]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/cgroup.c
cgroup: make rebind_subsystems() handle file additions and removals with proper error...
[mirror_ubuntu-bionic-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/init_task.h>
34 #include <linux/kernel.h>
35 #include <linux/list.h>
36 #include <linux/mm.h>
37 #include <linux/mutex.h>
38 #include <linux/mount.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/rcupdate.h>
42 #include <linux/sched.h>
43 #include <linux/backing-dev.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/magic.h>
47 #include <linux/spinlock.h>
48 #include <linux/string.h>
49 #include <linux/sort.h>
50 #include <linux/kmod.h>
51 #include <linux/module.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/namei.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/eventfd.h>
60 #include <linux/poll.h>
61 #include <linux/flex_array.h> /* used in cgroup_attach_task */
62 #include <linux/kthread.h>
63
64 #include <linux/atomic.h>
65
66 /*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
82 #ifdef CONFIG_PROVE_RCU
83 DEFINE_MUTEX(cgroup_mutex);
84 EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
85 #else
86 static DEFINE_MUTEX(cgroup_mutex);
87 #endif
88
89 static DEFINE_MUTEX(cgroup_root_mutex);
90
91 /*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
93 * populated with the built in subsystems, and modular subsystems are
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
97 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
98 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
99 static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
100 #include <linux/cgroup_subsys.h>
101 };
102
103 /*
104 * The dummy hierarchy, reserved for the subsystems that are otherwise
105 * unattached - it never has more than a single cgroup, and all tasks are
106 * part of that cgroup.
107 */
108 static struct cgroupfs_root cgroup_dummy_root;
109
110 /* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
111 static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
112
113 /*
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115 */
116 struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
120
121 /* file xattrs */
122 struct simple_xattrs xattrs;
123 };
124
125 /*
126 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
127 * cgroup_subsys->use_id != 0.
128 */
129 #define CSS_ID_MAX (65535)
130 struct css_id {
131 /*
132 * The css to which this ID points. This pointer is set to valid value
133 * after cgroup is populated. If cgroup is removed, this will be NULL.
134 * This pointer is expected to be RCU-safe because destroy()
135 * is called after synchronize_rcu(). But for safe use, css_tryget()
136 * should be used for avoiding race.
137 */
138 struct cgroup_subsys_state __rcu *css;
139 /*
140 * ID of this css.
141 */
142 unsigned short id;
143 /*
144 * Depth in hierarchy which this ID belongs to.
145 */
146 unsigned short depth;
147 /*
148 * ID is freed by RCU. (and lookup routine is RCU safe.)
149 */
150 struct rcu_head rcu_head;
151 /*
152 * Hierarchy of CSS ID belongs to.
153 */
154 unsigned short stack[0]; /* Array of Length (depth+1) */
155 };
156
157 /*
158 * cgroup_event represents events which userspace want to receive.
159 */
160 struct cgroup_event {
161 /*
162 * Cgroup which the event belongs to.
163 */
164 struct cgroup *cgrp;
165 /*
166 * Control file which the event associated.
167 */
168 struct cftype *cft;
169 /*
170 * eventfd to signal userspace about the event.
171 */
172 struct eventfd_ctx *eventfd;
173 /*
174 * Each of these stored in a list by the cgroup.
175 */
176 struct list_head list;
177 /*
178 * All fields below needed to unregister event when
179 * userspace closes eventfd.
180 */
181 poll_table pt;
182 wait_queue_head_t *wqh;
183 wait_queue_t wait;
184 struct work_struct remove;
185 };
186
187 /* The list of hierarchy roots */
188
189 static LIST_HEAD(cgroup_roots);
190 static int cgroup_root_count;
191
192 /*
193 * Hierarchy ID allocation and mapping. It follows the same exclusion
194 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
195 * writes, either for reads.
196 */
197 static DEFINE_IDR(cgroup_hierarchy_idr);
198
199 static struct cgroup_name root_cgroup_name = { .name = "/" };
200
201 /*
202 * Assign a monotonically increasing serial number to cgroups. It
203 * guarantees cgroups with bigger numbers are newer than those with smaller
204 * numbers. Also, as cgroups are always appended to the parent's
205 * ->children list, it guarantees that sibling cgroups are always sorted in
206 * the ascending serial number order on the list. Protected by
207 * cgroup_mutex.
208 */
209 static u64 cgroup_serial_nr_next = 1;
210
211 /* This flag indicates whether tasks in the fork and exit paths should
212 * check for fork/exit handlers to call. This avoids us having to do
213 * extra work in the fork/exit path if none of the subsystems need to
214 * be called.
215 */
216 static int need_forkexit_callback __read_mostly;
217
218 static struct cftype cgroup_base_files[];
219
220 static void cgroup_offline_fn(struct work_struct *work);
221 static int cgroup_destroy_locked(struct cgroup *cgrp);
222 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
223 struct cftype cfts[], bool is_add);
224
225 /* convenient tests for these bits */
226 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
227 {
228 return test_bit(CGRP_DEAD, &cgrp->flags);
229 }
230
231 /**
232 * cgroup_is_descendant - test ancestry
233 * @cgrp: the cgroup to be tested
234 * @ancestor: possible ancestor of @cgrp
235 *
236 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
237 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
238 * and @ancestor are accessible.
239 */
240 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
241 {
242 while (cgrp) {
243 if (cgrp == ancestor)
244 return true;
245 cgrp = cgrp->parent;
246 }
247 return false;
248 }
249 EXPORT_SYMBOL_GPL(cgroup_is_descendant);
250
251 static int cgroup_is_releasable(const struct cgroup *cgrp)
252 {
253 const int bits =
254 (1 << CGRP_RELEASABLE) |
255 (1 << CGRP_NOTIFY_ON_RELEASE);
256 return (cgrp->flags & bits) == bits;
257 }
258
259 static int notify_on_release(const struct cgroup *cgrp)
260 {
261 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
262 }
263
264 /**
265 * for_each_subsys - iterate all loaded cgroup subsystems
266 * @ss: the iteration cursor
267 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
268 *
269 * Should be called under cgroup_mutex.
270 */
271 #define for_each_subsys(ss, i) \
272 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
273 if (({ lockdep_assert_held(&cgroup_mutex); \
274 !((ss) = cgroup_subsys[i]); })) { } \
275 else
276
277 /**
278 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
279 * @ss: the iteration cursor
280 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
281 *
282 * Bulit-in subsystems are always present and iteration itself doesn't
283 * require any synchronization.
284 */
285 #define for_each_builtin_subsys(ss, i) \
286 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
287 (((ss) = cgroup_subsys[i]) || true); (i)++)
288
289 /* iterate each subsystem attached to a hierarchy */
290 #define for_each_root_subsys(root, ss) \
291 list_for_each_entry((ss), &(root)->subsys_list, sibling)
292
293 /* iterate across the active hierarchies */
294 #define for_each_active_root(root) \
295 list_for_each_entry((root), &cgroup_roots, root_list)
296
297 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
298 {
299 return dentry->d_fsdata;
300 }
301
302 static inline struct cfent *__d_cfe(struct dentry *dentry)
303 {
304 return dentry->d_fsdata;
305 }
306
307 static inline struct cftype *__d_cft(struct dentry *dentry)
308 {
309 return __d_cfe(dentry)->type;
310 }
311
312 /**
313 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
314 * @cgrp: the cgroup to be checked for liveness
315 *
316 * On success, returns true; the mutex should be later unlocked. On
317 * failure returns false with no lock held.
318 */
319 static bool cgroup_lock_live_group(struct cgroup *cgrp)
320 {
321 mutex_lock(&cgroup_mutex);
322 if (cgroup_is_dead(cgrp)) {
323 mutex_unlock(&cgroup_mutex);
324 return false;
325 }
326 return true;
327 }
328
329 /* the list of cgroups eligible for automatic release. Protected by
330 * release_list_lock */
331 static LIST_HEAD(release_list);
332 static DEFINE_RAW_SPINLOCK(release_list_lock);
333 static void cgroup_release_agent(struct work_struct *work);
334 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
335 static void check_for_release(struct cgroup *cgrp);
336
337 /*
338 * A cgroup can be associated with multiple css_sets as different tasks may
339 * belong to different cgroups on different hierarchies. In the other
340 * direction, a css_set is naturally associated with multiple cgroups.
341 * This M:N relationship is represented by the following link structure
342 * which exists for each association and allows traversing the associations
343 * from both sides.
344 */
345 struct cgrp_cset_link {
346 /* the cgroup and css_set this link associates */
347 struct cgroup *cgrp;
348 struct css_set *cset;
349
350 /* list of cgrp_cset_links anchored at cgrp->cset_links */
351 struct list_head cset_link;
352
353 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
354 struct list_head cgrp_link;
355 };
356
357 /* The default css_set - used by init and its children prior to any
358 * hierarchies being mounted. It contains a pointer to the root state
359 * for each subsystem. Also used to anchor the list of css_sets. Not
360 * reference-counted, to improve performance when child cgroups
361 * haven't been created.
362 */
363
364 static struct css_set init_css_set;
365 static struct cgrp_cset_link init_cgrp_cset_link;
366
367 static int cgroup_init_idr(struct cgroup_subsys *ss,
368 struct cgroup_subsys_state *css);
369
370 /* css_set_lock protects the list of css_set objects, and the
371 * chain of tasks off each css_set. Nests outside task->alloc_lock
372 * due to cgroup_iter_start() */
373 static DEFINE_RWLOCK(css_set_lock);
374 static int css_set_count;
375
376 /*
377 * hash table for cgroup groups. This improves the performance to find
378 * an existing css_set. This hash doesn't (currently) take into
379 * account cgroups in empty hierarchies.
380 */
381 #define CSS_SET_HASH_BITS 7
382 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
383
384 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
385 {
386 unsigned long key = 0UL;
387 struct cgroup_subsys *ss;
388 int i;
389
390 for_each_subsys(ss, i)
391 key += (unsigned long)css[i];
392 key = (key >> 16) ^ key;
393
394 return key;
395 }
396
397 /* We don't maintain the lists running through each css_set to its
398 * task until after the first call to cgroup_iter_start(). This
399 * reduces the fork()/exit() overhead for people who have cgroups
400 * compiled into their kernel but not actually in use */
401 static int use_task_css_set_links __read_mostly;
402
403 static void __put_css_set(struct css_set *cset, int taskexit)
404 {
405 struct cgrp_cset_link *link, *tmp_link;
406
407 /*
408 * Ensure that the refcount doesn't hit zero while any readers
409 * can see it. Similar to atomic_dec_and_lock(), but for an
410 * rwlock
411 */
412 if (atomic_add_unless(&cset->refcount, -1, 1))
413 return;
414 write_lock(&css_set_lock);
415 if (!atomic_dec_and_test(&cset->refcount)) {
416 write_unlock(&css_set_lock);
417 return;
418 }
419
420 /* This css_set is dead. unlink it and release cgroup refcounts */
421 hash_del(&cset->hlist);
422 css_set_count--;
423
424 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
425 struct cgroup *cgrp = link->cgrp;
426
427 list_del(&link->cset_link);
428 list_del(&link->cgrp_link);
429
430 /* @cgrp can't go away while we're holding css_set_lock */
431 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
432 if (taskexit)
433 set_bit(CGRP_RELEASABLE, &cgrp->flags);
434 check_for_release(cgrp);
435 }
436
437 kfree(link);
438 }
439
440 write_unlock(&css_set_lock);
441 kfree_rcu(cset, rcu_head);
442 }
443
444 /*
445 * refcounted get/put for css_set objects
446 */
447 static inline void get_css_set(struct css_set *cset)
448 {
449 atomic_inc(&cset->refcount);
450 }
451
452 static inline void put_css_set(struct css_set *cset)
453 {
454 __put_css_set(cset, 0);
455 }
456
457 static inline void put_css_set_taskexit(struct css_set *cset)
458 {
459 __put_css_set(cset, 1);
460 }
461
462 /**
463 * compare_css_sets - helper function for find_existing_css_set().
464 * @cset: candidate css_set being tested
465 * @old_cset: existing css_set for a task
466 * @new_cgrp: cgroup that's being entered by the task
467 * @template: desired set of css pointers in css_set (pre-calculated)
468 *
469 * Returns true if "cg" matches "old_cg" except for the hierarchy
470 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
471 */
472 static bool compare_css_sets(struct css_set *cset,
473 struct css_set *old_cset,
474 struct cgroup *new_cgrp,
475 struct cgroup_subsys_state *template[])
476 {
477 struct list_head *l1, *l2;
478
479 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
480 /* Not all subsystems matched */
481 return false;
482 }
483
484 /*
485 * Compare cgroup pointers in order to distinguish between
486 * different cgroups in heirarchies with no subsystems. We
487 * could get by with just this check alone (and skip the
488 * memcmp above) but on most setups the memcmp check will
489 * avoid the need for this more expensive check on almost all
490 * candidates.
491 */
492
493 l1 = &cset->cgrp_links;
494 l2 = &old_cset->cgrp_links;
495 while (1) {
496 struct cgrp_cset_link *link1, *link2;
497 struct cgroup *cgrp1, *cgrp2;
498
499 l1 = l1->next;
500 l2 = l2->next;
501 /* See if we reached the end - both lists are equal length. */
502 if (l1 == &cset->cgrp_links) {
503 BUG_ON(l2 != &old_cset->cgrp_links);
504 break;
505 } else {
506 BUG_ON(l2 == &old_cset->cgrp_links);
507 }
508 /* Locate the cgroups associated with these links. */
509 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
510 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
511 cgrp1 = link1->cgrp;
512 cgrp2 = link2->cgrp;
513 /* Hierarchies should be linked in the same order. */
514 BUG_ON(cgrp1->root != cgrp2->root);
515
516 /*
517 * If this hierarchy is the hierarchy of the cgroup
518 * that's changing, then we need to check that this
519 * css_set points to the new cgroup; if it's any other
520 * hierarchy, then this css_set should point to the
521 * same cgroup as the old css_set.
522 */
523 if (cgrp1->root == new_cgrp->root) {
524 if (cgrp1 != new_cgrp)
525 return false;
526 } else {
527 if (cgrp1 != cgrp2)
528 return false;
529 }
530 }
531 return true;
532 }
533
534 /**
535 * find_existing_css_set - init css array and find the matching css_set
536 * @old_cset: the css_set that we're using before the cgroup transition
537 * @cgrp: the cgroup that we're moving into
538 * @template: out param for the new set of csses, should be clear on entry
539 */
540 static struct css_set *find_existing_css_set(struct css_set *old_cset,
541 struct cgroup *cgrp,
542 struct cgroup_subsys_state *template[])
543 {
544 struct cgroupfs_root *root = cgrp->root;
545 struct cgroup_subsys *ss;
546 struct css_set *cset;
547 unsigned long key;
548 int i;
549
550 /*
551 * Build the set of subsystem state objects that we want to see in the
552 * new css_set. while subsystems can change globally, the entries here
553 * won't change, so no need for locking.
554 */
555 for_each_subsys(ss, i) {
556 if (root->subsys_mask & (1UL << i)) {
557 /* Subsystem is in this hierarchy. So we want
558 * the subsystem state from the new
559 * cgroup */
560 template[i] = cgrp->subsys[i];
561 } else {
562 /* Subsystem is not in this hierarchy, so we
563 * don't want to change the subsystem state */
564 template[i] = old_cset->subsys[i];
565 }
566 }
567
568 key = css_set_hash(template);
569 hash_for_each_possible(css_set_table, cset, hlist, key) {
570 if (!compare_css_sets(cset, old_cset, cgrp, template))
571 continue;
572
573 /* This css_set matches what we need */
574 return cset;
575 }
576
577 /* No existing cgroup group matched */
578 return NULL;
579 }
580
581 static void free_cgrp_cset_links(struct list_head *links_to_free)
582 {
583 struct cgrp_cset_link *link, *tmp_link;
584
585 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
586 list_del(&link->cset_link);
587 kfree(link);
588 }
589 }
590
591 /**
592 * allocate_cgrp_cset_links - allocate cgrp_cset_links
593 * @count: the number of links to allocate
594 * @tmp_links: list_head the allocated links are put on
595 *
596 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
597 * through ->cset_link. Returns 0 on success or -errno.
598 */
599 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
600 {
601 struct cgrp_cset_link *link;
602 int i;
603
604 INIT_LIST_HEAD(tmp_links);
605
606 for (i = 0; i < count; i++) {
607 link = kzalloc(sizeof(*link), GFP_KERNEL);
608 if (!link) {
609 free_cgrp_cset_links(tmp_links);
610 return -ENOMEM;
611 }
612 list_add(&link->cset_link, tmp_links);
613 }
614 return 0;
615 }
616
617 /**
618 * link_css_set - a helper function to link a css_set to a cgroup
619 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
620 * @cset: the css_set to be linked
621 * @cgrp: the destination cgroup
622 */
623 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
624 struct cgroup *cgrp)
625 {
626 struct cgrp_cset_link *link;
627
628 BUG_ON(list_empty(tmp_links));
629 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
630 link->cset = cset;
631 link->cgrp = cgrp;
632 list_move(&link->cset_link, &cgrp->cset_links);
633 /*
634 * Always add links to the tail of the list so that the list
635 * is sorted by order of hierarchy creation
636 */
637 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
638 }
639
640 /**
641 * find_css_set - return a new css_set with one cgroup updated
642 * @old_cset: the baseline css_set
643 * @cgrp: the cgroup to be updated
644 *
645 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
646 * substituted into the appropriate hierarchy.
647 */
648 static struct css_set *find_css_set(struct css_set *old_cset,
649 struct cgroup *cgrp)
650 {
651 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
652 struct css_set *cset;
653 struct list_head tmp_links;
654 struct cgrp_cset_link *link;
655 unsigned long key;
656
657 lockdep_assert_held(&cgroup_mutex);
658
659 /* First see if we already have a cgroup group that matches
660 * the desired set */
661 read_lock(&css_set_lock);
662 cset = find_existing_css_set(old_cset, cgrp, template);
663 if (cset)
664 get_css_set(cset);
665 read_unlock(&css_set_lock);
666
667 if (cset)
668 return cset;
669
670 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
671 if (!cset)
672 return NULL;
673
674 /* Allocate all the cgrp_cset_link objects that we'll need */
675 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
676 kfree(cset);
677 return NULL;
678 }
679
680 atomic_set(&cset->refcount, 1);
681 INIT_LIST_HEAD(&cset->cgrp_links);
682 INIT_LIST_HEAD(&cset->tasks);
683 INIT_HLIST_NODE(&cset->hlist);
684
685 /* Copy the set of subsystem state objects generated in
686 * find_existing_css_set() */
687 memcpy(cset->subsys, template, sizeof(cset->subsys));
688
689 write_lock(&css_set_lock);
690 /* Add reference counts and links from the new css_set. */
691 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
692 struct cgroup *c = link->cgrp;
693
694 if (c->root == cgrp->root)
695 c = cgrp;
696 link_css_set(&tmp_links, cset, c);
697 }
698
699 BUG_ON(!list_empty(&tmp_links));
700
701 css_set_count++;
702
703 /* Add this cgroup group to the hash table */
704 key = css_set_hash(cset->subsys);
705 hash_add(css_set_table, &cset->hlist, key);
706
707 write_unlock(&css_set_lock);
708
709 return cset;
710 }
711
712 /*
713 * Return the cgroup for "task" from the given hierarchy. Must be
714 * called with cgroup_mutex held.
715 */
716 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
717 struct cgroupfs_root *root)
718 {
719 struct css_set *cset;
720 struct cgroup *res = NULL;
721
722 BUG_ON(!mutex_is_locked(&cgroup_mutex));
723 read_lock(&css_set_lock);
724 /*
725 * No need to lock the task - since we hold cgroup_mutex the
726 * task can't change groups, so the only thing that can happen
727 * is that it exits and its css is set back to init_css_set.
728 */
729 cset = task_css_set(task);
730 if (cset == &init_css_set) {
731 res = &root->top_cgroup;
732 } else {
733 struct cgrp_cset_link *link;
734
735 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
736 struct cgroup *c = link->cgrp;
737
738 if (c->root == root) {
739 res = c;
740 break;
741 }
742 }
743 }
744 read_unlock(&css_set_lock);
745 BUG_ON(!res);
746 return res;
747 }
748
749 /*
750 * There is one global cgroup mutex. We also require taking
751 * task_lock() when dereferencing a task's cgroup subsys pointers.
752 * See "The task_lock() exception", at the end of this comment.
753 *
754 * A task must hold cgroup_mutex to modify cgroups.
755 *
756 * Any task can increment and decrement the count field without lock.
757 * So in general, code holding cgroup_mutex can't rely on the count
758 * field not changing. However, if the count goes to zero, then only
759 * cgroup_attach_task() can increment it again. Because a count of zero
760 * means that no tasks are currently attached, therefore there is no
761 * way a task attached to that cgroup can fork (the other way to
762 * increment the count). So code holding cgroup_mutex can safely
763 * assume that if the count is zero, it will stay zero. Similarly, if
764 * a task holds cgroup_mutex on a cgroup with zero count, it
765 * knows that the cgroup won't be removed, as cgroup_rmdir()
766 * needs that mutex.
767 *
768 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
769 * (usually) take cgroup_mutex. These are the two most performance
770 * critical pieces of code here. The exception occurs on cgroup_exit(),
771 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
772 * is taken, and if the cgroup count is zero, a usermode call made
773 * to the release agent with the name of the cgroup (path relative to
774 * the root of cgroup file system) as the argument.
775 *
776 * A cgroup can only be deleted if both its 'count' of using tasks
777 * is zero, and its list of 'children' cgroups is empty. Since all
778 * tasks in the system use _some_ cgroup, and since there is always at
779 * least one task in the system (init, pid == 1), therefore, top_cgroup
780 * always has either children cgroups and/or using tasks. So we don't
781 * need a special hack to ensure that top_cgroup cannot be deleted.
782 *
783 * The task_lock() exception
784 *
785 * The need for this exception arises from the action of
786 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
787 * another. It does so using cgroup_mutex, however there are
788 * several performance critical places that need to reference
789 * task->cgroup without the expense of grabbing a system global
790 * mutex. Therefore except as noted below, when dereferencing or, as
791 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
792 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
793 * the task_struct routinely used for such matters.
794 *
795 * P.S. One more locking exception. RCU is used to guard the
796 * update of a tasks cgroup pointer by cgroup_attach_task()
797 */
798
799 /*
800 * A couple of forward declarations required, due to cyclic reference loop:
801 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
802 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
803 * -> cgroup_mkdir.
804 */
805
806 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
807 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
808 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
809 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
810 static const struct inode_operations cgroup_dir_inode_operations;
811 static const struct file_operations proc_cgroupstats_operations;
812
813 static struct backing_dev_info cgroup_backing_dev_info = {
814 .name = "cgroup",
815 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
816 };
817
818 static int alloc_css_id(struct cgroup_subsys *ss,
819 struct cgroup *parent, struct cgroup *child);
820
821 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
822 {
823 struct inode *inode = new_inode(sb);
824
825 if (inode) {
826 inode->i_ino = get_next_ino();
827 inode->i_mode = mode;
828 inode->i_uid = current_fsuid();
829 inode->i_gid = current_fsgid();
830 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
831 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
832 }
833 return inode;
834 }
835
836 static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
837 {
838 struct cgroup_name *name;
839
840 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
841 if (!name)
842 return NULL;
843 strcpy(name->name, dentry->d_name.name);
844 return name;
845 }
846
847 static void cgroup_free_fn(struct work_struct *work)
848 {
849 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
850 struct cgroup_subsys *ss;
851
852 mutex_lock(&cgroup_mutex);
853 /*
854 * Release the subsystem state objects.
855 */
856 for_each_root_subsys(cgrp->root, ss)
857 ss->css_free(cgrp);
858
859 cgrp->root->number_of_cgroups--;
860 mutex_unlock(&cgroup_mutex);
861
862 /*
863 * We get a ref to the parent's dentry, and put the ref when
864 * this cgroup is being freed, so it's guaranteed that the
865 * parent won't be destroyed before its children.
866 */
867 dput(cgrp->parent->dentry);
868
869 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
870
871 /*
872 * Drop the active superblock reference that we took when we
873 * created the cgroup. This will free cgrp->root, if we are
874 * holding the last reference to @sb.
875 */
876 deactivate_super(cgrp->root->sb);
877
878 /*
879 * if we're getting rid of the cgroup, refcount should ensure
880 * that there are no pidlists left.
881 */
882 BUG_ON(!list_empty(&cgrp->pidlists));
883
884 simple_xattrs_free(&cgrp->xattrs);
885
886 kfree(rcu_dereference_raw(cgrp->name));
887 kfree(cgrp);
888 }
889
890 static void cgroup_free_rcu(struct rcu_head *head)
891 {
892 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
893
894 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
895 schedule_work(&cgrp->destroy_work);
896 }
897
898 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
899 {
900 /* is dentry a directory ? if so, kfree() associated cgroup */
901 if (S_ISDIR(inode->i_mode)) {
902 struct cgroup *cgrp = dentry->d_fsdata;
903
904 BUG_ON(!(cgroup_is_dead(cgrp)));
905 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
906 } else {
907 struct cfent *cfe = __d_cfe(dentry);
908 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
909
910 WARN_ONCE(!list_empty(&cfe->node) &&
911 cgrp != &cgrp->root->top_cgroup,
912 "cfe still linked for %s\n", cfe->type->name);
913 simple_xattrs_free(&cfe->xattrs);
914 kfree(cfe);
915 }
916 iput(inode);
917 }
918
919 static int cgroup_delete(const struct dentry *d)
920 {
921 return 1;
922 }
923
924 static void remove_dir(struct dentry *d)
925 {
926 struct dentry *parent = dget(d->d_parent);
927
928 d_delete(d);
929 simple_rmdir(parent->d_inode, d);
930 dput(parent);
931 }
932
933 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
934 {
935 struct cfent *cfe;
936
937 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
938 lockdep_assert_held(&cgroup_mutex);
939
940 /*
941 * If we're doing cleanup due to failure of cgroup_create(),
942 * the corresponding @cfe may not exist.
943 */
944 list_for_each_entry(cfe, &cgrp->files, node) {
945 struct dentry *d = cfe->dentry;
946
947 if (cft && cfe->type != cft)
948 continue;
949
950 dget(d);
951 d_delete(d);
952 simple_unlink(cgrp->dentry->d_inode, d);
953 list_del_init(&cfe->node);
954 dput(d);
955
956 break;
957 }
958 }
959
960 /**
961 * cgroup_clear_dir - remove subsys files in a cgroup directory
962 * @cgrp: target cgroup
963 * @subsys_mask: mask of the subsystem ids whose files should be removed
964 */
965 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
966 {
967 struct cgroup_subsys *ss;
968 int i;
969
970 for_each_subsys(ss, i) {
971 struct cftype_set *set;
972
973 if (!test_bit(i, &subsys_mask))
974 continue;
975 list_for_each_entry(set, &ss->cftsets, node)
976 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
977 }
978 }
979
980 /*
981 * NOTE : the dentry must have been dget()'ed
982 */
983 static void cgroup_d_remove_dir(struct dentry *dentry)
984 {
985 struct dentry *parent;
986
987 parent = dentry->d_parent;
988 spin_lock(&parent->d_lock);
989 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
990 list_del_init(&dentry->d_u.d_child);
991 spin_unlock(&dentry->d_lock);
992 spin_unlock(&parent->d_lock);
993 remove_dir(dentry);
994 }
995
996 /*
997 * Call with cgroup_mutex held. Drops reference counts on modules, including
998 * any duplicate ones that parse_cgroupfs_options took. If this function
999 * returns an error, no reference counts are touched.
1000 */
1001 static int rebind_subsystems(struct cgroupfs_root *root,
1002 unsigned long added_mask, unsigned removed_mask)
1003 {
1004 struct cgroup *cgrp = &root->top_cgroup;
1005 struct cgroup_subsys *ss;
1006 int i, ret;
1007
1008 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1009 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1010
1011 /* Check that any added subsystems are currently free */
1012 for_each_subsys(ss, i) {
1013 unsigned long bit = 1UL << i;
1014
1015 if (!(bit & added_mask))
1016 continue;
1017
1018 if (ss->root != &cgroup_dummy_root) {
1019 /* Subsystem isn't free */
1020 return -EBUSY;
1021 }
1022 }
1023
1024 /* Currently we don't handle adding/removing subsystems when
1025 * any child cgroups exist. This is theoretically supportable
1026 * but involves complex error handling, so it's being left until
1027 * later */
1028 if (root->number_of_cgroups > 1)
1029 return -EBUSY;
1030
1031 ret = cgroup_populate_dir(cgrp, added_mask);
1032 if (ret)
1033 return ret;
1034
1035 /*
1036 * Nothing can fail from this point on. Remove files for the
1037 * removed subsystems and rebind each subsystem.
1038 */
1039 cgroup_clear_dir(cgrp, removed_mask);
1040
1041 for_each_subsys(ss, i) {
1042 unsigned long bit = 1UL << i;
1043
1044 if (bit & added_mask) {
1045 /* We're binding this subsystem to this hierarchy */
1046 BUG_ON(cgrp->subsys[i]);
1047 BUG_ON(!cgroup_dummy_top->subsys[i]);
1048 BUG_ON(cgroup_dummy_top->subsys[i]->cgroup != cgroup_dummy_top);
1049
1050 cgrp->subsys[i] = cgroup_dummy_top->subsys[i];
1051 cgrp->subsys[i]->cgroup = cgrp;
1052 list_move(&ss->sibling, &root->subsys_list);
1053 ss->root = root;
1054 if (ss->bind)
1055 ss->bind(cgrp);
1056
1057 /* refcount was already taken, and we're keeping it */
1058 root->subsys_mask |= bit;
1059 } else if (bit & removed_mask) {
1060 /* We're removing this subsystem */
1061 BUG_ON(cgrp->subsys[i] != cgroup_dummy_top->subsys[i]);
1062 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1063
1064 if (ss->bind)
1065 ss->bind(cgroup_dummy_top);
1066 cgroup_dummy_top->subsys[i]->cgroup = cgroup_dummy_top;
1067 cgrp->subsys[i] = NULL;
1068 cgroup_subsys[i]->root = &cgroup_dummy_root;
1069 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
1070
1071 /* subsystem is now free - drop reference on module */
1072 module_put(ss->module);
1073 root->subsys_mask &= ~bit;
1074 } else if (bit & root->subsys_mask) {
1075 /* Subsystem state should already exist */
1076 BUG_ON(!cgrp->subsys[i]);
1077 /*
1078 * a refcount was taken, but we already had one, so
1079 * drop the extra reference.
1080 */
1081 module_put(ss->module);
1082 #ifdef CONFIG_MODULE_UNLOAD
1083 BUG_ON(ss->module && !module_refcount(ss->module));
1084 #endif
1085 } else {
1086 /* Subsystem state shouldn't exist */
1087 BUG_ON(cgrp->subsys[i]);
1088 }
1089 }
1090
1091 /*
1092 * Mark @root has finished binding subsystems. @root->subsys_mask
1093 * now matches the bound subsystems.
1094 */
1095 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1096
1097 return 0;
1098 }
1099
1100 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1101 {
1102 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1103 struct cgroup_subsys *ss;
1104
1105 mutex_lock(&cgroup_root_mutex);
1106 for_each_root_subsys(root, ss)
1107 seq_printf(seq, ",%s", ss->name);
1108 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1109 seq_puts(seq, ",sane_behavior");
1110 if (root->flags & CGRP_ROOT_NOPREFIX)
1111 seq_puts(seq, ",noprefix");
1112 if (root->flags & CGRP_ROOT_XATTR)
1113 seq_puts(seq, ",xattr");
1114 if (strlen(root->release_agent_path))
1115 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1116 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
1117 seq_puts(seq, ",clone_children");
1118 if (strlen(root->name))
1119 seq_printf(seq, ",name=%s", root->name);
1120 mutex_unlock(&cgroup_root_mutex);
1121 return 0;
1122 }
1123
1124 struct cgroup_sb_opts {
1125 unsigned long subsys_mask;
1126 unsigned long flags;
1127 char *release_agent;
1128 bool cpuset_clone_children;
1129 char *name;
1130 /* User explicitly requested empty subsystem */
1131 bool none;
1132
1133 struct cgroupfs_root *new_root;
1134
1135 };
1136
1137 /*
1138 * Convert a hierarchy specifier into a bitmask of subsystems and
1139 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1140 * array. This function takes refcounts on subsystems to be used, unless it
1141 * returns error, in which case no refcounts are taken.
1142 */
1143 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1144 {
1145 char *token, *o = data;
1146 bool all_ss = false, one_ss = false;
1147 unsigned long mask = (unsigned long)-1;
1148 bool module_pin_failed = false;
1149 struct cgroup_subsys *ss;
1150 int i;
1151
1152 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1153
1154 #ifdef CONFIG_CPUSETS
1155 mask = ~(1UL << cpuset_subsys_id);
1156 #endif
1157
1158 memset(opts, 0, sizeof(*opts));
1159
1160 while ((token = strsep(&o, ",")) != NULL) {
1161 if (!*token)
1162 return -EINVAL;
1163 if (!strcmp(token, "none")) {
1164 /* Explicitly have no subsystems */
1165 opts->none = true;
1166 continue;
1167 }
1168 if (!strcmp(token, "all")) {
1169 /* Mutually exclusive option 'all' + subsystem name */
1170 if (one_ss)
1171 return -EINVAL;
1172 all_ss = true;
1173 continue;
1174 }
1175 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1176 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1177 continue;
1178 }
1179 if (!strcmp(token, "noprefix")) {
1180 opts->flags |= CGRP_ROOT_NOPREFIX;
1181 continue;
1182 }
1183 if (!strcmp(token, "clone_children")) {
1184 opts->cpuset_clone_children = true;
1185 continue;
1186 }
1187 if (!strcmp(token, "xattr")) {
1188 opts->flags |= CGRP_ROOT_XATTR;
1189 continue;
1190 }
1191 if (!strncmp(token, "release_agent=", 14)) {
1192 /* Specifying two release agents is forbidden */
1193 if (opts->release_agent)
1194 return -EINVAL;
1195 opts->release_agent =
1196 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1197 if (!opts->release_agent)
1198 return -ENOMEM;
1199 continue;
1200 }
1201 if (!strncmp(token, "name=", 5)) {
1202 const char *name = token + 5;
1203 /* Can't specify an empty name */
1204 if (!strlen(name))
1205 return -EINVAL;
1206 /* Must match [\w.-]+ */
1207 for (i = 0; i < strlen(name); i++) {
1208 char c = name[i];
1209 if (isalnum(c))
1210 continue;
1211 if ((c == '.') || (c == '-') || (c == '_'))
1212 continue;
1213 return -EINVAL;
1214 }
1215 /* Specifying two names is forbidden */
1216 if (opts->name)
1217 return -EINVAL;
1218 opts->name = kstrndup(name,
1219 MAX_CGROUP_ROOT_NAMELEN - 1,
1220 GFP_KERNEL);
1221 if (!opts->name)
1222 return -ENOMEM;
1223
1224 continue;
1225 }
1226
1227 for_each_subsys(ss, i) {
1228 if (strcmp(token, ss->name))
1229 continue;
1230 if (ss->disabled)
1231 continue;
1232
1233 /* Mutually exclusive option 'all' + subsystem name */
1234 if (all_ss)
1235 return -EINVAL;
1236 set_bit(i, &opts->subsys_mask);
1237 one_ss = true;
1238
1239 break;
1240 }
1241 if (i == CGROUP_SUBSYS_COUNT)
1242 return -ENOENT;
1243 }
1244
1245 /*
1246 * If the 'all' option was specified select all the subsystems,
1247 * otherwise if 'none', 'name=' and a subsystem name options
1248 * were not specified, let's default to 'all'
1249 */
1250 if (all_ss || (!one_ss && !opts->none && !opts->name))
1251 for_each_subsys(ss, i)
1252 if (!ss->disabled)
1253 set_bit(i, &opts->subsys_mask);
1254
1255 /* Consistency checks */
1256
1257 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1258 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1259
1260 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1261 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1262 return -EINVAL;
1263 }
1264
1265 if (opts->cpuset_clone_children) {
1266 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1267 return -EINVAL;
1268 }
1269 }
1270
1271 /*
1272 * Option noprefix was introduced just for backward compatibility
1273 * with the old cpuset, so we allow noprefix only if mounting just
1274 * the cpuset subsystem.
1275 */
1276 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1277 return -EINVAL;
1278
1279
1280 /* Can't specify "none" and some subsystems */
1281 if (opts->subsys_mask && opts->none)
1282 return -EINVAL;
1283
1284 /*
1285 * We either have to specify by name or by subsystems. (So all
1286 * empty hierarchies must have a name).
1287 */
1288 if (!opts->subsys_mask && !opts->name)
1289 return -EINVAL;
1290
1291 /*
1292 * Grab references on all the modules we'll need, so the subsystems
1293 * don't dance around before rebind_subsystems attaches them. This may
1294 * take duplicate reference counts on a subsystem that's already used,
1295 * but rebind_subsystems handles this case.
1296 */
1297 for_each_subsys(ss, i) {
1298 if (!(opts->subsys_mask & (1UL << i)))
1299 continue;
1300 if (!try_module_get(cgroup_subsys[i]->module)) {
1301 module_pin_failed = true;
1302 break;
1303 }
1304 }
1305 if (module_pin_failed) {
1306 /*
1307 * oops, one of the modules was going away. this means that we
1308 * raced with a module_delete call, and to the user this is
1309 * essentially a "subsystem doesn't exist" case.
1310 */
1311 for (i--; i >= 0; i--) {
1312 /* drop refcounts only on the ones we took */
1313 unsigned long bit = 1UL << i;
1314
1315 if (!(bit & opts->subsys_mask))
1316 continue;
1317 module_put(cgroup_subsys[i]->module);
1318 }
1319 return -ENOENT;
1320 }
1321
1322 return 0;
1323 }
1324
1325 static void drop_parsed_module_refcounts(unsigned long subsys_mask)
1326 {
1327 struct cgroup_subsys *ss;
1328 int i;
1329
1330 mutex_lock(&cgroup_mutex);
1331 for_each_subsys(ss, i)
1332 if (subsys_mask & (1UL << i))
1333 module_put(cgroup_subsys[i]->module);
1334 mutex_unlock(&cgroup_mutex);
1335 }
1336
1337 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1338 {
1339 int ret = 0;
1340 struct cgroupfs_root *root = sb->s_fs_info;
1341 struct cgroup *cgrp = &root->top_cgroup;
1342 struct cgroup_sb_opts opts;
1343 unsigned long added_mask, removed_mask;
1344
1345 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1346 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1347 return -EINVAL;
1348 }
1349
1350 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1351 mutex_lock(&cgroup_mutex);
1352 mutex_lock(&cgroup_root_mutex);
1353
1354 /* See what subsystems are wanted */
1355 ret = parse_cgroupfs_options(data, &opts);
1356 if (ret)
1357 goto out_unlock;
1358
1359 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1360 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1361 task_tgid_nr(current), current->comm);
1362
1363 added_mask = opts.subsys_mask & ~root->subsys_mask;
1364 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1365
1366 /* Don't allow flags or name to change at remount */
1367 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
1368 (opts.name && strcmp(opts.name, root->name))) {
1369 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1370 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1371 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
1372 ret = -EINVAL;
1373 goto out_unlock;
1374 }
1375
1376 ret = rebind_subsystems(root, added_mask, removed_mask);
1377 if (ret)
1378 goto out_unlock;
1379
1380 if (opts.release_agent)
1381 strcpy(root->release_agent_path, opts.release_agent);
1382 out_unlock:
1383 kfree(opts.release_agent);
1384 kfree(opts.name);
1385 mutex_unlock(&cgroup_root_mutex);
1386 mutex_unlock(&cgroup_mutex);
1387 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1388 if (ret)
1389 drop_parsed_module_refcounts(opts.subsys_mask);
1390 return ret;
1391 }
1392
1393 static const struct super_operations cgroup_ops = {
1394 .statfs = simple_statfs,
1395 .drop_inode = generic_delete_inode,
1396 .show_options = cgroup_show_options,
1397 .remount_fs = cgroup_remount,
1398 };
1399
1400 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1401 {
1402 INIT_LIST_HEAD(&cgrp->sibling);
1403 INIT_LIST_HEAD(&cgrp->children);
1404 INIT_LIST_HEAD(&cgrp->files);
1405 INIT_LIST_HEAD(&cgrp->cset_links);
1406 INIT_LIST_HEAD(&cgrp->release_list);
1407 INIT_LIST_HEAD(&cgrp->pidlists);
1408 mutex_init(&cgrp->pidlist_mutex);
1409 INIT_LIST_HEAD(&cgrp->event_list);
1410 spin_lock_init(&cgrp->event_list_lock);
1411 simple_xattrs_init(&cgrp->xattrs);
1412 }
1413
1414 static void init_cgroup_root(struct cgroupfs_root *root)
1415 {
1416 struct cgroup *cgrp = &root->top_cgroup;
1417
1418 INIT_LIST_HEAD(&root->subsys_list);
1419 INIT_LIST_HEAD(&root->root_list);
1420 root->number_of_cgroups = 1;
1421 cgrp->root = root;
1422 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
1423 init_cgroup_housekeeping(cgrp);
1424 }
1425
1426 static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
1427 {
1428 int id;
1429
1430 lockdep_assert_held(&cgroup_mutex);
1431 lockdep_assert_held(&cgroup_root_mutex);
1432
1433 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1434 GFP_KERNEL);
1435 if (id < 0)
1436 return id;
1437
1438 root->hierarchy_id = id;
1439 return 0;
1440 }
1441
1442 static void cgroup_exit_root_id(struct cgroupfs_root *root)
1443 {
1444 lockdep_assert_held(&cgroup_mutex);
1445 lockdep_assert_held(&cgroup_root_mutex);
1446
1447 if (root->hierarchy_id) {
1448 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1449 root->hierarchy_id = 0;
1450 }
1451 }
1452
1453 static int cgroup_test_super(struct super_block *sb, void *data)
1454 {
1455 struct cgroup_sb_opts *opts = data;
1456 struct cgroupfs_root *root = sb->s_fs_info;
1457
1458 /* If we asked for a name then it must match */
1459 if (opts->name && strcmp(opts->name, root->name))
1460 return 0;
1461
1462 /*
1463 * If we asked for subsystems (or explicitly for no
1464 * subsystems) then they must match
1465 */
1466 if ((opts->subsys_mask || opts->none)
1467 && (opts->subsys_mask != root->subsys_mask))
1468 return 0;
1469
1470 return 1;
1471 }
1472
1473 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1474 {
1475 struct cgroupfs_root *root;
1476
1477 if (!opts->subsys_mask && !opts->none)
1478 return NULL;
1479
1480 root = kzalloc(sizeof(*root), GFP_KERNEL);
1481 if (!root)
1482 return ERR_PTR(-ENOMEM);
1483
1484 init_cgroup_root(root);
1485
1486 /*
1487 * We need to set @root->subsys_mask now so that @root can be
1488 * matched by cgroup_test_super() before it finishes
1489 * initialization; otherwise, competing mounts with the same
1490 * options may try to bind the same subsystems instead of waiting
1491 * for the first one leading to unexpected mount errors.
1492 * SUBSYS_BOUND will be set once actual binding is complete.
1493 */
1494 root->subsys_mask = opts->subsys_mask;
1495 root->flags = opts->flags;
1496 ida_init(&root->cgroup_ida);
1497 if (opts->release_agent)
1498 strcpy(root->release_agent_path, opts->release_agent);
1499 if (opts->name)
1500 strcpy(root->name, opts->name);
1501 if (opts->cpuset_clone_children)
1502 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
1503 return root;
1504 }
1505
1506 static void cgroup_free_root(struct cgroupfs_root *root)
1507 {
1508 if (root) {
1509 /* hierarhcy ID shoulid already have been released */
1510 WARN_ON_ONCE(root->hierarchy_id);
1511
1512 ida_destroy(&root->cgroup_ida);
1513 kfree(root);
1514 }
1515 }
1516
1517 static int cgroup_set_super(struct super_block *sb, void *data)
1518 {
1519 int ret;
1520 struct cgroup_sb_opts *opts = data;
1521
1522 /* If we don't have a new root, we can't set up a new sb */
1523 if (!opts->new_root)
1524 return -EINVAL;
1525
1526 BUG_ON(!opts->subsys_mask && !opts->none);
1527
1528 ret = set_anon_super(sb, NULL);
1529 if (ret)
1530 return ret;
1531
1532 sb->s_fs_info = opts->new_root;
1533 opts->new_root->sb = sb;
1534
1535 sb->s_blocksize = PAGE_CACHE_SIZE;
1536 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1537 sb->s_magic = CGROUP_SUPER_MAGIC;
1538 sb->s_op = &cgroup_ops;
1539
1540 return 0;
1541 }
1542
1543 static int cgroup_get_rootdir(struct super_block *sb)
1544 {
1545 static const struct dentry_operations cgroup_dops = {
1546 .d_iput = cgroup_diput,
1547 .d_delete = cgroup_delete,
1548 };
1549
1550 struct inode *inode =
1551 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1552
1553 if (!inode)
1554 return -ENOMEM;
1555
1556 inode->i_fop = &simple_dir_operations;
1557 inode->i_op = &cgroup_dir_inode_operations;
1558 /* directories start off with i_nlink == 2 (for "." entry) */
1559 inc_nlink(inode);
1560 sb->s_root = d_make_root(inode);
1561 if (!sb->s_root)
1562 return -ENOMEM;
1563 /* for everything else we want ->d_op set */
1564 sb->s_d_op = &cgroup_dops;
1565 return 0;
1566 }
1567
1568 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1569 int flags, const char *unused_dev_name,
1570 void *data)
1571 {
1572 struct cgroup_sb_opts opts;
1573 struct cgroupfs_root *root;
1574 int ret = 0;
1575 struct super_block *sb;
1576 struct cgroupfs_root *new_root;
1577 struct list_head tmp_links;
1578 struct inode *inode;
1579 const struct cred *cred;
1580
1581 /* First find the desired set of subsystems */
1582 mutex_lock(&cgroup_mutex);
1583 ret = parse_cgroupfs_options(data, &opts);
1584 mutex_unlock(&cgroup_mutex);
1585 if (ret)
1586 goto out_err;
1587
1588 /*
1589 * Allocate a new cgroup root. We may not need it if we're
1590 * reusing an existing hierarchy.
1591 */
1592 new_root = cgroup_root_from_opts(&opts);
1593 if (IS_ERR(new_root)) {
1594 ret = PTR_ERR(new_root);
1595 goto drop_modules;
1596 }
1597 opts.new_root = new_root;
1598
1599 /* Locate an existing or new sb for this hierarchy */
1600 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1601 if (IS_ERR(sb)) {
1602 ret = PTR_ERR(sb);
1603 cgroup_free_root(opts.new_root);
1604 goto drop_modules;
1605 }
1606
1607 root = sb->s_fs_info;
1608 BUG_ON(!root);
1609 if (root == opts.new_root) {
1610 /* We used the new root structure, so this is a new hierarchy */
1611 struct cgroup *root_cgrp = &root->top_cgroup;
1612 struct cgroupfs_root *existing_root;
1613 int i;
1614 struct css_set *cset;
1615
1616 BUG_ON(sb->s_root != NULL);
1617
1618 ret = cgroup_get_rootdir(sb);
1619 if (ret)
1620 goto drop_new_super;
1621 inode = sb->s_root->d_inode;
1622
1623 mutex_lock(&inode->i_mutex);
1624 mutex_lock(&cgroup_mutex);
1625 mutex_lock(&cgroup_root_mutex);
1626
1627 /* Check for name clashes with existing mounts */
1628 ret = -EBUSY;
1629 if (strlen(root->name))
1630 for_each_active_root(existing_root)
1631 if (!strcmp(existing_root->name, root->name))
1632 goto unlock_drop;
1633
1634 /*
1635 * We're accessing css_set_count without locking
1636 * css_set_lock here, but that's OK - it can only be
1637 * increased by someone holding cgroup_lock, and
1638 * that's us. The worst that can happen is that we
1639 * have some link structures left over
1640 */
1641 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1642 if (ret)
1643 goto unlock_drop;
1644
1645 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1646 ret = cgroup_init_root_id(root, 2, 0);
1647 if (ret)
1648 goto unlock_drop;
1649
1650 sb->s_root->d_fsdata = root_cgrp;
1651 root_cgrp->dentry = sb->s_root;
1652
1653 /*
1654 * We're inside get_sb() and will call lookup_one_len() to
1655 * create the root files, which doesn't work if SELinux is
1656 * in use. The following cred dancing somehow works around
1657 * it. See 2ce9738ba ("cgroupfs: use init_cred when
1658 * populating new cgroupfs mount") for more details.
1659 */
1660 cred = override_creds(&init_cred);
1661
1662 ret = cgroup_addrm_files(root_cgrp, NULL, cgroup_base_files, true);
1663 if (ret)
1664 goto rm_base_files;
1665
1666 ret = rebind_subsystems(root, root->subsys_mask, 0);
1667 if (ret)
1668 goto rm_base_files;
1669
1670 revert_creds(cred);
1671
1672 /*
1673 * There must be no failure case after here, since rebinding
1674 * takes care of subsystems' refcounts, which are explicitly
1675 * dropped in the failure exit path.
1676 */
1677
1678 list_add(&root->root_list, &cgroup_roots);
1679 cgroup_root_count++;
1680
1681 /* Link the top cgroup in this hierarchy into all
1682 * the css_set objects */
1683 write_lock(&css_set_lock);
1684 hash_for_each(css_set_table, i, cset, hlist)
1685 link_css_set(&tmp_links, cset, root_cgrp);
1686 write_unlock(&css_set_lock);
1687
1688 free_cgrp_cset_links(&tmp_links);
1689
1690 BUG_ON(!list_empty(&root_cgrp->children));
1691 BUG_ON(root->number_of_cgroups != 1);
1692
1693 mutex_unlock(&cgroup_root_mutex);
1694 mutex_unlock(&cgroup_mutex);
1695 mutex_unlock(&inode->i_mutex);
1696 } else {
1697 /*
1698 * We re-used an existing hierarchy - the new root (if
1699 * any) is not needed
1700 */
1701 cgroup_free_root(opts.new_root);
1702
1703 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
1704 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1705 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1706 ret = -EINVAL;
1707 goto drop_new_super;
1708 } else {
1709 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1710 }
1711 }
1712
1713 /* no subsys rebinding, so refcounts don't change */
1714 drop_parsed_module_refcounts(opts.subsys_mask);
1715 }
1716
1717 kfree(opts.release_agent);
1718 kfree(opts.name);
1719 return dget(sb->s_root);
1720
1721 rm_base_files:
1722 free_cgrp_cset_links(&tmp_links);
1723 cgroup_addrm_files(&root->top_cgroup, NULL, cgroup_base_files, false);
1724 revert_creds(cred);
1725 unlock_drop:
1726 cgroup_exit_root_id(root);
1727 mutex_unlock(&cgroup_root_mutex);
1728 mutex_unlock(&cgroup_mutex);
1729 mutex_unlock(&inode->i_mutex);
1730 drop_new_super:
1731 deactivate_locked_super(sb);
1732 drop_modules:
1733 drop_parsed_module_refcounts(opts.subsys_mask);
1734 out_err:
1735 kfree(opts.release_agent);
1736 kfree(opts.name);
1737 return ERR_PTR(ret);
1738 }
1739
1740 static void cgroup_kill_sb(struct super_block *sb) {
1741 struct cgroupfs_root *root = sb->s_fs_info;
1742 struct cgroup *cgrp = &root->top_cgroup;
1743 struct cgrp_cset_link *link, *tmp_link;
1744 int ret;
1745
1746 BUG_ON(!root);
1747
1748 BUG_ON(root->number_of_cgroups != 1);
1749 BUG_ON(!list_empty(&cgrp->children));
1750
1751 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1752 mutex_lock(&cgroup_mutex);
1753 mutex_lock(&cgroup_root_mutex);
1754
1755 /* Rebind all subsystems back to the default hierarchy */
1756 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1757 ret = rebind_subsystems(root, 0, root->subsys_mask);
1758 /* Shouldn't be able to fail ... */
1759 BUG_ON(ret);
1760 }
1761
1762 /*
1763 * Release all the links from cset_links to this hierarchy's
1764 * root cgroup
1765 */
1766 write_lock(&css_set_lock);
1767
1768 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1769 list_del(&link->cset_link);
1770 list_del(&link->cgrp_link);
1771 kfree(link);
1772 }
1773 write_unlock(&css_set_lock);
1774
1775 if (!list_empty(&root->root_list)) {
1776 list_del(&root->root_list);
1777 cgroup_root_count--;
1778 }
1779
1780 cgroup_exit_root_id(root);
1781
1782 mutex_unlock(&cgroup_root_mutex);
1783 mutex_unlock(&cgroup_mutex);
1784 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1785
1786 simple_xattrs_free(&cgrp->xattrs);
1787
1788 kill_litter_super(sb);
1789 cgroup_free_root(root);
1790 }
1791
1792 static struct file_system_type cgroup_fs_type = {
1793 .name = "cgroup",
1794 .mount = cgroup_mount,
1795 .kill_sb = cgroup_kill_sb,
1796 };
1797
1798 static struct kobject *cgroup_kobj;
1799
1800 /**
1801 * cgroup_path - generate the path of a cgroup
1802 * @cgrp: the cgroup in question
1803 * @buf: the buffer to write the path into
1804 * @buflen: the length of the buffer
1805 *
1806 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1807 *
1808 * We can't generate cgroup path using dentry->d_name, as accessing
1809 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1810 * inode's i_mutex, while on the other hand cgroup_path() can be called
1811 * with some irq-safe spinlocks held.
1812 */
1813 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1814 {
1815 int ret = -ENAMETOOLONG;
1816 char *start;
1817
1818 if (!cgrp->parent) {
1819 if (strlcpy(buf, "/", buflen) >= buflen)
1820 return -ENAMETOOLONG;
1821 return 0;
1822 }
1823
1824 start = buf + buflen - 1;
1825 *start = '\0';
1826
1827 rcu_read_lock();
1828 do {
1829 const char *name = cgroup_name(cgrp);
1830 int len;
1831
1832 len = strlen(name);
1833 if ((start -= len) < buf)
1834 goto out;
1835 memcpy(start, name, len);
1836
1837 if (--start < buf)
1838 goto out;
1839 *start = '/';
1840
1841 cgrp = cgrp->parent;
1842 } while (cgrp->parent);
1843 ret = 0;
1844 memmove(buf, start, buf + buflen - start);
1845 out:
1846 rcu_read_unlock();
1847 return ret;
1848 }
1849 EXPORT_SYMBOL_GPL(cgroup_path);
1850
1851 /**
1852 * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
1853 * @task: target task
1854 * @hierarchy_id: the hierarchy to look up @task's cgroup from
1855 * @buf: the buffer to write the path into
1856 * @buflen: the length of the buffer
1857 *
1858 * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
1859 * copy its path into @buf. This function grabs cgroup_mutex and shouldn't
1860 * be used inside locks used by cgroup controller callbacks.
1861 */
1862 int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
1863 char *buf, size_t buflen)
1864 {
1865 struct cgroupfs_root *root;
1866 struct cgroup *cgrp = NULL;
1867 int ret = -ENOENT;
1868
1869 mutex_lock(&cgroup_mutex);
1870
1871 root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
1872 if (root) {
1873 cgrp = task_cgroup_from_root(task, root);
1874 ret = cgroup_path(cgrp, buf, buflen);
1875 }
1876
1877 mutex_unlock(&cgroup_mutex);
1878
1879 return ret;
1880 }
1881 EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);
1882
1883 /*
1884 * Control Group taskset
1885 */
1886 struct task_and_cgroup {
1887 struct task_struct *task;
1888 struct cgroup *cgrp;
1889 struct css_set *cg;
1890 };
1891
1892 struct cgroup_taskset {
1893 struct task_and_cgroup single;
1894 struct flex_array *tc_array;
1895 int tc_array_len;
1896 int idx;
1897 struct cgroup *cur_cgrp;
1898 };
1899
1900 /**
1901 * cgroup_taskset_first - reset taskset and return the first task
1902 * @tset: taskset of interest
1903 *
1904 * @tset iteration is initialized and the first task is returned.
1905 */
1906 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1907 {
1908 if (tset->tc_array) {
1909 tset->idx = 0;
1910 return cgroup_taskset_next(tset);
1911 } else {
1912 tset->cur_cgrp = tset->single.cgrp;
1913 return tset->single.task;
1914 }
1915 }
1916 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1917
1918 /**
1919 * cgroup_taskset_next - iterate to the next task in taskset
1920 * @tset: taskset of interest
1921 *
1922 * Return the next task in @tset. Iteration must have been initialized
1923 * with cgroup_taskset_first().
1924 */
1925 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1926 {
1927 struct task_and_cgroup *tc;
1928
1929 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1930 return NULL;
1931
1932 tc = flex_array_get(tset->tc_array, tset->idx++);
1933 tset->cur_cgrp = tc->cgrp;
1934 return tc->task;
1935 }
1936 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1937
1938 /**
1939 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1940 * @tset: taskset of interest
1941 *
1942 * Return the cgroup for the current (last returned) task of @tset. This
1943 * function must be preceded by either cgroup_taskset_first() or
1944 * cgroup_taskset_next().
1945 */
1946 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1947 {
1948 return tset->cur_cgrp;
1949 }
1950 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1951
1952 /**
1953 * cgroup_taskset_size - return the number of tasks in taskset
1954 * @tset: taskset of interest
1955 */
1956 int cgroup_taskset_size(struct cgroup_taskset *tset)
1957 {
1958 return tset->tc_array ? tset->tc_array_len : 1;
1959 }
1960 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1961
1962
1963 /*
1964 * cgroup_task_migrate - move a task from one cgroup to another.
1965 *
1966 * Must be called with cgroup_mutex and threadgroup locked.
1967 */
1968 static void cgroup_task_migrate(struct cgroup *old_cgrp,
1969 struct task_struct *tsk,
1970 struct css_set *new_cset)
1971 {
1972 struct css_set *old_cset;
1973
1974 /*
1975 * We are synchronized through threadgroup_lock() against PF_EXITING
1976 * setting such that we can't race against cgroup_exit() changing the
1977 * css_set to init_css_set and dropping the old one.
1978 */
1979 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1980 old_cset = task_css_set(tsk);
1981
1982 task_lock(tsk);
1983 rcu_assign_pointer(tsk->cgroups, new_cset);
1984 task_unlock(tsk);
1985
1986 /* Update the css_set linked lists if we're using them */
1987 write_lock(&css_set_lock);
1988 if (!list_empty(&tsk->cg_list))
1989 list_move(&tsk->cg_list, &new_cset->tasks);
1990 write_unlock(&css_set_lock);
1991
1992 /*
1993 * We just gained a reference on old_cset by taking it from the
1994 * task. As trading it for new_cset is protected by cgroup_mutex,
1995 * we're safe to drop it here; it will be freed under RCU.
1996 */
1997 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1998 put_css_set(old_cset);
1999 }
2000
2001 /**
2002 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2003 * @cgrp: the cgroup to attach to
2004 * @tsk: the task or the leader of the threadgroup to be attached
2005 * @threadgroup: attach the whole threadgroup?
2006 *
2007 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2008 * task_lock of @tsk or each thread in the threadgroup individually in turn.
2009 */
2010 static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
2011 bool threadgroup)
2012 {
2013 int retval, i, group_size;
2014 struct cgroup_subsys *ss, *failed_ss = NULL;
2015 struct cgroupfs_root *root = cgrp->root;
2016 /* threadgroup list cursor and array */
2017 struct task_struct *leader = tsk;
2018 struct task_and_cgroup *tc;
2019 struct flex_array *group;
2020 struct cgroup_taskset tset = { };
2021
2022 /*
2023 * step 0: in order to do expensive, possibly blocking operations for
2024 * every thread, we cannot iterate the thread group list, since it needs
2025 * rcu or tasklist locked. instead, build an array of all threads in the
2026 * group - group_rwsem prevents new threads from appearing, and if
2027 * threads exit, this will just be an over-estimate.
2028 */
2029 if (threadgroup)
2030 group_size = get_nr_threads(tsk);
2031 else
2032 group_size = 1;
2033 /* flex_array supports very large thread-groups better than kmalloc. */
2034 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2035 if (!group)
2036 return -ENOMEM;
2037 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2038 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
2039 if (retval)
2040 goto out_free_group_list;
2041
2042 i = 0;
2043 /*
2044 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2045 * already PF_EXITING could be freed from underneath us unless we
2046 * take an rcu_read_lock.
2047 */
2048 rcu_read_lock();
2049 do {
2050 struct task_and_cgroup ent;
2051
2052 /* @tsk either already exited or can't exit until the end */
2053 if (tsk->flags & PF_EXITING)
2054 continue;
2055
2056 /* as per above, nr_threads may decrease, but not increase. */
2057 BUG_ON(i >= group_size);
2058 ent.task = tsk;
2059 ent.cgrp = task_cgroup_from_root(tsk, root);
2060 /* nothing to do if this task is already in the cgroup */
2061 if (ent.cgrp == cgrp)
2062 continue;
2063 /*
2064 * saying GFP_ATOMIC has no effect here because we did prealloc
2065 * earlier, but it's good form to communicate our expectations.
2066 */
2067 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2068 BUG_ON(retval != 0);
2069 i++;
2070
2071 if (!threadgroup)
2072 break;
2073 } while_each_thread(leader, tsk);
2074 rcu_read_unlock();
2075 /* remember the number of threads in the array for later. */
2076 group_size = i;
2077 tset.tc_array = group;
2078 tset.tc_array_len = group_size;
2079
2080 /* methods shouldn't be called if no task is actually migrating */
2081 retval = 0;
2082 if (!group_size)
2083 goto out_free_group_list;
2084
2085 /*
2086 * step 1: check that we can legitimately attach to the cgroup.
2087 */
2088 for_each_root_subsys(root, ss) {
2089 if (ss->can_attach) {
2090 retval = ss->can_attach(cgrp, &tset);
2091 if (retval) {
2092 failed_ss = ss;
2093 goto out_cancel_attach;
2094 }
2095 }
2096 }
2097
2098 /*
2099 * step 2: make sure css_sets exist for all threads to be migrated.
2100 * we use find_css_set, which allocates a new one if necessary.
2101 */
2102 for (i = 0; i < group_size; i++) {
2103 struct css_set *old_cset;
2104
2105 tc = flex_array_get(group, i);
2106 old_cset = task_css_set(tc->task);
2107 tc->cg = find_css_set(old_cset, cgrp);
2108 if (!tc->cg) {
2109 retval = -ENOMEM;
2110 goto out_put_css_set_refs;
2111 }
2112 }
2113
2114 /*
2115 * step 3: now that we're guaranteed success wrt the css_sets,
2116 * proceed to move all tasks to the new cgroup. There are no
2117 * failure cases after here, so this is the commit point.
2118 */
2119 for (i = 0; i < group_size; i++) {
2120 tc = flex_array_get(group, i);
2121 cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
2122 }
2123 /* nothing is sensitive to fork() after this point. */
2124
2125 /*
2126 * step 4: do subsystem attach callbacks.
2127 */
2128 for_each_root_subsys(root, ss) {
2129 if (ss->attach)
2130 ss->attach(cgrp, &tset);
2131 }
2132
2133 /*
2134 * step 5: success! and cleanup
2135 */
2136 retval = 0;
2137 out_put_css_set_refs:
2138 if (retval) {
2139 for (i = 0; i < group_size; i++) {
2140 tc = flex_array_get(group, i);
2141 if (!tc->cg)
2142 break;
2143 put_css_set(tc->cg);
2144 }
2145 }
2146 out_cancel_attach:
2147 if (retval) {
2148 for_each_root_subsys(root, ss) {
2149 if (ss == failed_ss)
2150 break;
2151 if (ss->cancel_attach)
2152 ss->cancel_attach(cgrp, &tset);
2153 }
2154 }
2155 out_free_group_list:
2156 flex_array_free(group);
2157 return retval;
2158 }
2159
2160 /*
2161 * Find the task_struct of the task to attach by vpid and pass it along to the
2162 * function to attach either it or all tasks in its threadgroup. Will lock
2163 * cgroup_mutex and threadgroup; may take task_lock of task.
2164 */
2165 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2166 {
2167 struct task_struct *tsk;
2168 const struct cred *cred = current_cred(), *tcred;
2169 int ret;
2170
2171 if (!cgroup_lock_live_group(cgrp))
2172 return -ENODEV;
2173
2174 retry_find_task:
2175 rcu_read_lock();
2176 if (pid) {
2177 tsk = find_task_by_vpid(pid);
2178 if (!tsk) {
2179 rcu_read_unlock();
2180 ret= -ESRCH;
2181 goto out_unlock_cgroup;
2182 }
2183 /*
2184 * even if we're attaching all tasks in the thread group, we
2185 * only need to check permissions on one of them.
2186 */
2187 tcred = __task_cred(tsk);
2188 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2189 !uid_eq(cred->euid, tcred->uid) &&
2190 !uid_eq(cred->euid, tcred->suid)) {
2191 rcu_read_unlock();
2192 ret = -EACCES;
2193 goto out_unlock_cgroup;
2194 }
2195 } else
2196 tsk = current;
2197
2198 if (threadgroup)
2199 tsk = tsk->group_leader;
2200
2201 /*
2202 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2203 * trapped in a cpuset, or RT worker may be born in a cgroup
2204 * with no rt_runtime allocated. Just say no.
2205 */
2206 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2207 ret = -EINVAL;
2208 rcu_read_unlock();
2209 goto out_unlock_cgroup;
2210 }
2211
2212 get_task_struct(tsk);
2213 rcu_read_unlock();
2214
2215 threadgroup_lock(tsk);
2216 if (threadgroup) {
2217 if (!thread_group_leader(tsk)) {
2218 /*
2219 * a race with de_thread from another thread's exec()
2220 * may strip us of our leadership, if this happens,
2221 * there is no choice but to throw this task away and
2222 * try again; this is
2223 * "double-double-toil-and-trouble-check locking".
2224 */
2225 threadgroup_unlock(tsk);
2226 put_task_struct(tsk);
2227 goto retry_find_task;
2228 }
2229 }
2230
2231 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2232
2233 threadgroup_unlock(tsk);
2234
2235 put_task_struct(tsk);
2236 out_unlock_cgroup:
2237 mutex_unlock(&cgroup_mutex);
2238 return ret;
2239 }
2240
2241 /**
2242 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2243 * @from: attach to all cgroups of a given task
2244 * @tsk: the task to be attached
2245 */
2246 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2247 {
2248 struct cgroupfs_root *root;
2249 int retval = 0;
2250
2251 mutex_lock(&cgroup_mutex);
2252 for_each_active_root(root) {
2253 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2254
2255 retval = cgroup_attach_task(from_cg, tsk, false);
2256 if (retval)
2257 break;
2258 }
2259 mutex_unlock(&cgroup_mutex);
2260
2261 return retval;
2262 }
2263 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2264
2265 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2266 {
2267 return attach_task_by_pid(cgrp, pid, false);
2268 }
2269
2270 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2271 {
2272 return attach_task_by_pid(cgrp, tgid, true);
2273 }
2274
2275 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2276 const char *buffer)
2277 {
2278 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2279 if (strlen(buffer) >= PATH_MAX)
2280 return -EINVAL;
2281 if (!cgroup_lock_live_group(cgrp))
2282 return -ENODEV;
2283 mutex_lock(&cgroup_root_mutex);
2284 strcpy(cgrp->root->release_agent_path, buffer);
2285 mutex_unlock(&cgroup_root_mutex);
2286 mutex_unlock(&cgroup_mutex);
2287 return 0;
2288 }
2289
2290 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2291 struct seq_file *seq)
2292 {
2293 if (!cgroup_lock_live_group(cgrp))
2294 return -ENODEV;
2295 seq_puts(seq, cgrp->root->release_agent_path);
2296 seq_putc(seq, '\n');
2297 mutex_unlock(&cgroup_mutex);
2298 return 0;
2299 }
2300
2301 static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
2302 struct seq_file *seq)
2303 {
2304 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
2305 return 0;
2306 }
2307
2308 /* A buffer size big enough for numbers or short strings */
2309 #define CGROUP_LOCAL_BUFFER_SIZE 64
2310
2311 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2312 struct file *file,
2313 const char __user *userbuf,
2314 size_t nbytes, loff_t *unused_ppos)
2315 {
2316 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2317 int retval = 0;
2318 char *end;
2319
2320 if (!nbytes)
2321 return -EINVAL;
2322 if (nbytes >= sizeof(buffer))
2323 return -E2BIG;
2324 if (copy_from_user(buffer, userbuf, nbytes))
2325 return -EFAULT;
2326
2327 buffer[nbytes] = 0; /* nul-terminate */
2328 if (cft->write_u64) {
2329 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2330 if (*end)
2331 return -EINVAL;
2332 retval = cft->write_u64(cgrp, cft, val);
2333 } else {
2334 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2335 if (*end)
2336 return -EINVAL;
2337 retval = cft->write_s64(cgrp, cft, val);
2338 }
2339 if (!retval)
2340 retval = nbytes;
2341 return retval;
2342 }
2343
2344 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2345 struct file *file,
2346 const char __user *userbuf,
2347 size_t nbytes, loff_t *unused_ppos)
2348 {
2349 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2350 int retval = 0;
2351 size_t max_bytes = cft->max_write_len;
2352 char *buffer = local_buffer;
2353
2354 if (!max_bytes)
2355 max_bytes = sizeof(local_buffer) - 1;
2356 if (nbytes >= max_bytes)
2357 return -E2BIG;
2358 /* Allocate a dynamic buffer if we need one */
2359 if (nbytes >= sizeof(local_buffer)) {
2360 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2361 if (buffer == NULL)
2362 return -ENOMEM;
2363 }
2364 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2365 retval = -EFAULT;
2366 goto out;
2367 }
2368
2369 buffer[nbytes] = 0; /* nul-terminate */
2370 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2371 if (!retval)
2372 retval = nbytes;
2373 out:
2374 if (buffer != local_buffer)
2375 kfree(buffer);
2376 return retval;
2377 }
2378
2379 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2380 size_t nbytes, loff_t *ppos)
2381 {
2382 struct cftype *cft = __d_cft(file->f_dentry);
2383 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2384
2385 if (cgroup_is_dead(cgrp))
2386 return -ENODEV;
2387 if (cft->write)
2388 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2389 if (cft->write_u64 || cft->write_s64)
2390 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2391 if (cft->write_string)
2392 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2393 if (cft->trigger) {
2394 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2395 return ret ? ret : nbytes;
2396 }
2397 return -EINVAL;
2398 }
2399
2400 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2401 struct file *file,
2402 char __user *buf, size_t nbytes,
2403 loff_t *ppos)
2404 {
2405 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2406 u64 val = cft->read_u64(cgrp, cft);
2407 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2408
2409 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2410 }
2411
2412 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2413 struct file *file,
2414 char __user *buf, size_t nbytes,
2415 loff_t *ppos)
2416 {
2417 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2418 s64 val = cft->read_s64(cgrp, cft);
2419 int len = sprintf(tmp, "%lld\n", (long long) val);
2420
2421 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2422 }
2423
2424 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2425 size_t nbytes, loff_t *ppos)
2426 {
2427 struct cftype *cft = __d_cft(file->f_dentry);
2428 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2429
2430 if (cgroup_is_dead(cgrp))
2431 return -ENODEV;
2432
2433 if (cft->read)
2434 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2435 if (cft->read_u64)
2436 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2437 if (cft->read_s64)
2438 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2439 return -EINVAL;
2440 }
2441
2442 /*
2443 * seqfile ops/methods for returning structured data. Currently just
2444 * supports string->u64 maps, but can be extended in future.
2445 */
2446
2447 struct cgroup_seqfile_state {
2448 struct cftype *cft;
2449 struct cgroup *cgroup;
2450 };
2451
2452 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2453 {
2454 struct seq_file *sf = cb->state;
2455 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2456 }
2457
2458 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2459 {
2460 struct cgroup_seqfile_state *state = m->private;
2461 struct cftype *cft = state->cft;
2462 if (cft->read_map) {
2463 struct cgroup_map_cb cb = {
2464 .fill = cgroup_map_add,
2465 .state = m,
2466 };
2467 return cft->read_map(state->cgroup, cft, &cb);
2468 }
2469 return cft->read_seq_string(state->cgroup, cft, m);
2470 }
2471
2472 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2473 {
2474 struct seq_file *seq = file->private_data;
2475 kfree(seq->private);
2476 return single_release(inode, file);
2477 }
2478
2479 static const struct file_operations cgroup_seqfile_operations = {
2480 .read = seq_read,
2481 .write = cgroup_file_write,
2482 .llseek = seq_lseek,
2483 .release = cgroup_seqfile_release,
2484 };
2485
2486 static int cgroup_file_open(struct inode *inode, struct file *file)
2487 {
2488 int err;
2489 struct cftype *cft;
2490
2491 err = generic_file_open(inode, file);
2492 if (err)
2493 return err;
2494 cft = __d_cft(file->f_dentry);
2495
2496 if (cft->read_map || cft->read_seq_string) {
2497 struct cgroup_seqfile_state *state;
2498
2499 state = kzalloc(sizeof(*state), GFP_USER);
2500 if (!state)
2501 return -ENOMEM;
2502
2503 state->cft = cft;
2504 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2505 file->f_op = &cgroup_seqfile_operations;
2506 err = single_open(file, cgroup_seqfile_show, state);
2507 if (err < 0)
2508 kfree(state);
2509 } else if (cft->open)
2510 err = cft->open(inode, file);
2511 else
2512 err = 0;
2513
2514 return err;
2515 }
2516
2517 static int cgroup_file_release(struct inode *inode, struct file *file)
2518 {
2519 struct cftype *cft = __d_cft(file->f_dentry);
2520 if (cft->release)
2521 return cft->release(inode, file);
2522 return 0;
2523 }
2524
2525 /*
2526 * cgroup_rename - Only allow simple rename of directories in place.
2527 */
2528 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2529 struct inode *new_dir, struct dentry *new_dentry)
2530 {
2531 int ret;
2532 struct cgroup_name *name, *old_name;
2533 struct cgroup *cgrp;
2534
2535 /*
2536 * It's convinient to use parent dir's i_mutex to protected
2537 * cgrp->name.
2538 */
2539 lockdep_assert_held(&old_dir->i_mutex);
2540
2541 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2542 return -ENOTDIR;
2543 if (new_dentry->d_inode)
2544 return -EEXIST;
2545 if (old_dir != new_dir)
2546 return -EIO;
2547
2548 cgrp = __d_cgrp(old_dentry);
2549
2550 /*
2551 * This isn't a proper migration and its usefulness is very
2552 * limited. Disallow if sane_behavior.
2553 */
2554 if (cgroup_sane_behavior(cgrp))
2555 return -EPERM;
2556
2557 name = cgroup_alloc_name(new_dentry);
2558 if (!name)
2559 return -ENOMEM;
2560
2561 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2562 if (ret) {
2563 kfree(name);
2564 return ret;
2565 }
2566
2567 old_name = rcu_dereference_protected(cgrp->name, true);
2568 rcu_assign_pointer(cgrp->name, name);
2569
2570 kfree_rcu(old_name, rcu_head);
2571 return 0;
2572 }
2573
2574 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2575 {
2576 if (S_ISDIR(dentry->d_inode->i_mode))
2577 return &__d_cgrp(dentry)->xattrs;
2578 else
2579 return &__d_cfe(dentry)->xattrs;
2580 }
2581
2582 static inline int xattr_enabled(struct dentry *dentry)
2583 {
2584 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2585 return root->flags & CGRP_ROOT_XATTR;
2586 }
2587
2588 static bool is_valid_xattr(const char *name)
2589 {
2590 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2591 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2592 return true;
2593 return false;
2594 }
2595
2596 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2597 const void *val, size_t size, int flags)
2598 {
2599 if (!xattr_enabled(dentry))
2600 return -EOPNOTSUPP;
2601 if (!is_valid_xattr(name))
2602 return -EINVAL;
2603 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2604 }
2605
2606 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2607 {
2608 if (!xattr_enabled(dentry))
2609 return -EOPNOTSUPP;
2610 if (!is_valid_xattr(name))
2611 return -EINVAL;
2612 return simple_xattr_remove(__d_xattrs(dentry), name);
2613 }
2614
2615 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2616 void *buf, size_t size)
2617 {
2618 if (!xattr_enabled(dentry))
2619 return -EOPNOTSUPP;
2620 if (!is_valid_xattr(name))
2621 return -EINVAL;
2622 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2623 }
2624
2625 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2626 {
2627 if (!xattr_enabled(dentry))
2628 return -EOPNOTSUPP;
2629 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2630 }
2631
2632 static const struct file_operations cgroup_file_operations = {
2633 .read = cgroup_file_read,
2634 .write = cgroup_file_write,
2635 .llseek = generic_file_llseek,
2636 .open = cgroup_file_open,
2637 .release = cgroup_file_release,
2638 };
2639
2640 static const struct inode_operations cgroup_file_inode_operations = {
2641 .setxattr = cgroup_setxattr,
2642 .getxattr = cgroup_getxattr,
2643 .listxattr = cgroup_listxattr,
2644 .removexattr = cgroup_removexattr,
2645 };
2646
2647 static const struct inode_operations cgroup_dir_inode_operations = {
2648 .lookup = cgroup_lookup,
2649 .mkdir = cgroup_mkdir,
2650 .rmdir = cgroup_rmdir,
2651 .rename = cgroup_rename,
2652 .setxattr = cgroup_setxattr,
2653 .getxattr = cgroup_getxattr,
2654 .listxattr = cgroup_listxattr,
2655 .removexattr = cgroup_removexattr,
2656 };
2657
2658 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2659 {
2660 if (dentry->d_name.len > NAME_MAX)
2661 return ERR_PTR(-ENAMETOOLONG);
2662 d_add(dentry, NULL);
2663 return NULL;
2664 }
2665
2666 /*
2667 * Check if a file is a control file
2668 */
2669 static inline struct cftype *__file_cft(struct file *file)
2670 {
2671 if (file_inode(file)->i_fop != &cgroup_file_operations)
2672 return ERR_PTR(-EINVAL);
2673 return __d_cft(file->f_dentry);
2674 }
2675
2676 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2677 struct super_block *sb)
2678 {
2679 struct inode *inode;
2680
2681 if (!dentry)
2682 return -ENOENT;
2683 if (dentry->d_inode)
2684 return -EEXIST;
2685
2686 inode = cgroup_new_inode(mode, sb);
2687 if (!inode)
2688 return -ENOMEM;
2689
2690 if (S_ISDIR(mode)) {
2691 inode->i_op = &cgroup_dir_inode_operations;
2692 inode->i_fop = &simple_dir_operations;
2693
2694 /* start off with i_nlink == 2 (for "." entry) */
2695 inc_nlink(inode);
2696 inc_nlink(dentry->d_parent->d_inode);
2697
2698 /*
2699 * Control reaches here with cgroup_mutex held.
2700 * @inode->i_mutex should nest outside cgroup_mutex but we
2701 * want to populate it immediately without releasing
2702 * cgroup_mutex. As @inode isn't visible to anyone else
2703 * yet, trylock will always succeed without affecting
2704 * lockdep checks.
2705 */
2706 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
2707 } else if (S_ISREG(mode)) {
2708 inode->i_size = 0;
2709 inode->i_fop = &cgroup_file_operations;
2710 inode->i_op = &cgroup_file_inode_operations;
2711 }
2712 d_instantiate(dentry, inode);
2713 dget(dentry); /* Extra count - pin the dentry in core */
2714 return 0;
2715 }
2716
2717 /**
2718 * cgroup_file_mode - deduce file mode of a control file
2719 * @cft: the control file in question
2720 *
2721 * returns cft->mode if ->mode is not 0
2722 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2723 * returns S_IRUGO if it has only a read handler
2724 * returns S_IWUSR if it has only a write hander
2725 */
2726 static umode_t cgroup_file_mode(const struct cftype *cft)
2727 {
2728 umode_t mode = 0;
2729
2730 if (cft->mode)
2731 return cft->mode;
2732
2733 if (cft->read || cft->read_u64 || cft->read_s64 ||
2734 cft->read_map || cft->read_seq_string)
2735 mode |= S_IRUGO;
2736
2737 if (cft->write || cft->write_u64 || cft->write_s64 ||
2738 cft->write_string || cft->trigger)
2739 mode |= S_IWUSR;
2740
2741 return mode;
2742 }
2743
2744 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2745 struct cftype *cft)
2746 {
2747 struct dentry *dir = cgrp->dentry;
2748 struct cgroup *parent = __d_cgrp(dir);
2749 struct dentry *dentry;
2750 struct cfent *cfe;
2751 int error;
2752 umode_t mode;
2753 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2754
2755 if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2756 strcpy(name, subsys->name);
2757 strcat(name, ".");
2758 }
2759 strcat(name, cft->name);
2760
2761 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2762
2763 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2764 if (!cfe)
2765 return -ENOMEM;
2766
2767 dentry = lookup_one_len(name, dir, strlen(name));
2768 if (IS_ERR(dentry)) {
2769 error = PTR_ERR(dentry);
2770 goto out;
2771 }
2772
2773 cfe->type = (void *)cft;
2774 cfe->dentry = dentry;
2775 dentry->d_fsdata = cfe;
2776 simple_xattrs_init(&cfe->xattrs);
2777
2778 mode = cgroup_file_mode(cft);
2779 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2780 if (!error) {
2781 list_add_tail(&cfe->node, &parent->files);
2782 cfe = NULL;
2783 }
2784 dput(dentry);
2785 out:
2786 kfree(cfe);
2787 return error;
2788 }
2789
2790 /**
2791 * cgroup_addrm_files - add or remove files to a cgroup directory
2792 * @cgrp: the target cgroup
2793 * @subsys: the subsystem of files to be added
2794 * @cfts: array of cftypes to be added
2795 * @is_add: whether to add or remove
2796 *
2797 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2798 * All @cfts should belong to @subsys. For removals, this function never
2799 * fails. If addition fails, this function doesn't remove files already
2800 * added. The caller is responsible for cleaning up.
2801 */
2802 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2803 struct cftype cfts[], bool is_add)
2804 {
2805 struct cftype *cft;
2806 int ret;
2807
2808 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
2809 lockdep_assert_held(&cgroup_mutex);
2810
2811 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2812 /* does cft->flags tell us to skip this file on @cgrp? */
2813 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2814 continue;
2815 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2816 continue;
2817 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2818 continue;
2819
2820 if (is_add) {
2821 ret = cgroup_add_file(cgrp, subsys, cft);
2822 if (ret) {
2823 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2824 cft->name, ret);
2825 return ret;
2826 }
2827 } else {
2828 cgroup_rm_file(cgrp, cft);
2829 }
2830 }
2831 return 0;
2832 }
2833
2834 static void cgroup_cfts_prepare(void)
2835 __acquires(&cgroup_mutex)
2836 {
2837 /*
2838 * Thanks to the entanglement with vfs inode locking, we can't walk
2839 * the existing cgroups under cgroup_mutex and create files.
2840 * Instead, we use cgroup_for_each_descendant_pre() and drop RCU
2841 * read lock before calling cgroup_addrm_files().
2842 */
2843 mutex_lock(&cgroup_mutex);
2844 }
2845
2846 static int cgroup_cfts_commit(struct cgroup_subsys *ss,
2847 struct cftype *cfts, bool is_add)
2848 __releases(&cgroup_mutex)
2849 {
2850 LIST_HEAD(pending);
2851 struct cgroup *cgrp, *root = &ss->root->top_cgroup;
2852 struct super_block *sb = ss->root->sb;
2853 struct dentry *prev = NULL;
2854 struct inode *inode;
2855 u64 update_before;
2856 int ret = 0;
2857
2858 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2859 if (!cfts || ss->root == &cgroup_dummy_root ||
2860 !atomic_inc_not_zero(&sb->s_active)) {
2861 mutex_unlock(&cgroup_mutex);
2862 return 0;
2863 }
2864
2865 /*
2866 * All cgroups which are created after we drop cgroup_mutex will
2867 * have the updated set of files, so we only need to update the
2868 * cgroups created before the current @cgroup_serial_nr_next.
2869 */
2870 update_before = cgroup_serial_nr_next;
2871
2872 mutex_unlock(&cgroup_mutex);
2873
2874 /* @root always needs to be updated */
2875 inode = root->dentry->d_inode;
2876 mutex_lock(&inode->i_mutex);
2877 mutex_lock(&cgroup_mutex);
2878 ret = cgroup_addrm_files(root, ss, cfts, is_add);
2879 mutex_unlock(&cgroup_mutex);
2880 mutex_unlock(&inode->i_mutex);
2881
2882 if (ret)
2883 goto out_deact;
2884
2885 /* add/rm files for all cgroups created before */
2886 rcu_read_lock();
2887 cgroup_for_each_descendant_pre(cgrp, root) {
2888 if (cgroup_is_dead(cgrp))
2889 continue;
2890
2891 inode = cgrp->dentry->d_inode;
2892 dget(cgrp->dentry);
2893 rcu_read_unlock();
2894
2895 dput(prev);
2896 prev = cgrp->dentry;
2897
2898 mutex_lock(&inode->i_mutex);
2899 mutex_lock(&cgroup_mutex);
2900 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2901 ret = cgroup_addrm_files(cgrp, ss, cfts, is_add);
2902 mutex_unlock(&cgroup_mutex);
2903 mutex_unlock(&inode->i_mutex);
2904
2905 rcu_read_lock();
2906 if (ret)
2907 break;
2908 }
2909 rcu_read_unlock();
2910 dput(prev);
2911 out_deact:
2912 deactivate_super(sb);
2913 return ret;
2914 }
2915
2916 /**
2917 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2918 * @ss: target cgroup subsystem
2919 * @cfts: zero-length name terminated array of cftypes
2920 *
2921 * Register @cfts to @ss. Files described by @cfts are created for all
2922 * existing cgroups to which @ss is attached and all future cgroups will
2923 * have them too. This function can be called anytime whether @ss is
2924 * attached or not.
2925 *
2926 * Returns 0 on successful registration, -errno on failure. Note that this
2927 * function currently returns 0 as long as @cfts registration is successful
2928 * even if some file creation attempts on existing cgroups fail.
2929 */
2930 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2931 {
2932 struct cftype_set *set;
2933 int ret;
2934
2935 set = kzalloc(sizeof(*set), GFP_KERNEL);
2936 if (!set)
2937 return -ENOMEM;
2938
2939 cgroup_cfts_prepare();
2940 set->cfts = cfts;
2941 list_add_tail(&set->node, &ss->cftsets);
2942 ret = cgroup_cfts_commit(ss, cfts, true);
2943 if (ret)
2944 cgroup_rm_cftypes(ss, cfts);
2945 return ret;
2946 }
2947 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2948
2949 /**
2950 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2951 * @ss: target cgroup subsystem
2952 * @cfts: zero-length name terminated array of cftypes
2953 *
2954 * Unregister @cfts from @ss. Files described by @cfts are removed from
2955 * all existing cgroups to which @ss is attached and all future cgroups
2956 * won't have them either. This function can be called anytime whether @ss
2957 * is attached or not.
2958 *
2959 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2960 * registered with @ss.
2961 */
2962 int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2963 {
2964 struct cftype_set *set;
2965
2966 cgroup_cfts_prepare();
2967
2968 list_for_each_entry(set, &ss->cftsets, node) {
2969 if (set->cfts == cfts) {
2970 list_del(&set->node);
2971 kfree(set);
2972 cgroup_cfts_commit(ss, cfts, false);
2973 return 0;
2974 }
2975 }
2976
2977 cgroup_cfts_commit(ss, NULL, false);
2978 return -ENOENT;
2979 }
2980
2981 /**
2982 * cgroup_task_count - count the number of tasks in a cgroup.
2983 * @cgrp: the cgroup in question
2984 *
2985 * Return the number of tasks in the cgroup.
2986 */
2987 int cgroup_task_count(const struct cgroup *cgrp)
2988 {
2989 int count = 0;
2990 struct cgrp_cset_link *link;
2991
2992 read_lock(&css_set_lock);
2993 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2994 count += atomic_read(&link->cset->refcount);
2995 read_unlock(&css_set_lock);
2996 return count;
2997 }
2998
2999 /*
3000 * Advance a list_head iterator. The iterator should be positioned at
3001 * the start of a css_set
3002 */
3003 static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it)
3004 {
3005 struct list_head *l = it->cset_link;
3006 struct cgrp_cset_link *link;
3007 struct css_set *cset;
3008
3009 /* Advance to the next non-empty css_set */
3010 do {
3011 l = l->next;
3012 if (l == &cgrp->cset_links) {
3013 it->cset_link = NULL;
3014 return;
3015 }
3016 link = list_entry(l, struct cgrp_cset_link, cset_link);
3017 cset = link->cset;
3018 } while (list_empty(&cset->tasks));
3019 it->cset_link = l;
3020 it->task = cset->tasks.next;
3021 }
3022
3023 /*
3024 * To reduce the fork() overhead for systems that are not actually
3025 * using their cgroups capability, we don't maintain the lists running
3026 * through each css_set to its tasks until we see the list actually
3027 * used - in other words after the first call to cgroup_iter_start().
3028 */
3029 static void cgroup_enable_task_cg_lists(void)
3030 {
3031 struct task_struct *p, *g;
3032 write_lock(&css_set_lock);
3033 use_task_css_set_links = 1;
3034 /*
3035 * We need tasklist_lock because RCU is not safe against
3036 * while_each_thread(). Besides, a forking task that has passed
3037 * cgroup_post_fork() without seeing use_task_css_set_links = 1
3038 * is not guaranteed to have its child immediately visible in the
3039 * tasklist if we walk through it with RCU.
3040 */
3041 read_lock(&tasklist_lock);
3042 do_each_thread(g, p) {
3043 task_lock(p);
3044 /*
3045 * We should check if the process is exiting, otherwise
3046 * it will race with cgroup_exit() in that the list
3047 * entry won't be deleted though the process has exited.
3048 */
3049 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
3050 list_add(&p->cg_list, &task_css_set(p)->tasks);
3051 task_unlock(p);
3052 } while_each_thread(g, p);
3053 read_unlock(&tasklist_lock);
3054 write_unlock(&css_set_lock);
3055 }
3056
3057 /**
3058 * cgroup_next_sibling - find the next sibling of a given cgroup
3059 * @pos: the current cgroup
3060 *
3061 * This function returns the next sibling of @pos and should be called
3062 * under RCU read lock. The only requirement is that @pos is accessible.
3063 * The next sibling is guaranteed to be returned regardless of @pos's
3064 * state.
3065 */
3066 struct cgroup *cgroup_next_sibling(struct cgroup *pos)
3067 {
3068 struct cgroup *next;
3069
3070 WARN_ON_ONCE(!rcu_read_lock_held());
3071
3072 /*
3073 * @pos could already have been removed. Once a cgroup is removed,
3074 * its ->sibling.next is no longer updated when its next sibling
3075 * changes. As CGRP_DEAD assertion is serialized and happens
3076 * before the cgroup is taken off the ->sibling list, if we see it
3077 * unasserted, it's guaranteed that the next sibling hasn't
3078 * finished its grace period even if it's already removed, and thus
3079 * safe to dereference from this RCU critical section. If
3080 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3081 * to be visible as %true here.
3082 */
3083 if (likely(!cgroup_is_dead(pos))) {
3084 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3085 if (&next->sibling != &pos->parent->children)
3086 return next;
3087 return NULL;
3088 }
3089
3090 /*
3091 * Can't dereference the next pointer. Each cgroup is given a
3092 * monotonically increasing unique serial number and always
3093 * appended to the sibling list, so the next one can be found by
3094 * walking the parent's children until we see a cgroup with higher
3095 * serial number than @pos's.
3096 *
3097 * While this path can be slow, it's taken only when either the
3098 * current cgroup is removed or iteration and removal race.
3099 */
3100 list_for_each_entry_rcu(next, &pos->parent->children, sibling)
3101 if (next->serial_nr > pos->serial_nr)
3102 return next;
3103 return NULL;
3104 }
3105 EXPORT_SYMBOL_GPL(cgroup_next_sibling);
3106
3107 /**
3108 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
3109 * @pos: the current position (%NULL to initiate traversal)
3110 * @cgroup: cgroup whose descendants to walk
3111 *
3112 * To be used by cgroup_for_each_descendant_pre(). Find the next
3113 * descendant to visit for pre-order traversal of @cgroup's descendants.
3114 *
3115 * While this function requires RCU read locking, it doesn't require the
3116 * whole traversal to be contained in a single RCU critical section. This
3117 * function will return the correct next descendant as long as both @pos
3118 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3119 */
3120 struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
3121 struct cgroup *cgroup)
3122 {
3123 struct cgroup *next;
3124
3125 WARN_ON_ONCE(!rcu_read_lock_held());
3126
3127 /* if first iteration, pretend we just visited @cgroup */
3128 if (!pos)
3129 pos = cgroup;
3130
3131 /* visit the first child if exists */
3132 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3133 if (next)
3134 return next;
3135
3136 /* no child, visit my or the closest ancestor's next sibling */
3137 while (pos != cgroup) {
3138 next = cgroup_next_sibling(pos);
3139 if (next)
3140 return next;
3141 pos = pos->parent;
3142 }
3143
3144 return NULL;
3145 }
3146 EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3147
3148 /**
3149 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3150 * @pos: cgroup of interest
3151 *
3152 * Return the rightmost descendant of @pos. If there's no descendant,
3153 * @pos is returned. This can be used during pre-order traversal to skip
3154 * subtree of @pos.
3155 *
3156 * While this function requires RCU read locking, it doesn't require the
3157 * whole traversal to be contained in a single RCU critical section. This
3158 * function will return the correct rightmost descendant as long as @pos is
3159 * accessible.
3160 */
3161 struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3162 {
3163 struct cgroup *last, *tmp;
3164
3165 WARN_ON_ONCE(!rcu_read_lock_held());
3166
3167 do {
3168 last = pos;
3169 /* ->prev isn't RCU safe, walk ->next till the end */
3170 pos = NULL;
3171 list_for_each_entry_rcu(tmp, &last->children, sibling)
3172 pos = tmp;
3173 } while (pos);
3174
3175 return last;
3176 }
3177 EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3178
3179 static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3180 {
3181 struct cgroup *last;
3182
3183 do {
3184 last = pos;
3185 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3186 sibling);
3187 } while (pos);
3188
3189 return last;
3190 }
3191
3192 /**
3193 * cgroup_next_descendant_post - find the next descendant for post-order walk
3194 * @pos: the current position (%NULL to initiate traversal)
3195 * @cgroup: cgroup whose descendants to walk
3196 *
3197 * To be used by cgroup_for_each_descendant_post(). Find the next
3198 * descendant to visit for post-order traversal of @cgroup's descendants.
3199 *
3200 * While this function requires RCU read locking, it doesn't require the
3201 * whole traversal to be contained in a single RCU critical section. This
3202 * function will return the correct next descendant as long as both @pos
3203 * and @cgroup are accessible and @pos is a descendant of @cgroup.
3204 */
3205 struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3206 struct cgroup *cgroup)
3207 {
3208 struct cgroup *next;
3209
3210 WARN_ON_ONCE(!rcu_read_lock_held());
3211
3212 /* if first iteration, visit the leftmost descendant */
3213 if (!pos) {
3214 next = cgroup_leftmost_descendant(cgroup);
3215 return next != cgroup ? next : NULL;
3216 }
3217
3218 /* if there's an unvisited sibling, visit its leftmost descendant */
3219 next = cgroup_next_sibling(pos);
3220 if (next)
3221 return cgroup_leftmost_descendant(next);
3222
3223 /* no sibling left, visit parent */
3224 next = pos->parent;
3225 return next != cgroup ? next : NULL;
3226 }
3227 EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3228
3229 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
3230 __acquires(css_set_lock)
3231 {
3232 /*
3233 * The first time anyone tries to iterate across a cgroup,
3234 * we need to enable the list linking each css_set to its
3235 * tasks, and fix up all existing tasks.
3236 */
3237 if (!use_task_css_set_links)
3238 cgroup_enable_task_cg_lists();
3239
3240 read_lock(&css_set_lock);
3241 it->cset_link = &cgrp->cset_links;
3242 cgroup_advance_iter(cgrp, it);
3243 }
3244
3245 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3246 struct cgroup_iter *it)
3247 {
3248 struct task_struct *res;
3249 struct list_head *l = it->task;
3250 struct cgrp_cset_link *link;
3251
3252 /* If the iterator cg is NULL, we have no tasks */
3253 if (!it->cset_link)
3254 return NULL;
3255 res = list_entry(l, struct task_struct, cg_list);
3256 /* Advance iterator to find next entry */
3257 l = l->next;
3258 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3259 if (l == &link->cset->tasks) {
3260 /* We reached the end of this task list - move on to
3261 * the next cg_cgroup_link */
3262 cgroup_advance_iter(cgrp, it);
3263 } else {
3264 it->task = l;
3265 }
3266 return res;
3267 }
3268
3269 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3270 __releases(css_set_lock)
3271 {
3272 read_unlock(&css_set_lock);
3273 }
3274
3275 static inline int started_after_time(struct task_struct *t1,
3276 struct timespec *time,
3277 struct task_struct *t2)
3278 {
3279 int start_diff = timespec_compare(&t1->start_time, time);
3280 if (start_diff > 0) {
3281 return 1;
3282 } else if (start_diff < 0) {
3283 return 0;
3284 } else {
3285 /*
3286 * Arbitrarily, if two processes started at the same
3287 * time, we'll say that the lower pointer value
3288 * started first. Note that t2 may have exited by now
3289 * so this may not be a valid pointer any longer, but
3290 * that's fine - it still serves to distinguish
3291 * between two tasks started (effectively) simultaneously.
3292 */
3293 return t1 > t2;
3294 }
3295 }
3296
3297 /*
3298 * This function is a callback from heap_insert() and is used to order
3299 * the heap.
3300 * In this case we order the heap in descending task start time.
3301 */
3302 static inline int started_after(void *p1, void *p2)
3303 {
3304 struct task_struct *t1 = p1;
3305 struct task_struct *t2 = p2;
3306 return started_after_time(t1, &t2->start_time, t2);
3307 }
3308
3309 /**
3310 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3311 * @scan: struct cgroup_scanner containing arguments for the scan
3312 *
3313 * Arguments include pointers to callback functions test_task() and
3314 * process_task().
3315 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3316 * and if it returns true, call process_task() for it also.
3317 * The test_task pointer may be NULL, meaning always true (select all tasks).
3318 * Effectively duplicates cgroup_iter_{start,next,end}()
3319 * but does not lock css_set_lock for the call to process_task().
3320 * The struct cgroup_scanner may be embedded in any structure of the caller's
3321 * creation.
3322 * It is guaranteed that process_task() will act on every task that
3323 * is a member of the cgroup for the duration of this call. This
3324 * function may or may not call process_task() for tasks that exit
3325 * or move to a different cgroup during the call, or are forked or
3326 * move into the cgroup during the call.
3327 *
3328 * Note that test_task() may be called with locks held, and may in some
3329 * situations be called multiple times for the same task, so it should
3330 * be cheap.
3331 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3332 * pre-allocated and will be used for heap operations (and its "gt" member will
3333 * be overwritten), else a temporary heap will be used (allocation of which
3334 * may cause this function to fail).
3335 */
3336 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3337 {
3338 int retval, i;
3339 struct cgroup_iter it;
3340 struct task_struct *p, *dropped;
3341 /* Never dereference latest_task, since it's not refcounted */
3342 struct task_struct *latest_task = NULL;
3343 struct ptr_heap tmp_heap;
3344 struct ptr_heap *heap;
3345 struct timespec latest_time = { 0, 0 };
3346
3347 if (scan->heap) {
3348 /* The caller supplied our heap and pre-allocated its memory */
3349 heap = scan->heap;
3350 heap->gt = &started_after;
3351 } else {
3352 /* We need to allocate our own heap memory */
3353 heap = &tmp_heap;
3354 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3355 if (retval)
3356 /* cannot allocate the heap */
3357 return retval;
3358 }
3359
3360 again:
3361 /*
3362 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3363 * to determine which are of interest, and using the scanner's
3364 * "process_task" callback to process any of them that need an update.
3365 * Since we don't want to hold any locks during the task updates,
3366 * gather tasks to be processed in a heap structure.
3367 * The heap is sorted by descending task start time.
3368 * If the statically-sized heap fills up, we overflow tasks that
3369 * started later, and in future iterations only consider tasks that
3370 * started after the latest task in the previous pass. This
3371 * guarantees forward progress and that we don't miss any tasks.
3372 */
3373 heap->size = 0;
3374 cgroup_iter_start(scan->cg, &it);
3375 while ((p = cgroup_iter_next(scan->cg, &it))) {
3376 /*
3377 * Only affect tasks that qualify per the caller's callback,
3378 * if he provided one
3379 */
3380 if (scan->test_task && !scan->test_task(p, scan))
3381 continue;
3382 /*
3383 * Only process tasks that started after the last task
3384 * we processed
3385 */
3386 if (!started_after_time(p, &latest_time, latest_task))
3387 continue;
3388 dropped = heap_insert(heap, p);
3389 if (dropped == NULL) {
3390 /*
3391 * The new task was inserted; the heap wasn't
3392 * previously full
3393 */
3394 get_task_struct(p);
3395 } else if (dropped != p) {
3396 /*
3397 * The new task was inserted, and pushed out a
3398 * different task
3399 */
3400 get_task_struct(p);
3401 put_task_struct(dropped);
3402 }
3403 /*
3404 * Else the new task was newer than anything already in
3405 * the heap and wasn't inserted
3406 */
3407 }
3408 cgroup_iter_end(scan->cg, &it);
3409
3410 if (heap->size) {
3411 for (i = 0; i < heap->size; i++) {
3412 struct task_struct *q = heap->ptrs[i];
3413 if (i == 0) {
3414 latest_time = q->start_time;
3415 latest_task = q;
3416 }
3417 /* Process the task per the caller's callback */
3418 scan->process_task(q, scan);
3419 put_task_struct(q);
3420 }
3421 /*
3422 * If we had to process any tasks at all, scan again
3423 * in case some of them were in the middle of forking
3424 * children that didn't get processed.
3425 * Not the most efficient way to do it, but it avoids
3426 * having to take callback_mutex in the fork path
3427 */
3428 goto again;
3429 }
3430 if (heap == &tmp_heap)
3431 heap_free(&tmp_heap);
3432 return 0;
3433 }
3434
3435 static void cgroup_transfer_one_task(struct task_struct *task,
3436 struct cgroup_scanner *scan)
3437 {
3438 struct cgroup *new_cgroup = scan->data;
3439
3440 mutex_lock(&cgroup_mutex);
3441 cgroup_attach_task(new_cgroup, task, false);
3442 mutex_unlock(&cgroup_mutex);
3443 }
3444
3445 /**
3446 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3447 * @to: cgroup to which the tasks will be moved
3448 * @from: cgroup in which the tasks currently reside
3449 */
3450 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3451 {
3452 struct cgroup_scanner scan;
3453
3454 scan.cg = from;
3455 scan.test_task = NULL; /* select all tasks in cgroup */
3456 scan.process_task = cgroup_transfer_one_task;
3457 scan.heap = NULL;
3458 scan.data = to;
3459
3460 return cgroup_scan_tasks(&scan);
3461 }
3462
3463 /*
3464 * Stuff for reading the 'tasks'/'procs' files.
3465 *
3466 * Reading this file can return large amounts of data if a cgroup has
3467 * *lots* of attached tasks. So it may need several calls to read(),
3468 * but we cannot guarantee that the information we produce is correct
3469 * unless we produce it entirely atomically.
3470 *
3471 */
3472
3473 /* which pidlist file are we talking about? */
3474 enum cgroup_filetype {
3475 CGROUP_FILE_PROCS,
3476 CGROUP_FILE_TASKS,
3477 };
3478
3479 /*
3480 * A pidlist is a list of pids that virtually represents the contents of one
3481 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3482 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3483 * to the cgroup.
3484 */
3485 struct cgroup_pidlist {
3486 /*
3487 * used to find which pidlist is wanted. doesn't change as long as
3488 * this particular list stays in the list.
3489 */
3490 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3491 /* array of xids */
3492 pid_t *list;
3493 /* how many elements the above list has */
3494 int length;
3495 /* how many files are using the current array */
3496 int use_count;
3497 /* each of these stored in a list by its cgroup */
3498 struct list_head links;
3499 /* pointer to the cgroup we belong to, for list removal purposes */
3500 struct cgroup *owner;
3501 /* protects the other fields */
3502 struct rw_semaphore mutex;
3503 };
3504
3505 /*
3506 * The following two functions "fix" the issue where there are more pids
3507 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3508 * TODO: replace with a kernel-wide solution to this problem
3509 */
3510 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3511 static void *pidlist_allocate(int count)
3512 {
3513 if (PIDLIST_TOO_LARGE(count))
3514 return vmalloc(count * sizeof(pid_t));
3515 else
3516 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3517 }
3518 static void pidlist_free(void *p)
3519 {
3520 if (is_vmalloc_addr(p))
3521 vfree(p);
3522 else
3523 kfree(p);
3524 }
3525
3526 /*
3527 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3528 * Returns the number of unique elements.
3529 */
3530 static int pidlist_uniq(pid_t *list, int length)
3531 {
3532 int src, dest = 1;
3533
3534 /*
3535 * we presume the 0th element is unique, so i starts at 1. trivial
3536 * edge cases first; no work needs to be done for either
3537 */
3538 if (length == 0 || length == 1)
3539 return length;
3540 /* src and dest walk down the list; dest counts unique elements */
3541 for (src = 1; src < length; src++) {
3542 /* find next unique element */
3543 while (list[src] == list[src-1]) {
3544 src++;
3545 if (src == length)
3546 goto after;
3547 }
3548 /* dest always points to where the next unique element goes */
3549 list[dest] = list[src];
3550 dest++;
3551 }
3552 after:
3553 return dest;
3554 }
3555
3556 static int cmppid(const void *a, const void *b)
3557 {
3558 return *(pid_t *)a - *(pid_t *)b;
3559 }
3560
3561 /*
3562 * find the appropriate pidlist for our purpose (given procs vs tasks)
3563 * returns with the lock on that pidlist already held, and takes care
3564 * of the use count, or returns NULL with no locks held if we're out of
3565 * memory.
3566 */
3567 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3568 enum cgroup_filetype type)
3569 {
3570 struct cgroup_pidlist *l;
3571 /* don't need task_nsproxy() if we're looking at ourself */
3572 struct pid_namespace *ns = task_active_pid_ns(current);
3573
3574 /*
3575 * We can't drop the pidlist_mutex before taking the l->mutex in case
3576 * the last ref-holder is trying to remove l from the list at the same
3577 * time. Holding the pidlist_mutex precludes somebody taking whichever
3578 * list we find out from under us - compare release_pid_array().
3579 */
3580 mutex_lock(&cgrp->pidlist_mutex);
3581 list_for_each_entry(l, &cgrp->pidlists, links) {
3582 if (l->key.type == type && l->key.ns == ns) {
3583 /* make sure l doesn't vanish out from under us */
3584 down_write(&l->mutex);
3585 mutex_unlock(&cgrp->pidlist_mutex);
3586 return l;
3587 }
3588 }
3589 /* entry not found; create a new one */
3590 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3591 if (!l) {
3592 mutex_unlock(&cgrp->pidlist_mutex);
3593 return l;
3594 }
3595 init_rwsem(&l->mutex);
3596 down_write(&l->mutex);
3597 l->key.type = type;
3598 l->key.ns = get_pid_ns(ns);
3599 l->owner = cgrp;
3600 list_add(&l->links, &cgrp->pidlists);
3601 mutex_unlock(&cgrp->pidlist_mutex);
3602 return l;
3603 }
3604
3605 /*
3606 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3607 */
3608 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3609 struct cgroup_pidlist **lp)
3610 {
3611 pid_t *array;
3612 int length;
3613 int pid, n = 0; /* used for populating the array */
3614 struct cgroup_iter it;
3615 struct task_struct *tsk;
3616 struct cgroup_pidlist *l;
3617
3618 /*
3619 * If cgroup gets more users after we read count, we won't have
3620 * enough space - tough. This race is indistinguishable to the
3621 * caller from the case that the additional cgroup users didn't
3622 * show up until sometime later on.
3623 */
3624 length = cgroup_task_count(cgrp);
3625 array = pidlist_allocate(length);
3626 if (!array)
3627 return -ENOMEM;
3628 /* now, populate the array */
3629 cgroup_iter_start(cgrp, &it);
3630 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3631 if (unlikely(n == length))
3632 break;
3633 /* get tgid or pid for procs or tasks file respectively */
3634 if (type == CGROUP_FILE_PROCS)
3635 pid = task_tgid_vnr(tsk);
3636 else
3637 pid = task_pid_vnr(tsk);
3638 if (pid > 0) /* make sure to only use valid results */
3639 array[n++] = pid;
3640 }
3641 cgroup_iter_end(cgrp, &it);
3642 length = n;
3643 /* now sort & (if procs) strip out duplicates */
3644 sort(array, length, sizeof(pid_t), cmppid, NULL);
3645 if (type == CGROUP_FILE_PROCS)
3646 length = pidlist_uniq(array, length);
3647 l = cgroup_pidlist_find(cgrp, type);
3648 if (!l) {
3649 pidlist_free(array);
3650 return -ENOMEM;
3651 }
3652 /* store array, freeing old if necessary - lock already held */
3653 pidlist_free(l->list);
3654 l->list = array;
3655 l->length = length;
3656 l->use_count++;
3657 up_write(&l->mutex);
3658 *lp = l;
3659 return 0;
3660 }
3661
3662 /**
3663 * cgroupstats_build - build and fill cgroupstats
3664 * @stats: cgroupstats to fill information into
3665 * @dentry: A dentry entry belonging to the cgroup for which stats have
3666 * been requested.
3667 *
3668 * Build and fill cgroupstats so that taskstats can export it to user
3669 * space.
3670 */
3671 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3672 {
3673 int ret = -EINVAL;
3674 struct cgroup *cgrp;
3675 struct cgroup_iter it;
3676 struct task_struct *tsk;
3677
3678 /*
3679 * Validate dentry by checking the superblock operations,
3680 * and make sure it's a directory.
3681 */
3682 if (dentry->d_sb->s_op != &cgroup_ops ||
3683 !S_ISDIR(dentry->d_inode->i_mode))
3684 goto err;
3685
3686 ret = 0;
3687 cgrp = dentry->d_fsdata;
3688
3689 cgroup_iter_start(cgrp, &it);
3690 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3691 switch (tsk->state) {
3692 case TASK_RUNNING:
3693 stats->nr_running++;
3694 break;
3695 case TASK_INTERRUPTIBLE:
3696 stats->nr_sleeping++;
3697 break;
3698 case TASK_UNINTERRUPTIBLE:
3699 stats->nr_uninterruptible++;
3700 break;
3701 case TASK_STOPPED:
3702 stats->nr_stopped++;
3703 break;
3704 default:
3705 if (delayacct_is_task_waiting_on_io(tsk))
3706 stats->nr_io_wait++;
3707 break;
3708 }
3709 }
3710 cgroup_iter_end(cgrp, &it);
3711
3712 err:
3713 return ret;
3714 }
3715
3716
3717 /*
3718 * seq_file methods for the tasks/procs files. The seq_file position is the
3719 * next pid to display; the seq_file iterator is a pointer to the pid
3720 * in the cgroup->l->list array.
3721 */
3722
3723 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3724 {
3725 /*
3726 * Initially we receive a position value that corresponds to
3727 * one more than the last pid shown (or 0 on the first call or
3728 * after a seek to the start). Use a binary-search to find the
3729 * next pid to display, if any
3730 */
3731 struct cgroup_pidlist *l = s->private;
3732 int index = 0, pid = *pos;
3733 int *iter;
3734
3735 down_read(&l->mutex);
3736 if (pid) {
3737 int end = l->length;
3738
3739 while (index < end) {
3740 int mid = (index + end) / 2;
3741 if (l->list[mid] == pid) {
3742 index = mid;
3743 break;
3744 } else if (l->list[mid] <= pid)
3745 index = mid + 1;
3746 else
3747 end = mid;
3748 }
3749 }
3750 /* If we're off the end of the array, we're done */
3751 if (index >= l->length)
3752 return NULL;
3753 /* Update the abstract position to be the actual pid that we found */
3754 iter = l->list + index;
3755 *pos = *iter;
3756 return iter;
3757 }
3758
3759 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3760 {
3761 struct cgroup_pidlist *l = s->private;
3762 up_read(&l->mutex);
3763 }
3764
3765 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3766 {
3767 struct cgroup_pidlist *l = s->private;
3768 pid_t *p = v;
3769 pid_t *end = l->list + l->length;
3770 /*
3771 * Advance to the next pid in the array. If this goes off the
3772 * end, we're done
3773 */
3774 p++;
3775 if (p >= end) {
3776 return NULL;
3777 } else {
3778 *pos = *p;
3779 return p;
3780 }
3781 }
3782
3783 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3784 {
3785 return seq_printf(s, "%d\n", *(int *)v);
3786 }
3787
3788 /*
3789 * seq_operations functions for iterating on pidlists through seq_file -
3790 * independent of whether it's tasks or procs
3791 */
3792 static const struct seq_operations cgroup_pidlist_seq_operations = {
3793 .start = cgroup_pidlist_start,
3794 .stop = cgroup_pidlist_stop,
3795 .next = cgroup_pidlist_next,
3796 .show = cgroup_pidlist_show,
3797 };
3798
3799 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3800 {
3801 /*
3802 * the case where we're the last user of this particular pidlist will
3803 * have us remove it from the cgroup's list, which entails taking the
3804 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3805 * pidlist_mutex, we have to take pidlist_mutex first.
3806 */
3807 mutex_lock(&l->owner->pidlist_mutex);
3808 down_write(&l->mutex);
3809 BUG_ON(!l->use_count);
3810 if (!--l->use_count) {
3811 /* we're the last user if refcount is 0; remove and free */
3812 list_del(&l->links);
3813 mutex_unlock(&l->owner->pidlist_mutex);
3814 pidlist_free(l->list);
3815 put_pid_ns(l->key.ns);
3816 up_write(&l->mutex);
3817 kfree(l);
3818 return;
3819 }
3820 mutex_unlock(&l->owner->pidlist_mutex);
3821 up_write(&l->mutex);
3822 }
3823
3824 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3825 {
3826 struct cgroup_pidlist *l;
3827 if (!(file->f_mode & FMODE_READ))
3828 return 0;
3829 /*
3830 * the seq_file will only be initialized if the file was opened for
3831 * reading; hence we check if it's not null only in that case.
3832 */
3833 l = ((struct seq_file *)file->private_data)->private;
3834 cgroup_release_pid_array(l);
3835 return seq_release(inode, file);
3836 }
3837
3838 static const struct file_operations cgroup_pidlist_operations = {
3839 .read = seq_read,
3840 .llseek = seq_lseek,
3841 .write = cgroup_file_write,
3842 .release = cgroup_pidlist_release,
3843 };
3844
3845 /*
3846 * The following functions handle opens on a file that displays a pidlist
3847 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3848 * in the cgroup.
3849 */
3850 /* helper function for the two below it */
3851 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3852 {
3853 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3854 struct cgroup_pidlist *l;
3855 int retval;
3856
3857 /* Nothing to do for write-only files */
3858 if (!(file->f_mode & FMODE_READ))
3859 return 0;
3860
3861 /* have the array populated */
3862 retval = pidlist_array_load(cgrp, type, &l);
3863 if (retval)
3864 return retval;
3865 /* configure file information */
3866 file->f_op = &cgroup_pidlist_operations;
3867
3868 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3869 if (retval) {
3870 cgroup_release_pid_array(l);
3871 return retval;
3872 }
3873 ((struct seq_file *)file->private_data)->private = l;
3874 return 0;
3875 }
3876 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3877 {
3878 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3879 }
3880 static int cgroup_procs_open(struct inode *unused, struct file *file)
3881 {
3882 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3883 }
3884
3885 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3886 struct cftype *cft)
3887 {
3888 return notify_on_release(cgrp);
3889 }
3890
3891 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3892 struct cftype *cft,
3893 u64 val)
3894 {
3895 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3896 if (val)
3897 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3898 else
3899 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3900 return 0;
3901 }
3902
3903 /*
3904 * When dput() is called asynchronously, if umount has been done and
3905 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3906 * there's a small window that vfs will see the root dentry with non-zero
3907 * refcnt and trigger BUG().
3908 *
3909 * That's why we hold a reference before dput() and drop it right after.
3910 */
3911 static void cgroup_dput(struct cgroup *cgrp)
3912 {
3913 struct super_block *sb = cgrp->root->sb;
3914
3915 atomic_inc(&sb->s_active);
3916 dput(cgrp->dentry);
3917 deactivate_super(sb);
3918 }
3919
3920 /*
3921 * Unregister event and free resources.
3922 *
3923 * Gets called from workqueue.
3924 */
3925 static void cgroup_event_remove(struct work_struct *work)
3926 {
3927 struct cgroup_event *event = container_of(work, struct cgroup_event,
3928 remove);
3929 struct cgroup *cgrp = event->cgrp;
3930
3931 remove_wait_queue(event->wqh, &event->wait);
3932
3933 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3934
3935 /* Notify userspace the event is going away. */
3936 eventfd_signal(event->eventfd, 1);
3937
3938 eventfd_ctx_put(event->eventfd);
3939 kfree(event);
3940 cgroup_dput(cgrp);
3941 }
3942
3943 /*
3944 * Gets called on POLLHUP on eventfd when user closes it.
3945 *
3946 * Called with wqh->lock held and interrupts disabled.
3947 */
3948 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3949 int sync, void *key)
3950 {
3951 struct cgroup_event *event = container_of(wait,
3952 struct cgroup_event, wait);
3953 struct cgroup *cgrp = event->cgrp;
3954 unsigned long flags = (unsigned long)key;
3955
3956 if (flags & POLLHUP) {
3957 /*
3958 * If the event has been detached at cgroup removal, we
3959 * can simply return knowing the other side will cleanup
3960 * for us.
3961 *
3962 * We can't race against event freeing since the other
3963 * side will require wqh->lock via remove_wait_queue(),
3964 * which we hold.
3965 */
3966 spin_lock(&cgrp->event_list_lock);
3967 if (!list_empty(&event->list)) {
3968 list_del_init(&event->list);
3969 /*
3970 * We are in atomic context, but cgroup_event_remove()
3971 * may sleep, so we have to call it in workqueue.
3972 */
3973 schedule_work(&event->remove);
3974 }
3975 spin_unlock(&cgrp->event_list_lock);
3976 }
3977
3978 return 0;
3979 }
3980
3981 static void cgroup_event_ptable_queue_proc(struct file *file,
3982 wait_queue_head_t *wqh, poll_table *pt)
3983 {
3984 struct cgroup_event *event = container_of(pt,
3985 struct cgroup_event, pt);
3986
3987 event->wqh = wqh;
3988 add_wait_queue(wqh, &event->wait);
3989 }
3990
3991 /*
3992 * Parse input and register new cgroup event handler.
3993 *
3994 * Input must be in format '<event_fd> <control_fd> <args>'.
3995 * Interpretation of args is defined by control file implementation.
3996 */
3997 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3998 const char *buffer)
3999 {
4000 struct cgroup_event *event = NULL;
4001 struct cgroup *cgrp_cfile;
4002 unsigned int efd, cfd;
4003 struct file *efile = NULL;
4004 struct file *cfile = NULL;
4005 char *endp;
4006 int ret;
4007
4008 efd = simple_strtoul(buffer, &endp, 10);
4009 if (*endp != ' ')
4010 return -EINVAL;
4011 buffer = endp + 1;
4012
4013 cfd = simple_strtoul(buffer, &endp, 10);
4014 if ((*endp != ' ') && (*endp != '\0'))
4015 return -EINVAL;
4016 buffer = endp + 1;
4017
4018 event = kzalloc(sizeof(*event), GFP_KERNEL);
4019 if (!event)
4020 return -ENOMEM;
4021 event->cgrp = cgrp;
4022 INIT_LIST_HEAD(&event->list);
4023 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
4024 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
4025 INIT_WORK(&event->remove, cgroup_event_remove);
4026
4027 efile = eventfd_fget(efd);
4028 if (IS_ERR(efile)) {
4029 ret = PTR_ERR(efile);
4030 goto fail;
4031 }
4032
4033 event->eventfd = eventfd_ctx_fileget(efile);
4034 if (IS_ERR(event->eventfd)) {
4035 ret = PTR_ERR(event->eventfd);
4036 goto fail;
4037 }
4038
4039 cfile = fget(cfd);
4040 if (!cfile) {
4041 ret = -EBADF;
4042 goto fail;
4043 }
4044
4045 /* the process need read permission on control file */
4046 /* AV: shouldn't we check that it's been opened for read instead? */
4047 ret = inode_permission(file_inode(cfile), MAY_READ);
4048 if (ret < 0)
4049 goto fail;
4050
4051 event->cft = __file_cft(cfile);
4052 if (IS_ERR(event->cft)) {
4053 ret = PTR_ERR(event->cft);
4054 goto fail;
4055 }
4056
4057 /*
4058 * The file to be monitored must be in the same cgroup as
4059 * cgroup.event_control is.
4060 */
4061 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
4062 if (cgrp_cfile != cgrp) {
4063 ret = -EINVAL;
4064 goto fail;
4065 }
4066
4067 if (!event->cft->register_event || !event->cft->unregister_event) {
4068 ret = -EINVAL;
4069 goto fail;
4070 }
4071
4072 ret = event->cft->register_event(cgrp, event->cft,
4073 event->eventfd, buffer);
4074 if (ret)
4075 goto fail;
4076
4077 efile->f_op->poll(efile, &event->pt);
4078
4079 /*
4080 * Events should be removed after rmdir of cgroup directory, but before
4081 * destroying subsystem state objects. Let's take reference to cgroup
4082 * directory dentry to do that.
4083 */
4084 dget(cgrp->dentry);
4085
4086 spin_lock(&cgrp->event_list_lock);
4087 list_add(&event->list, &cgrp->event_list);
4088 spin_unlock(&cgrp->event_list_lock);
4089
4090 fput(cfile);
4091 fput(efile);
4092
4093 return 0;
4094
4095 fail:
4096 if (cfile)
4097 fput(cfile);
4098
4099 if (event && event->eventfd && !IS_ERR(event->eventfd))
4100 eventfd_ctx_put(event->eventfd);
4101
4102 if (!IS_ERR_OR_NULL(efile))
4103 fput(efile);
4104
4105 kfree(event);
4106
4107 return ret;
4108 }
4109
4110 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
4111 struct cftype *cft)
4112 {
4113 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4114 }
4115
4116 static int cgroup_clone_children_write(struct cgroup *cgrp,
4117 struct cftype *cft,
4118 u64 val)
4119 {
4120 if (val)
4121 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4122 else
4123 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4124 return 0;
4125 }
4126
4127 static struct cftype cgroup_base_files[] = {
4128 {
4129 .name = "cgroup.procs",
4130 .open = cgroup_procs_open,
4131 .write_u64 = cgroup_procs_write,
4132 .release = cgroup_pidlist_release,
4133 .mode = S_IRUGO | S_IWUSR,
4134 },
4135 {
4136 .name = "cgroup.event_control",
4137 .write_string = cgroup_write_event_control,
4138 .mode = S_IWUGO,
4139 },
4140 {
4141 .name = "cgroup.clone_children",
4142 .flags = CFTYPE_INSANE,
4143 .read_u64 = cgroup_clone_children_read,
4144 .write_u64 = cgroup_clone_children_write,
4145 },
4146 {
4147 .name = "cgroup.sane_behavior",
4148 .flags = CFTYPE_ONLY_ON_ROOT,
4149 .read_seq_string = cgroup_sane_behavior_show,
4150 },
4151
4152 /*
4153 * Historical crazy stuff. These don't have "cgroup." prefix and
4154 * don't exist if sane_behavior. If you're depending on these, be
4155 * prepared to be burned.
4156 */
4157 {
4158 .name = "tasks",
4159 .flags = CFTYPE_INSANE, /* use "procs" instead */
4160 .open = cgroup_tasks_open,
4161 .write_u64 = cgroup_tasks_write,
4162 .release = cgroup_pidlist_release,
4163 .mode = S_IRUGO | S_IWUSR,
4164 },
4165 {
4166 .name = "notify_on_release",
4167 .flags = CFTYPE_INSANE,
4168 .read_u64 = cgroup_read_notify_on_release,
4169 .write_u64 = cgroup_write_notify_on_release,
4170 },
4171 {
4172 .name = "release_agent",
4173 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
4174 .read_seq_string = cgroup_release_agent_show,
4175 .write_string = cgroup_release_agent_write,
4176 .max_write_len = PATH_MAX,
4177 },
4178 { } /* terminate */
4179 };
4180
4181 /**
4182 * cgroup_populate_dir - create subsys files in a cgroup directory
4183 * @cgrp: target cgroup
4184 * @subsys_mask: mask of the subsystem ids whose files should be added
4185 *
4186 * On failure, no file is added.
4187 */
4188 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
4189 {
4190 struct cgroup_subsys *ss;
4191 int i, ret = 0;
4192
4193 /* process cftsets of each subsystem */
4194 for_each_subsys(ss, i) {
4195 struct cftype_set *set;
4196
4197 if (!test_bit(i, &subsys_mask))
4198 continue;
4199
4200 list_for_each_entry(set, &ss->cftsets, node) {
4201 ret = cgroup_addrm_files(cgrp, ss, set->cfts, true);
4202 if (ret < 0)
4203 goto err;
4204 }
4205 }
4206
4207 /* This cgroup is ready now */
4208 for_each_root_subsys(cgrp->root, ss) {
4209 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4210 struct css_id *id = rcu_dereference_protected(css->id, true);
4211
4212 /*
4213 * Update id->css pointer and make this css visible from
4214 * CSS ID functions. This pointer will be dereferened
4215 * from RCU-read-side without locks.
4216 */
4217 if (id)
4218 rcu_assign_pointer(id->css, css);
4219 }
4220
4221 return 0;
4222 err:
4223 cgroup_clear_dir(cgrp, subsys_mask);
4224 return ret;
4225 }
4226
4227 static void css_dput_fn(struct work_struct *work)
4228 {
4229 struct cgroup_subsys_state *css =
4230 container_of(work, struct cgroup_subsys_state, dput_work);
4231
4232 cgroup_dput(css->cgroup);
4233 }
4234
4235 static void css_release(struct percpu_ref *ref)
4236 {
4237 struct cgroup_subsys_state *css =
4238 container_of(ref, struct cgroup_subsys_state, refcnt);
4239
4240 schedule_work(&css->dput_work);
4241 }
4242
4243 static void init_cgroup_css(struct cgroup_subsys_state *css,
4244 struct cgroup_subsys *ss,
4245 struct cgroup *cgrp)
4246 {
4247 css->cgroup = cgrp;
4248 css->flags = 0;
4249 css->id = NULL;
4250 if (cgrp == cgroup_dummy_top)
4251 css->flags |= CSS_ROOT;
4252 BUG_ON(cgrp->subsys[ss->subsys_id]);
4253 cgrp->subsys[ss->subsys_id] = css;
4254
4255 /*
4256 * css holds an extra ref to @cgrp->dentry which is put on the last
4257 * css_put(). dput() requires process context, which css_put() may
4258 * be called without. @css->dput_work will be used to invoke
4259 * dput() asynchronously from css_put().
4260 */
4261 INIT_WORK(&css->dput_work, css_dput_fn);
4262 }
4263
4264 /* invoke ->post_create() on a new CSS and mark it online if successful */
4265 static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4266 {
4267 int ret = 0;
4268
4269 lockdep_assert_held(&cgroup_mutex);
4270
4271 if (ss->css_online)
4272 ret = ss->css_online(cgrp);
4273 if (!ret)
4274 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4275 return ret;
4276 }
4277
4278 /* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4279 static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4280 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4281 {
4282 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4283
4284 lockdep_assert_held(&cgroup_mutex);
4285
4286 if (!(css->flags & CSS_ONLINE))
4287 return;
4288
4289 if (ss->css_offline)
4290 ss->css_offline(cgrp);
4291
4292 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4293 }
4294
4295 /*
4296 * cgroup_create - create a cgroup
4297 * @parent: cgroup that will be parent of the new cgroup
4298 * @dentry: dentry of the new cgroup
4299 * @mode: mode to set on new inode
4300 *
4301 * Must be called with the mutex on the parent inode held
4302 */
4303 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4304 umode_t mode)
4305 {
4306 struct cgroup *cgrp;
4307 struct cgroup_name *name;
4308 struct cgroupfs_root *root = parent->root;
4309 int err = 0;
4310 struct cgroup_subsys *ss;
4311 struct super_block *sb = root->sb;
4312
4313 /* allocate the cgroup and its ID, 0 is reserved for the root */
4314 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4315 if (!cgrp)
4316 return -ENOMEM;
4317
4318 name = cgroup_alloc_name(dentry);
4319 if (!name)
4320 goto err_free_cgrp;
4321 rcu_assign_pointer(cgrp->name, name);
4322
4323 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4324 if (cgrp->id < 0)
4325 goto err_free_name;
4326
4327 /*
4328 * Only live parents can have children. Note that the liveliness
4329 * check isn't strictly necessary because cgroup_mkdir() and
4330 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4331 * anyway so that locking is contained inside cgroup proper and we
4332 * don't get nasty surprises if we ever grow another caller.
4333 */
4334 if (!cgroup_lock_live_group(parent)) {
4335 err = -ENODEV;
4336 goto err_free_id;
4337 }
4338
4339 /* Grab a reference on the superblock so the hierarchy doesn't
4340 * get deleted on unmount if there are child cgroups. This
4341 * can be done outside cgroup_mutex, since the sb can't
4342 * disappear while someone has an open control file on the
4343 * fs */
4344 atomic_inc(&sb->s_active);
4345
4346 init_cgroup_housekeeping(cgrp);
4347
4348 dentry->d_fsdata = cgrp;
4349 cgrp->dentry = dentry;
4350
4351 cgrp->parent = parent;
4352 cgrp->root = parent->root;
4353
4354 if (notify_on_release(parent))
4355 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4356
4357 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4358 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4359
4360 for_each_root_subsys(root, ss) {
4361 struct cgroup_subsys_state *css;
4362
4363 css = ss->css_alloc(cgrp);
4364 if (IS_ERR(css)) {
4365 err = PTR_ERR(css);
4366 goto err_free_all;
4367 }
4368
4369 err = percpu_ref_init(&css->refcnt, css_release);
4370 if (err)
4371 goto err_free_all;
4372
4373 init_cgroup_css(css, ss, cgrp);
4374
4375 if (ss->use_id) {
4376 err = alloc_css_id(ss, parent, cgrp);
4377 if (err)
4378 goto err_free_all;
4379 }
4380 }
4381
4382 /*
4383 * Create directory. cgroup_create_file() returns with the new
4384 * directory locked on success so that it can be populated without
4385 * dropping cgroup_mutex.
4386 */
4387 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
4388 if (err < 0)
4389 goto err_free_all;
4390 lockdep_assert_held(&dentry->d_inode->i_mutex);
4391
4392 cgrp->serial_nr = cgroup_serial_nr_next++;
4393
4394 /* allocation complete, commit to creation */
4395 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4396 root->number_of_cgroups++;
4397
4398 /* each css holds a ref to the cgroup's dentry */
4399 for_each_root_subsys(root, ss)
4400 dget(dentry);
4401
4402 /* hold a ref to the parent's dentry */
4403 dget(parent->dentry);
4404
4405 /* creation succeeded, notify subsystems */
4406 for_each_root_subsys(root, ss) {
4407 err = online_css(ss, cgrp);
4408 if (err)
4409 goto err_destroy;
4410
4411 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4412 parent->parent) {
4413 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4414 current->comm, current->pid, ss->name);
4415 if (!strcmp(ss->name, "memory"))
4416 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4417 ss->warned_broken_hierarchy = true;
4418 }
4419 }
4420
4421 err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
4422 if (err)
4423 goto err_destroy;
4424
4425 err = cgroup_populate_dir(cgrp, root->subsys_mask);
4426 if (err)
4427 goto err_destroy;
4428
4429 mutex_unlock(&cgroup_mutex);
4430 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4431
4432 return 0;
4433
4434 err_free_all:
4435 for_each_root_subsys(root, ss) {
4436 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4437
4438 if (css) {
4439 percpu_ref_cancel_init(&css->refcnt);
4440 ss->css_free(cgrp);
4441 }
4442 }
4443 mutex_unlock(&cgroup_mutex);
4444 /* Release the reference count that we took on the superblock */
4445 deactivate_super(sb);
4446 err_free_id:
4447 ida_simple_remove(&root->cgroup_ida, cgrp->id);
4448 err_free_name:
4449 kfree(rcu_dereference_raw(cgrp->name));
4450 err_free_cgrp:
4451 kfree(cgrp);
4452 return err;
4453
4454 err_destroy:
4455 cgroup_destroy_locked(cgrp);
4456 mutex_unlock(&cgroup_mutex);
4457 mutex_unlock(&dentry->d_inode->i_mutex);
4458 return err;
4459 }
4460
4461 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4462 {
4463 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4464
4465 /* the vfs holds inode->i_mutex already */
4466 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4467 }
4468
4469 static void cgroup_css_killed(struct cgroup *cgrp)
4470 {
4471 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4472 return;
4473
4474 /* percpu ref's of all css's are killed, kick off the next step */
4475 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4476 schedule_work(&cgrp->destroy_work);
4477 }
4478
4479 static void css_ref_killed_fn(struct percpu_ref *ref)
4480 {
4481 struct cgroup_subsys_state *css =
4482 container_of(ref, struct cgroup_subsys_state, refcnt);
4483
4484 cgroup_css_killed(css->cgroup);
4485 }
4486
4487 /**
4488 * cgroup_destroy_locked - the first stage of cgroup destruction
4489 * @cgrp: cgroup to be destroyed
4490 *
4491 * css's make use of percpu refcnts whose killing latency shouldn't be
4492 * exposed to userland and are RCU protected. Also, cgroup core needs to
4493 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4494 * invoked. To satisfy all the requirements, destruction is implemented in
4495 * the following two steps.
4496 *
4497 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4498 * userland visible parts and start killing the percpu refcnts of
4499 * css's. Set up so that the next stage will be kicked off once all
4500 * the percpu refcnts are confirmed to be killed.
4501 *
4502 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4503 * rest of destruction. Once all cgroup references are gone, the
4504 * cgroup is RCU-freed.
4505 *
4506 * This function implements s1. After this step, @cgrp is gone as far as
4507 * the userland is concerned and a new cgroup with the same name may be
4508 * created. As cgroup doesn't care about the names internally, this
4509 * doesn't cause any problem.
4510 */
4511 static int cgroup_destroy_locked(struct cgroup *cgrp)
4512 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4513 {
4514 struct dentry *d = cgrp->dentry;
4515 struct cgroup_event *event, *tmp;
4516 struct cgroup_subsys *ss;
4517 bool empty;
4518
4519 lockdep_assert_held(&d->d_inode->i_mutex);
4520 lockdep_assert_held(&cgroup_mutex);
4521
4522 /*
4523 * css_set_lock synchronizes access to ->cset_links and prevents
4524 * @cgrp from being removed while __put_css_set() is in progress.
4525 */
4526 read_lock(&css_set_lock);
4527 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
4528 read_unlock(&css_set_lock);
4529 if (!empty)
4530 return -EBUSY;
4531
4532 /*
4533 * Block new css_tryget() by killing css refcnts. cgroup core
4534 * guarantees that, by the time ->css_offline() is invoked, no new
4535 * css reference will be given out via css_tryget(). We can't
4536 * simply call percpu_ref_kill() and proceed to offlining css's
4537 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4538 * as killed on all CPUs on return.
4539 *
4540 * Use percpu_ref_kill_and_confirm() to get notifications as each
4541 * css is confirmed to be seen as killed on all CPUs. The
4542 * notification callback keeps track of the number of css's to be
4543 * killed and schedules cgroup_offline_fn() to perform the rest of
4544 * destruction once the percpu refs of all css's are confirmed to
4545 * be killed.
4546 */
4547 atomic_set(&cgrp->css_kill_cnt, 1);
4548 for_each_root_subsys(cgrp->root, ss) {
4549 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4550
4551 /*
4552 * Killing would put the base ref, but we need to keep it
4553 * alive until after ->css_offline.
4554 */
4555 percpu_ref_get(&css->refcnt);
4556
4557 atomic_inc(&cgrp->css_kill_cnt);
4558 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
4559 }
4560 cgroup_css_killed(cgrp);
4561
4562 /*
4563 * Mark @cgrp dead. This prevents further task migration and child
4564 * creation by disabling cgroup_lock_live_group(). Note that
4565 * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to
4566 * resume iteration after dropping RCU read lock. See
4567 * cgroup_next_sibling() for details.
4568 */
4569 set_bit(CGRP_DEAD, &cgrp->flags);
4570
4571 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4572 raw_spin_lock(&release_list_lock);
4573 if (!list_empty(&cgrp->release_list))
4574 list_del_init(&cgrp->release_list);
4575 raw_spin_unlock(&release_list_lock);
4576
4577 /*
4578 * Clear and remove @cgrp directory. The removal puts the base ref
4579 * but we aren't quite done with @cgrp yet, so hold onto it.
4580 */
4581 cgroup_clear_dir(cgrp, cgrp->root->subsys_mask);
4582 cgroup_addrm_files(cgrp, NULL, cgroup_base_files, false);
4583 dget(d);
4584 cgroup_d_remove_dir(d);
4585
4586 /*
4587 * Unregister events and notify userspace.
4588 * Notify userspace about cgroup removing only after rmdir of cgroup
4589 * directory to avoid race between userspace and kernelspace.
4590 */
4591 spin_lock(&cgrp->event_list_lock);
4592 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4593 list_del_init(&event->list);
4594 schedule_work(&event->remove);
4595 }
4596 spin_unlock(&cgrp->event_list_lock);
4597
4598 return 0;
4599 };
4600
4601 /**
4602 * cgroup_offline_fn - the second step of cgroup destruction
4603 * @work: cgroup->destroy_free_work
4604 *
4605 * This function is invoked from a work item for a cgroup which is being
4606 * destroyed after the percpu refcnts of all css's are guaranteed to be
4607 * seen as killed on all CPUs, and performs the rest of destruction. This
4608 * is the second step of destruction described in the comment above
4609 * cgroup_destroy_locked().
4610 */
4611 static void cgroup_offline_fn(struct work_struct *work)
4612 {
4613 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4614 struct cgroup *parent = cgrp->parent;
4615 struct dentry *d = cgrp->dentry;
4616 struct cgroup_subsys *ss;
4617
4618 mutex_lock(&cgroup_mutex);
4619
4620 /*
4621 * css_tryget() is guaranteed to fail now. Tell subsystems to
4622 * initate destruction.
4623 */
4624 for_each_root_subsys(cgrp->root, ss)
4625 offline_css(ss, cgrp);
4626
4627 /*
4628 * Put the css refs from cgroup_destroy_locked(). Each css holds
4629 * an extra reference to the cgroup's dentry and cgroup removal
4630 * proceeds regardless of css refs. On the last put of each css,
4631 * whenever that may be, the extra dentry ref is put so that dentry
4632 * destruction happens only after all css's are released.
4633 */
4634 for_each_root_subsys(cgrp->root, ss)
4635 css_put(cgrp->subsys[ss->subsys_id]);
4636
4637 /* delete this cgroup from parent->children */
4638 list_del_rcu(&cgrp->sibling);
4639
4640 dput(d);
4641
4642 set_bit(CGRP_RELEASABLE, &parent->flags);
4643 check_for_release(parent);
4644
4645 mutex_unlock(&cgroup_mutex);
4646 }
4647
4648 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4649 {
4650 int ret;
4651
4652 mutex_lock(&cgroup_mutex);
4653 ret = cgroup_destroy_locked(dentry->d_fsdata);
4654 mutex_unlock(&cgroup_mutex);
4655
4656 return ret;
4657 }
4658
4659 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4660 {
4661 INIT_LIST_HEAD(&ss->cftsets);
4662
4663 /*
4664 * base_cftset is embedded in subsys itself, no need to worry about
4665 * deregistration.
4666 */
4667 if (ss->base_cftypes) {
4668 ss->base_cftset.cfts = ss->base_cftypes;
4669 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4670 }
4671 }
4672
4673 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4674 {
4675 struct cgroup_subsys_state *css;
4676
4677 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4678
4679 mutex_lock(&cgroup_mutex);
4680
4681 /* init base cftset */
4682 cgroup_init_cftsets(ss);
4683
4684 /* Create the top cgroup state for this subsystem */
4685 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4686 ss->root = &cgroup_dummy_root;
4687 css = ss->css_alloc(cgroup_dummy_top);
4688 /* We don't handle early failures gracefully */
4689 BUG_ON(IS_ERR(css));
4690 init_cgroup_css(css, ss, cgroup_dummy_top);
4691
4692 /* Update the init_css_set to contain a subsys
4693 * pointer to this state - since the subsystem is
4694 * newly registered, all tasks and hence the
4695 * init_css_set is in the subsystem's top cgroup. */
4696 init_css_set.subsys[ss->subsys_id] = css;
4697
4698 need_forkexit_callback |= ss->fork || ss->exit;
4699
4700 /* At system boot, before all subsystems have been
4701 * registered, no tasks have been forked, so we don't
4702 * need to invoke fork callbacks here. */
4703 BUG_ON(!list_empty(&init_task.tasks));
4704
4705 BUG_ON(online_css(ss, cgroup_dummy_top));
4706
4707 mutex_unlock(&cgroup_mutex);
4708
4709 /* this function shouldn't be used with modular subsystems, since they
4710 * need to register a subsys_id, among other things */
4711 BUG_ON(ss->module);
4712 }
4713
4714 /**
4715 * cgroup_load_subsys: load and register a modular subsystem at runtime
4716 * @ss: the subsystem to load
4717 *
4718 * This function should be called in a modular subsystem's initcall. If the
4719 * subsystem is built as a module, it will be assigned a new subsys_id and set
4720 * up for use. If the subsystem is built-in anyway, work is delegated to the
4721 * simpler cgroup_init_subsys.
4722 */
4723 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4724 {
4725 struct cgroup_subsys_state *css;
4726 int i, ret;
4727 struct hlist_node *tmp;
4728 struct css_set *cset;
4729 unsigned long key;
4730
4731 /* check name and function validity */
4732 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4733 ss->css_alloc == NULL || ss->css_free == NULL)
4734 return -EINVAL;
4735
4736 /*
4737 * we don't support callbacks in modular subsystems. this check is
4738 * before the ss->module check for consistency; a subsystem that could
4739 * be a module should still have no callbacks even if the user isn't
4740 * compiling it as one.
4741 */
4742 if (ss->fork || ss->exit)
4743 return -EINVAL;
4744
4745 /*
4746 * an optionally modular subsystem is built-in: we want to do nothing,
4747 * since cgroup_init_subsys will have already taken care of it.
4748 */
4749 if (ss->module == NULL) {
4750 /* a sanity check */
4751 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
4752 return 0;
4753 }
4754
4755 /* init base cftset */
4756 cgroup_init_cftsets(ss);
4757
4758 mutex_lock(&cgroup_mutex);
4759 cgroup_subsys[ss->subsys_id] = ss;
4760
4761 /*
4762 * no ss->css_alloc seems to need anything important in the ss
4763 * struct, so this can happen first (i.e. before the dummy root
4764 * attachment).
4765 */
4766 css = ss->css_alloc(cgroup_dummy_top);
4767 if (IS_ERR(css)) {
4768 /* failure case - need to deassign the cgroup_subsys[] slot. */
4769 cgroup_subsys[ss->subsys_id] = NULL;
4770 mutex_unlock(&cgroup_mutex);
4771 return PTR_ERR(css);
4772 }
4773
4774 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4775 ss->root = &cgroup_dummy_root;
4776
4777 /* our new subsystem will be attached to the dummy hierarchy. */
4778 init_cgroup_css(css, ss, cgroup_dummy_top);
4779 /* init_idr must be after init_cgroup_css because it sets css->id. */
4780 if (ss->use_id) {
4781 ret = cgroup_init_idr(ss, css);
4782 if (ret)
4783 goto err_unload;
4784 }
4785
4786 /*
4787 * Now we need to entangle the css into the existing css_sets. unlike
4788 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4789 * will need a new pointer to it; done by iterating the css_set_table.
4790 * furthermore, modifying the existing css_sets will corrupt the hash
4791 * table state, so each changed css_set will need its hash recomputed.
4792 * this is all done under the css_set_lock.
4793 */
4794 write_lock(&css_set_lock);
4795 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
4796 /* skip entries that we already rehashed */
4797 if (cset->subsys[ss->subsys_id])
4798 continue;
4799 /* remove existing entry */
4800 hash_del(&cset->hlist);
4801 /* set new value */
4802 cset->subsys[ss->subsys_id] = css;
4803 /* recompute hash and restore entry */
4804 key = css_set_hash(cset->subsys);
4805 hash_add(css_set_table, &cset->hlist, key);
4806 }
4807 write_unlock(&css_set_lock);
4808
4809 ret = online_css(ss, cgroup_dummy_top);
4810 if (ret)
4811 goto err_unload;
4812
4813 /* success! */
4814 mutex_unlock(&cgroup_mutex);
4815 return 0;
4816
4817 err_unload:
4818 mutex_unlock(&cgroup_mutex);
4819 /* @ss can't be mounted here as try_module_get() would fail */
4820 cgroup_unload_subsys(ss);
4821 return ret;
4822 }
4823 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4824
4825 /**
4826 * cgroup_unload_subsys: unload a modular subsystem
4827 * @ss: the subsystem to unload
4828 *
4829 * This function should be called in a modular subsystem's exitcall. When this
4830 * function is invoked, the refcount on the subsystem's module will be 0, so
4831 * the subsystem will not be attached to any hierarchy.
4832 */
4833 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4834 {
4835 struct cgrp_cset_link *link;
4836
4837 BUG_ON(ss->module == NULL);
4838
4839 /*
4840 * we shouldn't be called if the subsystem is in use, and the use of
4841 * try_module_get in parse_cgroupfs_options should ensure that it
4842 * doesn't start being used while we're killing it off.
4843 */
4844 BUG_ON(ss->root != &cgroup_dummy_root);
4845
4846 mutex_lock(&cgroup_mutex);
4847
4848 offline_css(ss, cgroup_dummy_top);
4849
4850 if (ss->use_id)
4851 idr_destroy(&ss->idr);
4852
4853 /* deassign the subsys_id */
4854 cgroup_subsys[ss->subsys_id] = NULL;
4855
4856 /* remove subsystem from the dummy root's list of subsystems */
4857 list_del_init(&ss->sibling);
4858
4859 /*
4860 * disentangle the css from all css_sets attached to the dummy
4861 * top. as in loading, we need to pay our respects to the hashtable
4862 * gods.
4863 */
4864 write_lock(&css_set_lock);
4865 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
4866 struct css_set *cset = link->cset;
4867 unsigned long key;
4868
4869 hash_del(&cset->hlist);
4870 cset->subsys[ss->subsys_id] = NULL;
4871 key = css_set_hash(cset->subsys);
4872 hash_add(css_set_table, &cset->hlist, key);
4873 }
4874 write_unlock(&css_set_lock);
4875
4876 /*
4877 * remove subsystem's css from the cgroup_dummy_top and free it -
4878 * need to free before marking as null because ss->css_free needs
4879 * the cgrp->subsys pointer to find their state. note that this
4880 * also takes care of freeing the css_id.
4881 */
4882 ss->css_free(cgroup_dummy_top);
4883 cgroup_dummy_top->subsys[ss->subsys_id] = NULL;
4884
4885 mutex_unlock(&cgroup_mutex);
4886 }
4887 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4888
4889 /**
4890 * cgroup_init_early - cgroup initialization at system boot
4891 *
4892 * Initialize cgroups at system boot, and initialize any
4893 * subsystems that request early init.
4894 */
4895 int __init cgroup_init_early(void)
4896 {
4897 struct cgroup_subsys *ss;
4898 int i;
4899
4900 atomic_set(&init_css_set.refcount, 1);
4901 INIT_LIST_HEAD(&init_css_set.cgrp_links);
4902 INIT_LIST_HEAD(&init_css_set.tasks);
4903 INIT_HLIST_NODE(&init_css_set.hlist);
4904 css_set_count = 1;
4905 init_cgroup_root(&cgroup_dummy_root);
4906 cgroup_root_count = 1;
4907 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4908
4909 init_cgrp_cset_link.cset = &init_css_set;
4910 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4911 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
4912 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
4913
4914 /* at bootup time, we don't worry about modular subsystems */
4915 for_each_builtin_subsys(ss, i) {
4916 BUG_ON(!ss->name);
4917 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4918 BUG_ON(!ss->css_alloc);
4919 BUG_ON(!ss->css_free);
4920 if (ss->subsys_id != i) {
4921 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4922 ss->name, ss->subsys_id);
4923 BUG();
4924 }
4925
4926 if (ss->early_init)
4927 cgroup_init_subsys(ss);
4928 }
4929 return 0;
4930 }
4931
4932 /**
4933 * cgroup_init - cgroup initialization
4934 *
4935 * Register cgroup filesystem and /proc file, and initialize
4936 * any subsystems that didn't request early init.
4937 */
4938 int __init cgroup_init(void)
4939 {
4940 struct cgroup_subsys *ss;
4941 unsigned long key;
4942 int i, err;
4943
4944 err = bdi_init(&cgroup_backing_dev_info);
4945 if (err)
4946 return err;
4947
4948 for_each_builtin_subsys(ss, i) {
4949 if (!ss->early_init)
4950 cgroup_init_subsys(ss);
4951 if (ss->use_id)
4952 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4953 }
4954
4955 /* allocate id for the dummy hierarchy */
4956 mutex_lock(&cgroup_mutex);
4957 mutex_lock(&cgroup_root_mutex);
4958
4959 /* Add init_css_set to the hash table */
4960 key = css_set_hash(init_css_set.subsys);
4961 hash_add(css_set_table, &init_css_set.hlist, key);
4962
4963 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
4964
4965 mutex_unlock(&cgroup_root_mutex);
4966 mutex_unlock(&cgroup_mutex);
4967
4968 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4969 if (!cgroup_kobj) {
4970 err = -ENOMEM;
4971 goto out;
4972 }
4973
4974 err = register_filesystem(&cgroup_fs_type);
4975 if (err < 0) {
4976 kobject_put(cgroup_kobj);
4977 goto out;
4978 }
4979
4980 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4981
4982 out:
4983 if (err)
4984 bdi_destroy(&cgroup_backing_dev_info);
4985
4986 return err;
4987 }
4988
4989 /*
4990 * proc_cgroup_show()
4991 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4992 * - Used for /proc/<pid>/cgroup.
4993 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4994 * doesn't really matter if tsk->cgroup changes after we read it,
4995 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4996 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4997 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4998 * cgroup to top_cgroup.
4999 */
5000
5001 /* TODO: Use a proper seq_file iterator */
5002 int proc_cgroup_show(struct seq_file *m, void *v)
5003 {
5004 struct pid *pid;
5005 struct task_struct *tsk;
5006 char *buf;
5007 int retval;
5008 struct cgroupfs_root *root;
5009
5010 retval = -ENOMEM;
5011 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5012 if (!buf)
5013 goto out;
5014
5015 retval = -ESRCH;
5016 pid = m->private;
5017 tsk = get_pid_task(pid, PIDTYPE_PID);
5018 if (!tsk)
5019 goto out_free;
5020
5021 retval = 0;
5022
5023 mutex_lock(&cgroup_mutex);
5024
5025 for_each_active_root(root) {
5026 struct cgroup_subsys *ss;
5027 struct cgroup *cgrp;
5028 int count = 0;
5029
5030 seq_printf(m, "%d:", root->hierarchy_id);
5031 for_each_root_subsys(root, ss)
5032 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
5033 if (strlen(root->name))
5034 seq_printf(m, "%sname=%s", count ? "," : "",
5035 root->name);
5036 seq_putc(m, ':');
5037 cgrp = task_cgroup_from_root(tsk, root);
5038 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
5039 if (retval < 0)
5040 goto out_unlock;
5041 seq_puts(m, buf);
5042 seq_putc(m, '\n');
5043 }
5044
5045 out_unlock:
5046 mutex_unlock(&cgroup_mutex);
5047 put_task_struct(tsk);
5048 out_free:
5049 kfree(buf);
5050 out:
5051 return retval;
5052 }
5053
5054 /* Display information about each subsystem and each hierarchy */
5055 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5056 {
5057 struct cgroup_subsys *ss;
5058 int i;
5059
5060 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5061 /*
5062 * ideally we don't want subsystems moving around while we do this.
5063 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5064 * subsys/hierarchy state.
5065 */
5066 mutex_lock(&cgroup_mutex);
5067
5068 for_each_subsys(ss, i)
5069 seq_printf(m, "%s\t%d\t%d\t%d\n",
5070 ss->name, ss->root->hierarchy_id,
5071 ss->root->number_of_cgroups, !ss->disabled);
5072
5073 mutex_unlock(&cgroup_mutex);
5074 return 0;
5075 }
5076
5077 static int cgroupstats_open(struct inode *inode, struct file *file)
5078 {
5079 return single_open(file, proc_cgroupstats_show, NULL);
5080 }
5081
5082 static const struct file_operations proc_cgroupstats_operations = {
5083 .open = cgroupstats_open,
5084 .read = seq_read,
5085 .llseek = seq_lseek,
5086 .release = single_release,
5087 };
5088
5089 /**
5090 * cgroup_fork - attach newly forked task to its parents cgroup.
5091 * @child: pointer to task_struct of forking parent process.
5092 *
5093 * Description: A task inherits its parent's cgroup at fork().
5094 *
5095 * A pointer to the shared css_set was automatically copied in
5096 * fork.c by dup_task_struct(). However, we ignore that copy, since
5097 * it was not made under the protection of RCU or cgroup_mutex, so
5098 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5099 * have already changed current->cgroups, allowing the previously
5100 * referenced cgroup group to be removed and freed.
5101 *
5102 * At the point that cgroup_fork() is called, 'current' is the parent
5103 * task, and the passed argument 'child' points to the child task.
5104 */
5105 void cgroup_fork(struct task_struct *child)
5106 {
5107 task_lock(current);
5108 get_css_set(task_css_set(current));
5109 child->cgroups = current->cgroups;
5110 task_unlock(current);
5111 INIT_LIST_HEAD(&child->cg_list);
5112 }
5113
5114 /**
5115 * cgroup_post_fork - called on a new task after adding it to the task list
5116 * @child: the task in question
5117 *
5118 * Adds the task to the list running through its css_set if necessary and
5119 * call the subsystem fork() callbacks. Has to be after the task is
5120 * visible on the task list in case we race with the first call to
5121 * cgroup_iter_start() - to guarantee that the new task ends up on its
5122 * list.
5123 */
5124 void cgroup_post_fork(struct task_struct *child)
5125 {
5126 struct cgroup_subsys *ss;
5127 int i;
5128
5129 /*
5130 * use_task_css_set_links is set to 1 before we walk the tasklist
5131 * under the tasklist_lock and we read it here after we added the child
5132 * to the tasklist under the tasklist_lock as well. If the child wasn't
5133 * yet in the tasklist when we walked through it from
5134 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5135 * should be visible now due to the paired locking and barriers implied
5136 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5137 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5138 * lock on fork.
5139 */
5140 if (use_task_css_set_links) {
5141 write_lock(&css_set_lock);
5142 task_lock(child);
5143 if (list_empty(&child->cg_list))
5144 list_add(&child->cg_list, &task_css_set(child)->tasks);
5145 task_unlock(child);
5146 write_unlock(&css_set_lock);
5147 }
5148
5149 /*
5150 * Call ss->fork(). This must happen after @child is linked on
5151 * css_set; otherwise, @child might change state between ->fork()
5152 * and addition to css_set.
5153 */
5154 if (need_forkexit_callback) {
5155 /*
5156 * fork/exit callbacks are supported only for builtin
5157 * subsystems, and the builtin section of the subsys
5158 * array is immutable, so we don't need to lock the
5159 * subsys array here. On the other hand, modular section
5160 * of the array can be freed at module unload, so we
5161 * can't touch that.
5162 */
5163 for_each_builtin_subsys(ss, i)
5164 if (ss->fork)
5165 ss->fork(child);
5166 }
5167 }
5168
5169 /**
5170 * cgroup_exit - detach cgroup from exiting task
5171 * @tsk: pointer to task_struct of exiting process
5172 * @run_callback: run exit callbacks?
5173 *
5174 * Description: Detach cgroup from @tsk and release it.
5175 *
5176 * Note that cgroups marked notify_on_release force every task in
5177 * them to take the global cgroup_mutex mutex when exiting.
5178 * This could impact scaling on very large systems. Be reluctant to
5179 * use notify_on_release cgroups where very high task exit scaling
5180 * is required on large systems.
5181 *
5182 * the_top_cgroup_hack:
5183 *
5184 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5185 *
5186 * We call cgroup_exit() while the task is still competent to
5187 * handle notify_on_release(), then leave the task attached to the
5188 * root cgroup in each hierarchy for the remainder of its exit.
5189 *
5190 * To do this properly, we would increment the reference count on
5191 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5192 * code we would add a second cgroup function call, to drop that
5193 * reference. This would just create an unnecessary hot spot on
5194 * the top_cgroup reference count, to no avail.
5195 *
5196 * Normally, holding a reference to a cgroup without bumping its
5197 * count is unsafe. The cgroup could go away, or someone could
5198 * attach us to a different cgroup, decrementing the count on
5199 * the first cgroup that we never incremented. But in this case,
5200 * top_cgroup isn't going away, and either task has PF_EXITING set,
5201 * which wards off any cgroup_attach_task() attempts, or task is a failed
5202 * fork, never visible to cgroup_attach_task.
5203 */
5204 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5205 {
5206 struct cgroup_subsys *ss;
5207 struct css_set *cset;
5208 int i;
5209
5210 /*
5211 * Unlink from the css_set task list if necessary.
5212 * Optimistically check cg_list before taking
5213 * css_set_lock
5214 */
5215 if (!list_empty(&tsk->cg_list)) {
5216 write_lock(&css_set_lock);
5217 if (!list_empty(&tsk->cg_list))
5218 list_del_init(&tsk->cg_list);
5219 write_unlock(&css_set_lock);
5220 }
5221
5222 /* Reassign the task to the init_css_set. */
5223 task_lock(tsk);
5224 cset = task_css_set(tsk);
5225 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5226
5227 if (run_callbacks && need_forkexit_callback) {
5228 /*
5229 * fork/exit callbacks are supported only for builtin
5230 * subsystems, see cgroup_post_fork() for details.
5231 */
5232 for_each_builtin_subsys(ss, i) {
5233 if (ss->exit) {
5234 struct cgroup *old_cgrp = cset->subsys[i]->cgroup;
5235 struct cgroup *cgrp = task_cgroup(tsk, i);
5236
5237 ss->exit(cgrp, old_cgrp, tsk);
5238 }
5239 }
5240 }
5241 task_unlock(tsk);
5242
5243 put_css_set_taskexit(cset);
5244 }
5245
5246 static void check_for_release(struct cgroup *cgrp)
5247 {
5248 if (cgroup_is_releasable(cgrp) &&
5249 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
5250 /*
5251 * Control Group is currently removeable. If it's not
5252 * already queued for a userspace notification, queue
5253 * it now
5254 */
5255 int need_schedule_work = 0;
5256
5257 raw_spin_lock(&release_list_lock);
5258 if (!cgroup_is_dead(cgrp) &&
5259 list_empty(&cgrp->release_list)) {
5260 list_add(&cgrp->release_list, &release_list);
5261 need_schedule_work = 1;
5262 }
5263 raw_spin_unlock(&release_list_lock);
5264 if (need_schedule_work)
5265 schedule_work(&release_agent_work);
5266 }
5267 }
5268
5269 /*
5270 * Notify userspace when a cgroup is released, by running the
5271 * configured release agent with the name of the cgroup (path
5272 * relative to the root of cgroup file system) as the argument.
5273 *
5274 * Most likely, this user command will try to rmdir this cgroup.
5275 *
5276 * This races with the possibility that some other task will be
5277 * attached to this cgroup before it is removed, or that some other
5278 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5279 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5280 * unused, and this cgroup will be reprieved from its death sentence,
5281 * to continue to serve a useful existence. Next time it's released,
5282 * we will get notified again, if it still has 'notify_on_release' set.
5283 *
5284 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5285 * means only wait until the task is successfully execve()'d. The
5286 * separate release agent task is forked by call_usermodehelper(),
5287 * then control in this thread returns here, without waiting for the
5288 * release agent task. We don't bother to wait because the caller of
5289 * this routine has no use for the exit status of the release agent
5290 * task, so no sense holding our caller up for that.
5291 */
5292 static void cgroup_release_agent(struct work_struct *work)
5293 {
5294 BUG_ON(work != &release_agent_work);
5295 mutex_lock(&cgroup_mutex);
5296 raw_spin_lock(&release_list_lock);
5297 while (!list_empty(&release_list)) {
5298 char *argv[3], *envp[3];
5299 int i;
5300 char *pathbuf = NULL, *agentbuf = NULL;
5301 struct cgroup *cgrp = list_entry(release_list.next,
5302 struct cgroup,
5303 release_list);
5304 list_del_init(&cgrp->release_list);
5305 raw_spin_unlock(&release_list_lock);
5306 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5307 if (!pathbuf)
5308 goto continue_free;
5309 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5310 goto continue_free;
5311 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5312 if (!agentbuf)
5313 goto continue_free;
5314
5315 i = 0;
5316 argv[i++] = agentbuf;
5317 argv[i++] = pathbuf;
5318 argv[i] = NULL;
5319
5320 i = 0;
5321 /* minimal command environment */
5322 envp[i++] = "HOME=/";
5323 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5324 envp[i] = NULL;
5325
5326 /* Drop the lock while we invoke the usermode helper,
5327 * since the exec could involve hitting disk and hence
5328 * be a slow process */
5329 mutex_unlock(&cgroup_mutex);
5330 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5331 mutex_lock(&cgroup_mutex);
5332 continue_free:
5333 kfree(pathbuf);
5334 kfree(agentbuf);
5335 raw_spin_lock(&release_list_lock);
5336 }
5337 raw_spin_unlock(&release_list_lock);
5338 mutex_unlock(&cgroup_mutex);
5339 }
5340
5341 static int __init cgroup_disable(char *str)
5342 {
5343 struct cgroup_subsys *ss;
5344 char *token;
5345 int i;
5346
5347 while ((token = strsep(&str, ",")) != NULL) {
5348 if (!*token)
5349 continue;
5350
5351 /*
5352 * cgroup_disable, being at boot time, can't know about
5353 * module subsystems, so we don't worry about them.
5354 */
5355 for_each_builtin_subsys(ss, i) {
5356 if (!strcmp(token, ss->name)) {
5357 ss->disabled = 1;
5358 printk(KERN_INFO "Disabling %s control group"
5359 " subsystem\n", ss->name);
5360 break;
5361 }
5362 }
5363 }
5364 return 1;
5365 }
5366 __setup("cgroup_disable=", cgroup_disable);
5367
5368 /*
5369 * Functons for CSS ID.
5370 */
5371
5372 /* to get ID other than 0, this should be called when !cgroup_is_dead() */
5373 unsigned short css_id(struct cgroup_subsys_state *css)
5374 {
5375 struct css_id *cssid;
5376
5377 /*
5378 * This css_id() can return correct value when somone has refcnt
5379 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5380 * it's unchanged until freed.
5381 */
5382 cssid = rcu_dereference_raw(css->id);
5383
5384 if (cssid)
5385 return cssid->id;
5386 return 0;
5387 }
5388 EXPORT_SYMBOL_GPL(css_id);
5389
5390 /**
5391 * css_is_ancestor - test "root" css is an ancestor of "child"
5392 * @child: the css to be tested.
5393 * @root: the css supporsed to be an ancestor of the child.
5394 *
5395 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5396 * this function reads css->id, the caller must hold rcu_read_lock().
5397 * But, considering usual usage, the csses should be valid objects after test.
5398 * Assuming that the caller will do some action to the child if this returns
5399 * returns true, the caller must take "child";s reference count.
5400 * If "child" is valid object and this returns true, "root" is valid, too.
5401 */
5402
5403 bool css_is_ancestor(struct cgroup_subsys_state *child,
5404 const struct cgroup_subsys_state *root)
5405 {
5406 struct css_id *child_id;
5407 struct css_id *root_id;
5408
5409 child_id = rcu_dereference(child->id);
5410 if (!child_id)
5411 return false;
5412 root_id = rcu_dereference(root->id);
5413 if (!root_id)
5414 return false;
5415 if (child_id->depth < root_id->depth)
5416 return false;
5417 if (child_id->stack[root_id->depth] != root_id->id)
5418 return false;
5419 return true;
5420 }
5421
5422 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5423 {
5424 struct css_id *id = rcu_dereference_protected(css->id, true);
5425
5426 /* When this is called before css_id initialization, id can be NULL */
5427 if (!id)
5428 return;
5429
5430 BUG_ON(!ss->use_id);
5431
5432 rcu_assign_pointer(id->css, NULL);
5433 rcu_assign_pointer(css->id, NULL);
5434 spin_lock(&ss->id_lock);
5435 idr_remove(&ss->idr, id->id);
5436 spin_unlock(&ss->id_lock);
5437 kfree_rcu(id, rcu_head);
5438 }
5439 EXPORT_SYMBOL_GPL(free_css_id);
5440
5441 /*
5442 * This is called by init or create(). Then, calls to this function are
5443 * always serialized (By cgroup_mutex() at create()).
5444 */
5445
5446 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5447 {
5448 struct css_id *newid;
5449 int ret, size;
5450
5451 BUG_ON(!ss->use_id);
5452
5453 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5454 newid = kzalloc(size, GFP_KERNEL);
5455 if (!newid)
5456 return ERR_PTR(-ENOMEM);
5457
5458 idr_preload(GFP_KERNEL);
5459 spin_lock(&ss->id_lock);
5460 /* Don't use 0. allocates an ID of 1-65535 */
5461 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
5462 spin_unlock(&ss->id_lock);
5463 idr_preload_end();
5464
5465 /* Returns error when there are no free spaces for new ID.*/
5466 if (ret < 0)
5467 goto err_out;
5468
5469 newid->id = ret;
5470 newid->depth = depth;
5471 return newid;
5472 err_out:
5473 kfree(newid);
5474 return ERR_PTR(ret);
5475
5476 }
5477
5478 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5479 struct cgroup_subsys_state *rootcss)
5480 {
5481 struct css_id *newid;
5482
5483 spin_lock_init(&ss->id_lock);
5484 idr_init(&ss->idr);
5485
5486 newid = get_new_cssid(ss, 0);
5487 if (IS_ERR(newid))
5488 return PTR_ERR(newid);
5489
5490 newid->stack[0] = newid->id;
5491 RCU_INIT_POINTER(newid->css, rootcss);
5492 RCU_INIT_POINTER(rootcss->id, newid);
5493 return 0;
5494 }
5495
5496 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5497 struct cgroup *child)
5498 {
5499 int subsys_id, i, depth = 0;
5500 struct cgroup_subsys_state *parent_css, *child_css;
5501 struct css_id *child_id, *parent_id;
5502
5503 subsys_id = ss->subsys_id;
5504 parent_css = parent->subsys[subsys_id];
5505 child_css = child->subsys[subsys_id];
5506 parent_id = rcu_dereference_protected(parent_css->id, true);
5507 depth = parent_id->depth + 1;
5508
5509 child_id = get_new_cssid(ss, depth);
5510 if (IS_ERR(child_id))
5511 return PTR_ERR(child_id);
5512
5513 for (i = 0; i < depth; i++)
5514 child_id->stack[i] = parent_id->stack[i];
5515 child_id->stack[depth] = child_id->id;
5516 /*
5517 * child_id->css pointer will be set after this cgroup is available
5518 * see cgroup_populate_dir()
5519 */
5520 rcu_assign_pointer(child_css->id, child_id);
5521
5522 return 0;
5523 }
5524
5525 /**
5526 * css_lookup - lookup css by id
5527 * @ss: cgroup subsys to be looked into.
5528 * @id: the id
5529 *
5530 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5531 * NULL if not. Should be called under rcu_read_lock()
5532 */
5533 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5534 {
5535 struct css_id *cssid = NULL;
5536
5537 BUG_ON(!ss->use_id);
5538 cssid = idr_find(&ss->idr, id);
5539
5540 if (unlikely(!cssid))
5541 return NULL;
5542
5543 return rcu_dereference(cssid->css);
5544 }
5545 EXPORT_SYMBOL_GPL(css_lookup);
5546
5547 /*
5548 * get corresponding css from file open on cgroupfs directory
5549 */
5550 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5551 {
5552 struct cgroup *cgrp;
5553 struct inode *inode;
5554 struct cgroup_subsys_state *css;
5555
5556 inode = file_inode(f);
5557 /* check in cgroup filesystem dir */
5558 if (inode->i_op != &cgroup_dir_inode_operations)
5559 return ERR_PTR(-EBADF);
5560
5561 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5562 return ERR_PTR(-EINVAL);
5563
5564 /* get cgroup */
5565 cgrp = __d_cgrp(f->f_dentry);
5566 css = cgrp->subsys[id];
5567 return css ? css : ERR_PTR(-ENOENT);
5568 }
5569
5570 #ifdef CONFIG_CGROUP_DEBUG
5571 static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cgrp)
5572 {
5573 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5574
5575 if (!css)
5576 return ERR_PTR(-ENOMEM);
5577
5578 return css;
5579 }
5580
5581 static void debug_css_free(struct cgroup *cgrp)
5582 {
5583 kfree(cgrp->subsys[debug_subsys_id]);
5584 }
5585
5586 static u64 debug_taskcount_read(struct cgroup *cgrp, struct cftype *cft)
5587 {
5588 return cgroup_task_count(cgrp);
5589 }
5590
5591 static u64 current_css_set_read(struct cgroup *cgrp, struct cftype *cft)
5592 {
5593 return (u64)(unsigned long)current->cgroups;
5594 }
5595
5596 static u64 current_css_set_refcount_read(struct cgroup *cgrp,
5597 struct cftype *cft)
5598 {
5599 u64 count;
5600
5601 rcu_read_lock();
5602 count = atomic_read(&task_css_set(current)->refcount);
5603 rcu_read_unlock();
5604 return count;
5605 }
5606
5607 static int current_css_set_cg_links_read(struct cgroup *cgrp,
5608 struct cftype *cft,
5609 struct seq_file *seq)
5610 {
5611 struct cgrp_cset_link *link;
5612 struct css_set *cset;
5613
5614 read_lock(&css_set_lock);
5615 rcu_read_lock();
5616 cset = rcu_dereference(current->cgroups);
5617 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5618 struct cgroup *c = link->cgrp;
5619 const char *name;
5620
5621 if (c->dentry)
5622 name = c->dentry->d_name.name;
5623 else
5624 name = "?";
5625 seq_printf(seq, "Root %d group %s\n",
5626 c->root->hierarchy_id, name);
5627 }
5628 rcu_read_unlock();
5629 read_unlock(&css_set_lock);
5630 return 0;
5631 }
5632
5633 #define MAX_TASKS_SHOWN_PER_CSS 25
5634 static int cgroup_css_links_read(struct cgroup *cgrp,
5635 struct cftype *cft,
5636 struct seq_file *seq)
5637 {
5638 struct cgrp_cset_link *link;
5639
5640 read_lock(&css_set_lock);
5641 list_for_each_entry(link, &cgrp->cset_links, cset_link) {
5642 struct css_set *cset = link->cset;
5643 struct task_struct *task;
5644 int count = 0;
5645 seq_printf(seq, "css_set %p\n", cset);
5646 list_for_each_entry(task, &cset->tasks, cg_list) {
5647 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5648 seq_puts(seq, " ...\n");
5649 break;
5650 } else {
5651 seq_printf(seq, " task %d\n",
5652 task_pid_vnr(task));
5653 }
5654 }
5655 }
5656 read_unlock(&css_set_lock);
5657 return 0;
5658 }
5659
5660 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5661 {
5662 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5663 }
5664
5665 static struct cftype debug_files[] = {
5666 {
5667 .name = "taskcount",
5668 .read_u64 = debug_taskcount_read,
5669 },
5670
5671 {
5672 .name = "current_css_set",
5673 .read_u64 = current_css_set_read,
5674 },
5675
5676 {
5677 .name = "current_css_set_refcount",
5678 .read_u64 = current_css_set_refcount_read,
5679 },
5680
5681 {
5682 .name = "current_css_set_cg_links",
5683 .read_seq_string = current_css_set_cg_links_read,
5684 },
5685
5686 {
5687 .name = "cgroup_css_links",
5688 .read_seq_string = cgroup_css_links_read,
5689 },
5690
5691 {
5692 .name = "releasable",
5693 .read_u64 = releasable_read,
5694 },
5695
5696 { } /* terminate */
5697 };
5698
5699 struct cgroup_subsys debug_subsys = {
5700 .name = "debug",
5701 .css_alloc = debug_css_alloc,
5702 .css_free = debug_css_free,
5703 .subsys_id = debug_subsys_id,
5704 .base_cftypes = debug_files,
5705 };
5706 #endif /* CONFIG_CGROUP_DEBUG */