 /*
2499 * Except for the root, child_subsys_mask must be zero for a cgroup
2500 * with tasks so that child cgroups don't compete against tasks.
2501 */
2502 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2503 dst_cgrp->child_subsys_mask)
2504 return -EBUSY;
2505
2506 /* look up the dst cset for each src cset and link it to src */
2507 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2508 struct css_set *dst_cset;
2509
2510 dst_cset = find_css_set(src_cset,
2511 dst_cgrp ?: src_cset->dfl_cgrp);
2512 if (!dst_cset)
2513 goto err;
2514
2515 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2516
2517 /*
2518 * If src cset equals dst, it's noop. Drop the src.
2519 * cgroup_migrate() will skip the cset too. Note that we
2520 * can't handle src == dst as some nodes are used by both.
2521 */
2522 if (src_cset == dst_cset) {
2523 src_cset->mg_src_cgrp = NULL;
2524 list_del_init(&src_cset->mg_preload_node);
2525 put_css_set(src_cset);
2526 put_css_set(dst_cset);
2527 continue;
2528 }
2529
2530 src_cset->mg_dst_cset = dst_cset;
2531
2532 if (list_empty(&dst_cset->mg_preload_node))
2533 list_add(&dst_cset->mg_preload_node, &csets);
2534 else
2535 put_css_set(dst_cset);
2536 }
2537
2538 list_splice_tail(&csets, preloaded_csets);
2539 return 0;
2540 err:
2541 cgroup_migrate_finish(&csets);
2542 return -ENOMEM;
2543 }
2544
2545 /**
2546 * cgroup_migrate - migrate a process or task to a cgroup
2547 * @leader: the leader of the process or the task to migrate
2548 * @threadgroup: whether @leader points to the whole process or a single task
2549 * @cgrp: the destination cgroup
2550 *
2551 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2552 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2553 * caller is also responsible for invoking cgroup_migrate_add_src() and
2554 * cgroup_migrate_prepare_dst() on the targets before invoking this
2555 * function and following up with cgroup_migrate_finish().
2556 *
2557 * As long as a controller's ->can_attach() doesn't fail, this function is
2558 * guaranteed to succeed. This means that, excluding ->can_attach()
2559 * failure, when migrating multiple targets, the success or failure can be
2560 * decided for all targets by invoking group_migrate_prepare_dst() before
2561 * actually starting migrating.
2562 */
2563 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2564 struct cgroup *cgrp)
2565 {
2566 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2567 struct task_struct *task;
2568
2569 /*
2570 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2571 * already PF_EXITING could be freed from underneath us unless we
2572 * take an rcu_read_lock.
2573 */
2574 down_write(&css_set_rwsem);
2575 rcu_read_lock();
2576 task = leader;
2577 do {
2578 cgroup_taskset_add(task, &tset);
2579 if (!threadgroup)
2580 break;
2581 } while_each_thread(leader, task);
2582 rcu_read_unlock();
2583 up_write(&css_set_rwsem);
2584
2585 return cgroup_taskset_migrate(&tset, cgrp);
2586 }
2587
2588 /**
2589 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2590 * @dst_cgrp: the cgroup to attach to
2591 * @leader: the task or the leader of the threadgroup to be attached
2592 * @threadgroup: attach the whole threadgroup?
2593 *
2594 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2595 */
2596 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2597 struct task_struct *leader, bool threadgroup)
2598 {
2599 LIST_HEAD(preloaded_csets);
2600 struct task_struct *task;
2601 int ret;
2602
2603 /* look up all src csets */
2604 down_read(&css_set_rwsem);
2605 rcu_read_lock();
2606 task = leader;
2607 do {
2608 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2609 &preloaded_csets);
2610 if (!threadgroup)
2611 break;
2612 } while_each_thread(leader, task);
2613 rcu_read_unlock();
2614 up_read(&css_set_rwsem);
2615
2616 /* prepare dst csets and commit */
2617 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2618 if (!ret)
2619 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
2620
2621 cgroup_migrate_finish(&preloaded_csets);
2622 return ret;
2623 }
2624
2625 static int cgroup_procs_write_permission(struct task_struct *task,
2626 struct cgroup *dst_cgrp,
2627 struct kernfs_open_file *of)
2628 {
2629 const struct cred *cred = current_cred();
2630 const struct cred *tcred = get_task_cred(task);
2631 int ret = 0;
2632
2633 /*
2634 * even if we're attaching all tasks in the thread group, we only
2635 * need to check permissions on one of them.
2636 */
2637 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2638 !uid_eq(cred->euid, tcred->uid) &&
2639 !uid_eq(cred->euid, tcred->suid))
2640 ret = -EACCES;
2641
2642 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2643 struct super_block *sb = of->file->f_path.dentry->d_sb;
2644 struct cgroup *cgrp;
2645 struct inode *inode;
2646
2647 down_read(&css_set_rwsem);
2648 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2649 up_read(&css_set_rwsem);
2650
2651 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2652 cgrp = cgroup_parent(cgrp);
2653
2654 ret = -ENOMEM;
2655 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2656 if (inode) {
2657 ret = inode_permission(inode, MAY_WRITE);
2658 iput(inode);
2659 }
2660 }
2661
2662 put_cred(tcred);
2663 return ret;
2664 }
2665
2666 /*
2667 * Find the task_struct of the task to attach by vpid and pass it along to the
2668 * function to attach either it or all tasks in its threadgroup. Will lock
2669 * cgroup_mutex and threadgroup.
2670 */
2671 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2672 size_t nbytes, loff_t off, bool threadgroup)
2673 {
2674 struct task_struct *tsk;
2675 struct cgroup *cgrp;
2676 pid_t pid;
2677 int ret;
2678
2679 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2680 return -EINVAL;
2681
2682 cgrp = cgroup_kn_lock_live(of->kn);
2683 if (!cgrp)
2684 return -ENODEV;
2685
2686 percpu_down_write(&cgroup_threadgroup_rwsem);
2687 rcu_read_lock();
2688 if (pid) {
2689 tsk = find_task_by_vpid(pid);
2690 if (!tsk) {
2691 ret = -ESRCH;
2692 goto out_unlock_rcu;
2693 }
2694 } else {
2695 tsk = current;
2696 }
2697
2698 if (threadgroup)
2699 tsk = tsk->group_leader;
2700
2701 /*
2702 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2703 * trapped in a cpuset, or RT worker may be born in a cgroup
2704 * with no rt_runtime allocated. Just say no.
2705 */
2706 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2707 ret = -EINVAL;
2708 goto out_unlock_rcu;
2709 }
2710
2711 get_task_struct(tsk);
2712 rcu_read_unlock();
2713
2714 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2715 if (!ret)
2716 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2717
2718 put_task_struct(tsk);
2719 goto out_unlock_threadgroup;
2720
2721 out_unlock_rcu:
2722 rcu_read_unlock();
2723 out_unlock_threadgroup:
2724 percpu_up_write(&cgroup_threadgroup_rwsem);
2725 cgroup_kn_unlock(of->kn);
2726 return ret ?: nbytes;
2727 }
2728
2729 /**
2730 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2731 * @from: attach to all cgroups of a given task
2732 * @tsk: the task to be attached
2733 */
2734 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2735 {
2736 struct cgroup_root *root;
2737 int retval = 0;
2738
2739 mutex_lock(&cgroup_mutex);
2740 for_each_root(root) {
2741 struct cgroup *from_cgrp;
2742
2743 if (root == &cgrp_dfl_root)
2744 continue;
2745
2746 down_read(&css_set_rwsem);
2747 from_cgrp = task_cgroup_from_root(from, root);
2748 up_read(&css_set_rwsem);
2749
2750 retval = cgroup_attach_task(from_cgrp, tsk, false);
2751 if (retval)
2752 break;
2753 }
2754 mutex_unlock(&cgroup_mutex);
2755
2756 return retval;
2757 }
2758 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2759
2760 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2761 char *buf, size_t nbytes, loff_t off)
2762 {
2763 return __cgroup_procs_write(of, buf, nbytes, off, false);
2764 }
2765
2766 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2767 char *buf, size_t nbytes, loff_t off)
2768 {
2769 return __cgroup_procs_write(of, buf, nbytes, off, true);
2770 }
2771
2772 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2773 char *buf, size_t nbytes, loff_t off)
2774 {
2775 struct cgroup *cgrp;
2776
2777 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2778
2779 cgrp = cgroup_kn_lock_live(of->kn);
2780 if (!cgrp)
2781 return -ENODEV;
2782 spin_lock(&release_agent_path_lock);
2783 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2784 sizeof(cgrp->root->release_agent_path));
2785 spin_unlock(&release_agent_path_lock);
2786 cgroup_kn_unlock(of->kn);
2787 return nbytes;
2788 }
2789
2790 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2791 {
2792 struct cgroup *cgrp = seq_css(seq)->cgroup;
2793
2794 spin_lock(&release_agent_path_lock);
2795 seq_puts(seq, cgrp->root->release_agent_path);
2796 spin_unlock(&release_agent_path_lock);
2797 seq_putc(seq, '\n');
2798 return 0;
2799 }
2800
2801 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2802 {
2803 seq_puts(seq, "0\n");
2804 return 0;
2805 }
2806
2807 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2808 {
2809 struct cgroup_subsys *ss;
2810 bool printed = false;
2811 int ssid;
2812
2813 for_each_subsys_which(ss, ssid, &ss_mask) {
2814 if (printed)
2815 seq_putc(seq, ' ');
2816 seq_printf(seq, "%s", ss->name);
2817 printed = true;
2818 }
2819 if (printed)
2820 seq_putc(seq, '\n');
2821 }
2822
2823 /* show controllers which are currently attached to the default hierarchy */
2824 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2825 {
2826 struct cgroup *cgrp = seq_css(seq)->cgroup;
2827
2828 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2829 ~cgrp_dfl_root_inhibit_ss_mask);
2830 return 0;
2831 }
2832
2833 /* show controllers which are enabled from the parent */
2834 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2835 {
2836 struct cgroup *cgrp = seq_css(seq)->cgroup;
2837
2838 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2839 return 0;
2840 }
2841
2842 /* show controllers which are enabled for a given cgroup's children */
2843 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2844 {
2845 struct cgroup *cgrp = seq_css(seq)->cgroup;
2846
2847 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2848 return 0;
2849 }
2850
2851 /**
2852 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2853 * @cgrp: root of the subtree to update csses for
2854 *
2855 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2856 * css associations need to be updated accordingly. This function looks up
2857 * all css_sets which are attached to the subtree, creates the matching
2858 * updated css_sets and migrates the tasks to the new ones.
2859 */
2860 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2861 {
2862 LIST_HEAD(preloaded_csets);
2863 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2864 struct cgroup_subsys_state *css;
2865 struct css_set *src_cset;
2866 int ret;
2867
2868 lockdep_assert_held(&cgroup_mutex);
2869
2870 percpu_down_write(&cgroup_threadgroup_rwsem);
2871
2872 /* look up all csses currently attached to @cgrp's subtree */
2873 down_read(&css_set_rwsem);
2874 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2875 struct cgrp_cset_link *link;
2876
2877 /* self is not affected by child_subsys_mask change */
2878 if (css->cgroup == cgrp)
2879 continue;
2880
2881 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2882 cgroup_migrate_add_src(link->cset, cgrp,
2883 &preloaded_csets);
2884 }
2885 up_read(&css_set_rwsem);
2886
2887 /* NULL dst indicates self on default hierarchy */
2888 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2889 if (ret)
2890 goto out_finish;
2891
2892 down_write(&css_set_rwsem);
2893 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2894 struct task_struct *task, *ntask;
2895
2896 /* src_csets precede dst_csets, break on the first dst_cset */
2897 if (!src_cset->mg_src_cgrp)
2898 break;
2899
2900 /* all tasks in src_csets need to be migrated */
2901 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2902 cgroup_taskset_add(task, &tset);
2903 }
2904 up_write(&css_set_rwsem);
2905
2906 ret = cgroup_taskset_migrate(&tset, cgrp);
2907 out_finish:
2908 cgroup_migrate_finish(&preloaded_csets);
2909 percpu_up_write(&cgroup_threadgroup_rwsem);
2910 return ret;
2911 }
2912
2913 /* change the enabled child controllers for a cgroup in the default hierarchy */
2914 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2915 char *buf, size_t nbytes,
2916 loff_t off)
2917 {
2918 unsigned long enable = 0, disable = 0;
2919 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2920 struct cgroup *cgrp, *child;
2921 struct cgroup_subsys *ss;
2922 char *tok;
2923 int ssid, ret;
2924
2925 /*
2926 * Parse input - space separated list of subsystem names prefixed
2927 * with either + or -.
2928 */
2929 buf = strstrip(buf);
2930 while ((tok = strsep(&buf, " "))) {
2931 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2932
2933 if (tok[0] == '\0')
2934 continue;
2935 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2936 if (!cgroup_ssid_enabled(ssid) ||
2937 strcmp(tok + 1, ss->name))
2938 continue;
2939
2940 if (*tok == '+') {
2941 enable |= 1 << ssid;
2942 disable &= ~(1 << ssid);
2943 } else if (*tok == '-') {
2944 disable |= 1 << ssid;
2945 enable &= ~(1 << ssid);
2946 } else {
2947 return -EINVAL;
2948 }
2949 break;
2950 }
2951 if (ssid == CGROUP_SUBSYS_COUNT)
2952 return -EINVAL;
2953 }
2954
2955 cgrp = cgroup_kn_lock_live(of->kn);
2956 if (!cgrp)
2957 return -ENODEV;
2958
2959 for_each_subsys(ss, ssid) {
2960 if (enable & (1 << ssid)) {
2961 if (cgrp->subtree_control & (1 << ssid)) {
2962 enable &= ~(1 << ssid);
2963 continue;
2964 }
2965
2966 /* unavailable or not enabled on the parent? */
2967 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2968 (cgroup_parent(cgrp) &&
2969 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2970 ret = -ENOENT;
2971 goto out_unlock;
2972 }
2973 } else if (disable & (1 << ssid)) {
2974 if (!(cgrp->subtree_control & (1 << ssid))) {
2975 disable &= ~(1 << ssid);
2976 continue;
2977 }
2978
2979 /* a child has it enabled? */
2980 cgroup_for_each_live_child(child, cgrp) {
2981 if (child->subtree_control & (1 << ssid)) {
2982 ret = -EBUSY;
2983 goto out_unlock;
2984 }
2985 }
2986 }
2987 }
2988
2989 if (!enable && !disable) {
2990 ret = 0;
2991 goto out_unlock;
2992 }
2993
2994 /*
2995 * Except for the root, subtree_control must be zero for a cgroup
2996 * with tasks so that child cgroups don't compete against tasks.
2997 */
2998 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2999 ret = -EBUSY;
3000 goto out_unlock;
3001 }
3002
3003 /*
3004 * Update subsys masks and calculate what needs to be done. More
3005 * subsystems than specified may need to be enabled or disabled
3006 * depending on subsystem dependencies.
3007 */
3008 old_sc = cgrp->subtree_control;
3009 old_ss = cgrp->child_subsys_mask;
3010 new_sc = (old_sc | enable) & ~disable;
3011 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
3012
3013 css_enable = ~old_ss & new_ss;
3014 css_disable = old_ss & ~new_ss;
3015 enable |= css_enable;
3016 disable |= css_disable;
3017
3018 /*
3019 * Because css offlining is asynchronous, userland might try to
3020 * re-enable the same controller while the previous instance is
3021 * still around. In such cases, wait till it's gone using
3022 * offline_waitq.
3023 */
3024 for_each_subsys_which(ss, ssid, &css_enable) {
3025 cgroup_for_each_live_child(child, cgrp) {
3026 DEFINE_WAIT(wait);
3027
3028 if (!cgroup_css(child, ss))
3029 continue;
3030
3031 cgroup_get(child);
3032 prepare_to_wait(&child->offline_waitq, &wait,
3033 TASK_UNINTERRUPTIBLE);
3034 cgroup_kn_unlock(of->kn);
3035 schedule();
3036 finish_wait(&child->offline_waitq, &wait);
3037 cgroup_put(child);
3038
3039 return restart_syscall();
3040 }
3041 }
3042
3043 cgrp->subtree_control = new_sc;
3044 cgrp->child_subsys_mask = new_ss;
3045
3046 /*
3047 * Create new csses or make the existing ones visible. A css is
3048 * created invisible if it's being implicitly enabled through
3049 * dependency. An invisible css is made visible when the userland
3050 * explicitly enables it.
3051 */
3052 for_each_subsys(ss, ssid) {
3053 if (!(enable & (1 << ssid)))
3054 continue;
3055
3056 cgroup_for_each_live_child(child, cgrp) {
3057 if (css_enable & (1 << ssid))
3058 ret = create_css(child, ss,
3059 cgrp->subtree_control & (1 << ssid));
3060 else
3061 ret = css_populate_dir(cgroup_css(child, ss),
3062 NULL);
3063 if (ret)
3064 goto err_undo_css;
3065 }
3066 }
3067
3068 /*
3069 * At this point, cgroup_e_css() results reflect the new csses
3070 * making the following cgroup_update_dfl_csses() properly update
3071 * css associations of all tasks in the subtree.
3072 */
3073 ret = cgroup_update_dfl_csses(cgrp);
3074 if (ret)
3075 goto err_undo_css;
3076
3077 /*
3078 * All tasks are migrated out of disabled csses. Kill or hide
3079 * them. A css is hidden when the userland requests it to be
3080 * disabled while other subsystems are still depending on it. The
3081 * css must not actively control resources and be in the vanilla
3082 * state if it's made visible again later. Controllers which may
3083 * be depended upon should provide ->css_reset() for this purpose.
3084 */
3085 for_each_subsys(ss, ssid) {
3086 if (!(disable & (1 << ssid)))
3087 continue;
3088
3089 cgroup_for_each_live_child(child, cgrp) {
3090 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3091
3092 if (css_disable & (1 << ssid)) {
3093 kill_css(css);
3094 } else {
3095 css_clear_dir(css, NULL);
3096 if (ss->css_reset)
3097 ss->css_reset(css);
3098 }
3099 }
3100 }
3101
3102 /*
3103 * The effective csses of all the descendants (excluding @cgrp) may
3104 * have changed. Subsystems can optionally subscribe to this event
3105 * by implementing ->css_e_css_changed() which is invoked if any of
3106 * the effective csses seen from the css's cgroup may have changed.
3107 */
3108 for_each_subsys(ss, ssid) {
3109 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3110 struct cgroup_subsys_state *css;
3111
3112 if (!ss->css_e_css_changed || !this_css)
3113 continue;
3114
3115 css_for_each_descendant_pre(css, this_css)
3116 if (css != this_css)
3117 ss->css_e_css_changed(css);
3118 }
3119
3120 kernfs_activate(cgrp->kn);
3121 ret = 0;
3122 out_unlock:
3123 cgroup_kn_unlock(of->kn);
3124 return ret ?: nbytes;
3125
3126 err_undo_css:
3127 cgrp->subtree_control = old_sc;
3128 cgrp->child_subsys_mask = old_ss;
3129
3130 for_each_subsys(ss, ssid) {
3131 if (!(enable & (1 << ssid)))
3132 continue;
3133
3134 cgroup_for_each_live_child(child, cgrp) {
3135 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3136
3137 if (!css)
3138 continue;
3139
3140 if (css_enable & (1 << ssid))
3141 kill_css(css);
3142 else
3143 css_clear_dir(css, NULL);
3144 }
3145 }
3146 goto out_unlock;
3147 }
3148
3149 static int cgroup_events_show(struct seq_file *seq, void *v)
3150 {
3151 seq_printf(seq, "populated %d\n",
3152 cgroup_is_populated(seq_css(seq)->cgroup));
3153 return 0;
3154 }
3155
3156 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3157 size_t nbytes, loff_t off)
3158 {
3159 struct cgroup *cgrp = of->kn->parent->priv;
3160 struct cftype *cft = of->kn->priv;
3161 struct cgroup_subsys_state *css;
3162 int ret;
3163
3164 if (cft->write)
3165 return cft->write(of, buf, nbytes, off);
3166
3167 /*
3168 * kernfs guarantees that a file isn't deleted with operations in
3169 * flight, which means that the matching css is and stays alive and
3170 * doesn't need to be pinned. The RCU locking is not necessary
3171 * either. It's just for the convenience of using cgroup_css().
3172 */
3173 rcu_read_lock();
3174 css = cgroup_css(cgrp, cft->ss);
3175 rcu_read_unlock();
3176
3177 if (cft->write_u64) {
3178 unsigned long long v;
3179 ret = kstrtoull(buf, 0, &v);
3180 if (!ret)
3181 ret = cft->write_u64(css, cft, v);
3182 } else if (cft->write_s64) {
3183 long long v;
3184 ret = kstrtoll(buf, 0, &v);
3185 if (!ret)
3186 ret = cft->write_s64(css, cft, v);
3187 } else {
3188 ret = -EINVAL;
3189 }
3190
3191 return ret ?: nbytes;
3192 }
3193
3194 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3195 {
3196 return seq_cft(seq)->seq_start(seq, ppos);
3197 }
3198
3199 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3200 {
3201 return seq_cft(seq)->seq_next(seq, v, ppos);
3202 }
3203
3204 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3205 {
3206 seq_cft(seq)->seq_stop(seq, v);
3207 }
3208
3209 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3210 {
3211 struct cftype *cft = seq_cft(m);
3212 struct cgroup_subsys_state *css = seq_css(m);
3213
3214 if (cft->seq_show)
3215 return cft->seq_show(m, arg);
3216
3217 if (cft->read_u64)
3218 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3219 else if (cft->read_s64)
3220 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3221 else
3222 return -EINVAL;
3223 return 0;
3224 }
3225
3226 static struct kernfs_ops cgroup_kf_single_ops = {
3227 .atomic_write_len = PAGE_SIZE,
3228 .write = cgroup_file_write,
3229 .seq_show = cgroup_seqfile_show,
3230 };
3231
3232 static struct kernfs_ops cgroup_kf_ops = {
3233 .atomic_write_len = PAGE_SIZE,
3234 .write = cgroup_file_write,
3235 .seq_start = cgroup_seqfile_start,
3236 .seq_next = cgroup_seqfile_next,
3237 .seq_stop = cgroup_seqfile_stop,
3238 .seq_show = cgroup_seqfile_show,
3239 };
3240
3241 /*
3242 * cgroup_rename - Only allow simple rename of directories in place.
3243 */
3244 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3245 const char *new_name_str)
3246 {
3247 struct cgroup *cgrp = kn->priv;
3248 int ret;
3249
3250 if (kernfs_type(kn) != KERNFS_DIR)
3251 return -ENOTDIR;
3252 if (kn->parent != new_parent)
3253 return -EIO;
3254
3255 /*
3256 * This isn't a proper migration and its usefulness is very
3257 * limited. Disallow on the default hierarchy.
3258 */
3259 if (cgroup_on_dfl(cgrp))
3260 return -EPERM;
3261
3262 /*
3263 * We're gonna grab cgroup_mutex which nests outside kernfs
3264 * active_ref. kernfs_rename() doesn't require active_ref
3265 * protection. Break them before grabbing cgroup_mutex.
3266 */
3267 kernfs_break_active_protection(new_parent);
3268 kernfs_break_active_protection(kn);
3269
3270 mutex_lock(&cgroup_mutex);
3271
3272 ret = kernfs_rename(kn, new_parent, new_name_str);
3273
3274 mutex_unlock(&cgroup_mutex);
3275
3276 kernfs_unbreak_active_protection(kn);
3277 kernfs_unbreak_active_protection(new_parent);
3278 return ret;
3279 }
3280
3281 /* set uid and gid of cgroup dirs and files to that of the creator */
3282 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3283 {
3284 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3285 .ia_uid = current_fsuid(),
3286 .ia_gid = current_fsgid(), };
3287
3288 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3289 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3290 return 0;
3291
3292 return kernfs_setattr(kn, &iattr);
3293 }
3294
3295 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3296 struct cftype *cft)
3297 {
3298 char name[CGROUP_FILE_NAME_MAX];
3299 struct kernfs_node *kn;
3300 struct lock_class_key *key = NULL;
3301 int ret;
3302
3303 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3304 key = &cft->lockdep_key;
3305 #endif
3306 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3307 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3308 NULL, key);
3309 if (IS_ERR(kn))
3310 return PTR_ERR(kn);
3311
3312 ret = cgroup_kn_set_ugid(kn);
3313 if (ret) {
3314 kernfs_remove(kn);
3315 return ret;
3316 }
3317
3318 if (cft->file_offset) {
3319 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3320
3321 kernfs_get(kn);
3322 cfile->kn = kn;
3323 list_add(&cfile->node, &css->files);
3324 }
3325
3326 return 0;
3327 }
3328
3329 /**
3330 * cgroup_addrm_files - add or remove files to a cgroup directory
3331 * @css: the target css
3332 * @cgrp: the target cgroup (usually css->cgroup)
3333 * @cfts: array of cftypes to be added
3334 * @is_add: whether to add or remove
3335 *
3336 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3337 * For removals, this function never fails.
3338 */
3339 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3340 struct cgroup *cgrp, struct cftype cfts[],
3341 bool is_add)
3342 {
3343 struct cftype *cft, *cft_end = NULL;
3344 int ret;
3345
3346 lockdep_assert_held(&cgroup_mutex);
3347
3348 restart:
3349 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3350 /* does cft->flags tell us to skip this file on @cgrp? */
3351 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3352 continue;
3353 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3354 continue;
3355 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3356 continue;
3357 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3358 continue;
3359
3360 if (is_add) {
3361 ret = cgroup_add_file(css, cgrp, cft);
3362 if (ret) {
3363 pr_warn("%s: failed to add %s, err=%d\n",
3364 __func__, cft->name, ret);
3365 cft_end = cft;
3366 is_add = false;
3367 goto restart;
3368 }
3369 } else {
3370 cgroup_rm_file(cgrp, cft);
3371 }
3372 }
3373 return 0;
3374 }
3375
3376 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3377 {
3378 LIST_HEAD(pending);
3379 struct cgroup_subsys *ss = cfts[0].ss;
3380 struct cgroup *root = &ss->root->cgrp;
3381 struct cgroup_subsys_state *css;
3382 int ret = 0;
3383
3384 lockdep_assert_held(&cgroup_mutex);
3385
3386 /* add/rm files for all cgroups created before */
3387 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3388 struct cgroup *cgrp = css->cgroup;
3389
3390 if (cgroup_is_dead(cgrp))
3391 continue;
3392
3393 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3394 if (ret)
3395 break;
3396 }
3397
3398 if (is_add && !ret)
3399 kernfs_activate(root->kn);
3400 return ret;
3401 }
3402
3403 static void cgroup_exit_cftypes(struct cftype *cfts)
3404 {
3405 struct cftype *cft;
3406
3407 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3408 /* free copy for custom atomic_write_len, see init_cftypes() */
3409 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3410 kfree(cft->kf_ops);
3411 cft->kf_ops = NULL;
3412 cft->ss = NULL;
3413
3414 /* revert flags set by cgroup core while adding @cfts */
3415 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3416 }
3417 }
3418
3419 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3420 {
3421 struct cftype *cft;
3422
3423 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3424 struct kernfs_ops *kf_ops;
3425
3426 WARN_ON(cft->ss || cft->kf_ops);
3427
3428 if (cft->seq_start)
3429 kf_ops = &cgroup_kf_ops;
3430 else
3431 kf_ops = &cgroup_kf_single_ops;
3432
3433 /*
3434 * Ugh... if @cft wants a custom max_write_len, we need to
3435 * make a copy of kf_ops to set its atomic_write_len.
3436 */
3437 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3438 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3439 if (!kf_ops) {
3440 cgroup_exit_cftypes(cfts);
3441 return -ENOMEM;
3442 }
3443 kf_ops->atomic_write_len = cft->max_write_len;
3444 }
3445
3446 cft->kf_ops = kf_ops;
3447 cft->ss = ss;
3448 }
3449
3450 return 0;
3451 }
3452
3453 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3454 {
3455 lockdep_assert_held(&cgroup_mutex);
3456
3457 if (!cfts || !cfts[0].ss)
3458 return -ENOENT;
3459
3460 list_del(&cfts->node);
3461 cgroup_apply_cftypes(cfts, false);
3462 cgroup_exit_cftypes(cfts);
3463 return 0;
3464 }
3465
3466 /**
3467 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3468 * @cfts: zero-length name terminated array of cftypes
3469 *
3470 * Unregister @cfts. Files described by @cfts are removed from all
3471 * existing cgroups and all future cgroups won't have them either. This
3472 * function can be called anytime whether @cfts' subsys is attached or not.
3473 *
3474 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3475 * registered.
3476 */
3477 int cgroup_rm_cftypes(struct cftype *cfts)
3478 {
3479 int ret;
3480
3481 mutex_lock(&cgroup_mutex);
3482 ret = cgroup_rm_cftypes_locked(cfts);
3483 mutex_unlock(&cgroup_mutex);
3484 return ret;
3485 }
3486
3487 /**
3488 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3489 * @ss: target cgroup subsystem
3490 * @cfts: zero-length name terminated array of cftypes
3491 *
3492 * Register @cfts to @ss. Files described by @cfts are created for all
3493 * existing cgroups to which @ss is attached and all future cgroups will
3494 * have them too. This function can be called anytime whether @ss is
3495 * attached or not.
3496 *
3497 * Returns 0 on successful registration, -errno on failure. Note that this
3498 * function currently returns 0 as long as @cfts registration is successful
3499 * even if some file creation attempts on existing cgroups fail.
3500 */
3501 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3502 {
3503 int ret;
3504
3505 if (!cgroup_ssid_enabled(ss->id))
3506 return 0;
3507
3508 if (!cfts || cfts[0].name[0] == '\0')
3509 return 0;
3510
3511 ret = cgroup_init_cftypes(ss, cfts);
3512 if (ret)
3513 return ret;
3514
3515 mutex_lock(&cgroup_mutex);
3516
3517 list_add_tail(&cfts->node, &ss->cfts);
3518 ret = cgroup_apply_cftypes(cfts, true);
3519 if (ret)
3520 cgroup_rm_cftypes_locked(cfts);
3521
3522 mutex_unlock(&cgroup_mutex);
3523 return ret;
3524 }
3525
3526 /**
3527 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3528 * @ss: target cgroup subsystem
3529 * @cfts: zero-length name terminated array of cftypes
3530 *
3531 * Similar to cgroup_add_cftypes() but the added files are only used for
3532 * the default hierarchy.
3533 */
3534 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3535 {
3536 struct cftype *cft;
3537
3538 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3539 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3540 return cgroup_add_cftypes(ss, cfts);
3541 }
3542
3543 /**
3544 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3545 * @ss: target cgroup subsystem
3546 * @cfts: zero-length name terminated array of cftypes
3547 *
3548 * Similar to cgroup_add_cftypes() but the added files are only used for
3549 * the legacy hierarchies.
3550 */
3551 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3552 {
3553 struct cftype *cft;
3554
3555 /*
3556 * If legacy_flies_on_dfl, we want to show the legacy files on the
3557 * dfl hierarchy but iff the target subsystem hasn't been updated
3558 * for the dfl hierarchy yet.
3559 */
3560 if (!cgroup_legacy_files_on_dfl ||
3561 ss->dfl_cftypes != ss->legacy_cftypes) {
3562 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3563 cft->flags |= __CFTYPE_NOT_ON_DFL;
3564 }
3565
3566 return cgroup_add_cftypes(ss, cfts);
3567 }
3568
3569 /**
3570 * cgroup_task_count - count the number of tasks in a cgroup.
3571 * @cgrp: the cgroup in question
3572 *
3573 * Return the number of tasks in the cgroup.
3574 */
3575 static int cgroup_task_count(const struct cgroup *cgrp)
3576 {
3577 int count = 0;
3578 struct cgrp_cset_link *link;
3579
3580 down_read(&css_set_rwsem);
3581 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3582 count += atomic_read(&link->cset->refcount);
3583 up_read(&css_set_rwsem);
3584 return count;
3585 }
3586
3587 /**
3588 * css_next_child - find the next child of a given css
3589 * @pos: the current position (%NULL to initiate traversal)
3590 * @parent: css whose children to walk
3591 *
3592 * This function returns the next child of @parent and should be called
3593 * under either cgroup_mutex or RCU read lock. The only requirement is
3594 * that @parent and @pos are accessible. The next sibling is guaranteed to
3595 * be returned regardless of their states.
3596 *
3597 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3598 * css which finished ->css_online() is guaranteed to be visible in the
3599 * future iterations and will stay visible until the last reference is put.
3600 * A css which hasn't finished ->css_online() or already finished
3601 * ->css_offline() may show up during traversal. It's each subsystem's
3602 * responsibility to synchronize against on/offlining.
3603 */
3604 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3605 struct cgroup_subsys_state *parent)
3606 {
3607 struct cgroup_subsys_state *next;
3608
3609 cgroup_assert_mutex_or_rcu_locked();
3610
3611 /*
3612 * @pos could already have been unlinked from the sibling list.
3613 * Once a cgroup is removed, its ->sibling.next is no longer
3614 * updated when its next sibling changes. CSS_RELEASED is set when
3615 * @pos is taken off list, at which time its next pointer is valid,
3616 * and, as releases are serialized, the one pointed to by the next
3617 * pointer is guaranteed to not have started release yet. This
3618 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3619 * critical section, the one pointed to by its next pointer is
3620 * guaranteed to not have finished its RCU grace period even if we
3621 * have dropped rcu_read_lock() inbetween iterations.
3622 *
3623 * If @pos has CSS_RELEASED set, its next pointer can't be
3624 * dereferenced; however, as each css is given a monotonically
3625 * increasing unique serial number and always appended to the
3626 * sibling list, the next one can be found by walking the parent's
3627 * children until the first css with higher serial number than
3628 * @pos's. While this path can be slower, it happens iff iteration
3629 * races against release and the race window is very small.
3630 */
3631 if (!pos) {
3632 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3633 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3634 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3635 } else {
3636 list_for_each_entry_rcu(next, &parent->children, sibling)
3637 if (next->serial_nr > pos->serial_nr)
3638 break;
3639 }
3640
3641 /*
3642 * @next, if not pointing to the head, can be dereferenced and is
3643 * the next sibling.
3644 */
3645 if (&next->sibling != &parent->children)
3646 return next;
3647 return NULL;
3648 }
3649
3650 /**
3651 * css_next_descendant_pre - find the next descendant for pre-order walk
3652 * @pos: the current position (%NULL to initiate traversal)
3653 * @root: css whose descendants to walk
3654 *
3655 * To be used by css_for_each_descendant_pre(). Find the next descendant
3656 * to visit for pre-order traversal of @root's descendants. @root is
3657 * included in the iteration and the first node to be visited.
3658 *
3659 * While this function requires cgroup_mutex or RCU read locking, it
3660 * doesn't require the whole traversal to be contained in a single critical
3661 * section. This function will return the correct next descendant as long
3662 * as both @pos and @root are accessible and @pos is a descendant of @root.
3663 *
3664 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3665 * css which finished ->css_online() is guaranteed to be visible in the
3666 * future iterations and will stay visible until the last reference is put.
3667 * A css which hasn't finished ->css_online() or already finished
3668 * ->css_offline() may show up during traversal. It's each subsystem's
3669 * responsibility to synchronize against on/offlining.
3670 */
3671 struct cgroup_subsys_state *
3672 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3673 struct cgroup_subsys_state *root)
3674 {
3675 struct cgroup_subsys_state *next;
3676
3677 cgroup_assert_mutex_or_rcu_locked();
3678
3679 /* if first iteration, visit @root */
3680 if (!pos)
3681 return root;
3682
3683 /* visit the first child if exists */
3684 next = css_next_child(NULL, pos);
3685 if (next)
3686 return next;
3687
3688 /* no child, visit my or the closest ancestor's next sibling */
3689 while (pos != root) {
3690 next = css_next_child(pos, pos->parent);
3691 if (next)
3692 return next;
3693 pos = pos->parent;
3694 }
3695
3696 return NULL;
3697 }
3698
3699 /**
3700 * css_rightmost_descendant - return the rightmost descendant of a css
3701 * @pos: css of interest
3702 *
3703 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3704 * is returned. This can be used during pre-order traversal to skip
3705 * subtree of @pos.
3706 *
3707 * While this function requires cgroup_mutex or RCU read locking, it
3708 * doesn't require the whole traversal to be contained in a single critical
3709 * section. This function will return the correct rightmost descendant as
3710 * long as @pos is accessible.
3711 */
3712 struct cgroup_subsys_state *
3713 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3714 {
3715 struct cgroup_subsys_state *last, *tmp;
3716
3717 cgroup_assert_mutex_or_rcu_locked();
3718
3719 do {
3720 last = pos;
3721 /* ->prev isn't RCU safe, walk ->next till the end */
3722 pos = NULL;
3723 css_for_each_child(tmp, last)
3724 pos = tmp;
3725 } while (pos);
3726
3727 return last;
3728 }
3729
3730 static struct cgroup_subsys_state *
3731 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3732 {
3733 struct cgroup_subsys_state *last;
3734
3735 do {
3736 last = pos;
3737 pos = css_next_child(NULL, pos);
3738 } while (pos);
3739
3740 return last;
3741 }
3742
3743 /**
3744 * css_next_descendant_post - find the next descendant for post-order walk
3745 * @pos: the current position (%NULL to initiate traversal)
3746 * @root: css whose descendants to walk
3747 *
3748 * To be used by css_for_each_descendant_post(). Find the next descendant
3749 * to visit for post-order traversal of @root's descendants. @root is
3750 * included in the iteration and the last node to be visited.
3751 *
3752 * While this function requires cgroup_mutex or RCU read locking, it
3753 * doesn't require the whole traversal to be contained in a single critical
3754 * section. This function will return the correct next descendant as long
3755 * as both @pos and @cgroup are accessible and @pos is a descendant of
3756 * @cgroup.
3757 *
3758 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3759 * css which finished ->css_online() is guaranteed to be visible in the
3760 * future iterations and will stay visible until the last reference is put.
3761 * A css which hasn't finished ->css_online() or already finished
3762 * ->css_offline() may show up during traversal. It's each subsystem's
3763 * responsibility to synchronize against on/offlining.
3764 */
3765 struct cgroup_subsys_state *
3766 css_next_descendant_post(struct cgroup_subsys_state *pos,
3767 struct cgroup_subsys_state *root)
3768 {
3769 struct cgroup_subsys_state *next;
3770
3771 cgroup_assert_mutex_or_rcu_locked();
3772
3773 /* if first iteration, visit leftmost descendant which may be @root */
3774 if (!pos)
3775 return css_leftmost_descendant(root);
3776
3777 /* if we visited @root, we're done */
3778 if (pos == root)
3779 return NULL;
3780
3781 /* if there's an unvisited sibling, visit its leftmost descendant */
3782 next = css_next_child(pos, pos->parent);
3783 if (next)
3784 return css_leftmost_descendant(next);
3785
3786 /* no sibling left, visit parent */
3787 return pos->parent;
3788 }
3789
3790 /**
3791 * css_has_online_children - does a css have online children
3792 * @css: the target css
3793 *
3794 * Returns %true if @css has any online children; otherwise, %false. This
3795 * function can be called from any context but the caller is responsible
3796 * for synchronizing against on/offlining as necessary.
3797 */
3798 bool css_has_online_children(struct cgroup_subsys_state *css)
3799 {
3800 struct cgroup_subsys_state *child;
3801 bool ret = false;
3802
3803 rcu_read_lock();
3804 css_for_each_child(child, css) {
3805 if (child->flags & CSS_ONLINE) {
3806 ret = true;
3807 break;
3808 }
3809 }
3810 rcu_read_unlock();
3811 return ret;
3812 }
3813
3814 /**
3815 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3816 * @it: the iterator to advance
3817 *
3818 * Advance @it to the next css_set to walk.
3819 */
3820 static void css_task_iter_advance_css_set(struct css_task_iter *it)
3821 {
3822 struct list_head *l = it->cset_pos;
3823 struct cgrp_cset_link *link;
3824 struct css_set *cset;
3825
3826 lockdep_assert_held(&css_set_rwsem);
3827
3828 /* Advance to the next non-empty css_set */
3829 do {
3830 l = l->next;
3831 if (l == it->cset_head) {
3832 it->cset_pos = NULL;
3833 it->task_pos = NULL;
3834 return;
3835 }
3836
3837 if (it->ss) {
3838 cset = container_of(l, struct css_set,
3839 e_cset_node[it->ss->id]);
3840 } else {
3841 link = list_entry(l, struct cgrp_cset_link, cset_link);
3842 cset = link->cset;
3843 }
3844 } while (!css_set_populated(cset));
3845
3846 it->cset_pos = l;
3847
3848 if (!list_empty(&cset->tasks))
3849 it->task_pos = cset->tasks.next;
3850 else
3851 it->task_pos = cset->mg_tasks.next;
3852
3853 it->tasks_head = &cset->tasks;
3854 it->mg_tasks_head = &cset->mg_tasks;
3855
3856 /*
3857 * We don't keep css_sets locked across iteration steps and thus
3858 * need to take steps to ensure that iteration can be resumed after
3859 * the lock is re-acquired. Iteration is performed at two levels -
3860 * css_sets and tasks in them.
3861 *
3862 * Once created, a css_set never leaves its cgroup lists, so a
3863 * pinned css_set is guaranteed to stay put and we can resume
3864 * iteration afterwards.
3865 *
3866 * Tasks may leave @cset across iteration steps. This is resolved
3867 * by registering each iterator with the css_set currently being
3868 * walked and making css_set_move_task() advance iterators whose
3869 * next task is leaving.
3870 */
3871 if (it->cur_cset) {
3872 list_del(&it->iters_node);
3873 put_css_set_locked(it->cur_cset);
3874 }
3875 get_css_set(cset);
3876 it->cur_cset = cset;
3877 list_add(&it->iters_node, &cset->task_iters);
3878 }
3879
3880 static void css_task_iter_advance(struct css_task_iter *it)
3881 {
3882 struct list_head *l = it->task_pos;
3883
3884 lockdep_assert_held(&css_set_rwsem);
3885 WARN_ON_ONCE(!l);
3886
3887 /*
3888 * Advance iterator to find next entry. cset->tasks is consumed
3889 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3890 * next cset.
3891 */
3892 l = l->next;
3893
3894 if (l == it->tasks_head)
3895 l = it->mg_tasks_head->next;
3896
3897 if (l == it->mg_tasks_head)
3898 css_task_iter_advance_css_set(it);
3899 else
3900 it->task_pos = l;
3901 }
3902
3903 /**
3904 * css_task_iter_start - initiate task iteration
3905 * @css: the css to walk tasks of
3906 * @it: the task iterator to use
3907 *
3908 * Initiate iteration through the tasks of @css. The caller can call
3909 * css_task_iter_next() to walk through the tasks until the function
3910 * returns NULL. On completion of iteration, css_task_iter_end() must be
3911 * called.
3912 */
3913 void css_task_iter_start(struct cgroup_subsys_state *css,
3914 struct css_task_iter *it)
3915 {
3916 /* no one should try to iterate before mounting cgroups */
3917 WARN_ON_ONCE(!use_task_css_set_links);
3918
3919 memset(it, 0, sizeof(*it));
3920
3921 down_write(&css_set_rwsem);
3922
3923 it->ss = css->ss;
3924
3925 if (it->ss)
3926 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3927 else
3928 it->cset_pos = &css->cgroup->cset_links;
3929
3930 it->cset_head = it->cset_pos;
3931
3932 css_task_iter_advance_css_set(it);
3933
3934 up_write(&css_set_rwsem);
3935 }
3936
3937 /**
3938 * css_task_iter_next - return the next task for the iterator
3939 * @it: the task iterator being iterated
3940 *
3941 * The "next" function for task iteration. @it should have been
3942 * initialized via css_task_iter_start(). Returns NULL when the iteration
3943 * reaches the end.
3944 */
3945 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3946 {
3947 if (!it->cset_pos)
3948 return NULL;
3949
3950 if (it->cur_task)
3951 put_task_struct(it->cur_task);
3952
3953 down_write(&css_set_rwsem);
3954
3955 it->cur_task = list_entry(it->task_pos, struct task_struct, cg_list);
3956 get_task_struct(it->cur_task);
3957
3958 css_task_iter_advance(it);
3959
3960 up_write(&css_set_rwsem);
3961
3962 return it->cur_task;
3963 }
3964
3965 /**
3966 * css_task_iter_end - finish task iteration
3967 * @it: the task iterator to finish
3968 *
3969 * Finish task iteration started by css_task_iter_start().
3970 */
3971 void css_task_iter_end(struct css_task_iter *it)
3972 {
3973 if (it->cur_cset) {
3974 down_write(&css_set_rwsem);
3975 list_del(&it->iters_node);
3976 put_css_set_locked(it->cur_cset);
3977 up_write(&css_set_rwsem);
3978 }
3979
3980 if (it->cur_task)
3981 put_task_struct(it->cur_task);
3982 }
3983
3984 /**
3985 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3986 * @to: cgroup to which the tasks will be moved
3987 * @from: cgroup in which the tasks currently reside
3988 *
3989 * Locking rules between cgroup_post_fork() and the migration path
3990 * guarantee that, if a task is forking while being migrated, the new child
3991 * is guaranteed to be either visible in the source cgroup after the
3992 * parent's migration is complete or put into the target cgroup. No task
3993 * can slip out of migration through forking.
3994 */
3995 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3996 {
3997 LIST_HEAD(preloaded_csets);
3998 struct cgrp_cset_link *link;
3999 struct css_task_iter it;
4000 struct task_struct *task;
4001 int ret;
4002
4003 mutex_lock(&cgroup_mutex);
4004
4005 /* all tasks in @from are being moved, all csets are source */
4006 down_read(&css_set_rwsem);
4007 list_for_each_entry(link, &from->cset_links, cset_link)
4008 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4009 up_read(&css_set_rwsem);
4010
4011 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4012 if (ret)
4013 goto out_err;
4014
4015 /*
4016 * Migrate tasks one-by-one until @form is empty. This fails iff
4017 * ->can_attach() fails.
4018 */
4019 do {
4020 css_task_iter_start(&from->self, &it);
4021 task = css_task_iter_next(&it);
4022 if (task)
4023 get_task_struct(task);
4024 css_task_iter_end(&it);
4025
4026 if (task) {
4027 ret = cgroup_migrate(task, false, to);
4028 put_task_struct(task);
4029 }
4030 } while (task && !ret);
4031 out_err:
4032 cgroup_migrate_finish(&preloaded_csets);
4033 mutex_unlock(&cgroup_mutex);
4034 return ret;
4035 }
4036
4037 /*
4038 * Stuff for reading the 'tasks'/'procs' files.
4039 *
4040 * Reading this file can return large amounts of data if a cgroup has
4041 * *lots* of attached tasks. So it may need several calls to read(),
4042 * but we cannot guarantee that the information we produce is correct
4043 * unless we produce it entirely atomically.
4044 *
4045 */
4046
4047 /* which pidlist file are we talking about? */
4048 enum cgroup_filetype {
4049 CGROUP_FILE_PROCS,
4050 CGROUP_FILE_TASKS,
4051 };
4052
4053 /*
4054 * A pidlist is a list of pids that virtually represents the contents of one
4055 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4056 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4057 * to the cgroup.
4058 */
4059 struct cgroup_pidlist {
4060 /*
4061 * used to find which pidlist is wanted. doesn't change as long as
4062 * this particular list stays in the list.
4063 */
4064 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4065 /* array of xids */
4066 pid_t *list;
4067 /* how many elements the above list has */
4068 int length;
4069 /* each of these stored in a list by its cgroup */
4070 struct list_head links;
4071 /* pointer to the cgroup we belong to, for list removal purposes */
4072 struct cgroup *owner;
4073 /* for delayed destruction */
4074 struct delayed_work destroy_dwork;
4075 };
4076
4077 /*
4078 * The following two functions "fix" the issue where there are more pids
4079 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4080 * TODO: replace with a kernel-wide solution to this problem
4081 */
4082 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4083 static void *pidlist_allocate(int count)
4084 {
4085 if (PIDLIST_TOO_LARGE(count))
4086 return vmalloc(count * sizeof(pid_t));
4087 else
4088 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4089 }
4090
4091 static void pidlist_free(void *p)
4092 {
4093 kvfree(p);
4094 }
4095
4096 /*
4097 * Used to destroy all pidlists lingering waiting for destroy timer. None
4098 * should be left afterwards.
4099 */
4100 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4101 {
4102 struct cgroup_pidlist *l, *tmp_l;
4103
4104 mutex_lock(&cgrp->pidlist_mutex);
4105 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4106 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4107 mutex_unlock(&cgrp->pidlist_mutex);
4108
4109 flush_workqueue(cgroup_pidlist_destroy_wq);
4110 BUG_ON(!list_empty(&cgrp->pidlists));
4111 }
4112
4113 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4114 {
4115 struct delayed_work *dwork = to_delayed_work(work);
4116 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4117 destroy_dwork);
4118 struct cgroup_pidlist *tofree = NULL;
4119
4120 mutex_lock(&l->owner->pidlist_mutex);
4121
4122 /*
4123 * Destroy iff we didn't get queued again. The state won't change
4124 * as destroy_dwork can only be queued while locked.
4125 */
4126 if (!delayed_work_pending(dwork)) {
4127 list_del(&l->links);
4128 pidlist_free(l->list);
4129 put_pid_ns(l->key.ns);
4130 tofree = l;
4131 }
4132
4133 mutex_unlock(&l->owner->pidlist_mutex);
4134 kfree(tofree);
4135 }
4136
4137 /*
4138 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4139 * Returns the number of unique elements.
4140 */
4141 static int pidlist_uniq(pid_t *list, int length)
4142 {
4143 int src, dest = 1;
4144
4145 /*
4146 * we presume the 0th element is unique, so i starts at 1. trivial
4147 * edge cases first; no work needs to be done for either
4148 */
4149 if (length == 0 || length == 1)
4150 return length;
4151 /* src and dest walk down the list; dest counts unique elements */
4152 for (src = 1; src < length; src++) {
4153 /* find next unique element */
4154 while (list[src] == list[src-1]) {
4155 src++;
4156 if (src == length)
4157 goto after;
4158 }
4159 /* dest always points to where the next unique element goes */
4160 list[dest] = list[src];
4161 dest++;
4162 }
4163 after:
4164 return dest;
4165 }
4166
4167 /*
4168 * The two pid files - task and cgroup.procs - guaranteed that the result
4169 * is sorted, which forced this whole pidlist fiasco. As pid order is
4170 * different per namespace, each namespace needs differently sorted list,
4171 * making it impossible to use, for example, single rbtree of member tasks
4172 * sorted by task pointer. As pidlists can be fairly large, allocating one
4173 * per open file is dangerous, so cgroup had to implement shared pool of
4174 * pidlists keyed by cgroup and namespace.
4175 *
4176 * All this extra complexity was caused by the original implementation
4177 * committing to an entirely unnecessary property. In the long term, we
4178 * want to do away with it. Explicitly scramble sort order if on the
4179 * default hierarchy so that no such expectation exists in the new
4180 * interface.
4181 *
4182 * Scrambling is done by swapping every two consecutive bits, which is
4183 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4184 */
4185 static pid_t pid_fry(pid_t pid)
4186 {
4187 unsigned a = pid & 0x55555555;
4188 unsigned b = pid & 0xAAAAAAAA;
4189
4190 return (a << 1) | (b >> 1);
4191 }
4192
4193 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4194 {
4195 if (cgroup_on_dfl(cgrp))
4196 return pid_fry(pid);
4197 else
4198 return pid;
4199 }
4200
4201 static int cmppid(const void *a, const void *b)
4202 {
4203 return *(pid_t *)a - *(pid_t *)b;
4204 }
4205
4206 static int fried_cmppid(const void *a, const void *b)
4207 {
4208 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4209 }
4210
4211 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4212 enum cgroup_filetype type)
4213 {
4214 struct cgroup_pidlist *l;
4215 /* don't need task_nsproxy() if we're looking at ourself */
4216 struct pid_namespace *ns = task_active_pid_ns(current);
4217
4218 lockdep_assert_held(&cgrp->pidlist_mutex);
4219
4220 list_for_each_entry(l, &cgrp->pidlists, links)
4221 if (l->key.type == type && l->key.ns == ns)
4222 return l;
4223 return NULL;
4224 }
4225
4226 /*
4227 * find the appropriate pidlist for our purpose (given procs vs tasks)
4228 * returns with the lock on that pidlist already held, and takes care
4229 * of the use count, or returns NULL with no locks held if we're out of
4230 * memory.
4231 */
4232 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4233 enum cgroup_filetype type)
4234 {
4235 struct cgroup_pidlist *l;
4236
4237 lockdep_assert_held(&cgrp->pidlist_mutex);
4238
4239 l = cgroup_pidlist_find(cgrp, type);
4240 if (l)
4241 return l;
4242
4243 /* entry not found; create a new one */
4244 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4245 if (!l)
4246 return l;
4247
4248 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4249 l->key.type = type;
4250 /* don't need task_nsproxy() if we're looking at ourself */
4251 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4252 l->owner = cgrp;
4253 list_add(&l->links, &cgrp->pidlists);
4254 return l;
4255 }
4256
4257 /*
4258 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4259 */
4260 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4261 struct cgroup_pidlist **lp)
4262 {
4263 pid_t *array;
4264 int length;
4265 int pid, n = 0; /* used for populating the array */
4266 struct css_task_iter it;
4267 struct task_struct *tsk;
4268 struct cgroup_pidlist *l;
4269
4270 lockdep_assert_held(&cgrp->pidlist_mutex);
4271
4272 /*
4273 * If cgroup gets more users after we read count, we won't have
4274 * enough space - tough. This race is indistinguishable to the
4275 * caller from the case that the additional cgroup users didn't
4276 * show up until sometime later on.
4277 */
4278 length = cgroup_task_count(cgrp);
4279 array = pidlist_allocate(length);
4280 if (!array)
4281 return -ENOMEM;
4282 /* now, populate the array */
4283 css_task_iter_start(&cgrp->self, &it);
4284 while ((tsk = css_task_iter_next(&it))) {
4285 if (unlikely(n == length))
4286 break;
4287 /* get tgid or pid for procs or tasks file respectively */
4288 if (type == CGROUP_FILE_PROCS)
4289 pid = task_tgid_vnr(tsk);
4290 else
4291 pid = task_pid_vnr(tsk);
4292 if (pid > 0) /* make sure to only use valid results */
4293 array[n++] = pid;
4294 }
4295 css_task_iter_end(&it);
4296 length = n;
4297 /* now sort & (if procs) strip out duplicates */
4298 if (cgroup_on_dfl(cgrp))
4299 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4300 else
4301 sort(array, length, sizeof(pid_t), cmppid, NULL);
4302 if (type == CGROUP_FILE_PROCS)
4303 length = pidlist_uniq(array, length);
4304
4305 l = cgroup_pidlist_find_create(cgrp, type);
4306 if (!l) {
4307 pidlist_free(array);
4308 return -ENOMEM;
4309 }
4310
4311 /* store array, freeing old if necessary */
4312 pidlist_free(l->list);
4313 l->list = array;
4314 l->length = length;
4315 *lp = l;
4316 return 0;
4317 }
4318
4319 /**
4320 * cgroupstats_build - build and fill cgroupstats
4321 * @stats: cgroupstats to fill information into
4322 * @dentry: A dentry entry belonging to the cgroup for which stats have
4323 * been requested.
4324 *
4325 * Build and fill cgroupstats so that taskstats can export it to user
4326 * space.
4327 */
4328 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4329 {
4330 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4331 struct cgroup *cgrp;
4332 struct css_task_iter it;
4333 struct task_struct *tsk;
4334
4335 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4336 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4337 kernfs_type(kn) != KERNFS_DIR)
4338 return -EINVAL;
4339
4340 mutex_lock(&cgroup_mutex);
4341
4342 /*
4343 * We aren't being called from kernfs and there's no guarantee on
4344 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4345 * @kn->priv is RCU safe. Let's do the RCU dancing.
4346 */
4347 rcu_read_lock();
4348 cgrp = rcu_dereference(kn->priv);
4349 if (!cgrp || cgroup_is_dead(cgrp)) {
4350 rcu_read_unlock();
4351 mutex_unlock(&cgroup_mutex);
4352 return -ENOENT;
4353 }
4354 rcu_read_unlock();
4355
4356 css_task_iter_start(&cgrp->self, &it);
4357 while ((tsk = css_task_iter_next(&it))) {
4358 switch (tsk->state) {
4359 case TASK_RUNNING:
4360 stats->nr_running++;
4361 break;
4362 case TASK_INTERRUPTIBLE:
4363 stats->nr_sleeping++;
4364 break;
4365 case TASK_UNINTERRUPTIBLE:
4366 stats->nr_uninterruptible++;
4367 break;
4368 case TASK_STOPPED:
4369 stats->nr_stopped++;
4370 break;
4371 default:
4372 if (delayacct_is_task_waiting_on_io(tsk))
4373 stats->nr_io_wait++;
4374 break;
4375 }
4376 }
4377 css_task_iter_end(&it);
4378
4379 mutex_unlock(&cgroup_mutex);
4380 return 0;
4381 }
4382
4383
4384 /*
4385 * seq_file methods for the tasks/procs files. The seq_file position is the
4386 * next pid to display; the seq_file iterator is a pointer to the pid
4387 * in the cgroup->l->list array.
4388 */
4389
4390 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4391 {
4392 /*
4393 * Initially we receive a position value that corresponds to
4394 * one more than the last pid shown (or 0 on the first call or
4395 * after a seek to the start). Use a binary-search to find the
4396 * next pid to display, if any
4397 */
4398 struct kernfs_open_file *of = s->private;
4399 struct cgroup *cgrp = seq_css(s)->cgroup;
4400 struct cgroup_pidlist *l;
4401 enum cgroup_filetype type = seq_cft(s)->private;
4402 int index = 0, pid = *pos;
4403 int *iter, ret;
4404
4405 mutex_lock(&cgrp->pidlist_mutex);
4406
4407 /*
4408 * !NULL @of->priv indicates that this isn't the first start()
4409 * after open. If the matching pidlist is around, we can use that.
4410 * Look for it. Note that @of->priv can't be used directly. It
4411 * could already have been destroyed.
4412 */
4413 if (of->priv)
4414 of->priv = cgroup_pidlist_find(cgrp, type);
4415
4416 /*
4417 * Either this is the first start() after open or the matching
4418 * pidlist has been destroyed inbetween. Create a new one.
4419 */
4420 if (!of->priv) {
4421 ret = pidlist_array_load(cgrp, type,
4422 (struct cgroup_pidlist **)&of->priv);
4423 if (ret)
4424 return ERR_PTR(ret);
4425 }
4426 l = of->priv;
4427
4428 if (pid) {
4429 int end = l->length;
4430
4431 while (index < end) {
4432 int mid = (index + end) / 2;
4433 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4434 index = mid;
4435 break;
4436 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4437 index = mid + 1;
4438 else
4439 end = mid;
4440 }
4441 }
4442 /* If we're off the end of the array, we're done */
4443 if (index >= l->length)
4444 return NULL;
4445 /* Update the abstract position to be the actual pid that we found */
4446 iter = l->list + index;
4447 *pos = cgroup_pid_fry(cgrp, *iter);
4448 return iter;
4449 }
4450
4451 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4452 {
4453 struct kernfs_open_file *of = s->private;
4454 struct cgroup_pidlist *l = of->priv;
4455
4456 if (l)
4457 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4458 CGROUP_PIDLIST_DESTROY_DELAY);
4459 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4460 }
4461
4462 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4463 {
4464 struct kernfs_open_file *of = s->private;
4465 struct cgroup_pidlist *l = of->priv;
4466 pid_t *p = v;
4467 pid_t *end = l->list + l->length;
4468 /*
4469 * Advance to the next pid in the array. If this goes off the
4470 * end, we're done
4471 */
4472 p++;
4473 if (p >= end) {
4474 return NULL;
4475 } else {
4476 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4477 return p;
4478 }
4479 }
4480
4481 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4482 {
4483 seq_printf(s, "%d\n", *(int *)v);
4484
4485 return 0;
4486 }
4487
4488 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4489 struct cftype *cft)
4490 {
4491 return notify_on_release(css->cgroup);
4492 }
4493
4494 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4495 struct cftype *cft, u64 val)
4496 {
4497 if (val)
4498 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4499 else
4500 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4501 return 0;
4502 }
4503
4504 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4505 struct cftype *cft)
4506 {
4507 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4508 }
4509
4510 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4511 struct cftype *cft, u64 val)
4512 {
4513 if (val)
4514 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4515 else
4516 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4517 return 0;
4518 }
4519
4520 /* cgroup core interface files for the default hierarchy */
4521 static struct cftype cgroup_dfl_base_files[] = {
4522 {
4523 .name = "cgroup.procs",
4524 .file_offset = offsetof(struct cgroup, procs_file),
4525 .seq_start = cgroup_pidlist_start,
4526 .seq_next = cgroup_pidlist_next,
4527 .seq_stop = cgroup_pidlist_stop,
4528 .seq_show = cgroup_pidlist_show,
4529 .private = CGROUP_FILE_PROCS,
4530 .write = cgroup_procs_write,
4531 },
4532 {
4533 .name = "cgroup.controllers",
4534 .flags = CFTYPE_ONLY_ON_ROOT,
4535 .seq_show = cgroup_root_controllers_show,
4536 },
4537 {
4538 .name = "cgroup.controllers",
4539 .flags = CFTYPE_NOT_ON_ROOT,
4540 .seq_show = cgroup_controllers_show,
4541 },
4542 {
4543 .name = "cgroup.subtree_control",
4544 .seq_show = cgroup_subtree_control_show,
4545 .write = cgroup_subtree_control_write,
4546 },
4547 {
4548 .name = "cgroup.events",
4549 .flags = CFTYPE_NOT_ON_ROOT,
4550 .file_offset = offsetof(struct cgroup, events_file),
4551 .seq_show = cgroup_events_show,
4552 },
4553 { } /* terminate */
4554 };
4555
4556 /* cgroup core interface files for the legacy hierarchies */
4557 static struct cftype cgroup_legacy_base_files[] = {
4558 {
4559 .name = "cgroup.procs",
4560 .seq_start = cgroup_pidlist_start,
4561 .seq_next = cgroup_pidlist_next,
4562 .seq_stop = cgroup_pidlist_stop,
4563 .seq_show = cgroup_pidlist_show,
4564 .private = CGROUP_FILE_PROCS,
4565 .write = cgroup_procs_write,
4566 },
4567 {
4568 .name = "cgroup.clone_children",
4569 .read_u64 = cgroup_clone_children_read,
4570 .write_u64 = cgroup_clone_children_write,
4571 },
4572 {
4573 .name = "cgroup.sane_behavior",
4574 .flags = CFTYPE_ONLY_ON_ROOT,
4575 .seq_show = cgroup_sane_behavior_show,
4576 },
4577 {
4578 .name = "tasks",
4579 .seq_start = cgroup_pidlist_start,
4580 .seq_next = cgroup_pidlist_next,
4581 .seq_stop = cgroup_pidlist_stop,
4582 .seq_show = cgroup_pidlist_show,
4583 .private = CGROUP_FILE_TASKS,
4584 .write = cgroup_tasks_write,
4585 },
4586 {
4587 .name = "notify_on_release",
4588 .read_u64 = cgroup_read_notify_on_release,
4589 .write_u64 = cgroup_write_notify_on_release,
4590 },
4591 {
4592 .name = "release_agent",
4593 .flags = CFTYPE_ONLY_ON_ROOT,
4594 .seq_show = cgroup_release_agent_show,
4595 .write = cgroup_release_agent_write,
4596 .max_write_len = PATH_MAX - 1,
4597 },
4598 { } /* terminate */
4599 };
4600
4601 /*
4602 * css destruction is four-stage process.
4603 *
4604 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4605 * Implemented in kill_css().
4606 *
4607 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4608 * and thus css_tryget_online() is guaranteed to fail, the css can be
4609 * offlined by invoking offline_css(). After offlining, the base ref is
4610 * put. Implemented in css_killed_work_fn().
4611 *
4612 * 3. When the percpu_ref reaches zero, the only possible remaining
4613 * accessors are inside RCU read sections. css_release() schedules the
4614 * RCU callback.
4615 *
4616 * 4. After the grace period, the css can be freed. Implemented in
4617 * css_free_work_fn().
4618 *
4619 * It is actually hairier because both step 2 and 4 require process context
4620 * and thus involve punting to css->destroy_work adding two additional
4621 * steps to the already complex sequence.
4622 */
4623 static void css_free_work_fn(struct work_struct *work)
4624 {
4625 struct cgroup_subsys_state *css =
4626 container_of(work, struct cgroup_subsys_state, destroy_work);
4627 struct cgroup_subsys *ss = css->ss;
4628 struct cgroup *cgrp = css->cgroup;
4629 struct cgroup_file *cfile;
4630
4631 percpu_ref_exit(&css->refcnt);
4632
4633 list_for_each_entry(cfile, &css->files, node)
4634 kernfs_put(cfile->kn);
4635
4636 if (ss) {
4637 /* css free path */
4638 int id = css->id;
4639
4640 if (css->parent)
4641 css_put(css->parent);
4642
4643 ss->css_free(css);
4644 cgroup_idr_remove(&ss->css_idr, id);
4645 cgroup_put(cgrp);
4646 } else {
4647 /* cgroup free path */
4648 atomic_dec(&cgrp->root->nr_cgrps);
4649 cgroup_pidlist_destroy_all(cgrp);
4650 cancel_work_sync(&cgrp->release_agent_work);
4651
4652 if (cgroup_parent(cgrp)) {
4653 /*
4654 * We get a ref to the parent, and put the ref when
4655 * this cgroup is being freed, so it's guaranteed
4656 * that the parent won't be destroyed before its
4657 * children.
4658 */
4659 cgroup_put(cgroup_parent(cgrp));
4660 kernfs_put(cgrp->kn);
4661 kfree(cgrp);
4662 } else {
4663 /*
4664 * This is root cgroup's refcnt reaching zero,
4665 * which indicates that the root should be
4666 * released.
4667 */
4668 cgroup_destroy_root(cgrp->root);
4669 }
4670 }
4671 }
4672
4673 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4674 {
4675 struct cgroup_subsys_state *css =
4676 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4677
4678 INIT_WORK(&css->destroy_work, css_free_work_fn);
4679 queue_work(cgroup_destroy_wq, &css->destroy_work);
4680 }
4681
4682 static void css_release_work_fn(struct work_struct *work)
4683 {
4684 struct cgroup_subsys_state *css =
4685 container_of(work, struct cgroup_subsys_state, destroy_work);
4686 struct cgroup_subsys *ss = css->ss;
4687 struct cgroup *cgrp = css->cgroup;
4688
4689 mutex_lock(&cgroup_mutex);
4690
4691 css->flags |= CSS_RELEASED;
4692 list_del_rcu(&css->sibling);
4693
4694 if (ss) {
4695 /* css release path */
4696 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4697 if (ss->css_released)
4698 ss->css_released(css);
4699 } else {
4700 /* cgroup release path */
4701 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4702 cgrp->id = -1;
4703
4704 /*
4705 * There are two control paths which try to determine
4706 * cgroup from dentry without going through kernfs -
4707 * cgroupstats_build() and css_tryget_online_from_dir().
4708 * Those are supported by RCU protecting clearing of
4709 * cgrp->kn->priv backpointer.
4710 */
4711 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4712 }
4713
4714 mutex_unlock(&cgroup_mutex);
4715
4716 call_rcu(&css->rcu_head, css_free_rcu_fn);
4717 }
4718
4719 static void css_release(struct percpu_ref *ref)
4720 {
4721 struct cgroup_subsys_state *css =
4722 container_of(ref, struct cgroup_subsys_state, refcnt);
4723
4724 INIT_WORK(&css->destroy_work, css_release_work_fn);
4725 queue_work(cgroup_destroy_wq, &css->destroy_work);
4726 }
4727
4728 static void init_and_link_css(struct cgroup_subsys_state *css,
4729 struct cgroup_subsys *ss, struct cgroup *cgrp)
4730 {
4731 lockdep_assert_held(&cgroup_mutex);
4732
4733 cgroup_get(cgrp);
4734
4735 memset(css, 0, sizeof(*css));
4736 css->cgroup = cgrp;
4737 css->ss = ss;
4738 INIT_LIST_HEAD(&css->sibling);
4739 INIT_LIST_HEAD(&css->children);
4740 INIT_LIST_HEAD(&css->files);
4741 css->serial_nr = css_serial_nr_next++;
4742
4743 if (cgroup_parent(cgrp)) {
4744 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4745 css_get(css->parent);
4746 }
4747
4748 BUG_ON(cgroup_css(cgrp, ss));
4749 }
4750
4751 /* invoke ->css_online() on a new CSS and mark it online if successful */
4752 static int online_css(struct cgroup_subsys_state *css)
4753 {
4754 struct cgroup_subsys *ss = css->ss;
4755 int ret = 0;
4756
4757 lockdep_assert_held(&cgroup_mutex);
4758
4759 if (ss->css_online)
4760 ret = ss->css_online(css);
4761 if (!ret) {
4762 css->flags |= CSS_ONLINE;
4763 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4764 }
4765 return ret;
4766 }
4767
4768 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4769 static void offline_css(struct cgroup_subsys_state *css)
4770 {
4771 struct cgroup_subsys *ss = css->ss;
4772
4773 lockdep_assert_held(&cgroup_mutex);
4774
4775 if (!(css->flags & CSS_ONLINE))
4776 return;
4777
4778 if (ss->css_offline)
4779 ss->css_offline(css);
4780
4781 css->flags &= ~CSS_ONLINE;
4782 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4783
4784 wake_up_all(&css->cgroup->offline_waitq);
4785 }
4786
4787 /**
4788 * create_css - create a cgroup_subsys_state
4789 * @cgrp: the cgroup new css will be associated with
4790 * @ss: the subsys of new css
4791 * @visible: whether to create control knobs for the new css or not
4792 *
4793 * Create a new css associated with @cgrp - @ss pair. On success, the new
4794 * css is online and installed in @cgrp with all interface files created if
4795 * @visible. Returns 0 on success, -errno on failure.
4796 */
4797 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4798 bool visible)
4799 {
4800 struct cgroup *parent = cgroup_parent(cgrp);
4801 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4802 struct cgroup_subsys_state *css;
4803 int err;
4804
4805 lockdep_assert_held(&cgroup_mutex);
4806
4807 css = ss->css_alloc(parent_css);
4808 if (IS_ERR(css))
4809 return PTR_ERR(css);
4810
4811 init_and_link_css(css, ss, cgrp);
4812
4813 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4814 if (err)
4815 goto err_free_css;
4816
4817 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4818 if (err < 0)
4819 goto err_free_percpu_ref;
4820 css->id = err;
4821
4822 if (visible) {
4823 err = css_populate_dir(css, NULL);
4824 if (err)
4825 goto err_free_id;
4826 }
4827
4828 /* @css is ready to be brought online now, make it visible */
4829 list_add_tail_rcu(&css->sibling, &parent_css->children);
4830 cgroup_idr_replace(&ss->css_idr, css, css->id);
4831
4832 err = online_css(css);
4833 if (err)
4834 goto err_list_del;
4835
4836 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4837 cgroup_parent(parent)) {
4838 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4839 current->comm, current->pid, ss->name);
4840 if (!strcmp(ss->name, "memory"))
4841 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4842 ss->warned_broken_hierarchy = true;
4843 }
4844
4845 return 0;
4846
4847 err_list_del:
4848 list_del_rcu(&css->sibling);
4849 css_clear_dir(css, NULL);
4850 err_free_id:
4851 cgroup_idr_remove(&ss->css_idr, css->id);
4852 err_free_percpu_ref:
4853 percpu_ref_exit(&css->refcnt);
4854 err_free_css:
4855 call_rcu(&css->rcu_head, css_free_rcu_fn);
4856 return err;
4857 }
4858
4859 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4860 umode_t mode)
4861 {
4862 struct cgroup *parent, *cgrp;
4863 struct cgroup_root *root;
4864 struct cgroup_subsys *ss;
4865 struct kernfs_node *kn;
4866 int ssid, ret;
4867
4868 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4869 */
4870 if (strchr(name, '\n'))
4871 return -EINVAL;
4872
4873 parent = cgroup_kn_lock_live(parent_kn);
4874 if (!parent)
4875 return -ENODEV;
4876 root = parent->root;
4877
4878 /* allocate the cgroup and its ID, 0 is reserved for the root */
4879 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4880 if (!cgrp) {
4881 ret = -ENOMEM;
4882 goto out_unlock;
4883 }
4884
4885 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4886 if (ret)
4887 goto out_free_cgrp;
4888
4889 /*
4890 * Temporarily set the pointer to NULL, so idr_find() won't return
4891 * a half-baked cgroup.
4892 */
4893 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4894 if (cgrp->id < 0) {
4895 ret = -ENOMEM;
4896 goto out_cancel_ref;
4897 }
4898
4899 init_cgroup_housekeeping(cgrp);
4900
4901 cgrp->self.parent = &parent->self;
4902 cgrp->root = root;
4903
4904 if (notify_on_release(parent))
4905 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4906
4907 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4908 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4909
4910 /* create the directory */
4911 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4912 if (IS_ERR(kn)) {
4913 ret = PTR_ERR(kn);
4914 goto out_free_id;
4915 }
4916 cgrp->kn = kn;
4917
4918 /*
4919 * This extra ref will be put in cgroup_free_fn() and guarantees
4920 * that @cgrp->kn is always accessible.
4921 */
4922 kernfs_get(kn);
4923
4924 cgrp->self.serial_nr = css_serial_nr_next++;
4925
4926 /* allocation complete, commit to creation */
4927 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4928 atomic_inc(&root->nr_cgrps);
4929 cgroup_get(parent);
4930
4931 /*
4932 * @cgrp is now fully operational. If something fails after this
4933 * point, it'll be released via the normal destruction path.
4934 */
4935 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4936
4937 ret = cgroup_kn_set_ugid(kn);
4938 if (ret)
4939 goto out_destroy;
4940
4941 ret = css_populate_dir(&cgrp->self, NULL);
4942 if (ret)
4943 goto out_destroy;
4944
4945 /* let's create and online css's */
4946 for_each_subsys(ss, ssid) {
4947 if (parent->child_subsys_mask & (1 << ssid)) {
4948 ret = create_css(cgrp, ss,
4949 parent->subtree_control & (1 << ssid));
4950 if (ret)
4951 goto out_destroy;
4952 }
4953 }
4954
4955 /*
4956 * On the default hierarchy, a child doesn't automatically inherit
4957 * subtree_control from the parent. Each is configured manually.
4958 */
4959 if (!cgroup_on_dfl(cgrp)) {
4960 cgrp->subtree_control = parent->subtree_control;
4961 cgroup_refresh_child_subsys_mask(cgrp);
4962 }
4963
4964 kernfs_activate(kn);
4965
4966 ret = 0;
4967 goto out_unlock;
4968
4969 out_free_id:
4970 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4971 out_cancel_ref:
4972 percpu_ref_exit(&cgrp->self.refcnt);
4973 out_free_cgrp:
4974 kfree(cgrp);
4975 out_unlock:
4976 cgroup_kn_unlock(parent_kn);
4977 return ret;
4978
4979 out_destroy:
4980 cgroup_destroy_locked(cgrp);
4981 goto out_unlock;
4982 }
4983
4984 /*
4985 * This is called when the refcnt of a css is confirmed to be killed.
4986 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4987 * initate destruction and put the css ref from kill_css().
4988 */
4989 static void css_killed_work_fn(struct work_struct *work)
4990 {
4991 struct cgroup_subsys_state *css =
4992 container_of(work, struct cgroup_subsys_state, destroy_work);
4993
4994 mutex_lock(&cgroup_mutex);
4995 offline_css(css);
4996 mutex_unlock(&cgroup_mutex);
4997
4998 css_put(css);
4999 }
5000
5001 /* css kill confirmation processing requires process context, bounce */
5002 static void css_killed_ref_fn(struct percpu_ref *ref)
5003 {
5004 struct cgroup_subsys_state *css =
5005 container_of(ref, struct cgroup_subsys_state, refcnt);
5006
5007 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5008 queue_work(cgroup_destroy_wq, &css->destroy_work);
5009 }
5010
5011 /**
5012 * kill_css - destroy a css
5013 * @css: css to destroy
5014 *
5015 * This function initiates destruction of @css by removing cgroup interface
5016 * files and putting its base reference. ->css_offline() will be invoked
5017 * asynchronously once css_tryget_online() is guaranteed to fail and when
5018 * the reference count reaches zero, @css will be released.
5019 */
5020 static void kill_css(struct cgroup_subsys_state *css)
5021 {
5022 lockdep_assert_held(&cgroup_mutex);
5023
5024 /*
5025 * This must happen before css is disassociated with its cgroup.
5026 * See seq_css() for details.
5027 */
5028 css_clear_dir(css, NULL);
5029
5030 /*
5031 * Killing would put the base ref, but we need to keep it alive
5032 * until after ->css_offline().
5033 */
5034 css_get(css);
5035
5036 /*
5037 * cgroup core guarantees that, by the time ->css_offline() is
5038 * invoked, no new css reference will be given out via
5039 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5040 * proceed to offlining css's because percpu_ref_kill() doesn't
5041 * guarantee that the ref is seen as killed on all CPUs on return.
5042 *
5043 * Use percpu_ref_kill_and_confirm() to get notifications as each
5044 * css is confirmed to be seen as killed on all CPUs.
5045 */
5046 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5047 }
5048
5049 /**
5050 * cgroup_destroy_locked - the first stage of cgroup destruction
5051 * @cgrp: cgroup to be destroyed
5052 *
5053 * css's make use of percpu refcnts whose killing latency shouldn't be
5054 * exposed to userland and are RCU protected. Also, cgroup core needs to
5055 * guarantee that css_tryget_online() won't succeed by the time
5056 * ->css_offline() is invoked. To satisfy all the requirements,
5057 * destruction is implemented in the following two steps.
5058 *
5059 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5060 * userland visible parts and start killing the percpu refcnts of
5061 * css's. Set up so that the next stage will be kicked off once all
5062 * the percpu refcnts are confirmed to be killed.
5063 *
5064 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5065 * rest of destruction. Once all cgroup references are gone, the
5066 * cgroup is RCU-freed.
5067 *
5068 * This function implements s1. After this step, @cgrp is gone as far as
5069 * the userland is concerned and a new cgroup with the same name may be
5070 * created. As cgroup doesn't care about the names internally, this
5071 * doesn't cause any problem.
5072 */
5073 static int cgroup_destroy_locked(struct cgroup *cgrp)
5074 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5075 {
5076 struct cgroup_subsys_state *css;
5077 int ssid;
5078
5079 lockdep_assert_held(&cgroup_mutex);
5080
5081 /*
5082 * Only migration can raise populated from zero and we're already
5083 * holding cgroup_mutex.
5084 */
5085 if (cgroup_is_populated(cgrp))
5086 return -EBUSY;
5087
5088 /*
5089 * Make sure there's no live children. We can't test emptiness of
5090 * ->self.children as dead children linger on it while being
5091 * drained; otherwise, "rmdir parent/child parent" may fail.
5092 */
5093 if (css_has_online_children(&cgrp->self))
5094 return -EBUSY;
5095
5096 /*
5097 * Mark @cgrp dead. This prevents further task migration and child
5098 * creation by disabling cgroup_lock_live_group().
5099 */
5100 cgrp->self.flags &= ~CSS_ONLINE;
5101
5102 /* initiate massacre of all css's */
5103 for_each_css(css, ssid, cgrp)
5104 kill_css(css);
5105
5106 /*
5107 * Remove @cgrp directory along with the base files. @cgrp has an
5108 * extra ref on its kn.
5109 */
5110 kernfs_remove(cgrp->kn);
5111
5112 check_for_release(cgroup_parent(cgrp));
5113
5114 /* put the base reference */
5115 percpu_ref_kill(&cgrp->self.refcnt);
5116
5117 return 0;
5118 };
5119
5120 static int cgroup_rmdir(struct kernfs_node *kn)
5121 {
5122 struct cgroup *cgrp;
5123 int ret = 0;
5124
5125 cgrp = cgroup_kn_lock_live(kn);
5126 if (!cgrp)
5127 return 0;
5128
5129 ret = cgroup_destroy_locked(cgrp);
5130
5131 cgroup_kn_unlock(kn);
5132 return ret;
5133 }
5134
5135 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5136 .remount_fs = cgroup_remount,
5137 .show_options = cgroup_show_options,
5138 .mkdir = cgroup_mkdir,
5139 .rmdir = cgroup_rmdir,
5140 .rename = cgroup_rename,
5141 };
5142
5143 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5144 {
5145 struct cgroup_subsys_state *css;
5146
5147 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
5148
5149 mutex_lock(&cgroup_mutex);
5150
5151 idr_init(&ss->css_idr);
5152 INIT_LIST_HEAD(&ss->cfts);
5153
5154 /* Create the root cgroup state for this subsystem */
5155 ss->root = &cgrp_dfl_root;
5156 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5157 /* We don't handle early failures gracefully */
5158 BUG_ON(IS_ERR(css));
5159 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5160
5161 /*
5162 * Root csses are never destroyed and we can't initialize
5163 * percpu_ref during early init. Disable refcnting.
5164 */
5165 css->flags |= CSS_NO_REF;
5166
5167 if (early) {
5168 /* allocation can't be done safely during early init */
5169 css->id = 1;
5170 } else {
5171 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5172 BUG_ON(css->id < 0);
5173 }
5174
5175 /* Update the init_css_set to contain a subsys
5176 * pointer to this state - since the subsystem is
5177 * newly registered, all tasks and hence the
5178 * init_css_set is in the subsystem's root cgroup. */
5179 init_css_set.subsys[ss->id] = css;
5180
5181 have_fork_callback |= (bool)ss->fork << ss->id;
5182 have_exit_callback |= (bool)ss->exit << ss->id;
5183 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5184
5185 /* At system boot, before all subsystems have been
5186 * registered, no tasks have been forked, so we don't
5187 * need to invoke fork callbacks here. */
5188 BUG_ON(!list_empty(&init_task.tasks));
5189
5190 BUG_ON(online_css(css));
5191
5192 mutex_unlock(&cgroup_mutex);
5193 }
5194
5195 /**
5196 * cgroup_init_early - cgroup initialization at system boot
5197 *
5198 * Initialize cgroups at system boot, and initialize any
5199 * subsystems that request early init.
5200 */
5201 int __init cgroup_init_early(void)
5202 {
5203 static struct cgroup_sb_opts __initdata opts;
5204 struct cgroup_subsys *ss;
5205 int i;
5206
5207 init_cgroup_root(&cgrp_dfl_root, &opts);
5208 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5209
5210 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5211
5212 for_each_subsys(ss, i) {
5213 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5214 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5215 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5216 ss->id, ss->name);
5217 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5218 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5219
5220 ss->id = i;
5221 ss->name = cgroup_subsys_name[i];
5222 if (!ss->legacy_name)
5223 ss->legacy_name = cgroup_subsys_name[i];
5224
5225 if (ss->early_init)
5226 cgroup_init_subsys(ss, true);
5227 }
5228 return 0;
5229 }
5230
5231 static unsigned long cgroup_disable_mask __initdata;
5232
5233 /**
5234 * cgroup_init - cgroup initialization
5235 *
5236 * Register cgroup filesystem and /proc file, and initialize
5237 * any subsystems that didn't request early init.
5238 */
5239 int __init cgroup_init(void)
5240 {
5241 struct cgroup_subsys *ss;
5242 unsigned long key;
5243 int ssid, err;
5244
5245 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5246 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5247 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5248
5249 mutex_lock(&cgroup_mutex);
5250
5251 /* Add init_css_set to the hash table */
5252 key = css_set_hash(init_css_set.subsys);
5253 hash_add(css_set_table, &init_css_set.hlist, key);
5254
5255 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5256
5257 mutex_unlock(&cgroup_mutex);
5258
5259 for_each_subsys(ss, ssid) {
5260 if (ss->early_init) {
5261 struct cgroup_subsys_state *css =
5262 init_css_set.subsys[ss->id];
5263
5264 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5265 GFP_KERNEL);
5266 BUG_ON(css->id < 0);
5267 } else {
5268 cgroup_init_subsys(ss, false);
5269 }
5270
5271 list_add_tail(&init_css_set.e_cset_node[ssid],
5272 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5273
5274 /*
5275 * Setting dfl_root subsys_mask needs to consider the
5276 * disabled flag and cftype registration needs kmalloc,
5277 * both of which aren't available during early_init.
5278 */
5279 if (cgroup_disable_mask & (1 << ssid)) {
5280 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5281 printk(KERN_INFO "Disabling %s control group subsystem\n",
5282 ss->name);
5283 continue;
5284 }
5285
5286 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5287
5288 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5289 ss->dfl_cftypes = ss->legacy_cftypes;
5290
5291 if (!ss->dfl_cftypes)
5292 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5293
5294 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5295 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5296 } else {
5297 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5298 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5299 }
5300
5301 if (ss->bind)
5302 ss->bind(init_css_set.subsys[ssid]);
5303 }
5304
5305 err = sysfs_create_mount_point(fs_kobj, "cgroup");
5306 if (err)
5307 return err;
5308
5309 err = register_filesystem(&cgroup_fs_type);
5310 if (err < 0) {
5311 sysfs_remove_mount_point(fs_kobj, "cgroup");
5312 return err;
5313 }
5314
5315 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
5316 return 0;
5317 }
5318
5319 static int __init cgroup_wq_init(void)
5320 {
5321 /*
5322 * There isn't much point in executing destruction path in
5323 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5324 * Use 1 for @max_active.
5325 *
5326 * We would prefer to do this in cgroup_init() above, but that
5327 * is called before init_workqueues(): so leave this until after.
5328 */
5329 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5330 BUG_ON(!cgroup_destroy_wq);
5331
5332 /*
5333 * Used to destroy pidlists and separate to serve as flush domain.
5334 * Cap @max_active to 1 too.
5335 */
5336 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5337 0, 1);
5338 BUG_ON(!cgroup_pidlist_destroy_wq);
5339
5340 return 0;
5341 }
5342 core_initcall(cgroup_wq_init);
5343
5344 /*
5345 * proc_cgroup_show()
5346 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5347 * - Used for /proc/<pid>/cgroup.
5348 */
5349 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5350 struct pid *pid, struct task_struct *tsk)
5351 {
5352 char *buf, *path;
5353 int retval;
5354 struct cgroup_root *root;
5355
5356 retval = -ENOMEM;
5357 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5358 if (!buf)
5359 goto out;
5360
5361 mutex_lock(&cgroup_mutex);
5362 down_read(&css_set_rwsem);
5363
5364 for_each_root(root) {
5365 struct cgroup_subsys *ss;
5366 struct cgroup *cgrp;
5367 int ssid, count = 0;
5368
5369 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5370 continue;
5371
5372 seq_printf(m, "%d:", root->hierarchy_id);
5373 if (root != &cgrp_dfl_root)
5374 for_each_subsys(ss, ssid)
5375 if (root->subsys_mask & (1 << ssid))
5376 seq_printf(m, "%s%s", count++ ? "," : "",
5377 ss->legacy_name);
5378 if (strlen(root->name))
5379 seq_printf(m, "%sname=%s", count ? "," : "",
5380 root->name);
5381 seq_putc(m, ':');
5382 cgrp = task_cgroup_from_root(tsk, root);
5383 path = cgroup_path(cgrp, buf, PATH_MAX);
5384 if (!path) {
5385 retval = -ENAMETOOLONG;
5386 goto out_unlock;
5387 }
5388 seq_puts(m, path);
5389 seq_putc(m, '\n');
5390 }
5391
5392 retval = 0;
5393 out_unlock:
5394 up_read(&css_set_rwsem);
5395 mutex_unlock(&cgroup_mutex);
5396 kfree(buf);
5397 out:
5398 return retval;
5399 }
5400
5401 /* Display information about each subsystem and each hierarchy */
5402 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5403 {
5404 struct cgroup_subsys *ss;
5405 int i;
5406
5407 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5408 /*
5409 * ideally we don't want subsystems moving around while we do this.
5410 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5411 * subsys/hierarchy state.
5412 */
5413 mutex_lock(&cgroup_mutex);
5414
5415 for_each_subsys(ss, i)
5416 seq_printf(m, "%s\t%d\t%d\t%d\n",
5417 ss->legacy_name, ss->root->hierarchy_id,
5418 atomic_read(&ss->root->nr_cgrps),
5419 cgroup_ssid_enabled(i));
5420
5421 mutex_unlock(&cgroup_mutex);
5422 return 0;
5423 }
5424
5425 static int cgroupstats_open(struct inode *inode, struct file *file)
5426 {
5427 return single_open(file, proc_cgroupstats_show, NULL);
5428 }
5429
5430 static const struct file_operations proc_cgroupstats_operations = {
5431 .open = cgroupstats_open,
5432 .read = seq_read,
5433 .llseek = seq_lseek,
5434 .release = single_release,
5435 };
5436
5437 static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5438 {
5439 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5440 return &ss_priv[i - CGROUP_CANFORK_START];
5441 return NULL;
5442 }
5443
5444 static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5445 {
5446 void **private = subsys_canfork_priv_p(ss_priv, i);
5447 return private ? *private : NULL;
5448 }
5449
5450 /**
5451 * cgroup_fork - initialize cgroup related fields during copy_process()
5452 * @child: pointer to task_struct of forking parent process.
5453 *
5454 * A task is associated with the init_css_set until cgroup_post_fork()
5455 * attaches it to the parent's css_set. Empty cg_list indicates that
5456 * @child isn't holding reference to its css_set.
5457 */
5458 void cgroup_fork(struct task_struct *child)
5459 {
5460 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5461 INIT_LIST_HEAD(&child->cg_list);
5462 }
5463
5464 /**
5465 * cgroup_can_fork - called on a new task before the process is exposed
5466 * @child: the task in question.
5467 *
5468 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5469 * returns an error, the fork aborts with that error code. This allows for
5470 * a cgroup subsystem to conditionally allow or deny new forks.
5471 */
5472 int cgroup_can_fork(struct task_struct *child,
5473 void *ss_priv[CGROUP_CANFORK_COUNT])
5474 {
5475 struct cgroup_subsys *ss;
5476 int i, j, ret;
5477
5478 for_each_subsys_which(ss, i, &have_canfork_callback) {
5479 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5480 if (ret)
5481 goto out_revert;
5482 }
5483
5484 return 0;
5485
5486 out_revert:
5487 for_each_subsys(ss, j) {
5488 if (j >= i)
5489 break;
5490 if (ss->cancel_fork)
5491 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5492 }
5493
5494 return ret;
5495 }
5496
5497 /**
5498 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5499 * @child: the task in question
5500 *
5501 * This calls the cancel_fork() callbacks if a fork failed *after*
5502 * cgroup_can_fork() succeded.
5503 */
5504 void cgroup_cancel_fork(struct task_struct *child,
5505 void *ss_priv[CGROUP_CANFORK_COUNT])
5506 {
5507 struct cgroup_subsys *ss;
5508 int i;
5509
5510 for_each_subsys(ss, i)
5511 if (ss->cancel_fork)
5512 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5513 }
5514
5515 /**
5516 * cgroup_post_fork - called on a new task after adding it to the task list
5517 * @child: the task in question
5518 *
5519 * Adds the task to the list running through its css_set if necessary and
5520 * call the subsystem fork() callbacks. Has to be after the task is
5521 * visible on the task list in case we race with the first call to
5522 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5523 * list.
5524 */
5525 void cgroup_post_fork(struct task_struct *child,
5526 void *old_ss_priv[CGROUP_CANFORK_COUNT])
5527 {
5528 struct cgroup_subsys *ss;
5529 int i;
5530
5531 /*
5532 * This may race against cgroup_enable_task_cg_lists(). As that
5533 * function sets use_task_css_set_links before grabbing
5534 * tasklist_lock and we just went through tasklist_lock to add
5535 * @child, it's guaranteed that either we see the set
5536 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5537 * @child during its iteration.
5538 *
5539 * If we won the race, @child is associated with %current's
5540 * css_set. Grabbing css_set_rwsem guarantees both that the
5541 * association is stable, and, on completion of the parent's
5542 * migration, @child is visible in the source of migration or
5543 * already in the destination cgroup. This guarantee is necessary
5544 * when implementing operations which need to migrate all tasks of
5545 * a cgroup to another.
5546 *
5547 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5548 * will remain in init_css_set. This is safe because all tasks are
5549 * in the init_css_set before cg_links is enabled and there's no
5550 * operation which transfers all tasks out of init_css_set.
5551 */
5552 if (use_task_css_set_links) {
5553 struct css_set *cset;
5554
5555 down_write(&css_set_rwsem);
5556 cset = task_css_set(current);
5557 if (list_empty(&child->cg_list)) {
5558 get_css_set(cset);
5559 css_set_move_task(child, NULL, cset, false);
5560 }
5561 up_write(&css_set_rwsem);
5562 }
5563
5564 /*
5565 * Call ss->fork(). This must happen after @child is linked on
5566 * css_set; otherwise, @child might change state between ->fork()
5567 * and addition to css_set.
5568 */
5569 for_each_subsys_which(ss, i, &have_fork_callback)
5570 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
5571 }
5572
5573 /**
5574 * cgroup_exit - detach cgroup from exiting task
5575 * @tsk: pointer to task_struct of exiting process
5576 *
5577 * Description: Detach cgroup from @tsk and release it.
5578 *
5579 * Note that cgroups marked notify_on_release force every task in
5580 * them to take the global cgroup_mutex mutex when exiting.
5581 * This could impact scaling on very large systems. Be reluctant to
5582 * use notify_on_release cgroups where very high task exit scaling
5583 * is required on large systems.
5584 *
5585 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5586 * call cgroup_exit() while the task is still competent to handle
5587 * notify_on_release(), then leave the task attached to the root cgroup in
5588 * each hierarchy for the remainder of its exit. No need to bother with
5589 * init_css_set refcnting. init_css_set never goes away and we can't race
5590 * with migration path - PF_EXITING is visible to migration path.
5591 */
5592 void cgroup_exit(struct task_struct *tsk)
5593 {
5594 struct cgroup_subsys *ss;
5595 struct css_set *cset;
5596 bool put_cset = false;
5597 int i;
5598
5599 /*
5600 * Unlink from @tsk from its css_set. As migration path can't race
5601 * with us, we can check css_set and cg_list without synchronization.
5602 */
5603 cset = task_css_set(tsk);
5604
5605 if (!list_empty(&tsk->cg_list)) {
5606 down_write(&css_set_rwsem);
5607 css_set_move_task(tsk, cset, NULL, false);
5608 up_write(&css_set_rwsem);
5609 put_cset = true;
5610 }
5611
5612 /* Reassign the task to the init_css_set. */
5613 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5614
5615 /* see cgroup_post_fork() for details */
5616 for_each_subsys_which(ss, i, &have_exit_callback) {
5617 struct cgroup_subsys_state *old_css = cset->subsys[i];
5618 struct cgroup_subsys_state *css = task_css(tsk, i);
5619
5620 ss->exit(css, old_css, tsk);
5621 }
5622
5623 if (put_cset)
5624 put_css_set(cset);
5625 }
5626
5627 static void check_for_release(struct cgroup *cgrp)
5628 {
5629 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
5630 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5631 schedule_work(&cgrp->release_agent_work);
5632 }
5633
5634 /*
5635 * Notify userspace when a cgroup is released, by running the
5636 * configured release agent with the name of the cgroup (path
5637 * relative to the root of cgroup file system) as the argument.
5638 *
5639 * Most likely, this user command will try to rmdir this cgroup.
5640 *
5641 * This races with the possibility that some other task will be
5642 * attached to this cgroup before it is removed, or that some other
5643 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5644 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5645 * unused, and this cgroup will be reprieved from its death sentence,
5646 * to continue to serve a useful existence. Next time it's released,
5647 * we will get notified again, if it still has 'notify_on_release' set.
5648 *
5649 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5650 * means only wait until the task is successfully execve()'d. The
5651 * separate release agent task is forked by call_usermodehelper(),
5652 * then control in this thread returns here, without waiting for the
5653 * release agent task. We don't bother to wait because the caller of
5654 * this routine has no use for the exit status of the release agent
5655 * task, so no sense holding our caller up for that.
5656 */
5657 static void cgroup_release_agent(struct work_struct *work)
5658 {
5659 struct cgroup *cgrp =
5660 container_of(work, struct cgroup, release_agent_work);
5661 char *pathbuf = NULL, *agentbuf = NULL, *path;
5662 char *argv[3], *envp[3];
5663
5664 mutex_lock(&cgroup_mutex);
5665
5666 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5667 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5668 if (!pathbuf || !agentbuf)
5669 goto out;
5670
5671 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5672 if (!path)
5673 goto out;
5674
5675 argv[0] = agentbuf;
5676 argv[1] = path;
5677 argv[2] = NULL;
5678
5679 /* minimal command environment */
5680 envp[0] = "HOME=/";
5681 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5682 envp[2] = NULL;
5683
5684 mutex_unlock(&cgroup_mutex);
5685 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5686 goto out_free;
5687 out:
5688 mutex_unlock(&cgroup_mutex);
5689 out_free:
5690 kfree(agentbuf);
5691 kfree(pathbuf);
5692 }
5693
5694 static int __init cgroup_disable(char *str)
5695 {
5696 struct cgroup_subsys *ss;
5697 char *token;
5698 int i;
5699
5700 while ((token = strsep(&str, ",")) != NULL) {
5701 if (!*token)
5702 continue;
5703
5704 for_each_subsys(ss, i) {
5705 if (strcmp(token, ss->name) &&
5706 strcmp(token, ss->legacy_name))
5707 continue;
5708 cgroup_disable_mask |= 1 << i;
5709 }
5710 }
5711 return 1;
5712 }
5713 __setup("cgroup_disable=", cgroup_disable);
5714
5715 static int __init cgroup_set_legacy_files_on_dfl(char *str)
5716 {
5717 printk("cgroup: using legacy files on the default hierarchy\n");
5718 cgroup_legacy_files_on_dfl = true;
5719 return 0;
5720 }
5721 __setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5722
5723 /**
5724 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5725 * @dentry: directory dentry of interest
5726 * @ss: subsystem of interest
5727 *
5728 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5729 * to get the corresponding css and return it. If such css doesn't exist
5730 * or can't be pinned, an ERR_PTR value is returned.
5731 */
5732 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5733 struct cgroup_subsys *ss)
5734 {
5735 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5736 struct cgroup_subsys_state *css = NULL;
5737 struct cgroup *cgrp;
5738
5739 /* is @dentry a cgroup dir? */
5740 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5741 kernfs_type(kn) != KERNFS_DIR)
5742 return ERR_PTR(-EBADF);
5743
5744 rcu_read_lock();
5745
5746 /*
5747 * This path doesn't originate from kernfs and @kn could already
5748 * have been or be removed at any point. @kn->priv is RCU
5749 * protected for this access. See css_release_work_fn() for details.
5750 */
5751 cgrp = rcu_dereference(kn->priv);
5752 if (cgrp)
5753 css = cgroup_css(cgrp, ss);
5754
5755 if (!css || !css_tryget_online(css))
5756 css = ERR_PTR(-ENOENT);
5757
5758 rcu_read_unlock();
5759 return css;
5760 }
5761
5762 /**
5763 * css_from_id - lookup css by id
5764 * @id: the cgroup id
5765 * @ss: cgroup subsys to be looked into
5766 *
5767 * Returns the css if there's valid one with @id, otherwise returns NULL.
5768 * Should be called under rcu_read_lock().
5769 */
5770 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5771 {
5772 WARN_ON_ONCE(!rcu_read_lock_held());
5773 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5774 }
5775
5776 #ifdef CONFIG_CGROUP_DEBUG
5777 static struct cgroup_subsys_state *
5778 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5779 {
5780 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5781
5782 if (!css)
5783 return ERR_PTR(-ENOMEM);
5784
5785 return css;
5786 }
5787
5788 static void debug_css_free(struct cgroup_subsys_state *css)
5789 {
5790 kfree(css);
5791 }
5792
5793 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5794 struct cftype *cft)
5795 {
5796 return cgroup_task_count(css->cgroup);
5797 }
5798
5799 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5800 struct cftype *cft)
5801 {
5802 return (u64)(unsigned long)current->cgroups;
5803 }
5804
5805 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5806 struct cftype *cft)
5807 {
5808 u64 count;
5809
5810 rcu_read_lock();
5811 count = atomic_read(&task_css_set(current)->refcount);
5812 rcu_read_unlock();
5813 return count;
5814 }
5815
5816 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5817 {
5818 struct cgrp_cset_link *link;
5819 struct css_set *cset;
5820 char *name_buf;
5821
5822 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5823 if (!name_buf)
5824 return -ENOMEM;
5825
5826 down_read(&css_set_rwsem);
5827 rcu_read_lock();
5828 cset = rcu_dereference(current->cgroups);
5829 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5830 struct cgroup *c = link->cgrp;
5831
5832 cgroup_name(c, name_buf, NAME_MAX + 1);
5833 seq_printf(seq, "Root %d group %s\n",
5834 c->root->hierarchy_id, name_buf);
5835 }
5836 rcu_read_unlock();
5837 up_read(&css_set_rwsem);
5838 kfree(name_buf);
5839 return 0;
5840 }
5841
5842 #define MAX_TASKS_SHOWN_PER_CSS 25
5843 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5844 {
5845 struct cgroup_subsys_state *css = seq_css(seq);
5846 struct cgrp_cset_link *link;
5847
5848 down_read(&css_set_rwsem);
5849 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5850 struct css_set *cset = link->cset;
5851 struct task_struct *task;
5852 int count = 0;
5853
5854 seq_printf(seq, "css_set %p\n", cset);
5855
5856 list_for_each_entry(task, &cset->tasks, cg_list) {
5857 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5858 goto overflow;
5859 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5860 }
5861
5862 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5863 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5864 goto overflow;
5865 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5866 }
5867 continue;
5868 overflow:
5869 seq_puts(seq, " ...\n");
5870 }
5871 up_read(&css_set_rwsem);
5872 return 0;
5873 }
5874
5875 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5876 {
5877 return (!cgroup_is_populated(css->cgroup) &&
5878 !css_has_online_children(&css->cgroup->self));
5879 }
5880
5881 static struct cftype debug_files[] = {
5882 {
5883 .name = "taskcount",
5884 .read_u64 = debug_taskcount_read,
5885 },
5886
5887 {
5888 .name = "current_css_set",
5889 .read_u64 = current_css_set_read,
5890 },
5891
5892 {
5893 .name = "current_css_set_refcount",
5894 .read_u64 = current_css_set_refcount_read,
5895 },
5896
5897 {
5898 .name = "current_css_set_cg_links",
5899 .seq_show = current_css_set_cg_links_read,
5900 },
5901
5902 {
5903 .name = "cgroup_css_links",
5904 .seq_show = cgroup_css_links_read,
5905 },
5906
5907 {
5908 .name = "releasable",
5909 .read_u64 = releasable_read,
5910 },
5911
5912 { } /* terminate */
5913 };
5914
5915 struct cgroup_subsys debug_cgrp_subsys = {
5916 .css_alloc = debug_css_alloc,
5917 .css_free = debug_css_free,
5918 .legacy_cftypes = debug_files,
5919 };
5920 #endif /* CONFIG_CGROUP_DEBUG */