]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/cgroup.c
56e2b772b143ae411380f6afb21cf8a7f2b523e5
[mirror_ubuntu-zesty-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/percpu-rwsem.h>
50 #include <linux/string.h>
51 #include <linux/sort.h>
52 #include <linux/kmod.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hashtable.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/kthread.h>
60 #include <linux/delay.h>
61
62 #include <linux/atomic.h>
63
64 /*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
72 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
75 /*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
81 *
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
84 */
85 #ifdef CONFIG_PROVE_RCU
86 DEFINE_MUTEX(cgroup_mutex);
87 DECLARE_RWSEM(css_set_rwsem);
88 EXPORT_SYMBOL_GPL(cgroup_mutex);
89 EXPORT_SYMBOL_GPL(css_set_rwsem);
90 #else
91 static DEFINE_MUTEX(cgroup_mutex);
92 static DECLARE_RWSEM(css_set_rwsem);
93 #endif
94
95 /*
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
98 */
99 static DEFINE_SPINLOCK(cgroup_idr_lock);
100
101 /*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105 static DEFINE_SPINLOCK(release_agent_path_lock);
106
107 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
109 #define cgroup_assert_mutex_or_rcu_locked() \
110 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
111 !lockdep_is_held(&cgroup_mutex), \
112 "cgroup_mutex or RCU read lock required");
113
114 /*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120 static struct workqueue_struct *cgroup_destroy_wq;
121
122 /*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
128 /* generate an array of cgroup subsystem pointers */
129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
130 static struct cgroup_subsys *cgroup_subsys[] = {
131 #include <linux/cgroup_subsys.h>
132 };
133 #undef SUBSYS
134
135 /* array of cgroup subsystem names */
136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137 static const char *cgroup_subsys_name[] = {
138 #include <linux/cgroup_subsys.h>
139 };
140 #undef SUBSYS
141
142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143 #define SUBSYS(_x) \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148 #include <linux/cgroup_subsys.h>
149 #undef SUBSYS
150
151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152 static struct static_key_true *cgroup_subsys_enabled_key[] = {
153 #include <linux/cgroup_subsys.h>
154 };
155 #undef SUBSYS
156
157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159 #include <linux/cgroup_subsys.h>
160 };
161 #undef SUBSYS
162
163 /*
164 * The default hierarchy, reserved for the subsystems that are otherwise
165 * unattached - it never has more than a single cgroup, and all tasks are
166 * part of that cgroup.
167 */
168 struct cgroup_root cgrp_dfl_root;
169 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
170
171 /*
172 * The default hierarchy always exists but is hidden until mounted for the
173 * first time. This is for backward compatibility.
174 */
175 static bool cgrp_dfl_root_visible;
176
177 /*
178 * Set by the boot param of the same name and makes subsystems with NULL
179 * ->dfl_files to use ->legacy_files on the default hierarchy.
180 */
181 static bool cgroup_legacy_files_on_dfl;
182
183 /* some controllers are not supported in the default hierarchy */
184 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
185
186 /* The list of hierarchy roots */
187
188 static LIST_HEAD(cgroup_roots);
189 static int cgroup_root_count;
190
191 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
192 static DEFINE_IDR(cgroup_hierarchy_idr);
193
194 /*
195 * Assign a monotonically increasing serial number to csses. It guarantees
196 * cgroups with bigger numbers are newer than those with smaller numbers.
197 * Also, as csses are always appended to the parent's ->children list, it
198 * guarantees that sibling csses are always sorted in the ascending serial
199 * number order on the list. Protected by cgroup_mutex.
200 */
201 static u64 css_serial_nr_next = 1;
202
203 /*
204 * These bitmask flags indicate whether tasks in the fork and exit paths have
205 * fork/exit handlers to call. This avoids us having to do extra work in the
206 * fork/exit path to check which subsystems have fork/exit callbacks.
207 */
208 static unsigned long have_fork_callback __read_mostly;
209 static unsigned long have_exit_callback __read_mostly;
210
211 /* Ditto for the can_fork callback. */
212 static unsigned long have_canfork_callback __read_mostly;
213
214 static struct cftype cgroup_dfl_base_files[];
215 static struct cftype cgroup_legacy_base_files[];
216
217 static int rebind_subsystems(struct cgroup_root *dst_root,
218 unsigned long ss_mask);
219 static int cgroup_destroy_locked(struct cgroup *cgrp);
220 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
221 bool visible);
222 static void css_release(struct percpu_ref *ref);
223 static void kill_css(struct cgroup_subsys_state *css);
224 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
225 struct cgroup *cgrp, struct cftype cfts[],
226 bool is_add);
227
228 /**
229 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
230 * @ssid: subsys ID of interest
231 *
232 * cgroup_subsys_enabled() can only be used with literal subsys names which
233 * is fine for individual subsystems but unsuitable for cgroup core. This
234 * is slower static_key_enabled() based test indexed by @ssid.
235 */
236 static bool cgroup_ssid_enabled(int ssid)
237 {
238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239 }
240
241 /**
242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243 * @cgrp: the cgroup of interest
244 *
245 * The default hierarchy is the v2 interface of cgroup and this function
246 * can be used to test whether a cgroup is on the default hierarchy for
247 * cases where a subsystem should behave differnetly depending on the
248 * interface version.
249 *
250 * The set of behaviors which change on the default hierarchy are still
251 * being determined and the mount option is prefixed with __DEVEL__.
252 *
253 * List of changed behaviors:
254 *
255 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
256 * and "name" are disallowed.
257 *
258 * - When mounting an existing superblock, mount options should match.
259 *
260 * - Remount is disallowed.
261 *
262 * - rename(2) is disallowed.
263 *
264 * - "tasks" is removed. Everything should be at process granularity. Use
265 * "cgroup.procs" instead.
266 *
267 * - "cgroup.procs" is not sorted. pids will be unique unless they got
268 * recycled inbetween reads.
269 *
270 * - "release_agent" and "notify_on_release" are removed. Replacement
271 * notification mechanism will be implemented.
272 *
273 * - "cgroup.clone_children" is removed.
274 *
275 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
276 * and its descendants contain no task; otherwise, 1. The file also
277 * generates kernfs notification which can be monitored through poll and
278 * [di]notify when the value of the file changes.
279 *
280 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
281 * take masks of ancestors with non-empty cpus/mems, instead of being
282 * moved to an ancestor.
283 *
284 * - cpuset: a task can be moved into an empty cpuset, and again it takes
285 * masks of ancestors.
286 *
287 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
288 * is not created.
289 *
290 * - blkcg: blk-throttle becomes properly hierarchical.
291 *
292 * - debug: disallowed on the default hierarchy.
293 */
294 static bool cgroup_on_dfl(const struct cgroup *cgrp)
295 {
296 return cgrp->root == &cgrp_dfl_root;
297 }
298
299 /* IDR wrappers which synchronize using cgroup_idr_lock */
300 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
301 gfp_t gfp_mask)
302 {
303 int ret;
304
305 idr_preload(gfp_mask);
306 spin_lock_bh(&cgroup_idr_lock);
307 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
308 spin_unlock_bh(&cgroup_idr_lock);
309 idr_preload_end();
310 return ret;
311 }
312
313 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
314 {
315 void *ret;
316
317 spin_lock_bh(&cgroup_idr_lock);
318 ret = idr_replace(idr, ptr, id);
319 spin_unlock_bh(&cgroup_idr_lock);
320 return ret;
321 }
322
323 static void cgroup_idr_remove(struct idr *idr, int id)
324 {
325 spin_lock_bh(&cgroup_idr_lock);
326 idr_remove(idr, id);
327 spin_unlock_bh(&cgroup_idr_lock);
328 }
329
330 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
331 {
332 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
333
334 if (parent_css)
335 return container_of(parent_css, struct cgroup, self);
336 return NULL;
337 }
338
339 /**
340 * cgroup_css - obtain a cgroup's css for the specified subsystem
341 * @cgrp: the cgroup of interest
342 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
343 *
344 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
345 * function must be called either under cgroup_mutex or rcu_read_lock() and
346 * the caller is responsible for pinning the returned css if it wants to
347 * keep accessing it outside the said locks. This function may return
348 * %NULL if @cgrp doesn't have @subsys_id enabled.
349 */
350 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
351 struct cgroup_subsys *ss)
352 {
353 if (ss)
354 return rcu_dereference_check(cgrp->subsys[ss->id],
355 lockdep_is_held(&cgroup_mutex));
356 else
357 return &cgrp->self;
358 }
359
360 /**
361 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
362 * @cgrp: the cgroup of interest
363 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
364 *
365 * Similar to cgroup_css() but returns the effective css, which is defined
366 * as the matching css of the nearest ancestor including self which has @ss
367 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
368 * function is guaranteed to return non-NULL css.
369 */
370 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
371 struct cgroup_subsys *ss)
372 {
373 lockdep_assert_held(&cgroup_mutex);
374
375 if (!ss)
376 return &cgrp->self;
377
378 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
379 return NULL;
380
381 /*
382 * This function is used while updating css associations and thus
383 * can't test the csses directly. Use ->child_subsys_mask.
384 */
385 while (cgroup_parent(cgrp) &&
386 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
387 cgrp = cgroup_parent(cgrp);
388
389 return cgroup_css(cgrp, ss);
390 }
391
392 /**
393 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
394 * @cgrp: the cgroup of interest
395 * @ss: the subsystem of interest
396 *
397 * Find and get the effective css of @cgrp for @ss. The effective css is
398 * defined as the matching css of the nearest ancestor including self which
399 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
400 * the root css is returned, so this function always returns a valid css.
401 * The returned css must be put using css_put().
402 */
403 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
404 struct cgroup_subsys *ss)
405 {
406 struct cgroup_subsys_state *css;
407
408 rcu_read_lock();
409
410 do {
411 css = cgroup_css(cgrp, ss);
412
413 if (css && css_tryget_online(css))
414 goto out_unlock;
415 cgrp = cgroup_parent(cgrp);
416 } while (cgrp);
417
418 css = init_css_set.subsys[ss->id];
419 css_get(css);
420 out_unlock:
421 rcu_read_unlock();
422 return css;
423 }
424
425 /* convenient tests for these bits */
426 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
427 {
428 return !(cgrp->self.flags & CSS_ONLINE);
429 }
430
431 static void cgroup_get(struct cgroup *cgrp)
432 {
433 WARN_ON_ONCE(cgroup_is_dead(cgrp));
434 css_get(&cgrp->self);
435 }
436
437 static bool cgroup_tryget(struct cgroup *cgrp)
438 {
439 return css_tryget(&cgrp->self);
440 }
441
442 static void cgroup_put(struct cgroup *cgrp)
443 {
444 css_put(&cgrp->self);
445 }
446
447 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
448 {
449 struct cgroup *cgrp = of->kn->parent->priv;
450 struct cftype *cft = of_cft(of);
451
452 /*
453 * This is open and unprotected implementation of cgroup_css().
454 * seq_css() is only called from a kernfs file operation which has
455 * an active reference on the file. Because all the subsystem
456 * files are drained before a css is disassociated with a cgroup,
457 * the matching css from the cgroup's subsys table is guaranteed to
458 * be and stay valid until the enclosing operation is complete.
459 */
460 if (cft->ss)
461 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
462 else
463 return &cgrp->self;
464 }
465 EXPORT_SYMBOL_GPL(of_css);
466
467 /**
468 * cgroup_is_descendant - test ancestry
469 * @cgrp: the cgroup to be tested
470 * @ancestor: possible ancestor of @cgrp
471 *
472 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
473 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
474 * and @ancestor are accessible.
475 */
476 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
477 {
478 while (cgrp) {
479 if (cgrp == ancestor)
480 return true;
481 cgrp = cgroup_parent(cgrp);
482 }
483 return false;
484 }
485
486 static int notify_on_release(const struct cgroup *cgrp)
487 {
488 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
489 }
490
491 /**
492 * for_each_css - iterate all css's of a cgroup
493 * @css: the iteration cursor
494 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
495 * @cgrp: the target cgroup to iterate css's of
496 *
497 * Should be called under cgroup_[tree_]mutex.
498 */
499 #define for_each_css(css, ssid, cgrp) \
500 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
501 if (!((css) = rcu_dereference_check( \
502 (cgrp)->subsys[(ssid)], \
503 lockdep_is_held(&cgroup_mutex)))) { } \
504 else
505
506 /**
507 * for_each_e_css - iterate all effective css's of a cgroup
508 * @css: the iteration cursor
509 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
510 * @cgrp: the target cgroup to iterate css's of
511 *
512 * Should be called under cgroup_[tree_]mutex.
513 */
514 #define for_each_e_css(css, ssid, cgrp) \
515 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
516 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
517 ; \
518 else
519
520 /**
521 * for_each_subsys - iterate all enabled cgroup subsystems
522 * @ss: the iteration cursor
523 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
524 */
525 #define for_each_subsys(ss, ssid) \
526 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
527 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
528
529 /**
530 * for_each_subsys_which - filter for_each_subsys with a bitmask
531 * @ss: the iteration cursor
532 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
533 * @ss_maskp: a pointer to the bitmask
534 *
535 * The block will only run for cases where the ssid-th bit (1 << ssid) of
536 * mask is set to 1.
537 */
538 #define for_each_subsys_which(ss, ssid, ss_maskp) \
539 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
540 (ssid) = 0; \
541 else \
542 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
543 if (((ss) = cgroup_subsys[ssid]) && false) \
544 break; \
545 else
546
547 /* iterate across the hierarchies */
548 #define for_each_root(root) \
549 list_for_each_entry((root), &cgroup_roots, root_list)
550
551 /* iterate over child cgrps, lock should be held throughout iteration */
552 #define cgroup_for_each_live_child(child, cgrp) \
553 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
554 if (({ lockdep_assert_held(&cgroup_mutex); \
555 cgroup_is_dead(child); })) \
556 ; \
557 else
558
559 static void cgroup_release_agent(struct work_struct *work);
560 static void check_for_release(struct cgroup *cgrp);
561
562 /*
563 * A cgroup can be associated with multiple css_sets as different tasks may
564 * belong to different cgroups on different hierarchies. In the other
565 * direction, a css_set is naturally associated with multiple cgroups.
566 * This M:N relationship is represented by the following link structure
567 * which exists for each association and allows traversing the associations
568 * from both sides.
569 */
570 struct cgrp_cset_link {
571 /* the cgroup and css_set this link associates */
572 struct cgroup *cgrp;
573 struct css_set *cset;
574
575 /* list of cgrp_cset_links anchored at cgrp->cset_links */
576 struct list_head cset_link;
577
578 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
579 struct list_head cgrp_link;
580 };
581
582 /*
583 * The default css_set - used by init and its children prior to any
584 * hierarchies being mounted. It contains a pointer to the root state
585 * for each subsystem. Also used to anchor the list of css_sets. Not
586 * reference-counted, to improve performance when child cgroups
587 * haven't been created.
588 */
589 struct css_set init_css_set = {
590 .refcount = ATOMIC_INIT(1),
591 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
592 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
593 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
594 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
595 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
596 };
597
598 static int css_set_count = 1; /* 1 for init_css_set */
599
600 /**
601 * css_set_populated - does a css_set contain any tasks?
602 * @cset: target css_set
603 */
604 static bool css_set_populated(struct css_set *cset)
605 {
606 lockdep_assert_held(&css_set_rwsem);
607
608 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
609 }
610
611 /**
612 * cgroup_update_populated - updated populated count of a cgroup
613 * @cgrp: the target cgroup
614 * @populated: inc or dec populated count
615 *
616 * One of the css_sets associated with @cgrp is either getting its first
617 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
618 * count is propagated towards root so that a given cgroup's populated_cnt
619 * is zero iff the cgroup and all its descendants don't contain any tasks.
620 *
621 * @cgrp's interface file "cgroup.populated" is zero if
622 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
623 * changes from or to zero, userland is notified that the content of the
624 * interface file has changed. This can be used to detect when @cgrp and
625 * its descendants become populated or empty.
626 */
627 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
628 {
629 lockdep_assert_held(&css_set_rwsem);
630
631 do {
632 bool trigger;
633
634 if (populated)
635 trigger = !cgrp->populated_cnt++;
636 else
637 trigger = !--cgrp->populated_cnt;
638
639 if (!trigger)
640 break;
641
642 check_for_release(cgrp);
643 cgroup_file_notify(&cgrp->events_file);
644
645 cgrp = cgroup_parent(cgrp);
646 } while (cgrp);
647 }
648
649 /**
650 * css_set_update_populated - update populated state of a css_set
651 * @cset: target css_set
652 * @populated: whether @cset is populated or depopulated
653 *
654 * @cset is either getting the first task or losing the last. Update the
655 * ->populated_cnt of all associated cgroups accordingly.
656 */
657 static void css_set_update_populated(struct css_set *cset, bool populated)
658 {
659 struct cgrp_cset_link *link;
660
661 lockdep_assert_held(&css_set_rwsem);
662
663 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
664 cgroup_update_populated(link->cgrp, populated);
665 }
666
667 /**
668 * css_set_move_task - move a task from one css_set to another
669 * @task: task being moved
670 * @from_cset: css_set @task currently belongs to (may be NULL)
671 * @to_cset: new css_set @task is being moved to (may be NULL)
672 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
673 *
674 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
675 * css_set, @from_cset can be NULL. If @task is being disassociated
676 * instead of moved, @to_cset can be NULL.
677 *
678 * This function automatically handles populated_cnt updates but the caller
679 * is responsible for managing @from_cset and @to_cset's reference counts.
680 */
681 static void css_set_move_task(struct task_struct *task,
682 struct css_set *from_cset, struct css_set *to_cset,
683 bool use_mg_tasks)
684 {
685 lockdep_assert_held(&css_set_rwsem);
686
687 if (from_cset) {
688 WARN_ON_ONCE(list_empty(&task->cg_list));
689 list_del_init(&task->cg_list);
690 if (!css_set_populated(from_cset))
691 css_set_update_populated(from_cset, false);
692 } else {
693 WARN_ON_ONCE(!list_empty(&task->cg_list));
694 }
695
696 if (to_cset) {
697 /*
698 * We are synchronized through cgroup_threadgroup_rwsem
699 * against PF_EXITING setting such that we can't race
700 * against cgroup_exit() changing the css_set to
701 * init_css_set and dropping the old one.
702 */
703 WARN_ON_ONCE(task->flags & PF_EXITING);
704
705 if (!css_set_populated(to_cset))
706 css_set_update_populated(to_cset, true);
707 rcu_assign_pointer(task->cgroups, to_cset);
708 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
709 &to_cset->tasks);
710 }
711 }
712
713 /*
714 * hash table for cgroup groups. This improves the performance to find
715 * an existing css_set. This hash doesn't (currently) take into
716 * account cgroups in empty hierarchies.
717 */
718 #define CSS_SET_HASH_BITS 7
719 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
720
721 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
722 {
723 unsigned long key = 0UL;
724 struct cgroup_subsys *ss;
725 int i;
726
727 for_each_subsys(ss, i)
728 key += (unsigned long)css[i];
729 key = (key >> 16) ^ key;
730
731 return key;
732 }
733
734 static void put_css_set_locked(struct css_set *cset)
735 {
736 struct cgrp_cset_link *link, *tmp_link;
737 struct cgroup_subsys *ss;
738 int ssid;
739
740 lockdep_assert_held(&css_set_rwsem);
741
742 if (!atomic_dec_and_test(&cset->refcount))
743 return;
744
745 /* This css_set is dead. unlink it and release cgroup refcounts */
746 for_each_subsys(ss, ssid)
747 list_del(&cset->e_cset_node[ssid]);
748 hash_del(&cset->hlist);
749 css_set_count--;
750
751 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
752 list_del(&link->cset_link);
753 list_del(&link->cgrp_link);
754 if (cgroup_parent(link->cgrp))
755 cgroup_put(link->cgrp);
756 kfree(link);
757 }
758
759 kfree_rcu(cset, rcu_head);
760 }
761
762 static void put_css_set(struct css_set *cset)
763 {
764 /*
765 * Ensure that the refcount doesn't hit zero while any readers
766 * can see it. Similar to atomic_dec_and_lock(), but for an
767 * rwlock
768 */
769 if (atomic_add_unless(&cset->refcount, -1, 1))
770 return;
771
772 down_write(&css_set_rwsem);
773 put_css_set_locked(cset);
774 up_write(&css_set_rwsem);
775 }
776
777 /*
778 * refcounted get/put for css_set objects
779 */
780 static inline void get_css_set(struct css_set *cset)
781 {
782 atomic_inc(&cset->refcount);
783 }
784
785 /**
786 * compare_css_sets - helper function for find_existing_css_set().
787 * @cset: candidate css_set being tested
788 * @old_cset: existing css_set for a task
789 * @new_cgrp: cgroup that's being entered by the task
790 * @template: desired set of css pointers in css_set (pre-calculated)
791 *
792 * Returns true if "cset" matches "old_cset" except for the hierarchy
793 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
794 */
795 static bool compare_css_sets(struct css_set *cset,
796 struct css_set *old_cset,
797 struct cgroup *new_cgrp,
798 struct cgroup_subsys_state *template[])
799 {
800 struct list_head *l1, *l2;
801
802 /*
803 * On the default hierarchy, there can be csets which are
804 * associated with the same set of cgroups but different csses.
805 * Let's first ensure that csses match.
806 */
807 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
808 return false;
809
810 /*
811 * Compare cgroup pointers in order to distinguish between
812 * different cgroups in hierarchies. As different cgroups may
813 * share the same effective css, this comparison is always
814 * necessary.
815 */
816 l1 = &cset->cgrp_links;
817 l2 = &old_cset->cgrp_links;
818 while (1) {
819 struct cgrp_cset_link *link1, *link2;
820 struct cgroup *cgrp1, *cgrp2;
821
822 l1 = l1->next;
823 l2 = l2->next;
824 /* See if we reached the end - both lists are equal length. */
825 if (l1 == &cset->cgrp_links) {
826 BUG_ON(l2 != &old_cset->cgrp_links);
827 break;
828 } else {
829 BUG_ON(l2 == &old_cset->cgrp_links);
830 }
831 /* Locate the cgroups associated with these links. */
832 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
833 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
834 cgrp1 = link1->cgrp;
835 cgrp2 = link2->cgrp;
836 /* Hierarchies should be linked in the same order. */
837 BUG_ON(cgrp1->root != cgrp2->root);
838
839 /*
840 * If this hierarchy is the hierarchy of the cgroup
841 * that's changing, then we need to check that this
842 * css_set points to the new cgroup; if it's any other
843 * hierarchy, then this css_set should point to the
844 * same cgroup as the old css_set.
845 */
846 if (cgrp1->root == new_cgrp->root) {
847 if (cgrp1 != new_cgrp)
848 return false;
849 } else {
850 if (cgrp1 != cgrp2)
851 return false;
852 }
853 }
854 return true;
855 }
856
857 /**
858 * find_existing_css_set - init css array and find the matching css_set
859 * @old_cset: the css_set that we're using before the cgroup transition
860 * @cgrp: the cgroup that we're moving into
861 * @template: out param for the new set of csses, should be clear on entry
862 */
863 static struct css_set *find_existing_css_set(struct css_set *old_cset,
864 struct cgroup *cgrp,
865 struct cgroup_subsys_state *template[])
866 {
867 struct cgroup_root *root = cgrp->root;
868 struct cgroup_subsys *ss;
869 struct css_set *cset;
870 unsigned long key;
871 int i;
872
873 /*
874 * Build the set of subsystem state objects that we want to see in the
875 * new css_set. while subsystems can change globally, the entries here
876 * won't change, so no need for locking.
877 */
878 for_each_subsys(ss, i) {
879 if (root->subsys_mask & (1UL << i)) {
880 /*
881 * @ss is in this hierarchy, so we want the
882 * effective css from @cgrp.
883 */
884 template[i] = cgroup_e_css(cgrp, ss);
885 } else {
886 /*
887 * @ss is not in this hierarchy, so we don't want
888 * to change the css.
889 */
890 template[i] = old_cset->subsys[i];
891 }
892 }
893
894 key = css_set_hash(template);
895 hash_for_each_possible(css_set_table, cset, hlist, key) {
896 if (!compare_css_sets(cset, old_cset, cgrp, template))
897 continue;
898
899 /* This css_set matches what we need */
900 return cset;
901 }
902
903 /* No existing cgroup group matched */
904 return NULL;
905 }
906
907 static void free_cgrp_cset_links(struct list_head *links_to_free)
908 {
909 struct cgrp_cset_link *link, *tmp_link;
910
911 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
912 list_del(&link->cset_link);
913 kfree(link);
914 }
915 }
916
917 /**
918 * allocate_cgrp_cset_links - allocate cgrp_cset_links
919 * @count: the number of links to allocate
920 * @tmp_links: list_head the allocated links are put on
921 *
922 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
923 * through ->cset_link. Returns 0 on success or -errno.
924 */
925 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
926 {
927 struct cgrp_cset_link *link;
928 int i;
929
930 INIT_LIST_HEAD(tmp_links);
931
932 for (i = 0; i < count; i++) {
933 link = kzalloc(sizeof(*link), GFP_KERNEL);
934 if (!link) {
935 free_cgrp_cset_links(tmp_links);
936 return -ENOMEM;
937 }
938 list_add(&link->cset_link, tmp_links);
939 }
940 return 0;
941 }
942
943 /**
944 * link_css_set - a helper function to link a css_set to a cgroup
945 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
946 * @cset: the css_set to be linked
947 * @cgrp: the destination cgroup
948 */
949 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
950 struct cgroup *cgrp)
951 {
952 struct cgrp_cset_link *link;
953
954 BUG_ON(list_empty(tmp_links));
955
956 if (cgroup_on_dfl(cgrp))
957 cset->dfl_cgrp = cgrp;
958
959 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
960 link->cset = cset;
961 link->cgrp = cgrp;
962
963 /*
964 * Always add links to the tail of the lists so that the lists are
965 * in choronological order.
966 */
967 list_move_tail(&link->cset_link, &cgrp->cset_links);
968 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
969
970 if (cgroup_parent(cgrp))
971 cgroup_get(cgrp);
972 }
973
974 /**
975 * find_css_set - return a new css_set with one cgroup updated
976 * @old_cset: the baseline css_set
977 * @cgrp: the cgroup to be updated
978 *
979 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
980 * substituted into the appropriate hierarchy.
981 */
982 static struct css_set *find_css_set(struct css_set *old_cset,
983 struct cgroup *cgrp)
984 {
985 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
986 struct css_set *cset;
987 struct list_head tmp_links;
988 struct cgrp_cset_link *link;
989 struct cgroup_subsys *ss;
990 unsigned long key;
991 int ssid;
992
993 lockdep_assert_held(&cgroup_mutex);
994
995 /* First see if we already have a cgroup group that matches
996 * the desired set */
997 down_read(&css_set_rwsem);
998 cset = find_existing_css_set(old_cset, cgrp, template);
999 if (cset)
1000 get_css_set(cset);
1001 up_read(&css_set_rwsem);
1002
1003 if (cset)
1004 return cset;
1005
1006 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1007 if (!cset)
1008 return NULL;
1009
1010 /* Allocate all the cgrp_cset_link objects that we'll need */
1011 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1012 kfree(cset);
1013 return NULL;
1014 }
1015
1016 atomic_set(&cset->refcount, 1);
1017 INIT_LIST_HEAD(&cset->cgrp_links);
1018 INIT_LIST_HEAD(&cset->tasks);
1019 INIT_LIST_HEAD(&cset->mg_tasks);
1020 INIT_LIST_HEAD(&cset->mg_preload_node);
1021 INIT_LIST_HEAD(&cset->mg_node);
1022 INIT_HLIST_NODE(&cset->hlist);
1023
1024 /* Copy the set of subsystem state objects generated in
1025 * find_existing_css_set() */
1026 memcpy(cset->subsys, template, sizeof(cset->subsys));
1027
1028 down_write(&css_set_rwsem);
1029 /* Add reference counts and links from the new css_set. */
1030 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1031 struct cgroup *c = link->cgrp;
1032
1033 if (c->root == cgrp->root)
1034 c = cgrp;
1035 link_css_set(&tmp_links, cset, c);
1036 }
1037
1038 BUG_ON(!list_empty(&tmp_links));
1039
1040 css_set_count++;
1041
1042 /* Add @cset to the hash table */
1043 key = css_set_hash(cset->subsys);
1044 hash_add(css_set_table, &cset->hlist, key);
1045
1046 for_each_subsys(ss, ssid)
1047 list_add_tail(&cset->e_cset_node[ssid],
1048 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
1049
1050 up_write(&css_set_rwsem);
1051
1052 return cset;
1053 }
1054
1055 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1056 {
1057 struct cgroup *root_cgrp = kf_root->kn->priv;
1058
1059 return root_cgrp->root;
1060 }
1061
1062 static int cgroup_init_root_id(struct cgroup_root *root)
1063 {
1064 int id;
1065
1066 lockdep_assert_held(&cgroup_mutex);
1067
1068 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1069 if (id < 0)
1070 return id;
1071
1072 root->hierarchy_id = id;
1073 return 0;
1074 }
1075
1076 static void cgroup_exit_root_id(struct cgroup_root *root)
1077 {
1078 lockdep_assert_held(&cgroup_mutex);
1079
1080 if (root->hierarchy_id) {
1081 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1082 root->hierarchy_id = 0;
1083 }
1084 }
1085
1086 static void cgroup_free_root(struct cgroup_root *root)
1087 {
1088 if (root) {
1089 /* hierarchy ID should already have been released */
1090 WARN_ON_ONCE(root->hierarchy_id);
1091
1092 idr_destroy(&root->cgroup_idr);
1093 kfree(root);
1094 }
1095 }
1096
1097 static void cgroup_destroy_root(struct cgroup_root *root)
1098 {
1099 struct cgroup *cgrp = &root->cgrp;
1100 struct cgrp_cset_link *link, *tmp_link;
1101
1102 mutex_lock(&cgroup_mutex);
1103
1104 BUG_ON(atomic_read(&root->nr_cgrps));
1105 BUG_ON(!list_empty(&cgrp->self.children));
1106
1107 /* Rebind all subsystems back to the default hierarchy */
1108 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
1109
1110 /*
1111 * Release all the links from cset_links to this hierarchy's
1112 * root cgroup
1113 */
1114 down_write(&css_set_rwsem);
1115
1116 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1117 list_del(&link->cset_link);
1118 list_del(&link->cgrp_link);
1119 kfree(link);
1120 }
1121 up_write(&css_set_rwsem);
1122
1123 if (!list_empty(&root->root_list)) {
1124 list_del(&root->root_list);
1125 cgroup_root_count--;
1126 }
1127
1128 cgroup_exit_root_id(root);
1129
1130 mutex_unlock(&cgroup_mutex);
1131
1132 kernfs_destroy_root(root->kf_root);
1133 cgroup_free_root(root);
1134 }
1135
1136 /* look up cgroup associated with given css_set on the specified hierarchy */
1137 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1138 struct cgroup_root *root)
1139 {
1140 struct cgroup *res = NULL;
1141
1142 lockdep_assert_held(&cgroup_mutex);
1143 lockdep_assert_held(&css_set_rwsem);
1144
1145 if (cset == &init_css_set) {
1146 res = &root->cgrp;
1147 } else {
1148 struct cgrp_cset_link *link;
1149
1150 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1151 struct cgroup *c = link->cgrp;
1152
1153 if (c->root == root) {
1154 res = c;
1155 break;
1156 }
1157 }
1158 }
1159
1160 BUG_ON(!res);
1161 return res;
1162 }
1163
1164 /*
1165 * Return the cgroup for "task" from the given hierarchy. Must be
1166 * called with cgroup_mutex and css_set_rwsem held.
1167 */
1168 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1169 struct cgroup_root *root)
1170 {
1171 /*
1172 * No need to lock the task - since we hold cgroup_mutex the
1173 * task can't change groups, so the only thing that can happen
1174 * is that it exits and its css is set back to init_css_set.
1175 */
1176 return cset_cgroup_from_root(task_css_set(task), root);
1177 }
1178
1179 /*
1180 * A task must hold cgroup_mutex to modify cgroups.
1181 *
1182 * Any task can increment and decrement the count field without lock.
1183 * So in general, code holding cgroup_mutex can't rely on the count
1184 * field not changing. However, if the count goes to zero, then only
1185 * cgroup_attach_task() can increment it again. Because a count of zero
1186 * means that no tasks are currently attached, therefore there is no
1187 * way a task attached to that cgroup can fork (the other way to
1188 * increment the count). So code holding cgroup_mutex can safely
1189 * assume that if the count is zero, it will stay zero. Similarly, if
1190 * a task holds cgroup_mutex on a cgroup with zero count, it
1191 * knows that the cgroup won't be removed, as cgroup_rmdir()
1192 * needs that mutex.
1193 *
1194 * A cgroup can only be deleted if both its 'count' of using tasks
1195 * is zero, and its list of 'children' cgroups is empty. Since all
1196 * tasks in the system use _some_ cgroup, and since there is always at
1197 * least one task in the system (init, pid == 1), therefore, root cgroup
1198 * always has either children cgroups and/or using tasks. So we don't
1199 * need a special hack to ensure that root cgroup cannot be deleted.
1200 *
1201 * P.S. One more locking exception. RCU is used to guard the
1202 * update of a tasks cgroup pointer by cgroup_attach_task()
1203 */
1204
1205 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1206 static const struct file_operations proc_cgroupstats_operations;
1207
1208 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1209 char *buf)
1210 {
1211 struct cgroup_subsys *ss = cft->ss;
1212
1213 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1214 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1215 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1216 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1217 cft->name);
1218 else
1219 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1220 return buf;
1221 }
1222
1223 /**
1224 * cgroup_file_mode - deduce file mode of a control file
1225 * @cft: the control file in question
1226 *
1227 * S_IRUGO for read, S_IWUSR for write.
1228 */
1229 static umode_t cgroup_file_mode(const struct cftype *cft)
1230 {
1231 umode_t mode = 0;
1232
1233 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1234 mode |= S_IRUGO;
1235
1236 if (cft->write_u64 || cft->write_s64 || cft->write) {
1237 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1238 mode |= S_IWUGO;
1239 else
1240 mode |= S_IWUSR;
1241 }
1242
1243 return mode;
1244 }
1245
1246 /**
1247 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1248 * @cgrp: the target cgroup
1249 * @subtree_control: the new subtree_control mask to consider
1250 *
1251 * On the default hierarchy, a subsystem may request other subsystems to be
1252 * enabled together through its ->depends_on mask. In such cases, more
1253 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1254 *
1255 * This function calculates which subsystems need to be enabled if
1256 * @subtree_control is to be applied to @cgrp. The returned mask is always
1257 * a superset of @subtree_control and follows the usual hierarchy rules.
1258 */
1259 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1260 unsigned long subtree_control)
1261 {
1262 struct cgroup *parent = cgroup_parent(cgrp);
1263 unsigned long cur_ss_mask = subtree_control;
1264 struct cgroup_subsys *ss;
1265 int ssid;
1266
1267 lockdep_assert_held(&cgroup_mutex);
1268
1269 if (!cgroup_on_dfl(cgrp))
1270 return cur_ss_mask;
1271
1272 while (true) {
1273 unsigned long new_ss_mask = cur_ss_mask;
1274
1275 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1276 new_ss_mask |= ss->depends_on;
1277
1278 /*
1279 * Mask out subsystems which aren't available. This can
1280 * happen only if some depended-upon subsystems were bound
1281 * to non-default hierarchies.
1282 */
1283 if (parent)
1284 new_ss_mask &= parent->child_subsys_mask;
1285 else
1286 new_ss_mask &= cgrp->root->subsys_mask;
1287
1288 if (new_ss_mask == cur_ss_mask)
1289 break;
1290 cur_ss_mask = new_ss_mask;
1291 }
1292
1293 return cur_ss_mask;
1294 }
1295
1296 /**
1297 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1298 * @cgrp: the target cgroup
1299 *
1300 * Update @cgrp->child_subsys_mask according to the current
1301 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1302 */
1303 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1304 {
1305 cgrp->child_subsys_mask =
1306 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1307 }
1308
1309 /**
1310 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1311 * @kn: the kernfs_node being serviced
1312 *
1313 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1314 * the method finishes if locking succeeded. Note that once this function
1315 * returns the cgroup returned by cgroup_kn_lock_live() may become
1316 * inaccessible any time. If the caller intends to continue to access the
1317 * cgroup, it should pin it before invoking this function.
1318 */
1319 static void cgroup_kn_unlock(struct kernfs_node *kn)
1320 {
1321 struct cgroup *cgrp;
1322
1323 if (kernfs_type(kn) == KERNFS_DIR)
1324 cgrp = kn->priv;
1325 else
1326 cgrp = kn->parent->priv;
1327
1328 mutex_unlock(&cgroup_mutex);
1329
1330 kernfs_unbreak_active_protection(kn);
1331 cgroup_put(cgrp);
1332 }
1333
1334 /**
1335 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1336 * @kn: the kernfs_node being serviced
1337 *
1338 * This helper is to be used by a cgroup kernfs method currently servicing
1339 * @kn. It breaks the active protection, performs cgroup locking and
1340 * verifies that the associated cgroup is alive. Returns the cgroup if
1341 * alive; otherwise, %NULL. A successful return should be undone by a
1342 * matching cgroup_kn_unlock() invocation.
1343 *
1344 * Any cgroup kernfs method implementation which requires locking the
1345 * associated cgroup should use this helper. It avoids nesting cgroup
1346 * locking under kernfs active protection and allows all kernfs operations
1347 * including self-removal.
1348 */
1349 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1350 {
1351 struct cgroup *cgrp;
1352
1353 if (kernfs_type(kn) == KERNFS_DIR)
1354 cgrp = kn->priv;
1355 else
1356 cgrp = kn->parent->priv;
1357
1358 /*
1359 * We're gonna grab cgroup_mutex which nests outside kernfs
1360 * active_ref. cgroup liveliness check alone provides enough
1361 * protection against removal. Ensure @cgrp stays accessible and
1362 * break the active_ref protection.
1363 */
1364 if (!cgroup_tryget(cgrp))
1365 return NULL;
1366 kernfs_break_active_protection(kn);
1367
1368 mutex_lock(&cgroup_mutex);
1369
1370 if (!cgroup_is_dead(cgrp))
1371 return cgrp;
1372
1373 cgroup_kn_unlock(kn);
1374 return NULL;
1375 }
1376
1377 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1378 {
1379 char name[CGROUP_FILE_NAME_MAX];
1380
1381 lockdep_assert_held(&cgroup_mutex);
1382 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1383 }
1384
1385 /**
1386 * css_clear_dir - remove subsys files in a cgroup directory
1387 * @css: taget css
1388 * @cgrp_override: specify if target cgroup is different from css->cgroup
1389 */
1390 static void css_clear_dir(struct cgroup_subsys_state *css,
1391 struct cgroup *cgrp_override)
1392 {
1393 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1394 struct cftype *cfts;
1395
1396 list_for_each_entry(cfts, &css->ss->cfts, node)
1397 cgroup_addrm_files(css, cgrp, cfts, false);
1398 }
1399
1400 /**
1401 * css_populate_dir - create subsys files in a cgroup directory
1402 * @css: target css
1403 * @cgrp_overried: specify if target cgroup is different from css->cgroup
1404 *
1405 * On failure, no file is added.
1406 */
1407 static int css_populate_dir(struct cgroup_subsys_state *css,
1408 struct cgroup *cgrp_override)
1409 {
1410 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1411 struct cftype *cfts, *failed_cfts;
1412 int ret;
1413
1414 if (!css->ss) {
1415 if (cgroup_on_dfl(cgrp))
1416 cfts = cgroup_dfl_base_files;
1417 else
1418 cfts = cgroup_legacy_base_files;
1419
1420 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1421 }
1422
1423 list_for_each_entry(cfts, &css->ss->cfts, node) {
1424 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1425 if (ret < 0) {
1426 failed_cfts = cfts;
1427 goto err;
1428 }
1429 }
1430 return 0;
1431 err:
1432 list_for_each_entry(cfts, &css->ss->cfts, node) {
1433 if (cfts == failed_cfts)
1434 break;
1435 cgroup_addrm_files(css, cgrp, cfts, false);
1436 }
1437 return ret;
1438 }
1439
1440 static int rebind_subsystems(struct cgroup_root *dst_root,
1441 unsigned long ss_mask)
1442 {
1443 struct cgroup *dcgrp = &dst_root->cgrp;
1444 struct cgroup_subsys *ss;
1445 unsigned long tmp_ss_mask;
1446 int ssid, i, ret;
1447
1448 lockdep_assert_held(&cgroup_mutex);
1449
1450 for_each_subsys_which(ss, ssid, &ss_mask) {
1451 /* if @ss has non-root csses attached to it, can't move */
1452 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1453 return -EBUSY;
1454
1455 /* can't move between two non-dummy roots either */
1456 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1457 return -EBUSY;
1458 }
1459
1460 /* skip creating root files on dfl_root for inhibited subsystems */
1461 tmp_ss_mask = ss_mask;
1462 if (dst_root == &cgrp_dfl_root)
1463 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1464
1465 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1466 struct cgroup *scgrp = &ss->root->cgrp;
1467 int tssid;
1468
1469 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1470 if (!ret)
1471 continue;
1472
1473 /*
1474 * Rebinding back to the default root is not allowed to
1475 * fail. Using both default and non-default roots should
1476 * be rare. Moving subsystems back and forth even more so.
1477 * Just warn about it and continue.
1478 */
1479 if (dst_root == &cgrp_dfl_root) {
1480 if (cgrp_dfl_root_visible) {
1481 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1482 ret, ss_mask);
1483 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1484 }
1485 continue;
1486 }
1487
1488 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1489 if (tssid == ssid)
1490 break;
1491 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1492 }
1493 return ret;
1494 }
1495
1496 /*
1497 * Nothing can fail from this point on. Remove files for the
1498 * removed subsystems and rebind each subsystem.
1499 */
1500 for_each_subsys_which(ss, ssid, &ss_mask) {
1501 struct cgroup_root *src_root = ss->root;
1502 struct cgroup *scgrp = &src_root->cgrp;
1503 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1504 struct css_set *cset;
1505
1506 WARN_ON(!css || cgroup_css(dcgrp, ss));
1507
1508 css_clear_dir(css, NULL);
1509
1510 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1511 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1512 ss->root = dst_root;
1513 css->cgroup = dcgrp;
1514
1515 down_write(&css_set_rwsem);
1516 hash_for_each(css_set_table, i, cset, hlist)
1517 list_move_tail(&cset->e_cset_node[ss->id],
1518 &dcgrp->e_csets[ss->id]);
1519 up_write(&css_set_rwsem);
1520
1521 src_root->subsys_mask &= ~(1 << ssid);
1522 scgrp->subtree_control &= ~(1 << ssid);
1523 cgroup_refresh_child_subsys_mask(scgrp);
1524
1525 /* default hierarchy doesn't enable controllers by default */
1526 dst_root->subsys_mask |= 1 << ssid;
1527 if (dst_root == &cgrp_dfl_root) {
1528 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1529 } else {
1530 dcgrp->subtree_control |= 1 << ssid;
1531 cgroup_refresh_child_subsys_mask(dcgrp);
1532 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1533 }
1534
1535 if (ss->bind)
1536 ss->bind(css);
1537 }
1538
1539 kernfs_activate(dcgrp->kn);
1540 return 0;
1541 }
1542
1543 static int cgroup_show_options(struct seq_file *seq,
1544 struct kernfs_root *kf_root)
1545 {
1546 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1547 struct cgroup_subsys *ss;
1548 int ssid;
1549
1550 if (root != &cgrp_dfl_root)
1551 for_each_subsys(ss, ssid)
1552 if (root->subsys_mask & (1 << ssid))
1553 seq_show_option(seq, ss->legacy_name, NULL);
1554 if (root->flags & CGRP_ROOT_NOPREFIX)
1555 seq_puts(seq, ",noprefix");
1556 if (root->flags & CGRP_ROOT_XATTR)
1557 seq_puts(seq, ",xattr");
1558
1559 spin_lock(&release_agent_path_lock);
1560 if (strlen(root->release_agent_path))
1561 seq_show_option(seq, "release_agent",
1562 root->release_agent_path);
1563 spin_unlock(&release_agent_path_lock);
1564
1565 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1566 seq_puts(seq, ",clone_children");
1567 if (strlen(root->name))
1568 seq_show_option(seq, "name", root->name);
1569 return 0;
1570 }
1571
1572 struct cgroup_sb_opts {
1573 unsigned long subsys_mask;
1574 unsigned int flags;
1575 char *release_agent;
1576 bool cpuset_clone_children;
1577 char *name;
1578 /* User explicitly requested empty subsystem */
1579 bool none;
1580 };
1581
1582 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1583 {
1584 char *token, *o = data;
1585 bool all_ss = false, one_ss = false;
1586 unsigned long mask = -1UL;
1587 struct cgroup_subsys *ss;
1588 int nr_opts = 0;
1589 int i;
1590
1591 #ifdef CONFIG_CPUSETS
1592 mask = ~(1U << cpuset_cgrp_id);
1593 #endif
1594
1595 memset(opts, 0, sizeof(*opts));
1596
1597 while ((token = strsep(&o, ",")) != NULL) {
1598 nr_opts++;
1599
1600 if (!*token)
1601 return -EINVAL;
1602 if (!strcmp(token, "none")) {
1603 /* Explicitly have no subsystems */
1604 opts->none = true;
1605 continue;
1606 }
1607 if (!strcmp(token, "all")) {
1608 /* Mutually exclusive option 'all' + subsystem name */
1609 if (one_ss)
1610 return -EINVAL;
1611 all_ss = true;
1612 continue;
1613 }
1614 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1615 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1616 continue;
1617 }
1618 if (!strcmp(token, "noprefix")) {
1619 opts->flags |= CGRP_ROOT_NOPREFIX;
1620 continue;
1621 }
1622 if (!strcmp(token, "clone_children")) {
1623 opts->cpuset_clone_children = true;
1624 continue;
1625 }
1626 if (!strcmp(token, "xattr")) {
1627 opts->flags |= CGRP_ROOT_XATTR;
1628 continue;
1629 }
1630 if (!strncmp(token, "release_agent=", 14)) {
1631 /* Specifying two release agents is forbidden */
1632 if (opts->release_agent)
1633 return -EINVAL;
1634 opts->release_agent =
1635 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1636 if (!opts->release_agent)
1637 return -ENOMEM;
1638 continue;
1639 }
1640 if (!strncmp(token, "name=", 5)) {
1641 const char *name = token + 5;
1642 /* Can't specify an empty name */
1643 if (!strlen(name))
1644 return -EINVAL;
1645 /* Must match [\w.-]+ */
1646 for (i = 0; i < strlen(name); i++) {
1647 char c = name[i];
1648 if (isalnum(c))
1649 continue;
1650 if ((c == '.') || (c == '-') || (c == '_'))
1651 continue;
1652 return -EINVAL;
1653 }
1654 /* Specifying two names is forbidden */
1655 if (opts->name)
1656 return -EINVAL;
1657 opts->name = kstrndup(name,
1658 MAX_CGROUP_ROOT_NAMELEN - 1,
1659 GFP_KERNEL);
1660 if (!opts->name)
1661 return -ENOMEM;
1662
1663 continue;
1664 }
1665
1666 for_each_subsys(ss, i) {
1667 if (strcmp(token, ss->legacy_name))
1668 continue;
1669 if (!cgroup_ssid_enabled(i))
1670 continue;
1671
1672 /* Mutually exclusive option 'all' + subsystem name */
1673 if (all_ss)
1674 return -EINVAL;
1675 opts->subsys_mask |= (1 << i);
1676 one_ss = true;
1677
1678 break;
1679 }
1680 if (i == CGROUP_SUBSYS_COUNT)
1681 return -ENOENT;
1682 }
1683
1684 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1685 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1686 if (nr_opts != 1) {
1687 pr_err("sane_behavior: no other mount options allowed\n");
1688 return -EINVAL;
1689 }
1690 return 0;
1691 }
1692
1693 /*
1694 * If the 'all' option was specified select all the subsystems,
1695 * otherwise if 'none', 'name=' and a subsystem name options were
1696 * not specified, let's default to 'all'
1697 */
1698 if (all_ss || (!one_ss && !opts->none && !opts->name))
1699 for_each_subsys(ss, i)
1700 if (cgroup_ssid_enabled(i))
1701 opts->subsys_mask |= (1 << i);
1702
1703 /*
1704 * We either have to specify by name or by subsystems. (So all
1705 * empty hierarchies must have a name).
1706 */
1707 if (!opts->subsys_mask && !opts->name)
1708 return -EINVAL;
1709
1710 /*
1711 * Option noprefix was introduced just for backward compatibility
1712 * with the old cpuset, so we allow noprefix only if mounting just
1713 * the cpuset subsystem.
1714 */
1715 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1716 return -EINVAL;
1717
1718 /* Can't specify "none" and some subsystems */
1719 if (opts->subsys_mask && opts->none)
1720 return -EINVAL;
1721
1722 return 0;
1723 }
1724
1725 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1726 {
1727 int ret = 0;
1728 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1729 struct cgroup_sb_opts opts;
1730 unsigned long added_mask, removed_mask;
1731
1732 if (root == &cgrp_dfl_root) {
1733 pr_err("remount is not allowed\n");
1734 return -EINVAL;
1735 }
1736
1737 mutex_lock(&cgroup_mutex);
1738
1739 /* See what subsystems are wanted */
1740 ret = parse_cgroupfs_options(data, &opts);
1741 if (ret)
1742 goto out_unlock;
1743
1744 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1745 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1746 task_tgid_nr(current), current->comm);
1747
1748 added_mask = opts.subsys_mask & ~root->subsys_mask;
1749 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1750
1751 /* Don't allow flags or name to change at remount */
1752 if ((opts.flags ^ root->flags) ||
1753 (opts.name && strcmp(opts.name, root->name))) {
1754 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1755 opts.flags, opts.name ?: "", root->flags, root->name);
1756 ret = -EINVAL;
1757 goto out_unlock;
1758 }
1759
1760 /* remounting is not allowed for populated hierarchies */
1761 if (!list_empty(&root->cgrp.self.children)) {
1762 ret = -EBUSY;
1763 goto out_unlock;
1764 }
1765
1766 ret = rebind_subsystems(root, added_mask);
1767 if (ret)
1768 goto out_unlock;
1769
1770 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1771
1772 if (opts.release_agent) {
1773 spin_lock(&release_agent_path_lock);
1774 strcpy(root->release_agent_path, opts.release_agent);
1775 spin_unlock(&release_agent_path_lock);
1776 }
1777 out_unlock:
1778 kfree(opts.release_agent);
1779 kfree(opts.name);
1780 mutex_unlock(&cgroup_mutex);
1781 return ret;
1782 }
1783
1784 /*
1785 * To reduce the fork() overhead for systems that are not actually using
1786 * their cgroups capability, we don't maintain the lists running through
1787 * each css_set to its tasks until we see the list actually used - in other
1788 * words after the first mount.
1789 */
1790 static bool use_task_css_set_links __read_mostly;
1791
1792 static void cgroup_enable_task_cg_lists(void)
1793 {
1794 struct task_struct *p, *g;
1795
1796 down_write(&css_set_rwsem);
1797
1798 if (use_task_css_set_links)
1799 goto out_unlock;
1800
1801 use_task_css_set_links = true;
1802
1803 /*
1804 * We need tasklist_lock because RCU is not safe against
1805 * while_each_thread(). Besides, a forking task that has passed
1806 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1807 * is not guaranteed to have its child immediately visible in the
1808 * tasklist if we walk through it with RCU.
1809 */
1810 read_lock(&tasklist_lock);
1811 do_each_thread(g, p) {
1812 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1813 task_css_set(p) != &init_css_set);
1814
1815 /*
1816 * We should check if the process is exiting, otherwise
1817 * it will race with cgroup_exit() in that the list
1818 * entry won't be deleted though the process has exited.
1819 * Do it while holding siglock so that we don't end up
1820 * racing against cgroup_exit().
1821 */
1822 spin_lock_irq(&p->sighand->siglock);
1823 if (!(p->flags & PF_EXITING)) {
1824 struct css_set *cset = task_css_set(p);
1825
1826 if (!css_set_populated(cset))
1827 css_set_update_populated(cset, true);
1828 list_add_tail(&p->cg_list, &cset->tasks);
1829 get_css_set(cset);
1830 }
1831 spin_unlock_irq(&p->sighand->siglock);
1832 } while_each_thread(g, p);
1833 read_unlock(&tasklist_lock);
1834 out_unlock:
1835 up_write(&css_set_rwsem);
1836 }
1837
1838 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1839 {
1840 struct cgroup_subsys *ss;
1841 int ssid;
1842
1843 INIT_LIST_HEAD(&cgrp->self.sibling);
1844 INIT_LIST_HEAD(&cgrp->self.children);
1845 INIT_LIST_HEAD(&cgrp->self.files);
1846 INIT_LIST_HEAD(&cgrp->cset_links);
1847 INIT_LIST_HEAD(&cgrp->pidlists);
1848 mutex_init(&cgrp->pidlist_mutex);
1849 cgrp->self.cgroup = cgrp;
1850 cgrp->self.flags |= CSS_ONLINE;
1851
1852 for_each_subsys(ss, ssid)
1853 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1854
1855 init_waitqueue_head(&cgrp->offline_waitq);
1856 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1857 }
1858
1859 static void init_cgroup_root(struct cgroup_root *root,
1860 struct cgroup_sb_opts *opts)
1861 {
1862 struct cgroup *cgrp = &root->cgrp;
1863
1864 INIT_LIST_HEAD(&root->root_list);
1865 atomic_set(&root->nr_cgrps, 1);
1866 cgrp->root = root;
1867 init_cgroup_housekeeping(cgrp);
1868 idr_init(&root->cgroup_idr);
1869
1870 root->flags = opts->flags;
1871 if (opts->release_agent)
1872 strcpy(root->release_agent_path, opts->release_agent);
1873 if (opts->name)
1874 strcpy(root->name, opts->name);
1875 if (opts->cpuset_clone_children)
1876 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1877 }
1878
1879 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1880 {
1881 LIST_HEAD(tmp_links);
1882 struct cgroup *root_cgrp = &root->cgrp;
1883 struct css_set *cset;
1884 int i, ret;
1885
1886 lockdep_assert_held(&cgroup_mutex);
1887
1888 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1889 if (ret < 0)
1890 goto out;
1891 root_cgrp->id = ret;
1892
1893 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1894 GFP_KERNEL);
1895 if (ret)
1896 goto out;
1897
1898 /*
1899 * We're accessing css_set_count without locking css_set_rwsem here,
1900 * but that's OK - it can only be increased by someone holding
1901 * cgroup_lock, and that's us. The worst that can happen is that we
1902 * have some link structures left over
1903 */
1904 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1905 if (ret)
1906 goto cancel_ref;
1907
1908 ret = cgroup_init_root_id(root);
1909 if (ret)
1910 goto cancel_ref;
1911
1912 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1913 KERNFS_ROOT_CREATE_DEACTIVATED,
1914 root_cgrp);
1915 if (IS_ERR(root->kf_root)) {
1916 ret = PTR_ERR(root->kf_root);
1917 goto exit_root_id;
1918 }
1919 root_cgrp->kn = root->kf_root->kn;
1920
1921 ret = css_populate_dir(&root_cgrp->self, NULL);
1922 if (ret)
1923 goto destroy_root;
1924
1925 ret = rebind_subsystems(root, ss_mask);
1926 if (ret)
1927 goto destroy_root;
1928
1929 /*
1930 * There must be no failure case after here, since rebinding takes
1931 * care of subsystems' refcounts, which are explicitly dropped in
1932 * the failure exit path.
1933 */
1934 list_add(&root->root_list, &cgroup_roots);
1935 cgroup_root_count++;
1936
1937 /*
1938 * Link the root cgroup in this hierarchy into all the css_set
1939 * objects.
1940 */
1941 down_write(&css_set_rwsem);
1942 hash_for_each(css_set_table, i, cset, hlist) {
1943 link_css_set(&tmp_links, cset, root_cgrp);
1944 if (css_set_populated(cset))
1945 cgroup_update_populated(root_cgrp, true);
1946 }
1947 up_write(&css_set_rwsem);
1948
1949 BUG_ON(!list_empty(&root_cgrp->self.children));
1950 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1951
1952 kernfs_activate(root_cgrp->kn);
1953 ret = 0;
1954 goto out;
1955
1956 destroy_root:
1957 kernfs_destroy_root(root->kf_root);
1958 root->kf_root = NULL;
1959 exit_root_id:
1960 cgroup_exit_root_id(root);
1961 cancel_ref:
1962 percpu_ref_exit(&root_cgrp->self.refcnt);
1963 out:
1964 free_cgrp_cset_links(&tmp_links);
1965 return ret;
1966 }
1967
1968 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1969 int flags, const char *unused_dev_name,
1970 void *data)
1971 {
1972 struct super_block *pinned_sb = NULL;
1973 struct cgroup_subsys *ss;
1974 struct cgroup_root *root;
1975 struct cgroup_sb_opts opts;
1976 struct dentry *dentry;
1977 int ret;
1978 int i;
1979 bool new_sb;
1980
1981 /*
1982 * The first time anyone tries to mount a cgroup, enable the list
1983 * linking each css_set to its tasks and fix up all existing tasks.
1984 */
1985 if (!use_task_css_set_links)
1986 cgroup_enable_task_cg_lists();
1987
1988 mutex_lock(&cgroup_mutex);
1989
1990 /* First find the desired set of subsystems */
1991 ret = parse_cgroupfs_options(data, &opts);
1992 if (ret)
1993 goto out_unlock;
1994
1995 /* look for a matching existing root */
1996 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
1997 cgrp_dfl_root_visible = true;
1998 root = &cgrp_dfl_root;
1999 cgroup_get(&root->cgrp);
2000 ret = 0;
2001 goto out_unlock;
2002 }
2003
2004 /*
2005 * Destruction of cgroup root is asynchronous, so subsystems may
2006 * still be dying after the previous unmount. Let's drain the
2007 * dying subsystems. We just need to ensure that the ones
2008 * unmounted previously finish dying and don't care about new ones
2009 * starting. Testing ref liveliness is good enough.
2010 */
2011 for_each_subsys(ss, i) {
2012 if (!(opts.subsys_mask & (1 << i)) ||
2013 ss->root == &cgrp_dfl_root)
2014 continue;
2015
2016 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2017 mutex_unlock(&cgroup_mutex);
2018 msleep(10);
2019 ret = restart_syscall();
2020 goto out_free;
2021 }
2022 cgroup_put(&ss->root->cgrp);
2023 }
2024
2025 for_each_root(root) {
2026 bool name_match = false;
2027
2028 if (root == &cgrp_dfl_root)
2029 continue;
2030
2031 /*
2032 * If we asked for a name then it must match. Also, if
2033 * name matches but sybsys_mask doesn't, we should fail.
2034 * Remember whether name matched.
2035 */
2036 if (opts.name) {
2037 if (strcmp(opts.name, root->name))
2038 continue;
2039 name_match = true;
2040 }
2041
2042 /*
2043 * If we asked for subsystems (or explicitly for no
2044 * subsystems) then they must match.
2045 */
2046 if ((opts.subsys_mask || opts.none) &&
2047 (opts.subsys_mask != root->subsys_mask)) {
2048 if (!name_match)
2049 continue;
2050 ret = -EBUSY;
2051 goto out_unlock;
2052 }
2053
2054 if (root->flags ^ opts.flags)
2055 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2056
2057 /*
2058 * We want to reuse @root whose lifetime is governed by its
2059 * ->cgrp. Let's check whether @root is alive and keep it
2060 * that way. As cgroup_kill_sb() can happen anytime, we
2061 * want to block it by pinning the sb so that @root doesn't
2062 * get killed before mount is complete.
2063 *
2064 * With the sb pinned, tryget_live can reliably indicate
2065 * whether @root can be reused. If it's being killed,
2066 * drain it. We can use wait_queue for the wait but this
2067 * path is super cold. Let's just sleep a bit and retry.
2068 */
2069 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2070 if (IS_ERR(pinned_sb) ||
2071 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2072 mutex_unlock(&cgroup_mutex);
2073 if (!IS_ERR_OR_NULL(pinned_sb))
2074 deactivate_super(pinned_sb);
2075 msleep(10);
2076 ret = restart_syscall();
2077 goto out_free;
2078 }
2079
2080 ret = 0;
2081 goto out_unlock;
2082 }
2083
2084 /*
2085 * No such thing, create a new one. name= matching without subsys
2086 * specification is allowed for already existing hierarchies but we
2087 * can't create new one without subsys specification.
2088 */
2089 if (!opts.subsys_mask && !opts.none) {
2090 ret = -EINVAL;
2091 goto out_unlock;
2092 }
2093
2094 root = kzalloc(sizeof(*root), GFP_KERNEL);
2095 if (!root) {
2096 ret = -ENOMEM;
2097 goto out_unlock;
2098 }
2099
2100 init_cgroup_root(root, &opts);
2101
2102 ret = cgroup_setup_root(root, opts.subsys_mask);
2103 if (ret)
2104 cgroup_free_root(root);
2105
2106 out_unlock:
2107 mutex_unlock(&cgroup_mutex);
2108 out_free:
2109 kfree(opts.release_agent);
2110 kfree(opts.name);
2111
2112 if (ret)
2113 return ERR_PTR(ret);
2114
2115 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2116 CGROUP_SUPER_MAGIC, &new_sb);
2117 if (IS_ERR(dentry) || !new_sb)
2118 cgroup_put(&root->cgrp);
2119
2120 /*
2121 * If @pinned_sb, we're reusing an existing root and holding an
2122 * extra ref on its sb. Mount is complete. Put the extra ref.
2123 */
2124 if (pinned_sb) {
2125 WARN_ON(new_sb);
2126 deactivate_super(pinned_sb);
2127 }
2128
2129 return dentry;
2130 }
2131
2132 static void cgroup_kill_sb(struct super_block *sb)
2133 {
2134 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2135 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2136
2137 /*
2138 * If @root doesn't have any mounts or children, start killing it.
2139 * This prevents new mounts by disabling percpu_ref_tryget_live().
2140 * cgroup_mount() may wait for @root's release.
2141 *
2142 * And don't kill the default root.
2143 */
2144 if (!list_empty(&root->cgrp.self.children) ||
2145 root == &cgrp_dfl_root)
2146 cgroup_put(&root->cgrp);
2147 else
2148 percpu_ref_kill(&root->cgrp.self.refcnt);
2149
2150 kernfs_kill_sb(sb);
2151 }
2152
2153 static struct file_system_type cgroup_fs_type = {
2154 .name = "cgroup",
2155 .mount = cgroup_mount,
2156 .kill_sb = cgroup_kill_sb,
2157 };
2158
2159 /**
2160 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2161 * @task: target task
2162 * @buf: the buffer to write the path into
2163 * @buflen: the length of the buffer
2164 *
2165 * Determine @task's cgroup on the first (the one with the lowest non-zero
2166 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2167 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2168 * cgroup controller callbacks.
2169 *
2170 * Return value is the same as kernfs_path().
2171 */
2172 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2173 {
2174 struct cgroup_root *root;
2175 struct cgroup *cgrp;
2176 int hierarchy_id = 1;
2177 char *path = NULL;
2178
2179 mutex_lock(&cgroup_mutex);
2180 down_read(&css_set_rwsem);
2181
2182 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2183
2184 if (root) {
2185 cgrp = task_cgroup_from_root(task, root);
2186 path = cgroup_path(cgrp, buf, buflen);
2187 } else {
2188 /* if no hierarchy exists, everyone is in "/" */
2189 if (strlcpy(buf, "/", buflen) < buflen)
2190 path = buf;
2191 }
2192
2193 up_read(&css_set_rwsem);
2194 mutex_unlock(&cgroup_mutex);
2195 return path;
2196 }
2197 EXPORT_SYMBOL_GPL(task_cgroup_path);
2198
2199 /* used to track tasks and other necessary states during migration */
2200 struct cgroup_taskset {
2201 /* the src and dst cset list running through cset->mg_node */
2202 struct list_head src_csets;
2203 struct list_head dst_csets;
2204
2205 /*
2206 * Fields for cgroup_taskset_*() iteration.
2207 *
2208 * Before migration is committed, the target migration tasks are on
2209 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2210 * the csets on ->dst_csets. ->csets point to either ->src_csets
2211 * or ->dst_csets depending on whether migration is committed.
2212 *
2213 * ->cur_csets and ->cur_task point to the current task position
2214 * during iteration.
2215 */
2216 struct list_head *csets;
2217 struct css_set *cur_cset;
2218 struct task_struct *cur_task;
2219 };
2220
2221 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2222 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2223 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2224 .csets = &tset.src_csets, \
2225 }
2226
2227 /**
2228 * cgroup_taskset_add - try to add a migration target task to a taskset
2229 * @task: target task
2230 * @tset: target taskset
2231 *
2232 * Add @task, which is a migration target, to @tset. This function becomes
2233 * noop if @task doesn't need to be migrated. @task's css_set should have
2234 * been added as a migration source and @task->cg_list will be moved from
2235 * the css_set's tasks list to mg_tasks one.
2236 */
2237 static void cgroup_taskset_add(struct task_struct *task,
2238 struct cgroup_taskset *tset)
2239 {
2240 struct css_set *cset;
2241
2242 lockdep_assert_held(&css_set_rwsem);
2243
2244 /* @task either already exited or can't exit until the end */
2245 if (task->flags & PF_EXITING)
2246 return;
2247
2248 /* leave @task alone if post_fork() hasn't linked it yet */
2249 if (list_empty(&task->cg_list))
2250 return;
2251
2252 cset = task_css_set(task);
2253 if (!cset->mg_src_cgrp)
2254 return;
2255
2256 list_move_tail(&task->cg_list, &cset->mg_tasks);
2257 if (list_empty(&cset->mg_node))
2258 list_add_tail(&cset->mg_node, &tset->src_csets);
2259 if (list_empty(&cset->mg_dst_cset->mg_node))
2260 list_move_tail(&cset->mg_dst_cset->mg_node,
2261 &tset->dst_csets);
2262 }
2263
2264 /**
2265 * cgroup_taskset_first - reset taskset and return the first task
2266 * @tset: taskset of interest
2267 *
2268 * @tset iteration is initialized and the first task is returned.
2269 */
2270 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2271 {
2272 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2273 tset->cur_task = NULL;
2274
2275 return cgroup_taskset_next(tset);
2276 }
2277
2278 /**
2279 * cgroup_taskset_next - iterate to the next task in taskset
2280 * @tset: taskset of interest
2281 *
2282 * Return the next task in @tset. Iteration must have been initialized
2283 * with cgroup_taskset_first().
2284 */
2285 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2286 {
2287 struct css_set *cset = tset->cur_cset;
2288 struct task_struct *task = tset->cur_task;
2289
2290 while (&cset->mg_node != tset->csets) {
2291 if (!task)
2292 task = list_first_entry(&cset->mg_tasks,
2293 struct task_struct, cg_list);
2294 else
2295 task = list_next_entry(task, cg_list);
2296
2297 if (&task->cg_list != &cset->mg_tasks) {
2298 tset->cur_cset = cset;
2299 tset->cur_task = task;
2300 return task;
2301 }
2302
2303 cset = list_next_entry(cset, mg_node);
2304 task = NULL;
2305 }
2306
2307 return NULL;
2308 }
2309
2310 /**
2311 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2312 * @tset: taget taskset
2313 * @dst_cgrp: destination cgroup
2314 *
2315 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2316 * ->can_attach callbacks fails and guarantees that either all or none of
2317 * the tasks in @tset are migrated. @tset is consumed regardless of
2318 * success.
2319 */
2320 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2321 struct cgroup *dst_cgrp)
2322 {
2323 struct cgroup_subsys_state *css, *failed_css = NULL;
2324 struct task_struct *task, *tmp_task;
2325 struct css_set *cset, *tmp_cset;
2326 int i, ret;
2327
2328 /* methods shouldn't be called if no task is actually migrating */
2329 if (list_empty(&tset->src_csets))
2330 return 0;
2331
2332 /* check that we can legitimately attach to the cgroup */
2333 for_each_e_css(css, i, dst_cgrp) {
2334 if (css->ss->can_attach) {
2335 ret = css->ss->can_attach(css, tset);
2336 if (ret) {
2337 failed_css = css;
2338 goto out_cancel_attach;
2339 }
2340 }
2341 }
2342
2343 /*
2344 * Now that we're guaranteed success, proceed to move all tasks to
2345 * the new cgroup. There are no failure cases after here, so this
2346 * is the commit point.
2347 */
2348 down_write(&css_set_rwsem);
2349 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2350 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2351 struct css_set *from_cset = task_css_set(task);
2352 struct css_set *to_cset = cset->mg_dst_cset;
2353
2354 get_css_set(to_cset);
2355 css_set_move_task(task, from_cset, to_cset, true);
2356 put_css_set_locked(from_cset);
2357 }
2358 }
2359 up_write(&css_set_rwsem);
2360
2361 /*
2362 * Migration is committed, all target tasks are now on dst_csets.
2363 * Nothing is sensitive to fork() after this point. Notify
2364 * controllers that migration is complete.
2365 */
2366 tset->csets = &tset->dst_csets;
2367
2368 for_each_e_css(css, i, dst_cgrp)
2369 if (css->ss->attach)
2370 css->ss->attach(css, tset);
2371
2372 ret = 0;
2373 goto out_release_tset;
2374
2375 out_cancel_attach:
2376 for_each_e_css(css, i, dst_cgrp) {
2377 if (css == failed_css)
2378 break;
2379 if (css->ss->cancel_attach)
2380 css->ss->cancel_attach(css, tset);
2381 }
2382 out_release_tset:
2383 down_write(&css_set_rwsem);
2384 list_splice_init(&tset->dst_csets, &tset->src_csets);
2385 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2386 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2387 list_del_init(&cset->mg_node);
2388 }
2389 up_write(&css_set_rwsem);
2390 return ret;
2391 }
2392
2393 /**
2394 * cgroup_migrate_finish - cleanup after attach
2395 * @preloaded_csets: list of preloaded css_sets
2396 *
2397 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2398 * those functions for details.
2399 */
2400 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2401 {
2402 struct css_set *cset, *tmp_cset;
2403
2404 lockdep_assert_held(&cgroup_mutex);
2405
2406 down_write(&css_set_rwsem);
2407 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2408 cset->mg_src_cgrp = NULL;
2409 cset->mg_dst_cset = NULL;
2410 list_del_init(&cset->mg_preload_node);
2411 put_css_set_locked(cset);
2412 }
2413 up_write(&css_set_rwsem);
2414 }
2415
2416 /**
2417 * cgroup_migrate_add_src - add a migration source css_set
2418 * @src_cset: the source css_set to add
2419 * @dst_cgrp: the destination cgroup
2420 * @preloaded_csets: list of preloaded css_sets
2421 *
2422 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2423 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2424 * up by cgroup_migrate_finish().
2425 *
2426 * This function may be called without holding cgroup_threadgroup_rwsem
2427 * even if the target is a process. Threads may be created and destroyed
2428 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2429 * into play and the preloaded css_sets are guaranteed to cover all
2430 * migrations.
2431 */
2432 static void cgroup_migrate_add_src(struct css_set *src_cset,
2433 struct cgroup *dst_cgrp,
2434 struct list_head *preloaded_csets)
2435 {
2436 struct cgroup *src_cgrp;
2437
2438 lockdep_assert_held(&cgroup_mutex);
2439 lockdep_assert_held(&css_set_rwsem);
2440
2441 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2442
2443 if (!list_empty(&src_cset->mg_preload_node))
2444 return;
2445
2446 WARN_ON(src_cset->mg_src_cgrp);
2447 WARN_ON(!list_empty(&src_cset->mg_tasks));
2448 WARN_ON(!list_empty(&src_cset->mg_node));
2449
2450 src_cset->mg_src_cgrp = src_cgrp;
2451 get_css_set(src_cset);
2452 list_add(&src_cset->mg_preload_node, preloaded_csets);
2453 }
2454
2455 /**
2456 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2457 * @dst_cgrp: the destination cgroup (may be %NULL)
2458 * @preloaded_csets: list of preloaded source css_sets
2459 *
2460 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2461 * have been preloaded to @preloaded_csets. This function looks up and
2462 * pins all destination css_sets, links each to its source, and append them
2463 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2464 * source css_set is assumed to be its cgroup on the default hierarchy.
2465 *
2466 * This function must be called after cgroup_migrate_add_src() has been
2467 * called on each migration source css_set. After migration is performed
2468 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2469 * @preloaded_csets.
2470 */
2471 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2472 struct list_head *preloaded_csets)
2473 {
2474 LIST_HEAD(csets);
2475 struct css_set *src_cset, *tmp_cset;
2476
2477 lockdep_assert_held(&cgroup_mutex);
2478
2479 /*
2480 * Except for the root, child_subsys_mask must be zero for a cgroup
2481 * with tasks so that child cgroups don't compete against tasks.
2482 */
2483 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2484 dst_cgrp->child_subsys_mask)
2485 return -EBUSY;
2486
2487 /* look up the dst cset for each src cset and link it to src */
2488 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2489 struct css_set *dst_cset;
2490
2491 dst_cset = find_css_set(src_cset,
2492 dst_cgrp ?: src_cset->dfl_cgrp);
2493 if (!dst_cset)
2494 goto err;
2495
2496 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2497
2498 /*
2499 * If src cset equals dst, it's noop. Drop the src.
2500 * cgroup_migrate() will skip the cset too. Note that we
2501 * can't handle src == dst as some nodes are used by both.
2502 */
2503 if (src_cset == dst_cset) {
2504 src_cset->mg_src_cgrp = NULL;
2505 list_del_init(&src_cset->mg_preload_node);
2506 put_css_set(src_cset);
2507 put_css_set(dst_cset);
2508 continue;
2509 }
2510
2511 src_cset->mg_dst_cset = dst_cset;
2512
2513 if (list_empty(&dst_cset->mg_preload_node))
2514 list_add(&dst_cset->mg_preload_node, &csets);
2515 else
2516 put_css_set(dst_cset);
2517 }
2518
2519 list_splice_tail(&csets, preloaded_csets);
2520 return 0;
2521 err:
2522 cgroup_migrate_finish(&csets);
2523 return -ENOMEM;
2524 }
2525
2526 /**
2527 * cgroup_migrate - migrate a process or task to a cgroup
2528 * @leader: the leader of the process or the task to migrate
2529 * @threadgroup: whether @leader points to the whole process or a single task
2530 * @cgrp: the destination cgroup
2531 *
2532 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2533 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2534 * caller is also responsible for invoking cgroup_migrate_add_src() and
2535 * cgroup_migrate_prepare_dst() on the targets before invoking this
2536 * function and following up with cgroup_migrate_finish().
2537 *
2538 * As long as a controller's ->can_attach() doesn't fail, this function is
2539 * guaranteed to succeed. This means that, excluding ->can_attach()
2540 * failure, when migrating multiple targets, the success or failure can be
2541 * decided for all targets by invoking group_migrate_prepare_dst() before
2542 * actually starting migrating.
2543 */
2544 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2545 struct cgroup *cgrp)
2546 {
2547 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2548 struct task_struct *task;
2549
2550 /*
2551 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2552 * already PF_EXITING could be freed from underneath us unless we
2553 * take an rcu_read_lock.
2554 */
2555 down_write(&css_set_rwsem);
2556 rcu_read_lock();
2557 task = leader;
2558 do {
2559 cgroup_taskset_add(task, &tset);
2560 if (!threadgroup)
2561 break;
2562 } while_each_thread(leader, task);
2563 rcu_read_unlock();
2564 up_write(&css_set_rwsem);
2565
2566 return cgroup_taskset_migrate(&tset, cgrp);
2567 }
2568
2569 /**
2570 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2571 * @dst_cgrp: the cgroup to attach to
2572 * @leader: the task or the leader of the threadgroup to be attached
2573 * @threadgroup: attach the whole threadgroup?
2574 *
2575 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2576 */
2577 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2578 struct task_struct *leader, bool threadgroup)
2579 {
2580 LIST_HEAD(preloaded_csets);
2581 struct task_struct *task;
2582 int ret;
2583
2584 /* look up all src csets */
2585 down_read(&css_set_rwsem);
2586 rcu_read_lock();
2587 task = leader;
2588 do {
2589 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2590 &preloaded_csets);
2591 if (!threadgroup)
2592 break;
2593 } while_each_thread(leader, task);
2594 rcu_read_unlock();
2595 up_read(&css_set_rwsem);
2596
2597 /* prepare dst csets and commit */
2598 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2599 if (!ret)
2600 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
2601
2602 cgroup_migrate_finish(&preloaded_csets);
2603 return ret;
2604 }
2605
2606 static int cgroup_procs_write_permission(struct task_struct *task,
2607 struct cgroup *dst_cgrp,
2608 struct kernfs_open_file *of)
2609 {
2610 const struct cred *cred = current_cred();
2611 const struct cred *tcred = get_task_cred(task);
2612 int ret = 0;
2613
2614 /*
2615 * even if we're attaching all tasks in the thread group, we only
2616 * need to check permissions on one of them.
2617 */
2618 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2619 !uid_eq(cred->euid, tcred->uid) &&
2620 !uid_eq(cred->euid, tcred->suid))
2621 ret = -EACCES;
2622
2623 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2624 struct super_block *sb = of->file->f_path.dentry->d_sb;
2625 struct cgroup *cgrp;
2626 struct inode *inode;
2627
2628 down_read(&css_set_rwsem);
2629 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2630 up_read(&css_set_rwsem);
2631
2632 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2633 cgrp = cgroup_parent(cgrp);
2634
2635 ret = -ENOMEM;
2636 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2637 if (inode) {
2638 ret = inode_permission(inode, MAY_WRITE);
2639 iput(inode);
2640 }
2641 }
2642
2643 put_cred(tcred);
2644 return ret;
2645 }
2646
2647 /*
2648 * Find the task_struct of the task to attach by vpid and pass it along to the
2649 * function to attach either it or all tasks in its threadgroup. Will lock
2650 * cgroup_mutex and threadgroup.
2651 */
2652 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2653 size_t nbytes, loff_t off, bool threadgroup)
2654 {
2655 struct task_struct *tsk;
2656 struct cgroup *cgrp;
2657 pid_t pid;
2658 int ret;
2659
2660 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2661 return -EINVAL;
2662
2663 cgrp = cgroup_kn_lock_live(of->kn);
2664 if (!cgrp)
2665 return -ENODEV;
2666
2667 percpu_down_write(&cgroup_threadgroup_rwsem);
2668 rcu_read_lock();
2669 if (pid) {
2670 tsk = find_task_by_vpid(pid);
2671 if (!tsk) {
2672 ret = -ESRCH;
2673 goto out_unlock_rcu;
2674 }
2675 } else {
2676 tsk = current;
2677 }
2678
2679 if (threadgroup)
2680 tsk = tsk->group_leader;
2681
2682 /*
2683 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2684 * trapped in a cpuset, or RT worker may be born in a cgroup
2685 * with no rt_runtime allocated. Just say no.
2686 */
2687 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2688 ret = -EINVAL;
2689 goto out_unlock_rcu;
2690 }
2691
2692 get_task_struct(tsk);
2693 rcu_read_unlock();
2694
2695 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2696 if (!ret)
2697 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2698
2699 put_task_struct(tsk);
2700 goto out_unlock_threadgroup;
2701
2702 out_unlock_rcu:
2703 rcu_read_unlock();
2704 out_unlock_threadgroup:
2705 percpu_up_write(&cgroup_threadgroup_rwsem);
2706 cgroup_kn_unlock(of->kn);
2707 return ret ?: nbytes;
2708 }
2709
2710 /**
2711 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2712 * @from: attach to all cgroups of a given task
2713 * @tsk: the task to be attached
2714 */
2715 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2716 {
2717 struct cgroup_root *root;
2718 int retval = 0;
2719
2720 mutex_lock(&cgroup_mutex);
2721 for_each_root(root) {
2722 struct cgroup *from_cgrp;
2723
2724 if (root == &cgrp_dfl_root)
2725 continue;
2726
2727 down_read(&css_set_rwsem);
2728 from_cgrp = task_cgroup_from_root(from, root);
2729 up_read(&css_set_rwsem);
2730
2731 retval = cgroup_attach_task(from_cgrp, tsk, false);
2732 if (retval)
2733 break;
2734 }
2735 mutex_unlock(&cgroup_mutex);
2736
2737 return retval;
2738 }
2739 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2740
2741 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2742 char *buf, size_t nbytes, loff_t off)
2743 {
2744 return __cgroup_procs_write(of, buf, nbytes, off, false);
2745 }
2746
2747 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2748 char *buf, size_t nbytes, loff_t off)
2749 {
2750 return __cgroup_procs_write(of, buf, nbytes, off, true);
2751 }
2752
2753 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2754 char *buf, size_t nbytes, loff_t off)
2755 {
2756 struct cgroup *cgrp;
2757
2758 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2759
2760 cgrp = cgroup_kn_lock_live(of->kn);
2761 if (!cgrp)
2762 return -ENODEV;
2763 spin_lock(&release_agent_path_lock);
2764 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2765 sizeof(cgrp->root->release_agent_path));
2766 spin_unlock(&release_agent_path_lock);
2767 cgroup_kn_unlock(of->kn);
2768 return nbytes;
2769 }
2770
2771 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2772 {
2773 struct cgroup *cgrp = seq_css(seq)->cgroup;
2774
2775 spin_lock(&release_agent_path_lock);
2776 seq_puts(seq, cgrp->root->release_agent_path);
2777 spin_unlock(&release_agent_path_lock);
2778 seq_putc(seq, '\n');
2779 return 0;
2780 }
2781
2782 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2783 {
2784 seq_puts(seq, "0\n");
2785 return 0;
2786 }
2787
2788 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2789 {
2790 struct cgroup_subsys *ss;
2791 bool printed = false;
2792 int ssid;
2793
2794 for_each_subsys_which(ss, ssid, &ss_mask) {
2795 if (printed)
2796 seq_putc(seq, ' ');
2797 seq_printf(seq, "%s", ss->name);
2798 printed = true;
2799 }
2800 if (printed)
2801 seq_putc(seq, '\n');
2802 }
2803
2804 /* show controllers which are currently attached to the default hierarchy */
2805 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2806 {
2807 struct cgroup *cgrp = seq_css(seq)->cgroup;
2808
2809 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2810 ~cgrp_dfl_root_inhibit_ss_mask);
2811 return 0;
2812 }
2813
2814 /* show controllers which are enabled from the parent */
2815 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2816 {
2817 struct cgroup *cgrp = seq_css(seq)->cgroup;
2818
2819 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2820 return 0;
2821 }
2822
2823 /* show controllers which are enabled for a given cgroup's children */
2824 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2825 {
2826 struct cgroup *cgrp = seq_css(seq)->cgroup;
2827
2828 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2829 return 0;
2830 }
2831
2832 /**
2833 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2834 * @cgrp: root of the subtree to update csses for
2835 *
2836 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2837 * css associations need to be updated accordingly. This function looks up
2838 * all css_sets which are attached to the subtree, creates the matching
2839 * updated css_sets and migrates the tasks to the new ones.
2840 */
2841 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2842 {
2843 LIST_HEAD(preloaded_csets);
2844 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2845 struct cgroup_subsys_state *css;
2846 struct css_set *src_cset;
2847 int ret;
2848
2849 lockdep_assert_held(&cgroup_mutex);
2850
2851 percpu_down_write(&cgroup_threadgroup_rwsem);
2852
2853 /* look up all csses currently attached to @cgrp's subtree */
2854 down_read(&css_set_rwsem);
2855 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2856 struct cgrp_cset_link *link;
2857
2858 /* self is not affected by child_subsys_mask change */
2859 if (css->cgroup == cgrp)
2860 continue;
2861
2862 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2863 cgroup_migrate_add_src(link->cset, cgrp,
2864 &preloaded_csets);
2865 }
2866 up_read(&css_set_rwsem);
2867
2868 /* NULL dst indicates self on default hierarchy */
2869 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2870 if (ret)
2871 goto out_finish;
2872
2873 down_write(&css_set_rwsem);
2874 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2875 struct task_struct *task, *ntask;
2876
2877 /* src_csets precede dst_csets, break on the first dst_cset */
2878 if (!src_cset->mg_src_cgrp)
2879 break;
2880
2881 /* all tasks in src_csets need to be migrated */
2882 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2883 cgroup_taskset_add(task, &tset);
2884 }
2885 up_write(&css_set_rwsem);
2886
2887 ret = cgroup_taskset_migrate(&tset, cgrp);
2888 out_finish:
2889 cgroup_migrate_finish(&preloaded_csets);
2890 percpu_up_write(&cgroup_threadgroup_rwsem);
2891 return ret;
2892 }
2893
2894 /* change the enabled child controllers for a cgroup in the default hierarchy */
2895 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2896 char *buf, size_t nbytes,
2897 loff_t off)
2898 {
2899 unsigned long enable = 0, disable = 0;
2900 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2901 struct cgroup *cgrp, *child;
2902 struct cgroup_subsys *ss;
2903 char *tok;
2904 int ssid, ret;
2905
2906 /*
2907 * Parse input - space separated list of subsystem names prefixed
2908 * with either + or -.
2909 */
2910 buf = strstrip(buf);
2911 while ((tok = strsep(&buf, " "))) {
2912 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2913
2914 if (tok[0] == '\0')
2915 continue;
2916 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2917 if (!cgroup_ssid_enabled(ssid) ||
2918 strcmp(tok + 1, ss->name))
2919 continue;
2920
2921 if (*tok == '+') {
2922 enable |= 1 << ssid;
2923 disable &= ~(1 << ssid);
2924 } else if (*tok == '-') {
2925 disable |= 1 << ssid;
2926 enable &= ~(1 << ssid);
2927 } else {
2928 return -EINVAL;
2929 }
2930 break;
2931 }
2932 if (ssid == CGROUP_SUBSYS_COUNT)
2933 return -EINVAL;
2934 }
2935
2936 cgrp = cgroup_kn_lock_live(of->kn);
2937 if (!cgrp)
2938 return -ENODEV;
2939
2940 for_each_subsys(ss, ssid) {
2941 if (enable & (1 << ssid)) {
2942 if (cgrp->subtree_control & (1 << ssid)) {
2943 enable &= ~(1 << ssid);
2944 continue;
2945 }
2946
2947 /* unavailable or not enabled on the parent? */
2948 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2949 (cgroup_parent(cgrp) &&
2950 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2951 ret = -ENOENT;
2952 goto out_unlock;
2953 }
2954 } else if (disable & (1 << ssid)) {
2955 if (!(cgrp->subtree_control & (1 << ssid))) {
2956 disable &= ~(1 << ssid);
2957 continue;
2958 }
2959
2960 /* a child has it enabled? */
2961 cgroup_for_each_live_child(child, cgrp) {
2962 if (child->subtree_control & (1 << ssid)) {
2963 ret = -EBUSY;
2964 goto out_unlock;
2965 }
2966 }
2967 }
2968 }
2969
2970 if (!enable && !disable) {
2971 ret = 0;
2972 goto out_unlock;
2973 }
2974
2975 /*
2976 * Except for the root, subtree_control must be zero for a cgroup
2977 * with tasks so that child cgroups don't compete against tasks.
2978 */
2979 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2980 ret = -EBUSY;
2981 goto out_unlock;
2982 }
2983
2984 /*
2985 * Update subsys masks and calculate what needs to be done. More
2986 * subsystems than specified may need to be enabled or disabled
2987 * depending on subsystem dependencies.
2988 */
2989 old_sc = cgrp->subtree_control;
2990 old_ss = cgrp->child_subsys_mask;
2991 new_sc = (old_sc | enable) & ~disable;
2992 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
2993
2994 css_enable = ~old_ss & new_ss;
2995 css_disable = old_ss & ~new_ss;
2996 enable |= css_enable;
2997 disable |= css_disable;
2998
2999 /*
3000 * Because css offlining is asynchronous, userland might try to
3001 * re-enable the same controller while the previous instance is
3002 * still around. In such cases, wait till it's gone using
3003 * offline_waitq.
3004 */
3005 for_each_subsys_which(ss, ssid, &css_enable) {
3006 cgroup_for_each_live_child(child, cgrp) {
3007 DEFINE_WAIT(wait);
3008
3009 if (!cgroup_css(child, ss))
3010 continue;
3011
3012 cgroup_get(child);
3013 prepare_to_wait(&child->offline_waitq, &wait,
3014 TASK_UNINTERRUPTIBLE);
3015 cgroup_kn_unlock(of->kn);
3016 schedule();
3017 finish_wait(&child->offline_waitq, &wait);
3018 cgroup_put(child);
3019
3020 return restart_syscall();
3021 }
3022 }
3023
3024 cgrp->subtree_control = new_sc;
3025 cgrp->child_subsys_mask = new_ss;
3026
3027 /*
3028 * Create new csses or make the existing ones visible. A css is
3029 * created invisible if it's being implicitly enabled through
3030 * dependency. An invisible css is made visible when the userland
3031 * explicitly enables it.
3032 */
3033 for_each_subsys(ss, ssid) {
3034 if (!(enable & (1 << ssid)))
3035 continue;
3036
3037 cgroup_for_each_live_child(child, cgrp) {
3038 if (css_enable & (1 << ssid))
3039 ret = create_css(child, ss,
3040 cgrp->subtree_control & (1 << ssid));
3041 else
3042 ret = css_populate_dir(cgroup_css(child, ss),
3043 NULL);
3044 if (ret)
3045 goto err_undo_css;
3046 }
3047 }
3048
3049 /*
3050 * At this point, cgroup_e_css() results reflect the new csses
3051 * making the following cgroup_update_dfl_csses() properly update
3052 * css associations of all tasks in the subtree.
3053 */
3054 ret = cgroup_update_dfl_csses(cgrp);
3055 if (ret)
3056 goto err_undo_css;
3057
3058 /*
3059 * All tasks are migrated out of disabled csses. Kill or hide
3060 * them. A css is hidden when the userland requests it to be
3061 * disabled while other subsystems are still depending on it. The
3062 * css must not actively control resources and be in the vanilla
3063 * state if it's made visible again later. Controllers which may
3064 * be depended upon should provide ->css_reset() for this purpose.
3065 */
3066 for_each_subsys(ss, ssid) {
3067 if (!(disable & (1 << ssid)))
3068 continue;
3069
3070 cgroup_for_each_live_child(child, cgrp) {
3071 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3072
3073 if (css_disable & (1 << ssid)) {
3074 kill_css(css);
3075 } else {
3076 css_clear_dir(css, NULL);
3077 if (ss->css_reset)
3078 ss->css_reset(css);
3079 }
3080 }
3081 }
3082
3083 /*
3084 * The effective csses of all the descendants (excluding @cgrp) may
3085 * have changed. Subsystems can optionally subscribe to this event
3086 * by implementing ->css_e_css_changed() which is invoked if any of
3087 * the effective csses seen from the css's cgroup may have changed.
3088 */
3089 for_each_subsys(ss, ssid) {
3090 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3091 struct cgroup_subsys_state *css;
3092
3093 if (!ss->css_e_css_changed || !this_css)
3094 continue;
3095
3096 css_for_each_descendant_pre(css, this_css)
3097 if (css != this_css)
3098 ss->css_e_css_changed(css);
3099 }
3100
3101 kernfs_activate(cgrp->kn);
3102 ret = 0;
3103 out_unlock:
3104 cgroup_kn_unlock(of->kn);
3105 return ret ?: nbytes;
3106
3107 err_undo_css:
3108 cgrp->subtree_control = old_sc;
3109 cgrp->child_subsys_mask = old_ss;
3110
3111 for_each_subsys(ss, ssid) {
3112 if (!(enable & (1 << ssid)))
3113 continue;
3114
3115 cgroup_for_each_live_child(child, cgrp) {
3116 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3117
3118 if (!css)
3119 continue;
3120
3121 if (css_enable & (1 << ssid))
3122 kill_css(css);
3123 else
3124 css_clear_dir(css, NULL);
3125 }
3126 }
3127 goto out_unlock;
3128 }
3129
3130 static int cgroup_events_show(struct seq_file *seq, void *v)
3131 {
3132 seq_printf(seq, "populated %d\n",
3133 cgroup_is_populated(seq_css(seq)->cgroup));
3134 return 0;
3135 }
3136
3137 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3138 size_t nbytes, loff_t off)
3139 {
3140 struct cgroup *cgrp = of->kn->parent->priv;
3141 struct cftype *cft = of->kn->priv;
3142 struct cgroup_subsys_state *css;
3143 int ret;
3144
3145 if (cft->write)
3146 return cft->write(of, buf, nbytes, off);
3147
3148 /*
3149 * kernfs guarantees that a file isn't deleted with operations in
3150 * flight, which means that the matching css is and stays alive and
3151 * doesn't need to be pinned. The RCU locking is not necessary
3152 * either. It's just for the convenience of using cgroup_css().
3153 */
3154 rcu_read_lock();
3155 css = cgroup_css(cgrp, cft->ss);
3156 rcu_read_unlock();
3157
3158 if (cft->write_u64) {
3159 unsigned long long v;
3160 ret = kstrtoull(buf, 0, &v);
3161 if (!ret)
3162 ret = cft->write_u64(css, cft, v);
3163 } else if (cft->write_s64) {
3164 long long v;
3165 ret = kstrtoll(buf, 0, &v);
3166 if (!ret)
3167 ret = cft->write_s64(css, cft, v);
3168 } else {
3169 ret = -EINVAL;
3170 }
3171
3172 return ret ?: nbytes;
3173 }
3174
3175 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3176 {
3177 return seq_cft(seq)->seq_start(seq, ppos);
3178 }
3179
3180 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3181 {
3182 return seq_cft(seq)->seq_next(seq, v, ppos);
3183 }
3184
3185 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3186 {
3187 seq_cft(seq)->seq_stop(seq, v);
3188 }
3189
3190 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3191 {
3192 struct cftype *cft = seq_cft(m);
3193 struct cgroup_subsys_state *css = seq_css(m);
3194
3195 if (cft->seq_show)
3196 return cft->seq_show(m, arg);
3197
3198 if (cft->read_u64)
3199 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3200 else if (cft->read_s64)
3201 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3202 else
3203 return -EINVAL;
3204 return 0;
3205 }
3206
3207 static struct kernfs_ops cgroup_kf_single_ops = {
3208 .atomic_write_len = PAGE_SIZE,
3209 .write = cgroup_file_write,
3210 .seq_show = cgroup_seqfile_show,
3211 };
3212
3213 static struct kernfs_ops cgroup_kf_ops = {
3214 .atomic_write_len = PAGE_SIZE,
3215 .write = cgroup_file_write,
3216 .seq_start = cgroup_seqfile_start,
3217 .seq_next = cgroup_seqfile_next,
3218 .seq_stop = cgroup_seqfile_stop,
3219 .seq_show = cgroup_seqfile_show,
3220 };
3221
3222 /*
3223 * cgroup_rename - Only allow simple rename of directories in place.
3224 */
3225 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3226 const char *new_name_str)
3227 {
3228 struct cgroup *cgrp = kn->priv;
3229 int ret;
3230
3231 if (kernfs_type(kn) != KERNFS_DIR)
3232 return -ENOTDIR;
3233 if (kn->parent != new_parent)
3234 return -EIO;
3235
3236 /*
3237 * This isn't a proper migration and its usefulness is very
3238 * limited. Disallow on the default hierarchy.
3239 */
3240 if (cgroup_on_dfl(cgrp))
3241 return -EPERM;
3242
3243 /*
3244 * We're gonna grab cgroup_mutex which nests outside kernfs
3245 * active_ref. kernfs_rename() doesn't require active_ref
3246 * protection. Break them before grabbing cgroup_mutex.
3247 */
3248 kernfs_break_active_protection(new_parent);
3249 kernfs_break_active_protection(kn);
3250
3251 mutex_lock(&cgroup_mutex);
3252
3253 ret = kernfs_rename(kn, new_parent, new_name_str);
3254
3255 mutex_unlock(&cgroup_mutex);
3256
3257 kernfs_unbreak_active_protection(kn);
3258 kernfs_unbreak_active_protection(new_parent);
3259 return ret;
3260 }
3261
3262 /* set uid and gid of cgroup dirs and files to that of the creator */
3263 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3264 {
3265 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3266 .ia_uid = current_fsuid(),
3267 .ia_gid = current_fsgid(), };
3268
3269 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3270 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3271 return 0;
3272
3273 return kernfs_setattr(kn, &iattr);
3274 }
3275
3276 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3277 struct cftype *cft)
3278 {
3279 char name[CGROUP_FILE_NAME_MAX];
3280 struct kernfs_node *kn;
3281 struct lock_class_key *key = NULL;
3282 int ret;
3283
3284 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3285 key = &cft->lockdep_key;
3286 #endif
3287 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3288 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3289 NULL, key);
3290 if (IS_ERR(kn))
3291 return PTR_ERR(kn);
3292
3293 ret = cgroup_kn_set_ugid(kn);
3294 if (ret) {
3295 kernfs_remove(kn);
3296 return ret;
3297 }
3298
3299 if (cft->file_offset) {
3300 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3301
3302 kernfs_get(kn);
3303 cfile->kn = kn;
3304 list_add(&cfile->node, &css->files);
3305 }
3306
3307 return 0;
3308 }
3309
3310 /**
3311 * cgroup_addrm_files - add or remove files to a cgroup directory
3312 * @css: the target css
3313 * @cgrp: the target cgroup (usually css->cgroup)
3314 * @cfts: array of cftypes to be added
3315 * @is_add: whether to add or remove
3316 *
3317 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3318 * For removals, this function never fails.
3319 */
3320 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3321 struct cgroup *cgrp, struct cftype cfts[],
3322 bool is_add)
3323 {
3324 struct cftype *cft, *cft_end = NULL;
3325 int ret;
3326
3327 lockdep_assert_held(&cgroup_mutex);
3328
3329 restart:
3330 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3331 /* does cft->flags tell us to skip this file on @cgrp? */
3332 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3333 continue;
3334 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3335 continue;
3336 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3337 continue;
3338 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3339 continue;
3340
3341 if (is_add) {
3342 ret = cgroup_add_file(css, cgrp, cft);
3343 if (ret) {
3344 pr_warn("%s: failed to add %s, err=%d\n",
3345 __func__, cft->name, ret);
3346 cft_end = cft;
3347 is_add = false;
3348 goto restart;
3349 }
3350 } else {
3351 cgroup_rm_file(cgrp, cft);
3352 }
3353 }
3354 return 0;
3355 }
3356
3357 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3358 {
3359 LIST_HEAD(pending);
3360 struct cgroup_subsys *ss = cfts[0].ss;
3361 struct cgroup *root = &ss->root->cgrp;
3362 struct cgroup_subsys_state *css;
3363 int ret = 0;
3364
3365 lockdep_assert_held(&cgroup_mutex);
3366
3367 /* add/rm files for all cgroups created before */
3368 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3369 struct cgroup *cgrp = css->cgroup;
3370
3371 if (cgroup_is_dead(cgrp))
3372 continue;
3373
3374 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3375 if (ret)
3376 break;
3377 }
3378
3379 if (is_add && !ret)
3380 kernfs_activate(root->kn);
3381 return ret;
3382 }
3383
3384 static void cgroup_exit_cftypes(struct cftype *cfts)
3385 {
3386 struct cftype *cft;
3387
3388 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3389 /* free copy for custom atomic_write_len, see init_cftypes() */
3390 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3391 kfree(cft->kf_ops);
3392 cft->kf_ops = NULL;
3393 cft->ss = NULL;
3394
3395 /* revert flags set by cgroup core while adding @cfts */
3396 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3397 }
3398 }
3399
3400 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3401 {
3402 struct cftype *cft;
3403
3404 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3405 struct kernfs_ops *kf_ops;
3406
3407 WARN_ON(cft->ss || cft->kf_ops);
3408
3409 if (cft->seq_start)
3410 kf_ops = &cgroup_kf_ops;
3411 else
3412 kf_ops = &cgroup_kf_single_ops;
3413
3414 /*
3415 * Ugh... if @cft wants a custom max_write_len, we need to
3416 * make a copy of kf_ops to set its atomic_write_len.
3417 */
3418 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3419 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3420 if (!kf_ops) {
3421 cgroup_exit_cftypes(cfts);
3422 return -ENOMEM;
3423 }
3424 kf_ops->atomic_write_len = cft->max_write_len;
3425 }
3426
3427 cft->kf_ops = kf_ops;
3428 cft->ss = ss;
3429 }
3430
3431 return 0;
3432 }
3433
3434 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3435 {
3436 lockdep_assert_held(&cgroup_mutex);
3437
3438 if (!cfts || !cfts[0].ss)
3439 return -ENOENT;
3440
3441 list_del(&cfts->node);
3442 cgroup_apply_cftypes(cfts, false);
3443 cgroup_exit_cftypes(cfts);
3444 return 0;
3445 }
3446
3447 /**
3448 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3449 * @cfts: zero-length name terminated array of cftypes
3450 *
3451 * Unregister @cfts. Files described by @cfts are removed from all
3452 * existing cgroups and all future cgroups won't have them either. This
3453 * function can be called anytime whether @cfts' subsys is attached or not.
3454 *
3455 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3456 * registered.
3457 */
3458 int cgroup_rm_cftypes(struct cftype *cfts)
3459 {
3460 int ret;
3461
3462 mutex_lock(&cgroup_mutex);
3463 ret = cgroup_rm_cftypes_locked(cfts);
3464 mutex_unlock(&cgroup_mutex);
3465 return ret;
3466 }
3467
3468 /**
3469 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3470 * @ss: target cgroup subsystem
3471 * @cfts: zero-length name terminated array of cftypes
3472 *
3473 * Register @cfts to @ss. Files described by @cfts are created for all
3474 * existing cgroups to which @ss is attached and all future cgroups will
3475 * have them too. This function can be called anytime whether @ss is
3476 * attached or not.
3477 *
3478 * Returns 0 on successful registration, -errno on failure. Note that this
3479 * function currently returns 0 as long as @cfts registration is successful
3480 * even if some file creation attempts on existing cgroups fail.
3481 */
3482 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3483 {
3484 int ret;
3485
3486 if (!cgroup_ssid_enabled(ss->id))
3487 return 0;
3488
3489 if (!cfts || cfts[0].name[0] == '\0')
3490 return 0;
3491
3492 ret = cgroup_init_cftypes(ss, cfts);
3493 if (ret)
3494 return ret;
3495
3496 mutex_lock(&cgroup_mutex);
3497
3498 list_add_tail(&cfts->node, &ss->cfts);
3499 ret = cgroup_apply_cftypes(cfts, true);
3500 if (ret)
3501 cgroup_rm_cftypes_locked(cfts);
3502
3503 mutex_unlock(&cgroup_mutex);
3504 return ret;
3505 }
3506
3507 /**
3508 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3509 * @ss: target cgroup subsystem
3510 * @cfts: zero-length name terminated array of cftypes
3511 *
3512 * Similar to cgroup_add_cftypes() but the added files are only used for
3513 * the default hierarchy.
3514 */
3515 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3516 {
3517 struct cftype *cft;
3518
3519 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3520 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3521 return cgroup_add_cftypes(ss, cfts);
3522 }
3523
3524 /**
3525 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3526 * @ss: target cgroup subsystem
3527 * @cfts: zero-length name terminated array of cftypes
3528 *
3529 * Similar to cgroup_add_cftypes() but the added files are only used for
3530 * the legacy hierarchies.
3531 */
3532 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3533 {
3534 struct cftype *cft;
3535
3536 /*
3537 * If legacy_flies_on_dfl, we want to show the legacy files on the
3538 * dfl hierarchy but iff the target subsystem hasn't been updated
3539 * for the dfl hierarchy yet.
3540 */
3541 if (!cgroup_legacy_files_on_dfl ||
3542 ss->dfl_cftypes != ss->legacy_cftypes) {
3543 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3544 cft->flags |= __CFTYPE_NOT_ON_DFL;
3545 }
3546
3547 return cgroup_add_cftypes(ss, cfts);
3548 }
3549
3550 /**
3551 * cgroup_task_count - count the number of tasks in a cgroup.
3552 * @cgrp: the cgroup in question
3553 *
3554 * Return the number of tasks in the cgroup.
3555 */
3556 static int cgroup_task_count(const struct cgroup *cgrp)
3557 {
3558 int count = 0;
3559 struct cgrp_cset_link *link;
3560
3561 down_read(&css_set_rwsem);
3562 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3563 count += atomic_read(&link->cset->refcount);
3564 up_read(&css_set_rwsem);
3565 return count;
3566 }
3567
3568 /**
3569 * css_next_child - find the next child of a given css
3570 * @pos: the current position (%NULL to initiate traversal)
3571 * @parent: css whose children to walk
3572 *
3573 * This function returns the next child of @parent and should be called
3574 * under either cgroup_mutex or RCU read lock. The only requirement is
3575 * that @parent and @pos are accessible. The next sibling is guaranteed to
3576 * be returned regardless of their states.
3577 *
3578 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3579 * css which finished ->css_online() is guaranteed to be visible in the
3580 * future iterations and will stay visible until the last reference is put.
3581 * A css which hasn't finished ->css_online() or already finished
3582 * ->css_offline() may show up during traversal. It's each subsystem's
3583 * responsibility to synchronize against on/offlining.
3584 */
3585 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3586 struct cgroup_subsys_state *parent)
3587 {
3588 struct cgroup_subsys_state *next;
3589
3590 cgroup_assert_mutex_or_rcu_locked();
3591
3592 /*
3593 * @pos could already have been unlinked from the sibling list.
3594 * Once a cgroup is removed, its ->sibling.next is no longer
3595 * updated when its next sibling changes. CSS_RELEASED is set when
3596 * @pos is taken off list, at which time its next pointer is valid,
3597 * and, as releases are serialized, the one pointed to by the next
3598 * pointer is guaranteed to not have started release yet. This
3599 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3600 * critical section, the one pointed to by its next pointer is
3601 * guaranteed to not have finished its RCU grace period even if we
3602 * have dropped rcu_read_lock() inbetween iterations.
3603 *
3604 * If @pos has CSS_RELEASED set, its next pointer can't be
3605 * dereferenced; however, as each css is given a monotonically
3606 * increasing unique serial number and always appended to the
3607 * sibling list, the next one can be found by walking the parent's
3608 * children until the first css with higher serial number than
3609 * @pos's. While this path can be slower, it happens iff iteration
3610 * races against release and the race window is very small.
3611 */
3612 if (!pos) {
3613 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3614 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3615 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3616 } else {
3617 list_for_each_entry_rcu(next, &parent->children, sibling)
3618 if (next->serial_nr > pos->serial_nr)
3619 break;
3620 }
3621
3622 /*
3623 * @next, if not pointing to the head, can be dereferenced and is
3624 * the next sibling.
3625 */
3626 if (&next->sibling != &parent->children)
3627 return next;
3628 return NULL;
3629 }
3630
3631 /**
3632 * css_next_descendant_pre - find the next descendant for pre-order walk
3633 * @pos: the current position (%NULL to initiate traversal)
3634 * @root: css whose descendants to walk
3635 *
3636 * To be used by css_for_each_descendant_pre(). Find the next descendant
3637 * to visit for pre-order traversal of @root's descendants. @root is
3638 * included in the iteration and the first node to be visited.
3639 *
3640 * While this function requires cgroup_mutex or RCU read locking, it
3641 * doesn't require the whole traversal to be contained in a single critical
3642 * section. This function will return the correct next descendant as long
3643 * as both @pos and @root are accessible and @pos is a descendant of @root.
3644 *
3645 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3646 * css which finished ->css_online() is guaranteed to be visible in the
3647 * future iterations and will stay visible until the last reference is put.
3648 * A css which hasn't finished ->css_online() or already finished
3649 * ->css_offline() may show up during traversal. It's each subsystem's
3650 * responsibility to synchronize against on/offlining.
3651 */
3652 struct cgroup_subsys_state *
3653 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3654 struct cgroup_subsys_state *root)
3655 {
3656 struct cgroup_subsys_state *next;
3657
3658 cgroup_assert_mutex_or_rcu_locked();
3659
3660 /* if first iteration, visit @root */
3661 if (!pos)
3662 return root;
3663
3664 /* visit the first child if exists */
3665 next = css_next_child(NULL, pos);
3666 if (next)
3667 return next;
3668
3669 /* no child, visit my or the closest ancestor's next sibling */
3670 while (pos != root) {
3671 next = css_next_child(pos, pos->parent);
3672 if (next)
3673 return next;
3674 pos = pos->parent;
3675 }
3676
3677 return NULL;
3678 }
3679
3680 /**
3681 * css_rightmost_descendant - return the rightmost descendant of a css
3682 * @pos: css of interest
3683 *
3684 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3685 * is returned. This can be used during pre-order traversal to skip
3686 * subtree of @pos.
3687 *
3688 * While this function requires cgroup_mutex or RCU read locking, it
3689 * doesn't require the whole traversal to be contained in a single critical
3690 * section. This function will return the correct rightmost descendant as
3691 * long as @pos is accessible.
3692 */
3693 struct cgroup_subsys_state *
3694 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3695 {
3696 struct cgroup_subsys_state *last, *tmp;
3697
3698 cgroup_assert_mutex_or_rcu_locked();
3699
3700 do {
3701 last = pos;
3702 /* ->prev isn't RCU safe, walk ->next till the end */
3703 pos = NULL;
3704 css_for_each_child(tmp, last)
3705 pos = tmp;
3706 } while (pos);
3707
3708 return last;
3709 }
3710
3711 static struct cgroup_subsys_state *
3712 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3713 {
3714 struct cgroup_subsys_state *last;
3715
3716 do {
3717 last = pos;
3718 pos = css_next_child(NULL, pos);
3719 } while (pos);
3720
3721 return last;
3722 }
3723
3724 /**
3725 * css_next_descendant_post - find the next descendant for post-order walk
3726 * @pos: the current position (%NULL to initiate traversal)
3727 * @root: css whose descendants to walk
3728 *
3729 * To be used by css_for_each_descendant_post(). Find the next descendant
3730 * to visit for post-order traversal of @root's descendants. @root is
3731 * included in the iteration and the last node to be visited.
3732 *
3733 * While this function requires cgroup_mutex or RCU read locking, it
3734 * doesn't require the whole traversal to be contained in a single critical
3735 * section. This function will return the correct next descendant as long
3736 * as both @pos and @cgroup are accessible and @pos is a descendant of
3737 * @cgroup.
3738 *
3739 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3740 * css which finished ->css_online() is guaranteed to be visible in the
3741 * future iterations and will stay visible until the last reference is put.
3742 * A css which hasn't finished ->css_online() or already finished
3743 * ->css_offline() may show up during traversal. It's each subsystem's
3744 * responsibility to synchronize against on/offlining.
3745 */
3746 struct cgroup_subsys_state *
3747 css_next_descendant_post(struct cgroup_subsys_state *pos,
3748 struct cgroup_subsys_state *root)
3749 {
3750 struct cgroup_subsys_state *next;
3751
3752 cgroup_assert_mutex_or_rcu_locked();
3753
3754 /* if first iteration, visit leftmost descendant which may be @root */
3755 if (!pos)
3756 return css_leftmost_descendant(root);
3757
3758 /* if we visited @root, we're done */
3759 if (pos == root)
3760 return NULL;
3761
3762 /* if there's an unvisited sibling, visit its leftmost descendant */
3763 next = css_next_child(pos, pos->parent);
3764 if (next)
3765 return css_leftmost_descendant(next);
3766
3767 /* no sibling left, visit parent */
3768 return pos->parent;
3769 }
3770
3771 /**
3772 * css_has_online_children - does a css have online children
3773 * @css: the target css
3774 *
3775 * Returns %true if @css has any online children; otherwise, %false. This
3776 * function can be called from any context but the caller is responsible
3777 * for synchronizing against on/offlining as necessary.
3778 */
3779 bool css_has_online_children(struct cgroup_subsys_state *css)
3780 {
3781 struct cgroup_subsys_state *child;
3782 bool ret = false;
3783
3784 rcu_read_lock();
3785 css_for_each_child(child, css) {
3786 if (child->flags & CSS_ONLINE) {
3787 ret = true;
3788 break;
3789 }
3790 }
3791 rcu_read_unlock();
3792 return ret;
3793 }
3794
3795 /**
3796 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3797 * @it: the iterator to advance
3798 *
3799 * Advance @it to the next css_set to walk.
3800 */
3801 static void css_task_iter_advance_css_set(struct css_task_iter *it)
3802 {
3803 struct list_head *l = it->cset_pos;
3804 struct cgrp_cset_link *link;
3805 struct css_set *cset;
3806
3807 /* Advance to the next non-empty css_set */
3808 do {
3809 l = l->next;
3810 if (l == it->cset_head) {
3811 it->cset_pos = NULL;
3812 it->task_pos = NULL;
3813 return;
3814 }
3815
3816 if (it->ss) {
3817 cset = container_of(l, struct css_set,
3818 e_cset_node[it->ss->id]);
3819 } else {
3820 link = list_entry(l, struct cgrp_cset_link, cset_link);
3821 cset = link->cset;
3822 }
3823 } while (!css_set_populated(cset));
3824
3825 it->cset_pos = l;
3826
3827 if (!list_empty(&cset->tasks))
3828 it->task_pos = cset->tasks.next;
3829 else
3830 it->task_pos = cset->mg_tasks.next;
3831
3832 it->tasks_head = &cset->tasks;
3833 it->mg_tasks_head = &cset->mg_tasks;
3834 }
3835
3836 static void css_task_iter_advance(struct css_task_iter *it)
3837 {
3838 struct list_head *l = it->task_pos;
3839
3840 WARN_ON_ONCE(!l);
3841
3842 /*
3843 * Advance iterator to find next entry. cset->tasks is consumed
3844 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3845 * next cset.
3846 */
3847 l = l->next;
3848
3849 if (l == it->tasks_head)
3850 l = it->mg_tasks_head->next;
3851
3852 if (l == it->mg_tasks_head)
3853 css_task_iter_advance_css_set(it);
3854 else
3855 it->task_pos = l;
3856 }
3857
3858 /**
3859 * css_task_iter_start - initiate task iteration
3860 * @css: the css to walk tasks of
3861 * @it: the task iterator to use
3862 *
3863 * Initiate iteration through the tasks of @css. The caller can call
3864 * css_task_iter_next() to walk through the tasks until the function
3865 * returns NULL. On completion of iteration, css_task_iter_end() must be
3866 * called.
3867 *
3868 * Note that this function acquires a lock which is released when the
3869 * iteration finishes. The caller can't sleep while iteration is in
3870 * progress.
3871 */
3872 void css_task_iter_start(struct cgroup_subsys_state *css,
3873 struct css_task_iter *it)
3874 __acquires(css_set_rwsem)
3875 {
3876 /* no one should try to iterate before mounting cgroups */
3877 WARN_ON_ONCE(!use_task_css_set_links);
3878
3879 down_read(&css_set_rwsem);
3880
3881 it->ss = css->ss;
3882
3883 if (it->ss)
3884 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3885 else
3886 it->cset_pos = &css->cgroup->cset_links;
3887
3888 it->cset_head = it->cset_pos;
3889
3890 css_task_iter_advance_css_set(it);
3891 }
3892
3893 /**
3894 * css_task_iter_next - return the next task for the iterator
3895 * @it: the task iterator being iterated
3896 *
3897 * The "next" function for task iteration. @it should have been
3898 * initialized via css_task_iter_start(). Returns NULL when the iteration
3899 * reaches the end.
3900 */
3901 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3902 {
3903 struct task_struct *res;
3904
3905 if (!it->cset_pos)
3906 return NULL;
3907
3908 res = list_entry(it->task_pos, struct task_struct, cg_list);
3909 css_task_iter_advance(it);
3910 return res;
3911 }
3912
3913 /**
3914 * css_task_iter_end - finish task iteration
3915 * @it: the task iterator to finish
3916 *
3917 * Finish task iteration started by css_task_iter_start().
3918 */
3919 void css_task_iter_end(struct css_task_iter *it)
3920 __releases(css_set_rwsem)
3921 {
3922 up_read(&css_set_rwsem);
3923 }
3924
3925 /**
3926 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3927 * @to: cgroup to which the tasks will be moved
3928 * @from: cgroup in which the tasks currently reside
3929 *
3930 * Locking rules between cgroup_post_fork() and the migration path
3931 * guarantee that, if a task is forking while being migrated, the new child
3932 * is guaranteed to be either visible in the source cgroup after the
3933 * parent's migration is complete or put into the target cgroup. No task
3934 * can slip out of migration through forking.
3935 */
3936 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3937 {
3938 LIST_HEAD(preloaded_csets);
3939 struct cgrp_cset_link *link;
3940 struct css_task_iter it;
3941 struct task_struct *task;
3942 int ret;
3943
3944 mutex_lock(&cgroup_mutex);
3945
3946 /* all tasks in @from are being moved, all csets are source */
3947 down_read(&css_set_rwsem);
3948 list_for_each_entry(link, &from->cset_links, cset_link)
3949 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3950 up_read(&css_set_rwsem);
3951
3952 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3953 if (ret)
3954 goto out_err;
3955
3956 /*
3957 * Migrate tasks one-by-one until @form is empty. This fails iff
3958 * ->can_attach() fails.
3959 */
3960 do {
3961 css_task_iter_start(&from->self, &it);
3962 task = css_task_iter_next(&it);
3963 if (task)
3964 get_task_struct(task);
3965 css_task_iter_end(&it);
3966
3967 if (task) {
3968 ret = cgroup_migrate(task, false, to);
3969 put_task_struct(task);
3970 }
3971 } while (task && !ret);
3972 out_err:
3973 cgroup_migrate_finish(&preloaded_csets);
3974 mutex_unlock(&cgroup_mutex);
3975 return ret;
3976 }
3977
3978 /*
3979 * Stuff for reading the 'tasks'/'procs' files.
3980 *
3981 * Reading this file can return large amounts of data if a cgroup has
3982 * *lots* of attached tasks. So it may need several calls to read(),
3983 * but we cannot guarantee that the information we produce is correct
3984 * unless we produce it entirely atomically.
3985 *
3986 */
3987
3988 /* which pidlist file are we talking about? */
3989 enum cgroup_filetype {
3990 CGROUP_FILE_PROCS,
3991 CGROUP_FILE_TASKS,
3992 };
3993
3994 /*
3995 * A pidlist is a list of pids that virtually represents the contents of one
3996 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3997 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3998 * to the cgroup.
3999 */
4000 struct cgroup_pidlist {
4001 /*
4002 * used to find which pidlist is wanted. doesn't change as long as
4003 * this particular list stays in the list.
4004 */
4005 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4006 /* array of xids */
4007 pid_t *list;
4008 /* how many elements the above list has */
4009 int length;
4010 /* each of these stored in a list by its cgroup */
4011 struct list_head links;
4012 /* pointer to the cgroup we belong to, for list removal purposes */
4013 struct cgroup *owner;
4014 /* for delayed destruction */
4015 struct delayed_work destroy_dwork;
4016 };
4017
4018 /*
4019 * The following two functions "fix" the issue where there are more pids
4020 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4021 * TODO: replace with a kernel-wide solution to this problem
4022 */
4023 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4024 static void *pidlist_allocate(int count)
4025 {
4026 if (PIDLIST_TOO_LARGE(count))
4027 return vmalloc(count * sizeof(pid_t));
4028 else
4029 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4030 }
4031
4032 static void pidlist_free(void *p)
4033 {
4034 kvfree(p);
4035 }
4036
4037 /*
4038 * Used to destroy all pidlists lingering waiting for destroy timer. None
4039 * should be left afterwards.
4040 */
4041 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4042 {
4043 struct cgroup_pidlist *l, *tmp_l;
4044
4045 mutex_lock(&cgrp->pidlist_mutex);
4046 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4047 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4048 mutex_unlock(&cgrp->pidlist_mutex);
4049
4050 flush_workqueue(cgroup_pidlist_destroy_wq);
4051 BUG_ON(!list_empty(&cgrp->pidlists));
4052 }
4053
4054 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4055 {
4056 struct delayed_work *dwork = to_delayed_work(work);
4057 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4058 destroy_dwork);
4059 struct cgroup_pidlist *tofree = NULL;
4060
4061 mutex_lock(&l->owner->pidlist_mutex);
4062
4063 /*
4064 * Destroy iff we didn't get queued again. The state won't change
4065 * as destroy_dwork can only be queued while locked.
4066 */
4067 if (!delayed_work_pending(dwork)) {
4068 list_del(&l->links);
4069 pidlist_free(l->list);
4070 put_pid_ns(l->key.ns);
4071 tofree = l;
4072 }
4073
4074 mutex_unlock(&l->owner->pidlist_mutex);
4075 kfree(tofree);
4076 }
4077
4078 /*
4079 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4080 * Returns the number of unique elements.
4081 */
4082 static int pidlist_uniq(pid_t *list, int length)
4083 {
4084 int src, dest = 1;
4085
4086 /*
4087 * we presume the 0th element is unique, so i starts at 1. trivial
4088 * edge cases first; no work needs to be done for either
4089 */
4090 if (length == 0 || length == 1)
4091 return length;
4092 /* src and dest walk down the list; dest counts unique elements */
4093 for (src = 1; src < length; src++) {
4094 /* find next unique element */
4095 while (list[src] == list[src-1]) {
4096 src++;
4097 if (src == length)
4098 goto after;
4099 }
4100 /* dest always points to where the next unique element goes */
4101 list[dest] = list[src];
4102 dest++;
4103 }
4104 after:
4105 return dest;
4106 }
4107
4108 /*
4109 * The two pid files - task and cgroup.procs - guaranteed that the result
4110 * is sorted, which forced this whole pidlist fiasco. As pid order is
4111 * different per namespace, each namespace needs differently sorted list,
4112 * making it impossible to use, for example, single rbtree of member tasks
4113 * sorted by task pointer. As pidlists can be fairly large, allocating one
4114 * per open file is dangerous, so cgroup had to implement shared pool of
4115 * pidlists keyed by cgroup and namespace.
4116 *
4117 * All this extra complexity was caused by the original implementation
4118 * committing to an entirely unnecessary property. In the long term, we
4119 * want to do away with it. Explicitly scramble sort order if on the
4120 * default hierarchy so that no such expectation exists in the new
4121 * interface.
4122 *
4123 * Scrambling is done by swapping every two consecutive bits, which is
4124 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4125 */
4126 static pid_t pid_fry(pid_t pid)
4127 {
4128 unsigned a = pid & 0x55555555;
4129 unsigned b = pid & 0xAAAAAAAA;
4130
4131 return (a << 1) | (b >> 1);
4132 }
4133
4134 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4135 {
4136 if (cgroup_on_dfl(cgrp))
4137 return pid_fry(pid);
4138 else
4139 return pid;
4140 }
4141
4142 static int cmppid(const void *a, const void *b)
4143 {
4144 return *(pid_t *)a - *(pid_t *)b;
4145 }
4146
4147 static int fried_cmppid(const void *a, const void *b)
4148 {
4149 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4150 }
4151
4152 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4153 enum cgroup_filetype type)
4154 {
4155 struct cgroup_pidlist *l;
4156 /* don't need task_nsproxy() if we're looking at ourself */
4157 struct pid_namespace *ns = task_active_pid_ns(current);
4158
4159 lockdep_assert_held(&cgrp->pidlist_mutex);
4160
4161 list_for_each_entry(l, &cgrp->pidlists, links)
4162 if (l->key.type == type && l->key.ns == ns)
4163 return l;
4164 return NULL;
4165 }
4166
4167 /*
4168 * find the appropriate pidlist for our purpose (given procs vs tasks)
4169 * returns with the lock on that pidlist already held, and takes care
4170 * of the use count, or returns NULL with no locks held if we're out of
4171 * memory.
4172 */
4173 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4174 enum cgroup_filetype type)
4175 {
4176 struct cgroup_pidlist *l;
4177
4178 lockdep_assert_held(&cgrp->pidlist_mutex);
4179
4180 l = cgroup_pidlist_find(cgrp, type);
4181 if (l)
4182 return l;
4183
4184 /* entry not found; create a new one */
4185 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4186 if (!l)
4187 return l;
4188
4189 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4190 l->key.type = type;
4191 /* don't need task_nsproxy() if we're looking at ourself */
4192 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4193 l->owner = cgrp;
4194 list_add(&l->links, &cgrp->pidlists);
4195 return l;
4196 }
4197
4198 /*
4199 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4200 */
4201 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4202 struct cgroup_pidlist **lp)
4203 {
4204 pid_t *array;
4205 int length;
4206 int pid, n = 0; /* used for populating the array */
4207 struct css_task_iter it;
4208 struct task_struct *tsk;
4209 struct cgroup_pidlist *l;
4210
4211 lockdep_assert_held(&cgrp->pidlist_mutex);
4212
4213 /*
4214 * If cgroup gets more users after we read count, we won't have
4215 * enough space - tough. This race is indistinguishable to the
4216 * caller from the case that the additional cgroup users didn't
4217 * show up until sometime later on.
4218 */
4219 length = cgroup_task_count(cgrp);
4220 array = pidlist_allocate(length);
4221 if (!array)
4222 return -ENOMEM;
4223 /* now, populate the array */
4224 css_task_iter_start(&cgrp->self, &it);
4225 while ((tsk = css_task_iter_next(&it))) {
4226 if (unlikely(n == length))
4227 break;
4228 /* get tgid or pid for procs or tasks file respectively */
4229 if (type == CGROUP_FILE_PROCS)
4230 pid = task_tgid_vnr(tsk);
4231 else
4232 pid = task_pid_vnr(tsk);
4233 if (pid > 0) /* make sure to only use valid results */
4234 array[n++] = pid;
4235 }
4236 css_task_iter_end(&it);
4237 length = n;
4238 /* now sort & (if procs) strip out duplicates */
4239 if (cgroup_on_dfl(cgrp))
4240 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4241 else
4242 sort(array, length, sizeof(pid_t), cmppid, NULL);
4243 if (type == CGROUP_FILE_PROCS)
4244 length = pidlist_uniq(array, length);
4245
4246 l = cgroup_pidlist_find_create(cgrp, type);
4247 if (!l) {
4248 pidlist_free(array);
4249 return -ENOMEM;
4250 }
4251
4252 /* store array, freeing old if necessary */
4253 pidlist_free(l->list);
4254 l->list = array;
4255 l->length = length;
4256 *lp = l;
4257 return 0;
4258 }
4259
4260 /**
4261 * cgroupstats_build - build and fill cgroupstats
4262 * @stats: cgroupstats to fill information into
4263 * @dentry: A dentry entry belonging to the cgroup for which stats have
4264 * been requested.
4265 *
4266 * Build and fill cgroupstats so that taskstats can export it to user
4267 * space.
4268 */
4269 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4270 {
4271 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4272 struct cgroup *cgrp;
4273 struct css_task_iter it;
4274 struct task_struct *tsk;
4275
4276 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4277 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4278 kernfs_type(kn) != KERNFS_DIR)
4279 return -EINVAL;
4280
4281 mutex_lock(&cgroup_mutex);
4282
4283 /*
4284 * We aren't being called from kernfs and there's no guarantee on
4285 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4286 * @kn->priv is RCU safe. Let's do the RCU dancing.
4287 */
4288 rcu_read_lock();
4289 cgrp = rcu_dereference(kn->priv);
4290 if (!cgrp || cgroup_is_dead(cgrp)) {
4291 rcu_read_unlock();
4292 mutex_unlock(&cgroup_mutex);
4293 return -ENOENT;
4294 }
4295 rcu_read_unlock();
4296
4297 css_task_iter_start(&cgrp->self, &it);
4298 while ((tsk = css_task_iter_next(&it))) {
4299 switch (tsk->state) {
4300 case TASK_RUNNING:
4301 stats->nr_running++;
4302 break;
4303 case TASK_INTERRUPTIBLE:
4304 stats->nr_sleeping++;
4305 break;
4306 case TASK_UNINTERRUPTIBLE:
4307 stats->nr_uninterruptible++;
4308 break;
4309 case TASK_STOPPED:
4310 stats->nr_stopped++;
4311 break;
4312 default:
4313 if (delayacct_is_task_waiting_on_io(tsk))
4314 stats->nr_io_wait++;
4315 break;
4316 }
4317 }
4318 css_task_iter_end(&it);
4319
4320 mutex_unlock(&cgroup_mutex);
4321 return 0;
4322 }
4323
4324
4325 /*
4326 * seq_file methods for the tasks/procs files. The seq_file position is the
4327 * next pid to display; the seq_file iterator is a pointer to the pid
4328 * in the cgroup->l->list array.
4329 */
4330
4331 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4332 {
4333 /*
4334 * Initially we receive a position value that corresponds to
4335 * one more than the last pid shown (or 0 on the first call or
4336 * after a seek to the start). Use a binary-search to find the
4337 * next pid to display, if any
4338 */
4339 struct kernfs_open_file *of = s->private;
4340 struct cgroup *cgrp = seq_css(s)->cgroup;
4341 struct cgroup_pidlist *l;
4342 enum cgroup_filetype type = seq_cft(s)->private;
4343 int index = 0, pid = *pos;
4344 int *iter, ret;
4345
4346 mutex_lock(&cgrp->pidlist_mutex);
4347
4348 /*
4349 * !NULL @of->priv indicates that this isn't the first start()
4350 * after open. If the matching pidlist is around, we can use that.
4351 * Look for it. Note that @of->priv can't be used directly. It
4352 * could already have been destroyed.
4353 */
4354 if (of->priv)
4355 of->priv = cgroup_pidlist_find(cgrp, type);
4356
4357 /*
4358 * Either this is the first start() after open or the matching
4359 * pidlist has been destroyed inbetween. Create a new one.
4360 */
4361 if (!of->priv) {
4362 ret = pidlist_array_load(cgrp, type,
4363 (struct cgroup_pidlist **)&of->priv);
4364 if (ret)
4365 return ERR_PTR(ret);
4366 }
4367 l = of->priv;
4368
4369 if (pid) {
4370 int end = l->length;
4371
4372 while (index < end) {
4373 int mid = (index + end) / 2;
4374 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4375 index = mid;
4376 break;
4377 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4378 index = mid + 1;
4379 else
4380 end = mid;
4381 }
4382 }
4383 /* If we're off the end of the array, we're done */
4384 if (index >= l->length)
4385 return NULL;
4386 /* Update the abstract position to be the actual pid that we found */
4387 iter = l->list + index;
4388 *pos = cgroup_pid_fry(cgrp, *iter);
4389 return iter;
4390 }
4391
4392 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4393 {
4394 struct kernfs_open_file *of = s->private;
4395 struct cgroup_pidlist *l = of->priv;
4396
4397 if (l)
4398 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4399 CGROUP_PIDLIST_DESTROY_DELAY);
4400 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4401 }
4402
4403 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4404 {
4405 struct kernfs_open_file *of = s->private;
4406 struct cgroup_pidlist *l = of->priv;
4407 pid_t *p = v;
4408 pid_t *end = l->list + l->length;
4409 /*
4410 * Advance to the next pid in the array. If this goes off the
4411 * end, we're done
4412 */
4413 p++;
4414 if (p >= end) {
4415 return NULL;
4416 } else {
4417 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4418 return p;
4419 }
4420 }
4421
4422 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4423 {
4424 seq_printf(s, "%d\n", *(int *)v);
4425
4426 return 0;
4427 }
4428
4429 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4430 struct cftype *cft)
4431 {
4432 return notify_on_release(css->cgroup);
4433 }
4434
4435 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4436 struct cftype *cft, u64 val)
4437 {
4438 if (val)
4439 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4440 else
4441 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4442 return 0;
4443 }
4444
4445 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4446 struct cftype *cft)
4447 {
4448 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4449 }
4450
4451 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4452 struct cftype *cft, u64 val)
4453 {
4454 if (val)
4455 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4456 else
4457 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4458 return 0;
4459 }
4460
4461 /* cgroup core interface files for the default hierarchy */
4462 static struct cftype cgroup_dfl_base_files[] = {
4463 {
4464 .name = "cgroup.procs",
4465 .file_offset = offsetof(struct cgroup, procs_file),
4466 .seq_start = cgroup_pidlist_start,
4467 .seq_next = cgroup_pidlist_next,
4468 .seq_stop = cgroup_pidlist_stop,
4469 .seq_show = cgroup_pidlist_show,
4470 .private = CGROUP_FILE_PROCS,
4471 .write = cgroup_procs_write,
4472 },
4473 {
4474 .name = "cgroup.controllers",
4475 .flags = CFTYPE_ONLY_ON_ROOT,
4476 .seq_show = cgroup_root_controllers_show,
4477 },
4478 {
4479 .name = "cgroup.controllers",
4480 .flags = CFTYPE_NOT_ON_ROOT,
4481 .seq_show = cgroup_controllers_show,
4482 },
4483 {
4484 .name = "cgroup.subtree_control",
4485 .seq_show = cgroup_subtree_control_show,
4486 .write = cgroup_subtree_control_write,
4487 },
4488 {
4489 .name = "cgroup.events",
4490 .flags = CFTYPE_NOT_ON_ROOT,
4491 .file_offset = offsetof(struct cgroup, events_file),
4492 .seq_show = cgroup_events_show,
4493 },
4494 { } /* terminate */
4495 };
4496
4497 /* cgroup core interface files for the legacy hierarchies */
4498 static struct cftype cgroup_legacy_base_files[] = {
4499 {
4500 .name = "cgroup.procs",
4501 .seq_start = cgroup_pidlist_start,
4502 .seq_next = cgroup_pidlist_next,
4503 .seq_stop = cgroup_pidlist_stop,
4504 .seq_show = cgroup_pidlist_show,
4505 .private = CGROUP_FILE_PROCS,
4506 .write = cgroup_procs_write,
4507 },
4508 {
4509 .name = "cgroup.clone_children",
4510 .read_u64 = cgroup_clone_children_read,
4511 .write_u64 = cgroup_clone_children_write,
4512 },
4513 {
4514 .name = "cgroup.sane_behavior",
4515 .flags = CFTYPE_ONLY_ON_ROOT,
4516 .seq_show = cgroup_sane_behavior_show,
4517 },
4518 {
4519 .name = "tasks",
4520 .seq_start = cgroup_pidlist_start,
4521 .seq_next = cgroup_pidlist_next,
4522 .seq_stop = cgroup_pidlist_stop,
4523 .seq_show = cgroup_pidlist_show,
4524 .private = CGROUP_FILE_TASKS,
4525 .write = cgroup_tasks_write,
4526 },
4527 {
4528 .name = "notify_on_release",
4529 .read_u64 = cgroup_read_notify_on_release,
4530 .write_u64 = cgroup_write_notify_on_release,
4531 },
4532 {
4533 .name = "release_agent",
4534 .flags = CFTYPE_ONLY_ON_ROOT,
4535 .seq_show = cgroup_release_agent_show,
4536 .write = cgroup_release_agent_write,
4537 .max_write_len = PATH_MAX - 1,
4538 },
4539 { } /* terminate */
4540 };
4541
4542 /*
4543 * css destruction is four-stage process.
4544 *
4545 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4546 * Implemented in kill_css().
4547 *
4548 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4549 * and thus css_tryget_online() is guaranteed to fail, the css can be
4550 * offlined by invoking offline_css(). After offlining, the base ref is
4551 * put. Implemented in css_killed_work_fn().
4552 *
4553 * 3. When the percpu_ref reaches zero, the only possible remaining
4554 * accessors are inside RCU read sections. css_release() schedules the
4555 * RCU callback.
4556 *
4557 * 4. After the grace period, the css can be freed. Implemented in
4558 * css_free_work_fn().
4559 *
4560 * It is actually hairier because both step 2 and 4 require process context
4561 * and thus involve punting to css->destroy_work adding two additional
4562 * steps to the already complex sequence.
4563 */
4564 static void css_free_work_fn(struct work_struct *work)
4565 {
4566 struct cgroup_subsys_state *css =
4567 container_of(work, struct cgroup_subsys_state, destroy_work);
4568 struct cgroup_subsys *ss = css->ss;
4569 struct cgroup *cgrp = css->cgroup;
4570 struct cgroup_file *cfile;
4571
4572 percpu_ref_exit(&css->refcnt);
4573
4574 list_for_each_entry(cfile, &css->files, node)
4575 kernfs_put(cfile->kn);
4576
4577 if (ss) {
4578 /* css free path */
4579 int id = css->id;
4580
4581 if (css->parent)
4582 css_put(css->parent);
4583
4584 ss->css_free(css);
4585 cgroup_idr_remove(&ss->css_idr, id);
4586 cgroup_put(cgrp);
4587 } else {
4588 /* cgroup free path */
4589 atomic_dec(&cgrp->root->nr_cgrps);
4590 cgroup_pidlist_destroy_all(cgrp);
4591 cancel_work_sync(&cgrp->release_agent_work);
4592
4593 if (cgroup_parent(cgrp)) {
4594 /*
4595 * We get a ref to the parent, and put the ref when
4596 * this cgroup is being freed, so it's guaranteed
4597 * that the parent won't be destroyed before its
4598 * children.
4599 */
4600 cgroup_put(cgroup_parent(cgrp));
4601 kernfs_put(cgrp->kn);
4602 kfree(cgrp);
4603 } else {
4604 /*
4605 * This is root cgroup's refcnt reaching zero,
4606 * which indicates that the root should be
4607 * released.
4608 */
4609 cgroup_destroy_root(cgrp->root);
4610 }
4611 }
4612 }
4613
4614 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4615 {
4616 struct cgroup_subsys_state *css =
4617 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4618
4619 INIT_WORK(&css->destroy_work, css_free_work_fn);
4620 queue_work(cgroup_destroy_wq, &css->destroy_work);
4621 }
4622
4623 static void css_release_work_fn(struct work_struct *work)
4624 {
4625 struct cgroup_subsys_state *css =
4626 container_of(work, struct cgroup_subsys_state, destroy_work);
4627 struct cgroup_subsys *ss = css->ss;
4628 struct cgroup *cgrp = css->cgroup;
4629
4630 mutex_lock(&cgroup_mutex);
4631
4632 css->flags |= CSS_RELEASED;
4633 list_del_rcu(&css->sibling);
4634
4635 if (ss) {
4636 /* css release path */
4637 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4638 if (ss->css_released)
4639 ss->css_released(css);
4640 } else {
4641 /* cgroup release path */
4642 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4643 cgrp->id = -1;
4644
4645 /*
4646 * There are two control paths which try to determine
4647 * cgroup from dentry without going through kernfs -
4648 * cgroupstats_build() and css_tryget_online_from_dir().
4649 * Those are supported by RCU protecting clearing of
4650 * cgrp->kn->priv backpointer.
4651 */
4652 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4653 }
4654
4655 mutex_unlock(&cgroup_mutex);
4656
4657 call_rcu(&css->rcu_head, css_free_rcu_fn);
4658 }
4659
4660 static void css_release(struct percpu_ref *ref)
4661 {
4662 struct cgroup_subsys_state *css =
4663 container_of(ref, struct cgroup_subsys_state, refcnt);
4664
4665 INIT_WORK(&css->destroy_work, css_release_work_fn);
4666 queue_work(cgroup_destroy_wq, &css->destroy_work);
4667 }
4668
4669 static void init_and_link_css(struct cgroup_subsys_state *css,
4670 struct cgroup_subsys *ss, struct cgroup *cgrp)
4671 {
4672 lockdep_assert_held(&cgroup_mutex);
4673
4674 cgroup_get(cgrp);
4675
4676 memset(css, 0, sizeof(*css));
4677 css->cgroup = cgrp;
4678 css->ss = ss;
4679 INIT_LIST_HEAD(&css->sibling);
4680 INIT_LIST_HEAD(&css->children);
4681 INIT_LIST_HEAD(&css->files);
4682 css->serial_nr = css_serial_nr_next++;
4683
4684 if (cgroup_parent(cgrp)) {
4685 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4686 css_get(css->parent);
4687 }
4688
4689 BUG_ON(cgroup_css(cgrp, ss));
4690 }
4691
4692 /* invoke ->css_online() on a new CSS and mark it online if successful */
4693 static int online_css(struct cgroup_subsys_state *css)
4694 {
4695 struct cgroup_subsys *ss = css->ss;
4696 int ret = 0;
4697
4698 lockdep_assert_held(&cgroup_mutex);
4699
4700 if (ss->css_online)
4701 ret = ss->css_online(css);
4702 if (!ret) {
4703 css->flags |= CSS_ONLINE;
4704 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4705 }
4706 return ret;
4707 }
4708
4709 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4710 static void offline_css(struct cgroup_subsys_state *css)
4711 {
4712 struct cgroup_subsys *ss = css->ss;
4713
4714 lockdep_assert_held(&cgroup_mutex);
4715
4716 if (!(css->flags & CSS_ONLINE))
4717 return;
4718
4719 if (ss->css_offline)
4720 ss->css_offline(css);
4721
4722 css->flags &= ~CSS_ONLINE;
4723 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4724
4725 wake_up_all(&css->cgroup->offline_waitq);
4726 }
4727
4728 /**
4729 * create_css - create a cgroup_subsys_state
4730 * @cgrp: the cgroup new css will be associated with
4731 * @ss: the subsys of new css
4732 * @visible: whether to create control knobs for the new css or not
4733 *
4734 * Create a new css associated with @cgrp - @ss pair. On success, the new
4735 * css is online and installed in @cgrp with all interface files created if
4736 * @visible. Returns 0 on success, -errno on failure.
4737 */
4738 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4739 bool visible)
4740 {
4741 struct cgroup *parent = cgroup_parent(cgrp);
4742 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4743 struct cgroup_subsys_state *css;
4744 int err;
4745
4746 lockdep_assert_held(&cgroup_mutex);
4747
4748 css = ss->css_alloc(parent_css);
4749 if (IS_ERR(css))
4750 return PTR_ERR(css);
4751
4752 init_and_link_css(css, ss, cgrp);
4753
4754 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4755 if (err)
4756 goto err_free_css;
4757
4758 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4759 if (err < 0)
4760 goto err_free_percpu_ref;
4761 css->id = err;
4762
4763 if (visible) {
4764 err = css_populate_dir(css, NULL);
4765 if (err)
4766 goto err_free_id;
4767 }
4768
4769 /* @css is ready to be brought online now, make it visible */
4770 list_add_tail_rcu(&css->sibling, &parent_css->children);
4771 cgroup_idr_replace(&ss->css_idr, css, css->id);
4772
4773 err = online_css(css);
4774 if (err)
4775 goto err_list_del;
4776
4777 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4778 cgroup_parent(parent)) {
4779 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4780 current->comm, current->pid, ss->name);
4781 if (!strcmp(ss->name, "memory"))
4782 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4783 ss->warned_broken_hierarchy = true;
4784 }
4785
4786 return 0;
4787
4788 err_list_del:
4789 list_del_rcu(&css->sibling);
4790 css_clear_dir(css, NULL);
4791 err_free_id:
4792 cgroup_idr_remove(&ss->css_idr, css->id);
4793 err_free_percpu_ref:
4794 percpu_ref_exit(&css->refcnt);
4795 err_free_css:
4796 call_rcu(&css->rcu_head, css_free_rcu_fn);
4797 return err;
4798 }
4799
4800 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4801 umode_t mode)
4802 {
4803 struct cgroup *parent, *cgrp;
4804 struct cgroup_root *root;
4805 struct cgroup_subsys *ss;
4806 struct kernfs_node *kn;
4807 int ssid, ret;
4808
4809 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4810 */
4811 if (strchr(name, '\n'))
4812 return -EINVAL;
4813
4814 parent = cgroup_kn_lock_live(parent_kn);
4815 if (!parent)
4816 return -ENODEV;
4817 root = parent->root;
4818
4819 /* allocate the cgroup and its ID, 0 is reserved for the root */
4820 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4821 if (!cgrp) {
4822 ret = -ENOMEM;
4823 goto out_unlock;
4824 }
4825
4826 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4827 if (ret)
4828 goto out_free_cgrp;
4829
4830 /*
4831 * Temporarily set the pointer to NULL, so idr_find() won't return
4832 * a half-baked cgroup.
4833 */
4834 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4835 if (cgrp->id < 0) {
4836 ret = -ENOMEM;
4837 goto out_cancel_ref;
4838 }
4839
4840 init_cgroup_housekeeping(cgrp);
4841
4842 cgrp->self.parent = &parent->self;
4843 cgrp->root = root;
4844
4845 if (notify_on_release(parent))
4846 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4847
4848 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4849 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4850
4851 /* create the directory */
4852 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4853 if (IS_ERR(kn)) {
4854 ret = PTR_ERR(kn);
4855 goto out_free_id;
4856 }
4857 cgrp->kn = kn;
4858
4859 /*
4860 * This extra ref will be put in cgroup_free_fn() and guarantees
4861 * that @cgrp->kn is always accessible.
4862 */
4863 kernfs_get(kn);
4864
4865 cgrp->self.serial_nr = css_serial_nr_next++;
4866
4867 /* allocation complete, commit to creation */
4868 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4869 atomic_inc(&root->nr_cgrps);
4870 cgroup_get(parent);
4871
4872 /*
4873 * @cgrp is now fully operational. If something fails after this
4874 * point, it'll be released via the normal destruction path.
4875 */
4876 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4877
4878 ret = cgroup_kn_set_ugid(kn);
4879 if (ret)
4880 goto out_destroy;
4881
4882 ret = css_populate_dir(&cgrp->self, NULL);
4883 if (ret)
4884 goto out_destroy;
4885
4886 /* let's create and online css's */
4887 for_each_subsys(ss, ssid) {
4888 if (parent->child_subsys_mask & (1 << ssid)) {
4889 ret = create_css(cgrp, ss,
4890 parent->subtree_control & (1 << ssid));
4891 if (ret)
4892 goto out_destroy;
4893 }
4894 }
4895
4896 /*
4897 * On the default hierarchy, a child doesn't automatically inherit
4898 * subtree_control from the parent. Each is configured manually.
4899 */
4900 if (!cgroup_on_dfl(cgrp)) {
4901 cgrp->subtree_control = parent->subtree_control;
4902 cgroup_refresh_child_subsys_mask(cgrp);
4903 }
4904
4905 kernfs_activate(kn);
4906
4907 ret = 0;
4908 goto out_unlock;
4909
4910 out_free_id:
4911 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4912 out_cancel_ref:
4913 percpu_ref_exit(&cgrp->self.refcnt);
4914 out_free_cgrp:
4915 kfree(cgrp);
4916 out_unlock:
4917 cgroup_kn_unlock(parent_kn);
4918 return ret;
4919
4920 out_destroy:
4921 cgroup_destroy_locked(cgrp);
4922 goto out_unlock;
4923 }
4924
4925 /*
4926 * This is called when the refcnt of a css is confirmed to be killed.
4927 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4928 * initate destruction and put the css ref from kill_css().
4929 */
4930 static void css_killed_work_fn(struct work_struct *work)
4931 {
4932 struct cgroup_subsys_state *css =
4933 container_of(work, struct cgroup_subsys_state, destroy_work);
4934
4935 mutex_lock(&cgroup_mutex);
4936 offline_css(css);
4937 mutex_unlock(&cgroup_mutex);
4938
4939 css_put(css);
4940 }
4941
4942 /* css kill confirmation processing requires process context, bounce */
4943 static void css_killed_ref_fn(struct percpu_ref *ref)
4944 {
4945 struct cgroup_subsys_state *css =
4946 container_of(ref, struct cgroup_subsys_state, refcnt);
4947
4948 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4949 queue_work(cgroup_destroy_wq, &css->destroy_work);
4950 }
4951
4952 /**
4953 * kill_css - destroy a css
4954 * @css: css to destroy
4955 *
4956 * This function initiates destruction of @css by removing cgroup interface
4957 * files and putting its base reference. ->css_offline() will be invoked
4958 * asynchronously once css_tryget_online() is guaranteed to fail and when
4959 * the reference count reaches zero, @css will be released.
4960 */
4961 static void kill_css(struct cgroup_subsys_state *css)
4962 {
4963 lockdep_assert_held(&cgroup_mutex);
4964
4965 /*
4966 * This must happen before css is disassociated with its cgroup.
4967 * See seq_css() for details.
4968 */
4969 css_clear_dir(css, NULL);
4970
4971 /*
4972 * Killing would put the base ref, but we need to keep it alive
4973 * until after ->css_offline().
4974 */
4975 css_get(css);
4976
4977 /*
4978 * cgroup core guarantees that, by the time ->css_offline() is
4979 * invoked, no new css reference will be given out via
4980 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4981 * proceed to offlining css's because percpu_ref_kill() doesn't
4982 * guarantee that the ref is seen as killed on all CPUs on return.
4983 *
4984 * Use percpu_ref_kill_and_confirm() to get notifications as each
4985 * css is confirmed to be seen as killed on all CPUs.
4986 */
4987 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4988 }
4989
4990 /**
4991 * cgroup_destroy_locked - the first stage of cgroup destruction
4992 * @cgrp: cgroup to be destroyed
4993 *
4994 * css's make use of percpu refcnts whose killing latency shouldn't be
4995 * exposed to userland and are RCU protected. Also, cgroup core needs to
4996 * guarantee that css_tryget_online() won't succeed by the time
4997 * ->css_offline() is invoked. To satisfy all the requirements,
4998 * destruction is implemented in the following two steps.
4999 *
5000 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5001 * userland visible parts and start killing the percpu refcnts of
5002 * css's. Set up so that the next stage will be kicked off once all
5003 * the percpu refcnts are confirmed to be killed.
5004 *
5005 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5006 * rest of destruction. Once all cgroup references are gone, the
5007 * cgroup is RCU-freed.
5008 *
5009 * This function implements s1. After this step, @cgrp is gone as far as
5010 * the userland is concerned and a new cgroup with the same name may be
5011 * created. As cgroup doesn't care about the names internally, this
5012 * doesn't cause any problem.
5013 */
5014 static int cgroup_destroy_locked(struct cgroup *cgrp)
5015 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5016 {
5017 struct cgroup_subsys_state *css;
5018 int ssid;
5019
5020 lockdep_assert_held(&cgroup_mutex);
5021
5022 /*
5023 * Only migration can raise populated from zero and we're already
5024 * holding cgroup_mutex.
5025 */
5026 if (cgroup_is_populated(cgrp))
5027 return -EBUSY;
5028
5029 /*
5030 * Make sure there's no live children. We can't test emptiness of
5031 * ->self.children as dead children linger on it while being
5032 * drained; otherwise, "rmdir parent/child parent" may fail.
5033 */
5034 if (css_has_online_children(&cgrp->self))
5035 return -EBUSY;
5036
5037 /*
5038 * Mark @cgrp dead. This prevents further task migration and child
5039 * creation by disabling cgroup_lock_live_group().
5040 */
5041 cgrp->self.flags &= ~CSS_ONLINE;
5042
5043 /* initiate massacre of all css's */
5044 for_each_css(css, ssid, cgrp)
5045 kill_css(css);
5046
5047 /*
5048 * Remove @cgrp directory along with the base files. @cgrp has an
5049 * extra ref on its kn.
5050 */
5051 kernfs_remove(cgrp->kn);
5052
5053 check_for_release(cgroup_parent(cgrp));
5054
5055 /* put the base reference */
5056 percpu_ref_kill(&cgrp->self.refcnt);
5057
5058 return 0;
5059 };
5060
5061 static int cgroup_rmdir(struct kernfs_node *kn)
5062 {
5063 struct cgroup *cgrp;
5064 int ret = 0;
5065
5066 cgrp = cgroup_kn_lock_live(kn);
5067 if (!cgrp)
5068 return 0;
5069
5070 ret = cgroup_destroy_locked(cgrp);
5071
5072 cgroup_kn_unlock(kn);
5073 return ret;
5074 }
5075
5076 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5077 .remount_fs = cgroup_remount,
5078 .show_options = cgroup_show_options,
5079 .mkdir = cgroup_mkdir,
5080 .rmdir = cgroup_rmdir,
5081 .rename = cgroup_rename,
5082 };
5083
5084 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5085 {
5086 struct cgroup_subsys_state *css;
5087
5088 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
5089
5090 mutex_lock(&cgroup_mutex);
5091
5092 idr_init(&ss->css_idr);
5093 INIT_LIST_HEAD(&ss->cfts);
5094
5095 /* Create the root cgroup state for this subsystem */
5096 ss->root = &cgrp_dfl_root;
5097 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5098 /* We don't handle early failures gracefully */
5099 BUG_ON(IS_ERR(css));
5100 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5101
5102 /*
5103 * Root csses are never destroyed and we can't initialize
5104 * percpu_ref during early init. Disable refcnting.
5105 */
5106 css->flags |= CSS_NO_REF;
5107
5108 if (early) {
5109 /* allocation can't be done safely during early init */
5110 css->id = 1;
5111 } else {
5112 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5113 BUG_ON(css->id < 0);
5114 }
5115
5116 /* Update the init_css_set to contain a subsys
5117 * pointer to this state - since the subsystem is
5118 * newly registered, all tasks and hence the
5119 * init_css_set is in the subsystem's root cgroup. */
5120 init_css_set.subsys[ss->id] = css;
5121
5122 have_fork_callback |= (bool)ss->fork << ss->id;
5123 have_exit_callback |= (bool)ss->exit << ss->id;
5124 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5125
5126 /* At system boot, before all subsystems have been
5127 * registered, no tasks have been forked, so we don't
5128 * need to invoke fork callbacks here. */
5129 BUG_ON(!list_empty(&init_task.tasks));
5130
5131 BUG_ON(online_css(css));
5132
5133 mutex_unlock(&cgroup_mutex);
5134 }
5135
5136 /**
5137 * cgroup_init_early - cgroup initialization at system boot
5138 *
5139 * Initialize cgroups at system boot, and initialize any
5140 * subsystems that request early init.
5141 */
5142 int __init cgroup_init_early(void)
5143 {
5144 static struct cgroup_sb_opts __initdata opts;
5145 struct cgroup_subsys *ss;
5146 int i;
5147
5148 init_cgroup_root(&cgrp_dfl_root, &opts);
5149 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5150
5151 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5152
5153 for_each_subsys(ss, i) {
5154 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5155 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5156 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5157 ss->id, ss->name);
5158 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5159 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5160
5161 ss->id = i;
5162 ss->name = cgroup_subsys_name[i];
5163 if (!ss->legacy_name)
5164 ss->legacy_name = cgroup_subsys_name[i];
5165
5166 if (ss->early_init)
5167 cgroup_init_subsys(ss, true);
5168 }
5169 return 0;
5170 }
5171
5172 static unsigned long cgroup_disable_mask __initdata;
5173
5174 /**
5175 * cgroup_init - cgroup initialization
5176 *
5177 * Register cgroup filesystem and /proc file, and initialize
5178 * any subsystems that didn't request early init.
5179 */
5180 int __init cgroup_init(void)
5181 {
5182 struct cgroup_subsys *ss;
5183 unsigned long key;
5184 int ssid, err;
5185
5186 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5187 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5188 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5189
5190 mutex_lock(&cgroup_mutex);
5191
5192 /* Add init_css_set to the hash table */
5193 key = css_set_hash(init_css_set.subsys);
5194 hash_add(css_set_table, &init_css_set.hlist, key);
5195
5196 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5197
5198 mutex_unlock(&cgroup_mutex);
5199
5200 for_each_subsys(ss, ssid) {
5201 if (ss->early_init) {
5202 struct cgroup_subsys_state *css =
5203 init_css_set.subsys[ss->id];
5204
5205 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5206 GFP_KERNEL);
5207 BUG_ON(css->id < 0);
5208 } else {
5209 cgroup_init_subsys(ss, false);
5210 }
5211
5212 list_add_tail(&init_css_set.e_cset_node[ssid],
5213 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5214
5215 /*
5216 * Setting dfl_root subsys_mask needs to consider the
5217 * disabled flag and cftype registration needs kmalloc,
5218 * both of which aren't available during early_init.
5219 */
5220 if (cgroup_disable_mask & (1 << ssid)) {
5221 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5222 printk(KERN_INFO "Disabling %s control group subsystem\n",
5223 ss->name);
5224 continue;
5225 }
5226
5227 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5228
5229 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5230 ss->dfl_cftypes = ss->legacy_cftypes;
5231
5232 if (!ss->dfl_cftypes)
5233 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5234
5235 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5236 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5237 } else {
5238 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5239 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5240 }
5241
5242 if (ss->bind)
5243 ss->bind(init_css_set.subsys[ssid]);
5244 }
5245
5246 err = sysfs_create_mount_point(fs_kobj, "cgroup");
5247 if (err)
5248 return err;
5249
5250 err = register_filesystem(&cgroup_fs_type);
5251 if (err < 0) {
5252 sysfs_remove_mount_point(fs_kobj, "cgroup");
5253 return err;
5254 }
5255
5256 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
5257 return 0;
5258 }
5259
5260 static int __init cgroup_wq_init(void)
5261 {
5262 /*
5263 * There isn't much point in executing destruction path in
5264 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5265 * Use 1 for @max_active.
5266 *
5267 * We would prefer to do this in cgroup_init() above, but that
5268 * is called before init_workqueues(): so leave this until after.
5269 */
5270 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5271 BUG_ON(!cgroup_destroy_wq);
5272
5273 /*
5274 * Used to destroy pidlists and separate to serve as flush domain.
5275 * Cap @max_active to 1 too.
5276 */
5277 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5278 0, 1);
5279 BUG_ON(!cgroup_pidlist_destroy_wq);
5280
5281 return 0;
5282 }
5283 core_initcall(cgroup_wq_init);
5284
5285 /*
5286 * proc_cgroup_show()
5287 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5288 * - Used for /proc/<pid>/cgroup.
5289 */
5290 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5291 struct pid *pid, struct task_struct *tsk)
5292 {
5293 char *buf, *path;
5294 int retval;
5295 struct cgroup_root *root;
5296
5297 retval = -ENOMEM;
5298 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5299 if (!buf)
5300 goto out;
5301
5302 mutex_lock(&cgroup_mutex);
5303 down_read(&css_set_rwsem);
5304
5305 for_each_root(root) {
5306 struct cgroup_subsys *ss;
5307 struct cgroup *cgrp;
5308 int ssid, count = 0;
5309
5310 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5311 continue;
5312
5313 seq_printf(m, "%d:", root->hierarchy_id);
5314 if (root != &cgrp_dfl_root)
5315 for_each_subsys(ss, ssid)
5316 if (root->subsys_mask & (1 << ssid))
5317 seq_printf(m, "%s%s", count++ ? "," : "",
5318 ss->legacy_name);
5319 if (strlen(root->name))
5320 seq_printf(m, "%sname=%s", count ? "," : "",
5321 root->name);
5322 seq_putc(m, ':');
5323 cgrp = task_cgroup_from_root(tsk, root);
5324 path = cgroup_path(cgrp, buf, PATH_MAX);
5325 if (!path) {
5326 retval = -ENAMETOOLONG;
5327 goto out_unlock;
5328 }
5329 seq_puts(m, path);
5330 seq_putc(m, '\n');
5331 }
5332
5333 retval = 0;
5334 out_unlock:
5335 up_read(&css_set_rwsem);
5336 mutex_unlock(&cgroup_mutex);
5337 kfree(buf);
5338 out:
5339 return retval;
5340 }
5341
5342 /* Display information about each subsystem and each hierarchy */
5343 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5344 {
5345 struct cgroup_subsys *ss;
5346 int i;
5347
5348 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5349 /*
5350 * ideally we don't want subsystems moving around while we do this.
5351 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5352 * subsys/hierarchy state.
5353 */
5354 mutex_lock(&cgroup_mutex);
5355
5356 for_each_subsys(ss, i)
5357 seq_printf(m, "%s\t%d\t%d\t%d\n",
5358 ss->legacy_name, ss->root->hierarchy_id,
5359 atomic_read(&ss->root->nr_cgrps),
5360 cgroup_ssid_enabled(i));
5361
5362 mutex_unlock(&cgroup_mutex);
5363 return 0;
5364 }
5365
5366 static int cgroupstats_open(struct inode *inode, struct file *file)
5367 {
5368 return single_open(file, proc_cgroupstats_show, NULL);
5369 }
5370
5371 static const struct file_operations proc_cgroupstats_operations = {
5372 .open = cgroupstats_open,
5373 .read = seq_read,
5374 .llseek = seq_lseek,
5375 .release = single_release,
5376 };
5377
5378 static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5379 {
5380 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5381 return &ss_priv[i - CGROUP_CANFORK_START];
5382 return NULL;
5383 }
5384
5385 static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5386 {
5387 void **private = subsys_canfork_priv_p(ss_priv, i);
5388 return private ? *private : NULL;
5389 }
5390
5391 /**
5392 * cgroup_fork - initialize cgroup related fields during copy_process()
5393 * @child: pointer to task_struct of forking parent process.
5394 *
5395 * A task is associated with the init_css_set until cgroup_post_fork()
5396 * attaches it to the parent's css_set. Empty cg_list indicates that
5397 * @child isn't holding reference to its css_set.
5398 */
5399 void cgroup_fork(struct task_struct *child)
5400 {
5401 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5402 INIT_LIST_HEAD(&child->cg_list);
5403 }
5404
5405 /**
5406 * cgroup_can_fork - called on a new task before the process is exposed
5407 * @child: the task in question.
5408 *
5409 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5410 * returns an error, the fork aborts with that error code. This allows for
5411 * a cgroup subsystem to conditionally allow or deny new forks.
5412 */
5413 int cgroup_can_fork(struct task_struct *child,
5414 void *ss_priv[CGROUP_CANFORK_COUNT])
5415 {
5416 struct cgroup_subsys *ss;
5417 int i, j, ret;
5418
5419 for_each_subsys_which(ss, i, &have_canfork_callback) {
5420 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5421 if (ret)
5422 goto out_revert;
5423 }
5424
5425 return 0;
5426
5427 out_revert:
5428 for_each_subsys(ss, j) {
5429 if (j >= i)
5430 break;
5431 if (ss->cancel_fork)
5432 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5433 }
5434
5435 return ret;
5436 }
5437
5438 /**
5439 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5440 * @child: the task in question
5441 *
5442 * This calls the cancel_fork() callbacks if a fork failed *after*
5443 * cgroup_can_fork() succeded.
5444 */
5445 void cgroup_cancel_fork(struct task_struct *child,
5446 void *ss_priv[CGROUP_CANFORK_COUNT])
5447 {
5448 struct cgroup_subsys *ss;
5449 int i;
5450
5451 for_each_subsys(ss, i)
5452 if (ss->cancel_fork)
5453 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5454 }
5455
5456 /**
5457 * cgroup_post_fork - called on a new task after adding it to the task list
5458 * @child: the task in question
5459 *
5460 * Adds the task to the list running through its css_set if necessary and
5461 * call the subsystem fork() callbacks. Has to be after the task is
5462 * visible on the task list in case we race with the first call to
5463 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5464 * list.
5465 */
5466 void cgroup_post_fork(struct task_struct *child,
5467 void *old_ss_priv[CGROUP_CANFORK_COUNT])
5468 {
5469 struct cgroup_subsys *ss;
5470 int i;
5471
5472 /*
5473 * This may race against cgroup_enable_task_cg_lists(). As that
5474 * function sets use_task_css_set_links before grabbing
5475 * tasklist_lock and we just went through tasklist_lock to add
5476 * @child, it's guaranteed that either we see the set
5477 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5478 * @child during its iteration.
5479 *
5480 * If we won the race, @child is associated with %current's
5481 * css_set. Grabbing css_set_rwsem guarantees both that the
5482 * association is stable, and, on completion of the parent's
5483 * migration, @child is visible in the source of migration or
5484 * already in the destination cgroup. This guarantee is necessary
5485 * when implementing operations which need to migrate all tasks of
5486 * a cgroup to another.
5487 *
5488 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5489 * will remain in init_css_set. This is safe because all tasks are
5490 * in the init_css_set before cg_links is enabled and there's no
5491 * operation which transfers all tasks out of init_css_set.
5492 */
5493 if (use_task_css_set_links) {
5494 struct css_set *cset;
5495
5496 down_write(&css_set_rwsem);
5497 cset = task_css_set(current);
5498 if (list_empty(&child->cg_list)) {
5499 get_css_set(cset);
5500 css_set_move_task(child, NULL, cset, false);
5501 }
5502 up_write(&css_set_rwsem);
5503 }
5504
5505 /*
5506 * Call ss->fork(). This must happen after @child is linked on
5507 * css_set; otherwise, @child might change state between ->fork()
5508 * and addition to css_set.
5509 */
5510 for_each_subsys_which(ss, i, &have_fork_callback)
5511 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
5512 }
5513
5514 /**
5515 * cgroup_exit - detach cgroup from exiting task
5516 * @tsk: pointer to task_struct of exiting process
5517 *
5518 * Description: Detach cgroup from @tsk and release it.
5519 *
5520 * Note that cgroups marked notify_on_release force every task in
5521 * them to take the global cgroup_mutex mutex when exiting.
5522 * This could impact scaling on very large systems. Be reluctant to
5523 * use notify_on_release cgroups where very high task exit scaling
5524 * is required on large systems.
5525 *
5526 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5527 * call cgroup_exit() while the task is still competent to handle
5528 * notify_on_release(), then leave the task attached to the root cgroup in
5529 * each hierarchy for the remainder of its exit. No need to bother with
5530 * init_css_set refcnting. init_css_set never goes away and we can't race
5531 * with migration path - PF_EXITING is visible to migration path.
5532 */
5533 void cgroup_exit(struct task_struct *tsk)
5534 {
5535 struct cgroup_subsys *ss;
5536 struct css_set *cset;
5537 bool put_cset = false;
5538 int i;
5539
5540 /*
5541 * Unlink from @tsk from its css_set. As migration path can't race
5542 * with us, we can check css_set and cg_list without synchronization.
5543 */
5544 cset = task_css_set(tsk);
5545
5546 if (!list_empty(&tsk->cg_list)) {
5547 down_write(&css_set_rwsem);
5548 css_set_move_task(tsk, cset, NULL, false);
5549 up_write(&css_set_rwsem);
5550 put_cset = true;
5551 }
5552
5553 /* Reassign the task to the init_css_set. */
5554 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5555
5556 /* see cgroup_post_fork() for details */
5557 for_each_subsys_which(ss, i, &have_exit_callback) {
5558 struct cgroup_subsys_state *old_css = cset->subsys[i];
5559 struct cgroup_subsys_state *css = task_css(tsk, i);
5560
5561 ss->exit(css, old_css, tsk);
5562 }
5563
5564 if (put_cset)
5565 put_css_set(cset);
5566 }
5567
5568 static void check_for_release(struct cgroup *cgrp)
5569 {
5570 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
5571 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5572 schedule_work(&cgrp->release_agent_work);
5573 }
5574
5575 /*
5576 * Notify userspace when a cgroup is released, by running the
5577 * configured release agent with the name of the cgroup (path
5578 * relative to the root of cgroup file system) as the argument.
5579 *
5580 * Most likely, this user command will try to rmdir this cgroup.
5581 *
5582 * This races with the possibility that some other task will be
5583 * attached to this cgroup before it is removed, or that some other
5584 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5585 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5586 * unused, and this cgroup will be reprieved from its death sentence,
5587 * to continue to serve a useful existence. Next time it's released,
5588 * we will get notified again, if it still has 'notify_on_release' set.
5589 *
5590 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5591 * means only wait until the task is successfully execve()'d. The
5592 * separate release agent task is forked by call_usermodehelper(),
5593 * then control in this thread returns here, without waiting for the
5594 * release agent task. We don't bother to wait because the caller of
5595 * this routine has no use for the exit status of the release agent
5596 * task, so no sense holding our caller up for that.
5597 */
5598 static void cgroup_release_agent(struct work_struct *work)
5599 {
5600 struct cgroup *cgrp =
5601 container_of(work, struct cgroup, release_agent_work);
5602 char *pathbuf = NULL, *agentbuf = NULL, *path;
5603 char *argv[3], *envp[3];
5604
5605 mutex_lock(&cgroup_mutex);
5606
5607 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5608 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5609 if (!pathbuf || !agentbuf)
5610 goto out;
5611
5612 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5613 if (!path)
5614 goto out;
5615
5616 argv[0] = agentbuf;
5617 argv[1] = path;
5618 argv[2] = NULL;
5619
5620 /* minimal command environment */
5621 envp[0] = "HOME=/";
5622 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5623 envp[2] = NULL;
5624
5625 mutex_unlock(&cgroup_mutex);
5626 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5627 goto out_free;
5628 out:
5629 mutex_unlock(&cgroup_mutex);
5630 out_free:
5631 kfree(agentbuf);
5632 kfree(pathbuf);
5633 }
5634
5635 static int __init cgroup_disable(char *str)
5636 {
5637 struct cgroup_subsys *ss;
5638 char *token;
5639 int i;
5640
5641 while ((token = strsep(&str, ",")) != NULL) {
5642 if (!*token)
5643 continue;
5644
5645 for_each_subsys(ss, i) {
5646 if (strcmp(token, ss->name) &&
5647 strcmp(token, ss->legacy_name))
5648 continue;
5649 cgroup_disable_mask |= 1 << i;
5650 }
5651 }
5652 return 1;
5653 }
5654 __setup("cgroup_disable=", cgroup_disable);
5655
5656 static int __init cgroup_set_legacy_files_on_dfl(char *str)
5657 {
5658 printk("cgroup: using legacy files on the default hierarchy\n");
5659 cgroup_legacy_files_on_dfl = true;
5660 return 0;
5661 }
5662 __setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5663
5664 /**
5665 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5666 * @dentry: directory dentry of interest
5667 * @ss: subsystem of interest
5668 *
5669 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5670 * to get the corresponding css and return it. If such css doesn't exist
5671 * or can't be pinned, an ERR_PTR value is returned.
5672 */
5673 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5674 struct cgroup_subsys *ss)
5675 {
5676 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5677 struct cgroup_subsys_state *css = NULL;
5678 struct cgroup *cgrp;
5679
5680 /* is @dentry a cgroup dir? */
5681 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5682 kernfs_type(kn) != KERNFS_DIR)
5683 return ERR_PTR(-EBADF);
5684
5685 rcu_read_lock();
5686
5687 /*
5688 * This path doesn't originate from kernfs and @kn could already
5689 * have been or be removed at any point. @kn->priv is RCU
5690 * protected for this access. See css_release_work_fn() for details.
5691 */
5692 cgrp = rcu_dereference(kn->priv);
5693 if (cgrp)
5694 css = cgroup_css(cgrp, ss);
5695
5696 if (!css || !css_tryget_online(css))
5697 css = ERR_PTR(-ENOENT);
5698
5699 rcu_read_unlock();
5700 return css;
5701 }
5702
5703 /**
5704 * css_from_id - lookup css by id
5705 * @id: the cgroup id
5706 * @ss: cgroup subsys to be looked into
5707 *
5708 * Returns the css if there's valid one with @id, otherwise returns NULL.
5709 * Should be called under rcu_read_lock().
5710 */
5711 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5712 {
5713 WARN_ON_ONCE(!rcu_read_lock_held());
5714 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5715 }
5716
5717 #ifdef CONFIG_CGROUP_DEBUG
5718 static struct cgroup_subsys_state *
5719 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5720 {
5721 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5722
5723 if (!css)
5724 return ERR_PTR(-ENOMEM);
5725
5726 return css;
5727 }
5728
5729 static void debug_css_free(struct cgroup_subsys_state *css)
5730 {
5731 kfree(css);
5732 }
5733
5734 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5735 struct cftype *cft)
5736 {
5737 return cgroup_task_count(css->cgroup);
5738 }
5739
5740 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5741 struct cftype *cft)
5742 {
5743 return (u64)(unsigned long)current->cgroups;
5744 }
5745
5746 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5747 struct cftype *cft)
5748 {
5749 u64 count;
5750
5751 rcu_read_lock();
5752 count = atomic_read(&task_css_set(current)->refcount);
5753 rcu_read_unlock();
5754 return count;
5755 }
5756
5757 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5758 {
5759 struct cgrp_cset_link *link;
5760 struct css_set *cset;
5761 char *name_buf;
5762
5763 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5764 if (!name_buf)
5765 return -ENOMEM;
5766
5767 down_read(&css_set_rwsem);
5768 rcu_read_lock();
5769 cset = rcu_dereference(current->cgroups);
5770 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5771 struct cgroup *c = link->cgrp;
5772
5773 cgroup_name(c, name_buf, NAME_MAX + 1);
5774 seq_printf(seq, "Root %d group %s\n",
5775 c->root->hierarchy_id, name_buf);
5776 }
5777 rcu_read_unlock();
5778 up_read(&css_set_rwsem);
5779 kfree(name_buf);
5780 return 0;
5781 }
5782
5783 #define MAX_TASKS_SHOWN_PER_CSS 25
5784 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5785 {
5786 struct cgroup_subsys_state *css = seq_css(seq);
5787 struct cgrp_cset_link *link;
5788
5789 down_read(&css_set_rwsem);
5790 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5791 struct css_set *cset = link->cset;
5792 struct task_struct *task;
5793 int count = 0;
5794
5795 seq_printf(seq, "css_set %p\n", cset);
5796
5797 list_for_each_entry(task, &cset->tasks, cg_list) {
5798 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5799 goto overflow;
5800 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5801 }
5802
5803 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5804 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5805 goto overflow;
5806 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5807 }
5808 continue;
5809 overflow:
5810 seq_puts(seq, " ...\n");
5811 }
5812 up_read(&css_set_rwsem);
5813 return 0;
5814 }
5815
5816 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5817 {
5818 return (!cgroup_is_populated(css->cgroup) &&
5819 !css_has_online_children(&css->cgroup->self));
5820 }
5821
5822 static struct cftype debug_files[] = {
5823 {
5824 .name = "taskcount",
5825 .read_u64 = debug_taskcount_read,
5826 },
5827
5828 {
5829 .name = "current_css_set",
5830 .read_u64 = current_css_set_read,
5831 },
5832
5833 {
5834 .name = "current_css_set_refcount",
5835 .read_u64 = current_css_set_refcount_read,
5836 },
5837
5838 {
5839 .name = "current_css_set_cg_links",
5840 .seq_show = current_css_set_cg_links_read,
5841 },
5842
5843 {
5844 .name = "cgroup_css_links",
5845 .seq_show = cgroup_css_links_read,
5846 },
5847
5848 {
5849 .name = "releasable",
5850 .read_u64 = releasable_read,
5851 },
5852
5853 { } /* terminate */
5854 };
5855
5856 struct cgroup_subsys debug_cgrp_subsys = {
5857 .css_alloc = debug_css_alloc,
5858 .css_free = debug_css_free,
5859 .legacy_cftypes = debug_files,
5860 };
5861 #endif /* CONFIG_CGROUP_DEBUG */