]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/events/core.c
perf/core: Fix locking for children siblings group read
[mirror_ubuntu-artful-kernel.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61 struct task_struct *p;
62 remote_function_f func;
63 void *info;
64 int ret;
65 };
66
67 static void remote_function(void *data)
68 {
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 struct remote_function_call data = {
107 .p = p,
108 .func = func,
109 .info = info,
110 .ret = -EAGAIN,
111 };
112 int ret;
113
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
119
120 return ret;
121 }
122
123 /**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 struct remote_function_call data = {
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
154 {
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162 {
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197 struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201 };
202
203 static int event_function(void *info)
204 {
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
207 struct perf_event_context *ctx = event->ctx;
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 int ret = 0;
211
212 WARN_ON_ONCE(!irqs_disabled());
213
214 perf_ctx_lock(cpuctx, task_ctx);
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
218 */
219 if (ctx->task) {
220 if (ctx->task != current) {
221 ret = -ESRCH;
222 goto unlock;
223 }
224
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 }
241
242 efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 perf_ctx_unlock(cpuctx, task_ctx);
245
246 return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 struct perf_event_context *ctx = event->ctx;
252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
258
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
267
268 if (!task) {
269 cpu_function_call(event->cpu, event_function, &efs);
270 return;
271 }
272
273 if (task == TASK_TOMBSTONE)
274 return;
275
276 again:
277 if (!task_function_call(task, event_function, &efs))
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
289 }
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
295 raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 WARN_ON_ONCE(!irqs_disabled());
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342 unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
350
351 /*
352 * branch priv levels that need permission checks
353 */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
361 EVENT_TIME = 0x4,
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395 * perf event paranoia level:
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
398 * 1 - disallow cpu events for unpriv
399 * 2 - disallow kernel profiling for unpriv
400 */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407 * max perf event sample rate
408 */
409 #define DEFAULT_MAX_SAMPLE_RATE 100000
410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438 {
439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441 if (ret || !write)
442 return ret;
443
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463 {
464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466 if (ret || !write)
467 return ret;
468
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
477
478 return 0;
479 }
480
481 /*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495 printk_ratelimited(KERN_INFO
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
510
511 if (max_len == 0)
512 return;
513
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
519
520 /*
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 * from having to maintain a count.
524 */
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
527 return;
528
529 __report_avg = avg_len;
530 __report_allowed = max_len;
531
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
541
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548 if (!irq_work_queue(&perf_duration_work)) {
549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 "kernel.perf_event_max_sample_rate to %d\n",
551 __report_avg, __report_allowed,
552 sysctl_perf_event_sample_rate);
553 }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void) { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572 return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577 return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582 return event->clock();
583 }
584
585 #ifdef CONFIG_CGROUP_PERF
586
587 static inline bool
588 perf_cgroup_match(struct perf_event *event)
589 {
590 struct perf_event_context *ctx = event->ctx;
591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
593 /* @event doesn't care about cgroup */
594 if (!event->cgrp)
595 return true;
596
597 /* wants specific cgroup scope but @cpuctx isn't associated with any */
598 if (!cpuctx->cgrp)
599 return false;
600
601 /*
602 * Cgroup scoping is recursive. An event enabled for a cgroup is
603 * also enabled for all its descendant cgroups. If @cpuctx's
604 * cgroup is a descendant of @event's (the test covers identity
605 * case), it's a match.
606 */
607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608 event->cgrp->css.cgroup);
609 }
610
611 static inline void perf_detach_cgroup(struct perf_event *event)
612 {
613 css_put(&event->cgrp->css);
614 event->cgrp = NULL;
615 }
616
617 static inline int is_cgroup_event(struct perf_event *event)
618 {
619 return event->cgrp != NULL;
620 }
621
622 static inline u64 perf_cgroup_event_time(struct perf_event *event)
623 {
624 struct perf_cgroup_info *t;
625
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 return t->time;
628 }
629
630 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631 {
632 struct perf_cgroup_info *info;
633 u64 now;
634
635 now = perf_clock();
636
637 info = this_cpu_ptr(cgrp->info);
638
639 info->time += now - info->timestamp;
640 info->timestamp = now;
641 }
642
643 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644 {
645 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646 if (cgrp_out)
647 __update_cgrp_time(cgrp_out);
648 }
649
650 static inline void update_cgrp_time_from_event(struct perf_event *event)
651 {
652 struct perf_cgroup *cgrp;
653
654 /*
655 * ensure we access cgroup data only when needed and
656 * when we know the cgroup is pinned (css_get)
657 */
658 if (!is_cgroup_event(event))
659 return;
660
661 cgrp = perf_cgroup_from_task(current, event->ctx);
662 /*
663 * Do not update time when cgroup is not active
664 */
665 if (cgrp == event->cgrp)
666 __update_cgrp_time(event->cgrp);
667 }
668
669 static inline void
670 perf_cgroup_set_timestamp(struct task_struct *task,
671 struct perf_event_context *ctx)
672 {
673 struct perf_cgroup *cgrp;
674 struct perf_cgroup_info *info;
675
676 /*
677 * ctx->lock held by caller
678 * ensure we do not access cgroup data
679 * unless we have the cgroup pinned (css_get)
680 */
681 if (!task || !ctx->nr_cgroups)
682 return;
683
684 cgrp = perf_cgroup_from_task(task, ctx);
685 info = this_cpu_ptr(cgrp->info);
686 info->timestamp = ctx->timestamp;
687 }
688
689 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
691 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
692 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
693
694 /*
695 * reschedule events based on the cgroup constraint of task.
696 *
697 * mode SWOUT : schedule out everything
698 * mode SWIN : schedule in based on cgroup for next
699 */
700 static void perf_cgroup_switch(struct task_struct *task, int mode)
701 {
702 struct perf_cpu_context *cpuctx;
703 struct list_head *list;
704 unsigned long flags;
705
706 /*
707 * Disable interrupts and preemption to avoid this CPU's
708 * cgrp_cpuctx_entry to change under us.
709 */
710 local_irq_save(flags);
711
712 list = this_cpu_ptr(&cgrp_cpuctx_list);
713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
715
716 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717 perf_pmu_disable(cpuctx->ctx.pmu);
718
719 if (mode & PERF_CGROUP_SWOUT) {
720 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721 /*
722 * must not be done before ctxswout due
723 * to event_filter_match() in event_sched_out()
724 */
725 cpuctx->cgrp = NULL;
726 }
727
728 if (mode & PERF_CGROUP_SWIN) {
729 WARN_ON_ONCE(cpuctx->cgrp);
730 /*
731 * set cgrp before ctxsw in to allow
732 * event_filter_match() to not have to pass
733 * task around
734 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 * because cgorup events are only per-cpu
736 */
737 cpuctx->cgrp = perf_cgroup_from_task(task,
738 &cpuctx->ctx);
739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
740 }
741 perf_pmu_enable(cpuctx->ctx.pmu);
742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
743 }
744
745 local_irq_restore(flags);
746 }
747
748 static inline void perf_cgroup_sched_out(struct task_struct *task,
749 struct task_struct *next)
750 {
751 struct perf_cgroup *cgrp1;
752 struct perf_cgroup *cgrp2 = NULL;
753
754 rcu_read_lock();
755 /*
756 * we come here when we know perf_cgroup_events > 0
757 * we do not need to pass the ctx here because we know
758 * we are holding the rcu lock
759 */
760 cgrp1 = perf_cgroup_from_task(task, NULL);
761 cgrp2 = perf_cgroup_from_task(next, NULL);
762
763 /*
764 * only schedule out current cgroup events if we know
765 * that we are switching to a different cgroup. Otherwise,
766 * do no touch the cgroup events.
767 */
768 if (cgrp1 != cgrp2)
769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
770
771 rcu_read_unlock();
772 }
773
774 static inline void perf_cgroup_sched_in(struct task_struct *prev,
775 struct task_struct *task)
776 {
777 struct perf_cgroup *cgrp1;
778 struct perf_cgroup *cgrp2 = NULL;
779
780 rcu_read_lock();
781 /*
782 * we come here when we know perf_cgroup_events > 0
783 * we do not need to pass the ctx here because we know
784 * we are holding the rcu lock
785 */
786 cgrp1 = perf_cgroup_from_task(task, NULL);
787 cgrp2 = perf_cgroup_from_task(prev, NULL);
788
789 /*
790 * only need to schedule in cgroup events if we are changing
791 * cgroup during ctxsw. Cgroup events were not scheduled
792 * out of ctxsw out if that was not the case.
793 */
794 if (cgrp1 != cgrp2)
795 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
796
797 rcu_read_unlock();
798 }
799
800 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801 struct perf_event_attr *attr,
802 struct perf_event *group_leader)
803 {
804 struct perf_cgroup *cgrp;
805 struct cgroup_subsys_state *css;
806 struct fd f = fdget(fd);
807 int ret = 0;
808
809 if (!f.file)
810 return -EBADF;
811
812 css = css_tryget_online_from_dir(f.file->f_path.dentry,
813 &perf_event_cgrp_subsys);
814 if (IS_ERR(css)) {
815 ret = PTR_ERR(css);
816 goto out;
817 }
818
819 cgrp = container_of(css, struct perf_cgroup, css);
820 event->cgrp = cgrp;
821
822 /*
823 * all events in a group must monitor
824 * the same cgroup because a task belongs
825 * to only one perf cgroup at a time
826 */
827 if (group_leader && group_leader->cgrp != cgrp) {
828 perf_detach_cgroup(event);
829 ret = -EINVAL;
830 }
831 out:
832 fdput(f);
833 return ret;
834 }
835
836 static inline void
837 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838 {
839 struct perf_cgroup_info *t;
840 t = per_cpu_ptr(event->cgrp->info, event->cpu);
841 event->shadow_ctx_time = now - t->timestamp;
842 }
843
844 static inline void
845 perf_cgroup_defer_enabled(struct perf_event *event)
846 {
847 /*
848 * when the current task's perf cgroup does not match
849 * the event's, we need to remember to call the
850 * perf_mark_enable() function the first time a task with
851 * a matching perf cgroup is scheduled in.
852 */
853 if (is_cgroup_event(event) && !perf_cgroup_match(event))
854 event->cgrp_defer_enabled = 1;
855 }
856
857 static inline void
858 perf_cgroup_mark_enabled(struct perf_event *event,
859 struct perf_event_context *ctx)
860 {
861 struct perf_event *sub;
862 u64 tstamp = perf_event_time(event);
863
864 if (!event->cgrp_defer_enabled)
865 return;
866
867 event->cgrp_defer_enabled = 0;
868
869 event->tstamp_enabled = tstamp - event->total_time_enabled;
870 list_for_each_entry(sub, &event->sibling_list, group_entry) {
871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873 sub->cgrp_defer_enabled = 0;
874 }
875 }
876 }
877
878 /*
879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880 * cleared when last cgroup event is removed.
881 */
882 static inline void
883 list_update_cgroup_event(struct perf_event *event,
884 struct perf_event_context *ctx, bool add)
885 {
886 struct perf_cpu_context *cpuctx;
887 struct list_head *cpuctx_entry;
888
889 if (!is_cgroup_event(event))
890 return;
891
892 if (add && ctx->nr_cgroups++)
893 return;
894 else if (!add && --ctx->nr_cgroups)
895 return;
896 /*
897 * Because cgroup events are always per-cpu events,
898 * this will always be called from the right CPU.
899 */
900 cpuctx = __get_cpu_context(ctx);
901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903 if (add) {
904 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906 cpuctx->cgrp = event->cgrp;
907 } else {
908 list_del(cpuctx_entry);
909 cpuctx->cgrp = NULL;
910 }
911 }
912
913 #else /* !CONFIG_CGROUP_PERF */
914
915 static inline bool
916 perf_cgroup_match(struct perf_event *event)
917 {
918 return true;
919 }
920
921 static inline void perf_detach_cgroup(struct perf_event *event)
922 {}
923
924 static inline int is_cgroup_event(struct perf_event *event)
925 {
926 return 0;
927 }
928
929 static inline void update_cgrp_time_from_event(struct perf_event *event)
930 {
931 }
932
933 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934 {
935 }
936
937 static inline void perf_cgroup_sched_out(struct task_struct *task,
938 struct task_struct *next)
939 {
940 }
941
942 static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 struct task_struct *task)
944 {
945 }
946
947 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 struct perf_event_attr *attr,
949 struct perf_event *group_leader)
950 {
951 return -EINVAL;
952 }
953
954 static inline void
955 perf_cgroup_set_timestamp(struct task_struct *task,
956 struct perf_event_context *ctx)
957 {
958 }
959
960 void
961 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962 {
963 }
964
965 static inline void
966 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967 {
968 }
969
970 static inline u64 perf_cgroup_event_time(struct perf_event *event)
971 {
972 return 0;
973 }
974
975 static inline void
976 perf_cgroup_defer_enabled(struct perf_event *event)
977 {
978 }
979
980 static inline void
981 perf_cgroup_mark_enabled(struct perf_event *event,
982 struct perf_event_context *ctx)
983 {
984 }
985
986 static inline void
987 list_update_cgroup_event(struct perf_event *event,
988 struct perf_event_context *ctx, bool add)
989 {
990 }
991
992 #endif
993
994 /*
995 * set default to be dependent on timer tick just
996 * like original code
997 */
998 #define PERF_CPU_HRTIMER (1000 / HZ)
999 /*
1000 * function must be called with interrupts disabled
1001 */
1002 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1003 {
1004 struct perf_cpu_context *cpuctx;
1005 int rotations = 0;
1006
1007 WARN_ON(!irqs_disabled());
1008
1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1010 rotations = perf_rotate_context(cpuctx);
1011
1012 raw_spin_lock(&cpuctx->hrtimer_lock);
1013 if (rotations)
1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1015 else
1016 cpuctx->hrtimer_active = 0;
1017 raw_spin_unlock(&cpuctx->hrtimer_lock);
1018
1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1020 }
1021
1022 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1023 {
1024 struct hrtimer *timer = &cpuctx->hrtimer;
1025 struct pmu *pmu = cpuctx->ctx.pmu;
1026 u64 interval;
1027
1028 /* no multiplexing needed for SW PMU */
1029 if (pmu->task_ctx_nr == perf_sw_context)
1030 return;
1031
1032 /*
1033 * check default is sane, if not set then force to
1034 * default interval (1/tick)
1035 */
1036 interval = pmu->hrtimer_interval_ms;
1037 if (interval < 1)
1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1039
1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1041
1042 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1044 timer->function = perf_mux_hrtimer_handler;
1045 }
1046
1047 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1048 {
1049 struct hrtimer *timer = &cpuctx->hrtimer;
1050 struct pmu *pmu = cpuctx->ctx.pmu;
1051 unsigned long flags;
1052
1053 /* not for SW PMU */
1054 if (pmu->task_ctx_nr == perf_sw_context)
1055 return 0;
1056
1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 if (!cpuctx->hrtimer_active) {
1059 cpuctx->hrtimer_active = 1;
1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 }
1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1064
1065 return 0;
1066 }
1067
1068 void perf_pmu_disable(struct pmu *pmu)
1069 {
1070 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 if (!(*count)++)
1072 pmu->pmu_disable(pmu);
1073 }
1074
1075 void perf_pmu_enable(struct pmu *pmu)
1076 {
1077 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 if (!--(*count))
1079 pmu->pmu_enable(pmu);
1080 }
1081
1082 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1083
1084 /*
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
1089 */
1090 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1091 {
1092 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1093
1094 WARN_ON(!irqs_disabled());
1095
1096 WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098 list_add(&ctx->active_ctx_list, head);
1099 }
1100
1101 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102 {
1103 WARN_ON(!irqs_disabled());
1104
1105 WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107 list_del_init(&ctx->active_ctx_list);
1108 }
1109
1110 static void get_ctx(struct perf_event_context *ctx)
1111 {
1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1113 }
1114
1115 static void free_ctx(struct rcu_head *head)
1116 {
1117 struct perf_event_context *ctx;
1118
1119 ctx = container_of(head, struct perf_event_context, rcu_head);
1120 kfree(ctx->task_ctx_data);
1121 kfree(ctx);
1122 }
1123
1124 static void put_ctx(struct perf_event_context *ctx)
1125 {
1126 if (atomic_dec_and_test(&ctx->refcount)) {
1127 if (ctx->parent_ctx)
1128 put_ctx(ctx->parent_ctx);
1129 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1130 put_task_struct(ctx->task);
1131 call_rcu(&ctx->rcu_head, free_ctx);
1132 }
1133 }
1134
1135 /*
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1138 *
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141 *
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1144 *
1145 * - perf_event_exit_task_context() [ child , 0 ]
1146 * perf_event_exit_event()
1147 * put_event() [ parent, 1 ]
1148 *
1149 * - perf_event_init_context() [ parent, 0 ]
1150 * inherit_task_group()
1151 * inherit_group()
1152 * inherit_event()
1153 * perf_event_alloc()
1154 * perf_init_event()
1155 * perf_try_init_event() [ child , 1 ]
1156 *
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1161 *
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1164 * interact.
1165 *
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1170 *
1171 * The places that change perf_event::ctx will issue:
1172 *
1173 * perf_remove_from_context();
1174 * synchronize_rcu();
1175 * perf_install_in_context();
1176 *
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1182 *
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185 * function.
1186 *
1187 * Lock order:
1188 * cred_guard_mutex
1189 * task_struct::perf_event_mutex
1190 * perf_event_context::mutex
1191 * perf_event::child_mutex;
1192 * perf_event_context::lock
1193 * perf_event::mmap_mutex
1194 * mmap_sem
1195 */
1196 static struct perf_event_context *
1197 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1198 {
1199 struct perf_event_context *ctx;
1200
1201 again:
1202 rcu_read_lock();
1203 ctx = ACCESS_ONCE(event->ctx);
1204 if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 rcu_read_unlock();
1206 goto again;
1207 }
1208 rcu_read_unlock();
1209
1210 mutex_lock_nested(&ctx->mutex, nesting);
1211 if (event->ctx != ctx) {
1212 mutex_unlock(&ctx->mutex);
1213 put_ctx(ctx);
1214 goto again;
1215 }
1216
1217 return ctx;
1218 }
1219
1220 static inline struct perf_event_context *
1221 perf_event_ctx_lock(struct perf_event *event)
1222 {
1223 return perf_event_ctx_lock_nested(event, 0);
1224 }
1225
1226 static void perf_event_ctx_unlock(struct perf_event *event,
1227 struct perf_event_context *ctx)
1228 {
1229 mutex_unlock(&ctx->mutex);
1230 put_ctx(ctx);
1231 }
1232
1233 /*
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1237 */
1238 static __must_check struct perf_event_context *
1239 unclone_ctx(struct perf_event_context *ctx)
1240 {
1241 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243 lockdep_assert_held(&ctx->lock);
1244
1245 if (parent_ctx)
1246 ctx->parent_ctx = NULL;
1247 ctx->generation++;
1248
1249 return parent_ctx;
1250 }
1251
1252 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253 {
1254 /*
1255 * only top level events have the pid namespace they were created in
1256 */
1257 if (event->parent)
1258 event = event->parent;
1259
1260 return task_tgid_nr_ns(p, event->ns);
1261 }
1262
1263 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264 {
1265 /*
1266 * only top level events have the pid namespace they were created in
1267 */
1268 if (event->parent)
1269 event = event->parent;
1270
1271 return task_pid_nr_ns(p, event->ns);
1272 }
1273
1274 /*
1275 * If we inherit events we want to return the parent event id
1276 * to userspace.
1277 */
1278 static u64 primary_event_id(struct perf_event *event)
1279 {
1280 u64 id = event->id;
1281
1282 if (event->parent)
1283 id = event->parent->id;
1284
1285 return id;
1286 }
1287
1288 /*
1289 * Get the perf_event_context for a task and lock it.
1290 *
1291 * This has to cope with with the fact that until it is locked,
1292 * the context could get moved to another task.
1293 */
1294 static struct perf_event_context *
1295 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1296 {
1297 struct perf_event_context *ctx;
1298
1299 retry:
1300 /*
1301 * One of the few rules of preemptible RCU is that one cannot do
1302 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1303 * part of the read side critical section was irqs-enabled -- see
1304 * rcu_read_unlock_special().
1305 *
1306 * Since ctx->lock nests under rq->lock we must ensure the entire read
1307 * side critical section has interrupts disabled.
1308 */
1309 local_irq_save(*flags);
1310 rcu_read_lock();
1311 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1312 if (ctx) {
1313 /*
1314 * If this context is a clone of another, it might
1315 * get swapped for another underneath us by
1316 * perf_event_task_sched_out, though the
1317 * rcu_read_lock() protects us from any context
1318 * getting freed. Lock the context and check if it
1319 * got swapped before we could get the lock, and retry
1320 * if so. If we locked the right context, then it
1321 * can't get swapped on us any more.
1322 */
1323 raw_spin_lock(&ctx->lock);
1324 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1325 raw_spin_unlock(&ctx->lock);
1326 rcu_read_unlock();
1327 local_irq_restore(*flags);
1328 goto retry;
1329 }
1330
1331 if (ctx->task == TASK_TOMBSTONE ||
1332 !atomic_inc_not_zero(&ctx->refcount)) {
1333 raw_spin_unlock(&ctx->lock);
1334 ctx = NULL;
1335 } else {
1336 WARN_ON_ONCE(ctx->task != task);
1337 }
1338 }
1339 rcu_read_unlock();
1340 if (!ctx)
1341 local_irq_restore(*flags);
1342 return ctx;
1343 }
1344
1345 /*
1346 * Get the context for a task and increment its pin_count so it
1347 * can't get swapped to another task. This also increments its
1348 * reference count so that the context can't get freed.
1349 */
1350 static struct perf_event_context *
1351 perf_pin_task_context(struct task_struct *task, int ctxn)
1352 {
1353 struct perf_event_context *ctx;
1354 unsigned long flags;
1355
1356 ctx = perf_lock_task_context(task, ctxn, &flags);
1357 if (ctx) {
1358 ++ctx->pin_count;
1359 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1360 }
1361 return ctx;
1362 }
1363
1364 static void perf_unpin_context(struct perf_event_context *ctx)
1365 {
1366 unsigned long flags;
1367
1368 raw_spin_lock_irqsave(&ctx->lock, flags);
1369 --ctx->pin_count;
1370 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1371 }
1372
1373 /*
1374 * Update the record of the current time in a context.
1375 */
1376 static void update_context_time(struct perf_event_context *ctx)
1377 {
1378 u64 now = perf_clock();
1379
1380 ctx->time += now - ctx->timestamp;
1381 ctx->timestamp = now;
1382 }
1383
1384 static u64 perf_event_time(struct perf_event *event)
1385 {
1386 struct perf_event_context *ctx = event->ctx;
1387
1388 if (is_cgroup_event(event))
1389 return perf_cgroup_event_time(event);
1390
1391 return ctx ? ctx->time : 0;
1392 }
1393
1394 /*
1395 * Update the total_time_enabled and total_time_running fields for a event.
1396 */
1397 static void update_event_times(struct perf_event *event)
1398 {
1399 struct perf_event_context *ctx = event->ctx;
1400 u64 run_end;
1401
1402 lockdep_assert_held(&ctx->lock);
1403
1404 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406 return;
1407
1408 /*
1409 * in cgroup mode, time_enabled represents
1410 * the time the event was enabled AND active
1411 * tasks were in the monitored cgroup. This is
1412 * independent of the activity of the context as
1413 * there may be a mix of cgroup and non-cgroup events.
1414 *
1415 * That is why we treat cgroup events differently
1416 * here.
1417 */
1418 if (is_cgroup_event(event))
1419 run_end = perf_cgroup_event_time(event);
1420 else if (ctx->is_active)
1421 run_end = ctx->time;
1422 else
1423 run_end = event->tstamp_stopped;
1424
1425 event->total_time_enabled = run_end - event->tstamp_enabled;
1426
1427 if (event->state == PERF_EVENT_STATE_INACTIVE)
1428 run_end = event->tstamp_stopped;
1429 else
1430 run_end = perf_event_time(event);
1431
1432 event->total_time_running = run_end - event->tstamp_running;
1433
1434 }
1435
1436 /*
1437 * Update total_time_enabled and total_time_running for all events in a group.
1438 */
1439 static void update_group_times(struct perf_event *leader)
1440 {
1441 struct perf_event *event;
1442
1443 update_event_times(leader);
1444 list_for_each_entry(event, &leader->sibling_list, group_entry)
1445 update_event_times(event);
1446 }
1447
1448 static enum event_type_t get_event_type(struct perf_event *event)
1449 {
1450 struct perf_event_context *ctx = event->ctx;
1451 enum event_type_t event_type;
1452
1453 lockdep_assert_held(&ctx->lock);
1454
1455 /*
1456 * It's 'group type', really, because if our group leader is
1457 * pinned, so are we.
1458 */
1459 if (event->group_leader != event)
1460 event = event->group_leader;
1461
1462 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1463 if (!ctx->task)
1464 event_type |= EVENT_CPU;
1465
1466 return event_type;
1467 }
1468
1469 static struct list_head *
1470 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1471 {
1472 if (event->attr.pinned)
1473 return &ctx->pinned_groups;
1474 else
1475 return &ctx->flexible_groups;
1476 }
1477
1478 /*
1479 * Add a event from the lists for its context.
1480 * Must be called with ctx->mutex and ctx->lock held.
1481 */
1482 static void
1483 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1484 {
1485 lockdep_assert_held(&ctx->lock);
1486
1487 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1488 event->attach_state |= PERF_ATTACH_CONTEXT;
1489
1490 /*
1491 * If we're a stand alone event or group leader, we go to the context
1492 * list, group events are kept attached to the group so that
1493 * perf_group_detach can, at all times, locate all siblings.
1494 */
1495 if (event->group_leader == event) {
1496 struct list_head *list;
1497
1498 event->group_caps = event->event_caps;
1499
1500 list = ctx_group_list(event, ctx);
1501 list_add_tail(&event->group_entry, list);
1502 }
1503
1504 list_update_cgroup_event(event, ctx, true);
1505
1506 list_add_rcu(&event->event_entry, &ctx->event_list);
1507 ctx->nr_events++;
1508 if (event->attr.inherit_stat)
1509 ctx->nr_stat++;
1510
1511 ctx->generation++;
1512 }
1513
1514 /*
1515 * Initialize event state based on the perf_event_attr::disabled.
1516 */
1517 static inline void perf_event__state_init(struct perf_event *event)
1518 {
1519 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1520 PERF_EVENT_STATE_INACTIVE;
1521 }
1522
1523 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1524 {
1525 int entry = sizeof(u64); /* value */
1526 int size = 0;
1527 int nr = 1;
1528
1529 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1530 size += sizeof(u64);
1531
1532 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1533 size += sizeof(u64);
1534
1535 if (event->attr.read_format & PERF_FORMAT_ID)
1536 entry += sizeof(u64);
1537
1538 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1539 nr += nr_siblings;
1540 size += sizeof(u64);
1541 }
1542
1543 size += entry * nr;
1544 event->read_size = size;
1545 }
1546
1547 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1548 {
1549 struct perf_sample_data *data;
1550 u16 size = 0;
1551
1552 if (sample_type & PERF_SAMPLE_IP)
1553 size += sizeof(data->ip);
1554
1555 if (sample_type & PERF_SAMPLE_ADDR)
1556 size += sizeof(data->addr);
1557
1558 if (sample_type & PERF_SAMPLE_PERIOD)
1559 size += sizeof(data->period);
1560
1561 if (sample_type & PERF_SAMPLE_WEIGHT)
1562 size += sizeof(data->weight);
1563
1564 if (sample_type & PERF_SAMPLE_READ)
1565 size += event->read_size;
1566
1567 if (sample_type & PERF_SAMPLE_DATA_SRC)
1568 size += sizeof(data->data_src.val);
1569
1570 if (sample_type & PERF_SAMPLE_TRANSACTION)
1571 size += sizeof(data->txn);
1572
1573 event->header_size = size;
1574 }
1575
1576 /*
1577 * Called at perf_event creation and when events are attached/detached from a
1578 * group.
1579 */
1580 static void perf_event__header_size(struct perf_event *event)
1581 {
1582 __perf_event_read_size(event,
1583 event->group_leader->nr_siblings);
1584 __perf_event_header_size(event, event->attr.sample_type);
1585 }
1586
1587 static void perf_event__id_header_size(struct perf_event *event)
1588 {
1589 struct perf_sample_data *data;
1590 u64 sample_type = event->attr.sample_type;
1591 u16 size = 0;
1592
1593 if (sample_type & PERF_SAMPLE_TID)
1594 size += sizeof(data->tid_entry);
1595
1596 if (sample_type & PERF_SAMPLE_TIME)
1597 size += sizeof(data->time);
1598
1599 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1600 size += sizeof(data->id);
1601
1602 if (sample_type & PERF_SAMPLE_ID)
1603 size += sizeof(data->id);
1604
1605 if (sample_type & PERF_SAMPLE_STREAM_ID)
1606 size += sizeof(data->stream_id);
1607
1608 if (sample_type & PERF_SAMPLE_CPU)
1609 size += sizeof(data->cpu_entry);
1610
1611 event->id_header_size = size;
1612 }
1613
1614 static bool perf_event_validate_size(struct perf_event *event)
1615 {
1616 /*
1617 * The values computed here will be over-written when we actually
1618 * attach the event.
1619 */
1620 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1621 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1622 perf_event__id_header_size(event);
1623
1624 /*
1625 * Sum the lot; should not exceed the 64k limit we have on records.
1626 * Conservative limit to allow for callchains and other variable fields.
1627 */
1628 if (event->read_size + event->header_size +
1629 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1630 return false;
1631
1632 return true;
1633 }
1634
1635 static void perf_group_attach(struct perf_event *event)
1636 {
1637 struct perf_event *group_leader = event->group_leader, *pos;
1638
1639 lockdep_assert_held(&event->ctx->lock);
1640
1641 /*
1642 * We can have double attach due to group movement in perf_event_open.
1643 */
1644 if (event->attach_state & PERF_ATTACH_GROUP)
1645 return;
1646
1647 event->attach_state |= PERF_ATTACH_GROUP;
1648
1649 if (group_leader == event)
1650 return;
1651
1652 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1653
1654 group_leader->group_caps &= event->event_caps;
1655
1656 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1657 group_leader->nr_siblings++;
1658
1659 perf_event__header_size(group_leader);
1660
1661 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1662 perf_event__header_size(pos);
1663 }
1664
1665 /*
1666 * Remove a event from the lists for its context.
1667 * Must be called with ctx->mutex and ctx->lock held.
1668 */
1669 static void
1670 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1671 {
1672 WARN_ON_ONCE(event->ctx != ctx);
1673 lockdep_assert_held(&ctx->lock);
1674
1675 /*
1676 * We can have double detach due to exit/hot-unplug + close.
1677 */
1678 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1679 return;
1680
1681 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1682
1683 list_update_cgroup_event(event, ctx, false);
1684
1685 ctx->nr_events--;
1686 if (event->attr.inherit_stat)
1687 ctx->nr_stat--;
1688
1689 list_del_rcu(&event->event_entry);
1690
1691 if (event->group_leader == event)
1692 list_del_init(&event->group_entry);
1693
1694 update_group_times(event);
1695
1696 /*
1697 * If event was in error state, then keep it
1698 * that way, otherwise bogus counts will be
1699 * returned on read(). The only way to get out
1700 * of error state is by explicit re-enabling
1701 * of the event
1702 */
1703 if (event->state > PERF_EVENT_STATE_OFF)
1704 event->state = PERF_EVENT_STATE_OFF;
1705
1706 ctx->generation++;
1707 }
1708
1709 static void perf_group_detach(struct perf_event *event)
1710 {
1711 struct perf_event *sibling, *tmp;
1712 struct list_head *list = NULL;
1713
1714 lockdep_assert_held(&event->ctx->lock);
1715
1716 /*
1717 * We can have double detach due to exit/hot-unplug + close.
1718 */
1719 if (!(event->attach_state & PERF_ATTACH_GROUP))
1720 return;
1721
1722 event->attach_state &= ~PERF_ATTACH_GROUP;
1723
1724 /*
1725 * If this is a sibling, remove it from its group.
1726 */
1727 if (event->group_leader != event) {
1728 list_del_init(&event->group_entry);
1729 event->group_leader->nr_siblings--;
1730 goto out;
1731 }
1732
1733 if (!list_empty(&event->group_entry))
1734 list = &event->group_entry;
1735
1736 /*
1737 * If this was a group event with sibling events then
1738 * upgrade the siblings to singleton events by adding them
1739 * to whatever list we are on.
1740 */
1741 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1742 if (list)
1743 list_move_tail(&sibling->group_entry, list);
1744 sibling->group_leader = sibling;
1745
1746 /* Inherit group flags from the previous leader */
1747 sibling->group_caps = event->group_caps;
1748
1749 WARN_ON_ONCE(sibling->ctx != event->ctx);
1750 }
1751
1752 out:
1753 perf_event__header_size(event->group_leader);
1754
1755 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1756 perf_event__header_size(tmp);
1757 }
1758
1759 static bool is_orphaned_event(struct perf_event *event)
1760 {
1761 return event->state == PERF_EVENT_STATE_DEAD;
1762 }
1763
1764 static inline int __pmu_filter_match(struct perf_event *event)
1765 {
1766 struct pmu *pmu = event->pmu;
1767 return pmu->filter_match ? pmu->filter_match(event) : 1;
1768 }
1769
1770 /*
1771 * Check whether we should attempt to schedule an event group based on
1772 * PMU-specific filtering. An event group can consist of HW and SW events,
1773 * potentially with a SW leader, so we must check all the filters, to
1774 * determine whether a group is schedulable:
1775 */
1776 static inline int pmu_filter_match(struct perf_event *event)
1777 {
1778 struct perf_event *child;
1779
1780 if (!__pmu_filter_match(event))
1781 return 0;
1782
1783 list_for_each_entry(child, &event->sibling_list, group_entry) {
1784 if (!__pmu_filter_match(child))
1785 return 0;
1786 }
1787
1788 return 1;
1789 }
1790
1791 static inline int
1792 event_filter_match(struct perf_event *event)
1793 {
1794 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1795 perf_cgroup_match(event) && pmu_filter_match(event);
1796 }
1797
1798 static void
1799 event_sched_out(struct perf_event *event,
1800 struct perf_cpu_context *cpuctx,
1801 struct perf_event_context *ctx)
1802 {
1803 u64 tstamp = perf_event_time(event);
1804 u64 delta;
1805
1806 WARN_ON_ONCE(event->ctx != ctx);
1807 lockdep_assert_held(&ctx->lock);
1808
1809 /*
1810 * An event which could not be activated because of
1811 * filter mismatch still needs to have its timings
1812 * maintained, otherwise bogus information is return
1813 * via read() for time_enabled, time_running:
1814 */
1815 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1816 !event_filter_match(event)) {
1817 delta = tstamp - event->tstamp_stopped;
1818 event->tstamp_running += delta;
1819 event->tstamp_stopped = tstamp;
1820 }
1821
1822 if (event->state != PERF_EVENT_STATE_ACTIVE)
1823 return;
1824
1825 perf_pmu_disable(event->pmu);
1826
1827 event->tstamp_stopped = tstamp;
1828 event->pmu->del(event, 0);
1829 event->oncpu = -1;
1830 event->state = PERF_EVENT_STATE_INACTIVE;
1831 if (event->pending_disable) {
1832 event->pending_disable = 0;
1833 event->state = PERF_EVENT_STATE_OFF;
1834 }
1835
1836 if (!is_software_event(event))
1837 cpuctx->active_oncpu--;
1838 if (!--ctx->nr_active)
1839 perf_event_ctx_deactivate(ctx);
1840 if (event->attr.freq && event->attr.sample_freq)
1841 ctx->nr_freq--;
1842 if (event->attr.exclusive || !cpuctx->active_oncpu)
1843 cpuctx->exclusive = 0;
1844
1845 perf_pmu_enable(event->pmu);
1846 }
1847
1848 static void
1849 group_sched_out(struct perf_event *group_event,
1850 struct perf_cpu_context *cpuctx,
1851 struct perf_event_context *ctx)
1852 {
1853 struct perf_event *event;
1854 int state = group_event->state;
1855
1856 perf_pmu_disable(ctx->pmu);
1857
1858 event_sched_out(group_event, cpuctx, ctx);
1859
1860 /*
1861 * Schedule out siblings (if any):
1862 */
1863 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1864 event_sched_out(event, cpuctx, ctx);
1865
1866 perf_pmu_enable(ctx->pmu);
1867
1868 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1869 cpuctx->exclusive = 0;
1870 }
1871
1872 #define DETACH_GROUP 0x01UL
1873
1874 /*
1875 * Cross CPU call to remove a performance event
1876 *
1877 * We disable the event on the hardware level first. After that we
1878 * remove it from the context list.
1879 */
1880 static void
1881 __perf_remove_from_context(struct perf_event *event,
1882 struct perf_cpu_context *cpuctx,
1883 struct perf_event_context *ctx,
1884 void *info)
1885 {
1886 unsigned long flags = (unsigned long)info;
1887
1888 event_sched_out(event, cpuctx, ctx);
1889 if (flags & DETACH_GROUP)
1890 perf_group_detach(event);
1891 list_del_event(event, ctx);
1892
1893 if (!ctx->nr_events && ctx->is_active) {
1894 ctx->is_active = 0;
1895 if (ctx->task) {
1896 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1897 cpuctx->task_ctx = NULL;
1898 }
1899 }
1900 }
1901
1902 /*
1903 * Remove the event from a task's (or a CPU's) list of events.
1904 *
1905 * If event->ctx is a cloned context, callers must make sure that
1906 * every task struct that event->ctx->task could possibly point to
1907 * remains valid. This is OK when called from perf_release since
1908 * that only calls us on the top-level context, which can't be a clone.
1909 * When called from perf_event_exit_task, it's OK because the
1910 * context has been detached from its task.
1911 */
1912 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1913 {
1914 struct perf_event_context *ctx = event->ctx;
1915
1916 lockdep_assert_held(&ctx->mutex);
1917
1918 event_function_call(event, __perf_remove_from_context, (void *)flags);
1919
1920 /*
1921 * The above event_function_call() can NO-OP when it hits
1922 * TASK_TOMBSTONE. In that case we must already have been detached
1923 * from the context (by perf_event_exit_event()) but the grouping
1924 * might still be in-tact.
1925 */
1926 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1927 if ((flags & DETACH_GROUP) &&
1928 (event->attach_state & PERF_ATTACH_GROUP)) {
1929 /*
1930 * Since in that case we cannot possibly be scheduled, simply
1931 * detach now.
1932 */
1933 raw_spin_lock_irq(&ctx->lock);
1934 perf_group_detach(event);
1935 raw_spin_unlock_irq(&ctx->lock);
1936 }
1937 }
1938
1939 /*
1940 * Cross CPU call to disable a performance event
1941 */
1942 static void __perf_event_disable(struct perf_event *event,
1943 struct perf_cpu_context *cpuctx,
1944 struct perf_event_context *ctx,
1945 void *info)
1946 {
1947 if (event->state < PERF_EVENT_STATE_INACTIVE)
1948 return;
1949
1950 update_context_time(ctx);
1951 update_cgrp_time_from_event(event);
1952 update_group_times(event);
1953 if (event == event->group_leader)
1954 group_sched_out(event, cpuctx, ctx);
1955 else
1956 event_sched_out(event, cpuctx, ctx);
1957 event->state = PERF_EVENT_STATE_OFF;
1958 }
1959
1960 /*
1961 * Disable a event.
1962 *
1963 * If event->ctx is a cloned context, callers must make sure that
1964 * every task struct that event->ctx->task could possibly point to
1965 * remains valid. This condition is satisifed when called through
1966 * perf_event_for_each_child or perf_event_for_each because they
1967 * hold the top-level event's child_mutex, so any descendant that
1968 * goes to exit will block in perf_event_exit_event().
1969 *
1970 * When called from perf_pending_event it's OK because event->ctx
1971 * is the current context on this CPU and preemption is disabled,
1972 * hence we can't get into perf_event_task_sched_out for this context.
1973 */
1974 static void _perf_event_disable(struct perf_event *event)
1975 {
1976 struct perf_event_context *ctx = event->ctx;
1977
1978 raw_spin_lock_irq(&ctx->lock);
1979 if (event->state <= PERF_EVENT_STATE_OFF) {
1980 raw_spin_unlock_irq(&ctx->lock);
1981 return;
1982 }
1983 raw_spin_unlock_irq(&ctx->lock);
1984
1985 event_function_call(event, __perf_event_disable, NULL);
1986 }
1987
1988 void perf_event_disable_local(struct perf_event *event)
1989 {
1990 event_function_local(event, __perf_event_disable, NULL);
1991 }
1992
1993 /*
1994 * Strictly speaking kernel users cannot create groups and therefore this
1995 * interface does not need the perf_event_ctx_lock() magic.
1996 */
1997 void perf_event_disable(struct perf_event *event)
1998 {
1999 struct perf_event_context *ctx;
2000
2001 ctx = perf_event_ctx_lock(event);
2002 _perf_event_disable(event);
2003 perf_event_ctx_unlock(event, ctx);
2004 }
2005 EXPORT_SYMBOL_GPL(perf_event_disable);
2006
2007 void perf_event_disable_inatomic(struct perf_event *event)
2008 {
2009 event->pending_disable = 1;
2010 irq_work_queue(&event->pending);
2011 }
2012
2013 static void perf_set_shadow_time(struct perf_event *event,
2014 struct perf_event_context *ctx,
2015 u64 tstamp)
2016 {
2017 /*
2018 * use the correct time source for the time snapshot
2019 *
2020 * We could get by without this by leveraging the
2021 * fact that to get to this function, the caller
2022 * has most likely already called update_context_time()
2023 * and update_cgrp_time_xx() and thus both timestamp
2024 * are identical (or very close). Given that tstamp is,
2025 * already adjusted for cgroup, we could say that:
2026 * tstamp - ctx->timestamp
2027 * is equivalent to
2028 * tstamp - cgrp->timestamp.
2029 *
2030 * Then, in perf_output_read(), the calculation would
2031 * work with no changes because:
2032 * - event is guaranteed scheduled in
2033 * - no scheduled out in between
2034 * - thus the timestamp would be the same
2035 *
2036 * But this is a bit hairy.
2037 *
2038 * So instead, we have an explicit cgroup call to remain
2039 * within the time time source all along. We believe it
2040 * is cleaner and simpler to understand.
2041 */
2042 if (is_cgroup_event(event))
2043 perf_cgroup_set_shadow_time(event, tstamp);
2044 else
2045 event->shadow_ctx_time = tstamp - ctx->timestamp;
2046 }
2047
2048 #define MAX_INTERRUPTS (~0ULL)
2049
2050 static void perf_log_throttle(struct perf_event *event, int enable);
2051 static void perf_log_itrace_start(struct perf_event *event);
2052
2053 static int
2054 event_sched_in(struct perf_event *event,
2055 struct perf_cpu_context *cpuctx,
2056 struct perf_event_context *ctx)
2057 {
2058 u64 tstamp = perf_event_time(event);
2059 int ret = 0;
2060
2061 lockdep_assert_held(&ctx->lock);
2062
2063 if (event->state <= PERF_EVENT_STATE_OFF)
2064 return 0;
2065
2066 WRITE_ONCE(event->oncpu, smp_processor_id());
2067 /*
2068 * Order event::oncpu write to happen before the ACTIVE state
2069 * is visible.
2070 */
2071 smp_wmb();
2072 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2073
2074 /*
2075 * Unthrottle events, since we scheduled we might have missed several
2076 * ticks already, also for a heavily scheduling task there is little
2077 * guarantee it'll get a tick in a timely manner.
2078 */
2079 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2080 perf_log_throttle(event, 1);
2081 event->hw.interrupts = 0;
2082 }
2083
2084 /*
2085 * The new state must be visible before we turn it on in the hardware:
2086 */
2087 smp_wmb();
2088
2089 perf_pmu_disable(event->pmu);
2090
2091 perf_set_shadow_time(event, ctx, tstamp);
2092
2093 perf_log_itrace_start(event);
2094
2095 if (event->pmu->add(event, PERF_EF_START)) {
2096 event->state = PERF_EVENT_STATE_INACTIVE;
2097 event->oncpu = -1;
2098 ret = -EAGAIN;
2099 goto out;
2100 }
2101
2102 event->tstamp_running += tstamp - event->tstamp_stopped;
2103
2104 if (!is_software_event(event))
2105 cpuctx->active_oncpu++;
2106 if (!ctx->nr_active++)
2107 perf_event_ctx_activate(ctx);
2108 if (event->attr.freq && event->attr.sample_freq)
2109 ctx->nr_freq++;
2110
2111 if (event->attr.exclusive)
2112 cpuctx->exclusive = 1;
2113
2114 out:
2115 perf_pmu_enable(event->pmu);
2116
2117 return ret;
2118 }
2119
2120 static int
2121 group_sched_in(struct perf_event *group_event,
2122 struct perf_cpu_context *cpuctx,
2123 struct perf_event_context *ctx)
2124 {
2125 struct perf_event *event, *partial_group = NULL;
2126 struct pmu *pmu = ctx->pmu;
2127 u64 now = ctx->time;
2128 bool simulate = false;
2129
2130 if (group_event->state == PERF_EVENT_STATE_OFF)
2131 return 0;
2132
2133 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2134
2135 if (event_sched_in(group_event, cpuctx, ctx)) {
2136 pmu->cancel_txn(pmu);
2137 perf_mux_hrtimer_restart(cpuctx);
2138 return -EAGAIN;
2139 }
2140
2141 /*
2142 * Schedule in siblings as one group (if any):
2143 */
2144 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2145 if (event_sched_in(event, cpuctx, ctx)) {
2146 partial_group = event;
2147 goto group_error;
2148 }
2149 }
2150
2151 if (!pmu->commit_txn(pmu))
2152 return 0;
2153
2154 group_error:
2155 /*
2156 * Groups can be scheduled in as one unit only, so undo any
2157 * partial group before returning:
2158 * The events up to the failed event are scheduled out normally,
2159 * tstamp_stopped will be updated.
2160 *
2161 * The failed events and the remaining siblings need to have
2162 * their timings updated as if they had gone thru event_sched_in()
2163 * and event_sched_out(). This is required to get consistent timings
2164 * across the group. This also takes care of the case where the group
2165 * could never be scheduled by ensuring tstamp_stopped is set to mark
2166 * the time the event was actually stopped, such that time delta
2167 * calculation in update_event_times() is correct.
2168 */
2169 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2170 if (event == partial_group)
2171 simulate = true;
2172
2173 if (simulate) {
2174 event->tstamp_running += now - event->tstamp_stopped;
2175 event->tstamp_stopped = now;
2176 } else {
2177 event_sched_out(event, cpuctx, ctx);
2178 }
2179 }
2180 event_sched_out(group_event, cpuctx, ctx);
2181
2182 pmu->cancel_txn(pmu);
2183
2184 perf_mux_hrtimer_restart(cpuctx);
2185
2186 return -EAGAIN;
2187 }
2188
2189 /*
2190 * Work out whether we can put this event group on the CPU now.
2191 */
2192 static int group_can_go_on(struct perf_event *event,
2193 struct perf_cpu_context *cpuctx,
2194 int can_add_hw)
2195 {
2196 /*
2197 * Groups consisting entirely of software events can always go on.
2198 */
2199 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2200 return 1;
2201 /*
2202 * If an exclusive group is already on, no other hardware
2203 * events can go on.
2204 */
2205 if (cpuctx->exclusive)
2206 return 0;
2207 /*
2208 * If this group is exclusive and there are already
2209 * events on the CPU, it can't go on.
2210 */
2211 if (event->attr.exclusive && cpuctx->active_oncpu)
2212 return 0;
2213 /*
2214 * Otherwise, try to add it if all previous groups were able
2215 * to go on.
2216 */
2217 return can_add_hw;
2218 }
2219
2220 static void add_event_to_ctx(struct perf_event *event,
2221 struct perf_event_context *ctx)
2222 {
2223 u64 tstamp = perf_event_time(event);
2224
2225 list_add_event(event, ctx);
2226 perf_group_attach(event);
2227 event->tstamp_enabled = tstamp;
2228 event->tstamp_running = tstamp;
2229 event->tstamp_stopped = tstamp;
2230 }
2231
2232 static void ctx_sched_out(struct perf_event_context *ctx,
2233 struct perf_cpu_context *cpuctx,
2234 enum event_type_t event_type);
2235 static void
2236 ctx_sched_in(struct perf_event_context *ctx,
2237 struct perf_cpu_context *cpuctx,
2238 enum event_type_t event_type,
2239 struct task_struct *task);
2240
2241 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2242 struct perf_event_context *ctx,
2243 enum event_type_t event_type)
2244 {
2245 if (!cpuctx->task_ctx)
2246 return;
2247
2248 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2249 return;
2250
2251 ctx_sched_out(ctx, cpuctx, event_type);
2252 }
2253
2254 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2255 struct perf_event_context *ctx,
2256 struct task_struct *task)
2257 {
2258 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2259 if (ctx)
2260 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2261 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2262 if (ctx)
2263 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2264 }
2265
2266 /*
2267 * We want to maintain the following priority of scheduling:
2268 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2269 * - task pinned (EVENT_PINNED)
2270 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2271 * - task flexible (EVENT_FLEXIBLE).
2272 *
2273 * In order to avoid unscheduling and scheduling back in everything every
2274 * time an event is added, only do it for the groups of equal priority and
2275 * below.
2276 *
2277 * This can be called after a batch operation on task events, in which case
2278 * event_type is a bit mask of the types of events involved. For CPU events,
2279 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2280 */
2281 static void ctx_resched(struct perf_cpu_context *cpuctx,
2282 struct perf_event_context *task_ctx,
2283 enum event_type_t event_type)
2284 {
2285 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2286 bool cpu_event = !!(event_type & EVENT_CPU);
2287
2288 /*
2289 * If pinned groups are involved, flexible groups also need to be
2290 * scheduled out.
2291 */
2292 if (event_type & EVENT_PINNED)
2293 event_type |= EVENT_FLEXIBLE;
2294
2295 perf_pmu_disable(cpuctx->ctx.pmu);
2296 if (task_ctx)
2297 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2298
2299 /*
2300 * Decide which cpu ctx groups to schedule out based on the types
2301 * of events that caused rescheduling:
2302 * - EVENT_CPU: schedule out corresponding groups;
2303 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2304 * - otherwise, do nothing more.
2305 */
2306 if (cpu_event)
2307 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2308 else if (ctx_event_type & EVENT_PINNED)
2309 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2310
2311 perf_event_sched_in(cpuctx, task_ctx, current);
2312 perf_pmu_enable(cpuctx->ctx.pmu);
2313 }
2314
2315 /*
2316 * Cross CPU call to install and enable a performance event
2317 *
2318 * Very similar to remote_function() + event_function() but cannot assume that
2319 * things like ctx->is_active and cpuctx->task_ctx are set.
2320 */
2321 static int __perf_install_in_context(void *info)
2322 {
2323 struct perf_event *event = info;
2324 struct perf_event_context *ctx = event->ctx;
2325 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2326 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2327 bool reprogram = true;
2328 int ret = 0;
2329
2330 raw_spin_lock(&cpuctx->ctx.lock);
2331 if (ctx->task) {
2332 raw_spin_lock(&ctx->lock);
2333 task_ctx = ctx;
2334
2335 reprogram = (ctx->task == current);
2336
2337 /*
2338 * If the task is running, it must be running on this CPU,
2339 * otherwise we cannot reprogram things.
2340 *
2341 * If its not running, we don't care, ctx->lock will
2342 * serialize against it becoming runnable.
2343 */
2344 if (task_curr(ctx->task) && !reprogram) {
2345 ret = -ESRCH;
2346 goto unlock;
2347 }
2348
2349 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2350 } else if (task_ctx) {
2351 raw_spin_lock(&task_ctx->lock);
2352 }
2353
2354 if (reprogram) {
2355 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2356 add_event_to_ctx(event, ctx);
2357 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2358 } else {
2359 add_event_to_ctx(event, ctx);
2360 }
2361
2362 unlock:
2363 perf_ctx_unlock(cpuctx, task_ctx);
2364
2365 return ret;
2366 }
2367
2368 /*
2369 * Attach a performance event to a context.
2370 *
2371 * Very similar to event_function_call, see comment there.
2372 */
2373 static void
2374 perf_install_in_context(struct perf_event_context *ctx,
2375 struct perf_event *event,
2376 int cpu)
2377 {
2378 struct task_struct *task = READ_ONCE(ctx->task);
2379
2380 lockdep_assert_held(&ctx->mutex);
2381
2382 if (event->cpu != -1)
2383 event->cpu = cpu;
2384
2385 /*
2386 * Ensures that if we can observe event->ctx, both the event and ctx
2387 * will be 'complete'. See perf_iterate_sb_cpu().
2388 */
2389 smp_store_release(&event->ctx, ctx);
2390
2391 if (!task) {
2392 cpu_function_call(cpu, __perf_install_in_context, event);
2393 return;
2394 }
2395
2396 /*
2397 * Should not happen, we validate the ctx is still alive before calling.
2398 */
2399 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2400 return;
2401
2402 /*
2403 * Installing events is tricky because we cannot rely on ctx->is_active
2404 * to be set in case this is the nr_events 0 -> 1 transition.
2405 *
2406 * Instead we use task_curr(), which tells us if the task is running.
2407 * However, since we use task_curr() outside of rq::lock, we can race
2408 * against the actual state. This means the result can be wrong.
2409 *
2410 * If we get a false positive, we retry, this is harmless.
2411 *
2412 * If we get a false negative, things are complicated. If we are after
2413 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2414 * value must be correct. If we're before, it doesn't matter since
2415 * perf_event_context_sched_in() will program the counter.
2416 *
2417 * However, this hinges on the remote context switch having observed
2418 * our task->perf_event_ctxp[] store, such that it will in fact take
2419 * ctx::lock in perf_event_context_sched_in().
2420 *
2421 * We do this by task_function_call(), if the IPI fails to hit the task
2422 * we know any future context switch of task must see the
2423 * perf_event_ctpx[] store.
2424 */
2425
2426 /*
2427 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2428 * task_cpu() load, such that if the IPI then does not find the task
2429 * running, a future context switch of that task must observe the
2430 * store.
2431 */
2432 smp_mb();
2433 again:
2434 if (!task_function_call(task, __perf_install_in_context, event))
2435 return;
2436
2437 raw_spin_lock_irq(&ctx->lock);
2438 task = ctx->task;
2439 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2440 /*
2441 * Cannot happen because we already checked above (which also
2442 * cannot happen), and we hold ctx->mutex, which serializes us
2443 * against perf_event_exit_task_context().
2444 */
2445 raw_spin_unlock_irq(&ctx->lock);
2446 return;
2447 }
2448 /*
2449 * If the task is not running, ctx->lock will avoid it becoming so,
2450 * thus we can safely install the event.
2451 */
2452 if (task_curr(task)) {
2453 raw_spin_unlock_irq(&ctx->lock);
2454 goto again;
2455 }
2456 add_event_to_ctx(event, ctx);
2457 raw_spin_unlock_irq(&ctx->lock);
2458 }
2459
2460 /*
2461 * Put a event into inactive state and update time fields.
2462 * Enabling the leader of a group effectively enables all
2463 * the group members that aren't explicitly disabled, so we
2464 * have to update their ->tstamp_enabled also.
2465 * Note: this works for group members as well as group leaders
2466 * since the non-leader members' sibling_lists will be empty.
2467 */
2468 static void __perf_event_mark_enabled(struct perf_event *event)
2469 {
2470 struct perf_event *sub;
2471 u64 tstamp = perf_event_time(event);
2472
2473 event->state = PERF_EVENT_STATE_INACTIVE;
2474 event->tstamp_enabled = tstamp - event->total_time_enabled;
2475 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2476 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2477 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2478 }
2479 }
2480
2481 /*
2482 * Cross CPU call to enable a performance event
2483 */
2484 static void __perf_event_enable(struct perf_event *event,
2485 struct perf_cpu_context *cpuctx,
2486 struct perf_event_context *ctx,
2487 void *info)
2488 {
2489 struct perf_event *leader = event->group_leader;
2490 struct perf_event_context *task_ctx;
2491
2492 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2493 event->state <= PERF_EVENT_STATE_ERROR)
2494 return;
2495
2496 if (ctx->is_active)
2497 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2498
2499 __perf_event_mark_enabled(event);
2500
2501 if (!ctx->is_active)
2502 return;
2503
2504 if (!event_filter_match(event)) {
2505 if (is_cgroup_event(event))
2506 perf_cgroup_defer_enabled(event);
2507 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2508 return;
2509 }
2510
2511 /*
2512 * If the event is in a group and isn't the group leader,
2513 * then don't put it on unless the group is on.
2514 */
2515 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2516 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2517 return;
2518 }
2519
2520 task_ctx = cpuctx->task_ctx;
2521 if (ctx->task)
2522 WARN_ON_ONCE(task_ctx != ctx);
2523
2524 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2525 }
2526
2527 /*
2528 * Enable a event.
2529 *
2530 * If event->ctx is a cloned context, callers must make sure that
2531 * every task struct that event->ctx->task could possibly point to
2532 * remains valid. This condition is satisfied when called through
2533 * perf_event_for_each_child or perf_event_for_each as described
2534 * for perf_event_disable.
2535 */
2536 static void _perf_event_enable(struct perf_event *event)
2537 {
2538 struct perf_event_context *ctx = event->ctx;
2539
2540 raw_spin_lock_irq(&ctx->lock);
2541 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2542 event->state < PERF_EVENT_STATE_ERROR) {
2543 raw_spin_unlock_irq(&ctx->lock);
2544 return;
2545 }
2546
2547 /*
2548 * If the event is in error state, clear that first.
2549 *
2550 * That way, if we see the event in error state below, we know that it
2551 * has gone back into error state, as distinct from the task having
2552 * been scheduled away before the cross-call arrived.
2553 */
2554 if (event->state == PERF_EVENT_STATE_ERROR)
2555 event->state = PERF_EVENT_STATE_OFF;
2556 raw_spin_unlock_irq(&ctx->lock);
2557
2558 event_function_call(event, __perf_event_enable, NULL);
2559 }
2560
2561 /*
2562 * See perf_event_disable();
2563 */
2564 void perf_event_enable(struct perf_event *event)
2565 {
2566 struct perf_event_context *ctx;
2567
2568 ctx = perf_event_ctx_lock(event);
2569 _perf_event_enable(event);
2570 perf_event_ctx_unlock(event, ctx);
2571 }
2572 EXPORT_SYMBOL_GPL(perf_event_enable);
2573
2574 struct stop_event_data {
2575 struct perf_event *event;
2576 unsigned int restart;
2577 };
2578
2579 static int __perf_event_stop(void *info)
2580 {
2581 struct stop_event_data *sd = info;
2582 struct perf_event *event = sd->event;
2583
2584 /* if it's already INACTIVE, do nothing */
2585 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2586 return 0;
2587
2588 /* matches smp_wmb() in event_sched_in() */
2589 smp_rmb();
2590
2591 /*
2592 * There is a window with interrupts enabled before we get here,
2593 * so we need to check again lest we try to stop another CPU's event.
2594 */
2595 if (READ_ONCE(event->oncpu) != smp_processor_id())
2596 return -EAGAIN;
2597
2598 event->pmu->stop(event, PERF_EF_UPDATE);
2599
2600 /*
2601 * May race with the actual stop (through perf_pmu_output_stop()),
2602 * but it is only used for events with AUX ring buffer, and such
2603 * events will refuse to restart because of rb::aux_mmap_count==0,
2604 * see comments in perf_aux_output_begin().
2605 *
2606 * Since this is happening on a event-local CPU, no trace is lost
2607 * while restarting.
2608 */
2609 if (sd->restart)
2610 event->pmu->start(event, 0);
2611
2612 return 0;
2613 }
2614
2615 static int perf_event_stop(struct perf_event *event, int restart)
2616 {
2617 struct stop_event_data sd = {
2618 .event = event,
2619 .restart = restart,
2620 };
2621 int ret = 0;
2622
2623 do {
2624 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2625 return 0;
2626
2627 /* matches smp_wmb() in event_sched_in() */
2628 smp_rmb();
2629
2630 /*
2631 * We only want to restart ACTIVE events, so if the event goes
2632 * inactive here (event->oncpu==-1), there's nothing more to do;
2633 * fall through with ret==-ENXIO.
2634 */
2635 ret = cpu_function_call(READ_ONCE(event->oncpu),
2636 __perf_event_stop, &sd);
2637 } while (ret == -EAGAIN);
2638
2639 return ret;
2640 }
2641
2642 /*
2643 * In order to contain the amount of racy and tricky in the address filter
2644 * configuration management, it is a two part process:
2645 *
2646 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2647 * we update the addresses of corresponding vmas in
2648 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2649 * (p2) when an event is scheduled in (pmu::add), it calls
2650 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2651 * if the generation has changed since the previous call.
2652 *
2653 * If (p1) happens while the event is active, we restart it to force (p2).
2654 *
2655 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2656 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2657 * ioctl;
2658 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2659 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2660 * for reading;
2661 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2662 * of exec.
2663 */
2664 void perf_event_addr_filters_sync(struct perf_event *event)
2665 {
2666 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2667
2668 if (!has_addr_filter(event))
2669 return;
2670
2671 raw_spin_lock(&ifh->lock);
2672 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2673 event->pmu->addr_filters_sync(event);
2674 event->hw.addr_filters_gen = event->addr_filters_gen;
2675 }
2676 raw_spin_unlock(&ifh->lock);
2677 }
2678 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2679
2680 static int _perf_event_refresh(struct perf_event *event, int refresh)
2681 {
2682 /*
2683 * not supported on inherited events
2684 */
2685 if (event->attr.inherit || !is_sampling_event(event))
2686 return -EINVAL;
2687
2688 atomic_add(refresh, &event->event_limit);
2689 _perf_event_enable(event);
2690
2691 return 0;
2692 }
2693
2694 /*
2695 * See perf_event_disable()
2696 */
2697 int perf_event_refresh(struct perf_event *event, int refresh)
2698 {
2699 struct perf_event_context *ctx;
2700 int ret;
2701
2702 ctx = perf_event_ctx_lock(event);
2703 ret = _perf_event_refresh(event, refresh);
2704 perf_event_ctx_unlock(event, ctx);
2705
2706 return ret;
2707 }
2708 EXPORT_SYMBOL_GPL(perf_event_refresh);
2709
2710 static void ctx_sched_out(struct perf_event_context *ctx,
2711 struct perf_cpu_context *cpuctx,
2712 enum event_type_t event_type)
2713 {
2714 int is_active = ctx->is_active;
2715 struct perf_event *event;
2716
2717 lockdep_assert_held(&ctx->lock);
2718
2719 if (likely(!ctx->nr_events)) {
2720 /*
2721 * See __perf_remove_from_context().
2722 */
2723 WARN_ON_ONCE(ctx->is_active);
2724 if (ctx->task)
2725 WARN_ON_ONCE(cpuctx->task_ctx);
2726 return;
2727 }
2728
2729 ctx->is_active &= ~event_type;
2730 if (!(ctx->is_active & EVENT_ALL))
2731 ctx->is_active = 0;
2732
2733 if (ctx->task) {
2734 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2735 if (!ctx->is_active)
2736 cpuctx->task_ctx = NULL;
2737 }
2738
2739 /*
2740 * Always update time if it was set; not only when it changes.
2741 * Otherwise we can 'forget' to update time for any but the last
2742 * context we sched out. For example:
2743 *
2744 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2745 * ctx_sched_out(.event_type = EVENT_PINNED)
2746 *
2747 * would only update time for the pinned events.
2748 */
2749 if (is_active & EVENT_TIME) {
2750 /* update (and stop) ctx time */
2751 update_context_time(ctx);
2752 update_cgrp_time_from_cpuctx(cpuctx);
2753 }
2754
2755 is_active ^= ctx->is_active; /* changed bits */
2756
2757 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2758 return;
2759
2760 perf_pmu_disable(ctx->pmu);
2761 if (is_active & EVENT_PINNED) {
2762 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2763 group_sched_out(event, cpuctx, ctx);
2764 }
2765
2766 if (is_active & EVENT_FLEXIBLE) {
2767 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2768 group_sched_out(event, cpuctx, ctx);
2769 }
2770 perf_pmu_enable(ctx->pmu);
2771 }
2772
2773 /*
2774 * Test whether two contexts are equivalent, i.e. whether they have both been
2775 * cloned from the same version of the same context.
2776 *
2777 * Equivalence is measured using a generation number in the context that is
2778 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2779 * and list_del_event().
2780 */
2781 static int context_equiv(struct perf_event_context *ctx1,
2782 struct perf_event_context *ctx2)
2783 {
2784 lockdep_assert_held(&ctx1->lock);
2785 lockdep_assert_held(&ctx2->lock);
2786
2787 /* Pinning disables the swap optimization */
2788 if (ctx1->pin_count || ctx2->pin_count)
2789 return 0;
2790
2791 /* If ctx1 is the parent of ctx2 */
2792 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2793 return 1;
2794
2795 /* If ctx2 is the parent of ctx1 */
2796 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2797 return 1;
2798
2799 /*
2800 * If ctx1 and ctx2 have the same parent; we flatten the parent
2801 * hierarchy, see perf_event_init_context().
2802 */
2803 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2804 ctx1->parent_gen == ctx2->parent_gen)
2805 return 1;
2806
2807 /* Unmatched */
2808 return 0;
2809 }
2810
2811 static void __perf_event_sync_stat(struct perf_event *event,
2812 struct perf_event *next_event)
2813 {
2814 u64 value;
2815
2816 if (!event->attr.inherit_stat)
2817 return;
2818
2819 /*
2820 * Update the event value, we cannot use perf_event_read()
2821 * because we're in the middle of a context switch and have IRQs
2822 * disabled, which upsets smp_call_function_single(), however
2823 * we know the event must be on the current CPU, therefore we
2824 * don't need to use it.
2825 */
2826 switch (event->state) {
2827 case PERF_EVENT_STATE_ACTIVE:
2828 event->pmu->read(event);
2829 /* fall-through */
2830
2831 case PERF_EVENT_STATE_INACTIVE:
2832 update_event_times(event);
2833 break;
2834
2835 default:
2836 break;
2837 }
2838
2839 /*
2840 * In order to keep per-task stats reliable we need to flip the event
2841 * values when we flip the contexts.
2842 */
2843 value = local64_read(&next_event->count);
2844 value = local64_xchg(&event->count, value);
2845 local64_set(&next_event->count, value);
2846
2847 swap(event->total_time_enabled, next_event->total_time_enabled);
2848 swap(event->total_time_running, next_event->total_time_running);
2849
2850 /*
2851 * Since we swizzled the values, update the user visible data too.
2852 */
2853 perf_event_update_userpage(event);
2854 perf_event_update_userpage(next_event);
2855 }
2856
2857 static void perf_event_sync_stat(struct perf_event_context *ctx,
2858 struct perf_event_context *next_ctx)
2859 {
2860 struct perf_event *event, *next_event;
2861
2862 if (!ctx->nr_stat)
2863 return;
2864
2865 update_context_time(ctx);
2866
2867 event = list_first_entry(&ctx->event_list,
2868 struct perf_event, event_entry);
2869
2870 next_event = list_first_entry(&next_ctx->event_list,
2871 struct perf_event, event_entry);
2872
2873 while (&event->event_entry != &ctx->event_list &&
2874 &next_event->event_entry != &next_ctx->event_list) {
2875
2876 __perf_event_sync_stat(event, next_event);
2877
2878 event = list_next_entry(event, event_entry);
2879 next_event = list_next_entry(next_event, event_entry);
2880 }
2881 }
2882
2883 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2884 struct task_struct *next)
2885 {
2886 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2887 struct perf_event_context *next_ctx;
2888 struct perf_event_context *parent, *next_parent;
2889 struct perf_cpu_context *cpuctx;
2890 int do_switch = 1;
2891
2892 if (likely(!ctx))
2893 return;
2894
2895 cpuctx = __get_cpu_context(ctx);
2896 if (!cpuctx->task_ctx)
2897 return;
2898
2899 rcu_read_lock();
2900 next_ctx = next->perf_event_ctxp[ctxn];
2901 if (!next_ctx)
2902 goto unlock;
2903
2904 parent = rcu_dereference(ctx->parent_ctx);
2905 next_parent = rcu_dereference(next_ctx->parent_ctx);
2906
2907 /* If neither context have a parent context; they cannot be clones. */
2908 if (!parent && !next_parent)
2909 goto unlock;
2910
2911 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2912 /*
2913 * Looks like the two contexts are clones, so we might be
2914 * able to optimize the context switch. We lock both
2915 * contexts and check that they are clones under the
2916 * lock (including re-checking that neither has been
2917 * uncloned in the meantime). It doesn't matter which
2918 * order we take the locks because no other cpu could
2919 * be trying to lock both of these tasks.
2920 */
2921 raw_spin_lock(&ctx->lock);
2922 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2923 if (context_equiv(ctx, next_ctx)) {
2924 WRITE_ONCE(ctx->task, next);
2925 WRITE_ONCE(next_ctx->task, task);
2926
2927 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2928
2929 /*
2930 * RCU_INIT_POINTER here is safe because we've not
2931 * modified the ctx and the above modification of
2932 * ctx->task and ctx->task_ctx_data are immaterial
2933 * since those values are always verified under
2934 * ctx->lock which we're now holding.
2935 */
2936 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2937 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2938
2939 do_switch = 0;
2940
2941 perf_event_sync_stat(ctx, next_ctx);
2942 }
2943 raw_spin_unlock(&next_ctx->lock);
2944 raw_spin_unlock(&ctx->lock);
2945 }
2946 unlock:
2947 rcu_read_unlock();
2948
2949 if (do_switch) {
2950 raw_spin_lock(&ctx->lock);
2951 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
2952 raw_spin_unlock(&ctx->lock);
2953 }
2954 }
2955
2956 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2957
2958 void perf_sched_cb_dec(struct pmu *pmu)
2959 {
2960 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2961
2962 this_cpu_dec(perf_sched_cb_usages);
2963
2964 if (!--cpuctx->sched_cb_usage)
2965 list_del(&cpuctx->sched_cb_entry);
2966 }
2967
2968
2969 void perf_sched_cb_inc(struct pmu *pmu)
2970 {
2971 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2972
2973 if (!cpuctx->sched_cb_usage++)
2974 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2975
2976 this_cpu_inc(perf_sched_cb_usages);
2977 }
2978
2979 /*
2980 * This function provides the context switch callback to the lower code
2981 * layer. It is invoked ONLY when the context switch callback is enabled.
2982 *
2983 * This callback is relevant even to per-cpu events; for example multi event
2984 * PEBS requires this to provide PID/TID information. This requires we flush
2985 * all queued PEBS records before we context switch to a new task.
2986 */
2987 static void perf_pmu_sched_task(struct task_struct *prev,
2988 struct task_struct *next,
2989 bool sched_in)
2990 {
2991 struct perf_cpu_context *cpuctx;
2992 struct pmu *pmu;
2993
2994 if (prev == next)
2995 return;
2996
2997 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2998 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
2999
3000 if (WARN_ON_ONCE(!pmu->sched_task))
3001 continue;
3002
3003 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3004 perf_pmu_disable(pmu);
3005
3006 pmu->sched_task(cpuctx->task_ctx, sched_in);
3007
3008 perf_pmu_enable(pmu);
3009 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3010 }
3011 }
3012
3013 static void perf_event_switch(struct task_struct *task,
3014 struct task_struct *next_prev, bool sched_in);
3015
3016 #define for_each_task_context_nr(ctxn) \
3017 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3018
3019 /*
3020 * Called from scheduler to remove the events of the current task,
3021 * with interrupts disabled.
3022 *
3023 * We stop each event and update the event value in event->count.
3024 *
3025 * This does not protect us against NMI, but disable()
3026 * sets the disabled bit in the control field of event _before_
3027 * accessing the event control register. If a NMI hits, then it will
3028 * not restart the event.
3029 */
3030 void __perf_event_task_sched_out(struct task_struct *task,
3031 struct task_struct *next)
3032 {
3033 int ctxn;
3034
3035 if (__this_cpu_read(perf_sched_cb_usages))
3036 perf_pmu_sched_task(task, next, false);
3037
3038 if (atomic_read(&nr_switch_events))
3039 perf_event_switch(task, next, false);
3040
3041 for_each_task_context_nr(ctxn)
3042 perf_event_context_sched_out(task, ctxn, next);
3043
3044 /*
3045 * if cgroup events exist on this CPU, then we need
3046 * to check if we have to switch out PMU state.
3047 * cgroup event are system-wide mode only
3048 */
3049 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3050 perf_cgroup_sched_out(task, next);
3051 }
3052
3053 /*
3054 * Called with IRQs disabled
3055 */
3056 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3057 enum event_type_t event_type)
3058 {
3059 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3060 }
3061
3062 static void
3063 ctx_pinned_sched_in(struct perf_event_context *ctx,
3064 struct perf_cpu_context *cpuctx)
3065 {
3066 struct perf_event *event;
3067
3068 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3069 if (event->state <= PERF_EVENT_STATE_OFF)
3070 continue;
3071 if (!event_filter_match(event))
3072 continue;
3073
3074 /* may need to reset tstamp_enabled */
3075 if (is_cgroup_event(event))
3076 perf_cgroup_mark_enabled(event, ctx);
3077
3078 if (group_can_go_on(event, cpuctx, 1))
3079 group_sched_in(event, cpuctx, ctx);
3080
3081 /*
3082 * If this pinned group hasn't been scheduled,
3083 * put it in error state.
3084 */
3085 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3086 update_group_times(event);
3087 event->state = PERF_EVENT_STATE_ERROR;
3088 }
3089 }
3090 }
3091
3092 static void
3093 ctx_flexible_sched_in(struct perf_event_context *ctx,
3094 struct perf_cpu_context *cpuctx)
3095 {
3096 struct perf_event *event;
3097 int can_add_hw = 1;
3098
3099 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3100 /* Ignore events in OFF or ERROR state */
3101 if (event->state <= PERF_EVENT_STATE_OFF)
3102 continue;
3103 /*
3104 * Listen to the 'cpu' scheduling filter constraint
3105 * of events:
3106 */
3107 if (!event_filter_match(event))
3108 continue;
3109
3110 /* may need to reset tstamp_enabled */
3111 if (is_cgroup_event(event))
3112 perf_cgroup_mark_enabled(event, ctx);
3113
3114 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3115 if (group_sched_in(event, cpuctx, ctx))
3116 can_add_hw = 0;
3117 }
3118 }
3119 }
3120
3121 static void
3122 ctx_sched_in(struct perf_event_context *ctx,
3123 struct perf_cpu_context *cpuctx,
3124 enum event_type_t event_type,
3125 struct task_struct *task)
3126 {
3127 int is_active = ctx->is_active;
3128 u64 now;
3129
3130 lockdep_assert_held(&ctx->lock);
3131
3132 if (likely(!ctx->nr_events))
3133 return;
3134
3135 ctx->is_active |= (event_type | EVENT_TIME);
3136 if (ctx->task) {
3137 if (!is_active)
3138 cpuctx->task_ctx = ctx;
3139 else
3140 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3141 }
3142
3143 is_active ^= ctx->is_active; /* changed bits */
3144
3145 if (is_active & EVENT_TIME) {
3146 /* start ctx time */
3147 now = perf_clock();
3148 ctx->timestamp = now;
3149 perf_cgroup_set_timestamp(task, ctx);
3150 }
3151
3152 /*
3153 * First go through the list and put on any pinned groups
3154 * in order to give them the best chance of going on.
3155 */
3156 if (is_active & EVENT_PINNED)
3157 ctx_pinned_sched_in(ctx, cpuctx);
3158
3159 /* Then walk through the lower prio flexible groups */
3160 if (is_active & EVENT_FLEXIBLE)
3161 ctx_flexible_sched_in(ctx, cpuctx);
3162 }
3163
3164 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3165 enum event_type_t event_type,
3166 struct task_struct *task)
3167 {
3168 struct perf_event_context *ctx = &cpuctx->ctx;
3169
3170 ctx_sched_in(ctx, cpuctx, event_type, task);
3171 }
3172
3173 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3174 struct task_struct *task)
3175 {
3176 struct perf_cpu_context *cpuctx;
3177
3178 cpuctx = __get_cpu_context(ctx);
3179 if (cpuctx->task_ctx == ctx)
3180 return;
3181
3182 perf_ctx_lock(cpuctx, ctx);
3183 perf_pmu_disable(ctx->pmu);
3184 /*
3185 * We want to keep the following priority order:
3186 * cpu pinned (that don't need to move), task pinned,
3187 * cpu flexible, task flexible.
3188 *
3189 * However, if task's ctx is not carrying any pinned
3190 * events, no need to flip the cpuctx's events around.
3191 */
3192 if (!list_empty(&ctx->pinned_groups))
3193 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3194 perf_event_sched_in(cpuctx, ctx, task);
3195 perf_pmu_enable(ctx->pmu);
3196 perf_ctx_unlock(cpuctx, ctx);
3197 }
3198
3199 /*
3200 * Called from scheduler to add the events of the current task
3201 * with interrupts disabled.
3202 *
3203 * We restore the event value and then enable it.
3204 *
3205 * This does not protect us against NMI, but enable()
3206 * sets the enabled bit in the control field of event _before_
3207 * accessing the event control register. If a NMI hits, then it will
3208 * keep the event running.
3209 */
3210 void __perf_event_task_sched_in(struct task_struct *prev,
3211 struct task_struct *task)
3212 {
3213 struct perf_event_context *ctx;
3214 int ctxn;
3215
3216 /*
3217 * If cgroup events exist on this CPU, then we need to check if we have
3218 * to switch in PMU state; cgroup event are system-wide mode only.
3219 *
3220 * Since cgroup events are CPU events, we must schedule these in before
3221 * we schedule in the task events.
3222 */
3223 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3224 perf_cgroup_sched_in(prev, task);
3225
3226 for_each_task_context_nr(ctxn) {
3227 ctx = task->perf_event_ctxp[ctxn];
3228 if (likely(!ctx))
3229 continue;
3230
3231 perf_event_context_sched_in(ctx, task);
3232 }
3233
3234 if (atomic_read(&nr_switch_events))
3235 perf_event_switch(task, prev, true);
3236
3237 if (__this_cpu_read(perf_sched_cb_usages))
3238 perf_pmu_sched_task(prev, task, true);
3239 }
3240
3241 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3242 {
3243 u64 frequency = event->attr.sample_freq;
3244 u64 sec = NSEC_PER_SEC;
3245 u64 divisor, dividend;
3246
3247 int count_fls, nsec_fls, frequency_fls, sec_fls;
3248
3249 count_fls = fls64(count);
3250 nsec_fls = fls64(nsec);
3251 frequency_fls = fls64(frequency);
3252 sec_fls = 30;
3253
3254 /*
3255 * We got @count in @nsec, with a target of sample_freq HZ
3256 * the target period becomes:
3257 *
3258 * @count * 10^9
3259 * period = -------------------
3260 * @nsec * sample_freq
3261 *
3262 */
3263
3264 /*
3265 * Reduce accuracy by one bit such that @a and @b converge
3266 * to a similar magnitude.
3267 */
3268 #define REDUCE_FLS(a, b) \
3269 do { \
3270 if (a##_fls > b##_fls) { \
3271 a >>= 1; \
3272 a##_fls--; \
3273 } else { \
3274 b >>= 1; \
3275 b##_fls--; \
3276 } \
3277 } while (0)
3278
3279 /*
3280 * Reduce accuracy until either term fits in a u64, then proceed with
3281 * the other, so that finally we can do a u64/u64 division.
3282 */
3283 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3284 REDUCE_FLS(nsec, frequency);
3285 REDUCE_FLS(sec, count);
3286 }
3287
3288 if (count_fls + sec_fls > 64) {
3289 divisor = nsec * frequency;
3290
3291 while (count_fls + sec_fls > 64) {
3292 REDUCE_FLS(count, sec);
3293 divisor >>= 1;
3294 }
3295
3296 dividend = count * sec;
3297 } else {
3298 dividend = count * sec;
3299
3300 while (nsec_fls + frequency_fls > 64) {
3301 REDUCE_FLS(nsec, frequency);
3302 dividend >>= 1;
3303 }
3304
3305 divisor = nsec * frequency;
3306 }
3307
3308 if (!divisor)
3309 return dividend;
3310
3311 return div64_u64(dividend, divisor);
3312 }
3313
3314 static DEFINE_PER_CPU(int, perf_throttled_count);
3315 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3316
3317 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3318 {
3319 struct hw_perf_event *hwc = &event->hw;
3320 s64 period, sample_period;
3321 s64 delta;
3322
3323 period = perf_calculate_period(event, nsec, count);
3324
3325 delta = (s64)(period - hwc->sample_period);
3326 delta = (delta + 7) / 8; /* low pass filter */
3327
3328 sample_period = hwc->sample_period + delta;
3329
3330 if (!sample_period)
3331 sample_period = 1;
3332
3333 hwc->sample_period = sample_period;
3334
3335 if (local64_read(&hwc->period_left) > 8*sample_period) {
3336 if (disable)
3337 event->pmu->stop(event, PERF_EF_UPDATE);
3338
3339 local64_set(&hwc->period_left, 0);
3340
3341 if (disable)
3342 event->pmu->start(event, PERF_EF_RELOAD);
3343 }
3344 }
3345
3346 /*
3347 * combine freq adjustment with unthrottling to avoid two passes over the
3348 * events. At the same time, make sure, having freq events does not change
3349 * the rate of unthrottling as that would introduce bias.
3350 */
3351 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3352 int needs_unthr)
3353 {
3354 struct perf_event *event;
3355 struct hw_perf_event *hwc;
3356 u64 now, period = TICK_NSEC;
3357 s64 delta;
3358
3359 /*
3360 * only need to iterate over all events iff:
3361 * - context have events in frequency mode (needs freq adjust)
3362 * - there are events to unthrottle on this cpu
3363 */
3364 if (!(ctx->nr_freq || needs_unthr))
3365 return;
3366
3367 raw_spin_lock(&ctx->lock);
3368 perf_pmu_disable(ctx->pmu);
3369
3370 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3371 if (event->state != PERF_EVENT_STATE_ACTIVE)
3372 continue;
3373
3374 if (!event_filter_match(event))
3375 continue;
3376
3377 perf_pmu_disable(event->pmu);
3378
3379 hwc = &event->hw;
3380
3381 if (hwc->interrupts == MAX_INTERRUPTS) {
3382 hwc->interrupts = 0;
3383 perf_log_throttle(event, 1);
3384 event->pmu->start(event, 0);
3385 }
3386
3387 if (!event->attr.freq || !event->attr.sample_freq)
3388 goto next;
3389
3390 /*
3391 * stop the event and update event->count
3392 */
3393 event->pmu->stop(event, PERF_EF_UPDATE);
3394
3395 now = local64_read(&event->count);
3396 delta = now - hwc->freq_count_stamp;
3397 hwc->freq_count_stamp = now;
3398
3399 /*
3400 * restart the event
3401 * reload only if value has changed
3402 * we have stopped the event so tell that
3403 * to perf_adjust_period() to avoid stopping it
3404 * twice.
3405 */
3406 if (delta > 0)
3407 perf_adjust_period(event, period, delta, false);
3408
3409 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3410 next:
3411 perf_pmu_enable(event->pmu);
3412 }
3413
3414 perf_pmu_enable(ctx->pmu);
3415 raw_spin_unlock(&ctx->lock);
3416 }
3417
3418 /*
3419 * Round-robin a context's events:
3420 */
3421 static void rotate_ctx(struct perf_event_context *ctx)
3422 {
3423 /*
3424 * Rotate the first entry last of non-pinned groups. Rotation might be
3425 * disabled by the inheritance code.
3426 */
3427 if (!ctx->rotate_disable)
3428 list_rotate_left(&ctx->flexible_groups);
3429 }
3430
3431 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3432 {
3433 struct perf_event_context *ctx = NULL;
3434 int rotate = 0;
3435
3436 if (cpuctx->ctx.nr_events) {
3437 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3438 rotate = 1;
3439 }
3440
3441 ctx = cpuctx->task_ctx;
3442 if (ctx && ctx->nr_events) {
3443 if (ctx->nr_events != ctx->nr_active)
3444 rotate = 1;
3445 }
3446
3447 if (!rotate)
3448 goto done;
3449
3450 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3451 perf_pmu_disable(cpuctx->ctx.pmu);
3452
3453 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3454 if (ctx)
3455 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3456
3457 rotate_ctx(&cpuctx->ctx);
3458 if (ctx)
3459 rotate_ctx(ctx);
3460
3461 perf_event_sched_in(cpuctx, ctx, current);
3462
3463 perf_pmu_enable(cpuctx->ctx.pmu);
3464 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3465 done:
3466
3467 return rotate;
3468 }
3469
3470 void perf_event_task_tick(void)
3471 {
3472 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3473 struct perf_event_context *ctx, *tmp;
3474 int throttled;
3475
3476 WARN_ON(!irqs_disabled());
3477
3478 __this_cpu_inc(perf_throttled_seq);
3479 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3480 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3481
3482 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3483 perf_adjust_freq_unthr_context(ctx, throttled);
3484 }
3485
3486 static int event_enable_on_exec(struct perf_event *event,
3487 struct perf_event_context *ctx)
3488 {
3489 if (!event->attr.enable_on_exec)
3490 return 0;
3491
3492 event->attr.enable_on_exec = 0;
3493 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3494 return 0;
3495
3496 __perf_event_mark_enabled(event);
3497
3498 return 1;
3499 }
3500
3501 /*
3502 * Enable all of a task's events that have been marked enable-on-exec.
3503 * This expects task == current.
3504 */
3505 static void perf_event_enable_on_exec(int ctxn)
3506 {
3507 struct perf_event_context *ctx, *clone_ctx = NULL;
3508 enum event_type_t event_type = 0;
3509 struct perf_cpu_context *cpuctx;
3510 struct perf_event *event;
3511 unsigned long flags;
3512 int enabled = 0;
3513
3514 local_irq_save(flags);
3515 ctx = current->perf_event_ctxp[ctxn];
3516 if (!ctx || !ctx->nr_events)
3517 goto out;
3518
3519 cpuctx = __get_cpu_context(ctx);
3520 perf_ctx_lock(cpuctx, ctx);
3521 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3522 list_for_each_entry(event, &ctx->event_list, event_entry) {
3523 enabled |= event_enable_on_exec(event, ctx);
3524 event_type |= get_event_type(event);
3525 }
3526
3527 /*
3528 * Unclone and reschedule this context if we enabled any event.
3529 */
3530 if (enabled) {
3531 clone_ctx = unclone_ctx(ctx);
3532 ctx_resched(cpuctx, ctx, event_type);
3533 } else {
3534 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3535 }
3536 perf_ctx_unlock(cpuctx, ctx);
3537
3538 out:
3539 local_irq_restore(flags);
3540
3541 if (clone_ctx)
3542 put_ctx(clone_ctx);
3543 }
3544
3545 struct perf_read_data {
3546 struct perf_event *event;
3547 bool group;
3548 int ret;
3549 };
3550
3551 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3552 {
3553 u16 local_pkg, event_pkg;
3554
3555 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3556 int local_cpu = smp_processor_id();
3557
3558 event_pkg = topology_physical_package_id(event_cpu);
3559 local_pkg = topology_physical_package_id(local_cpu);
3560
3561 if (event_pkg == local_pkg)
3562 return local_cpu;
3563 }
3564
3565 return event_cpu;
3566 }
3567
3568 /*
3569 * Cross CPU call to read the hardware event
3570 */
3571 static void __perf_event_read(void *info)
3572 {
3573 struct perf_read_data *data = info;
3574 struct perf_event *sub, *event = data->event;
3575 struct perf_event_context *ctx = event->ctx;
3576 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3577 struct pmu *pmu = event->pmu;
3578
3579 /*
3580 * If this is a task context, we need to check whether it is
3581 * the current task context of this cpu. If not it has been
3582 * scheduled out before the smp call arrived. In that case
3583 * event->count would have been updated to a recent sample
3584 * when the event was scheduled out.
3585 */
3586 if (ctx->task && cpuctx->task_ctx != ctx)
3587 return;
3588
3589 raw_spin_lock(&ctx->lock);
3590 if (ctx->is_active) {
3591 update_context_time(ctx);
3592 update_cgrp_time_from_event(event);
3593 }
3594
3595 update_event_times(event);
3596 if (event->state != PERF_EVENT_STATE_ACTIVE)
3597 goto unlock;
3598
3599 if (!data->group) {
3600 pmu->read(event);
3601 data->ret = 0;
3602 goto unlock;
3603 }
3604
3605 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3606
3607 pmu->read(event);
3608
3609 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3610 update_event_times(sub);
3611 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3612 /*
3613 * Use sibling's PMU rather than @event's since
3614 * sibling could be on different (eg: software) PMU.
3615 */
3616 sub->pmu->read(sub);
3617 }
3618 }
3619
3620 data->ret = pmu->commit_txn(pmu);
3621
3622 unlock:
3623 raw_spin_unlock(&ctx->lock);
3624 }
3625
3626 static inline u64 perf_event_count(struct perf_event *event)
3627 {
3628 if (event->pmu->count)
3629 return event->pmu->count(event);
3630
3631 return __perf_event_count(event);
3632 }
3633
3634 /*
3635 * NMI-safe method to read a local event, that is an event that
3636 * is:
3637 * - either for the current task, or for this CPU
3638 * - does not have inherit set, for inherited task events
3639 * will not be local and we cannot read them atomically
3640 * - must not have a pmu::count method
3641 */
3642 u64 perf_event_read_local(struct perf_event *event)
3643 {
3644 unsigned long flags;
3645 u64 val;
3646
3647 /*
3648 * Disabling interrupts avoids all counter scheduling (context
3649 * switches, timer based rotation and IPIs).
3650 */
3651 local_irq_save(flags);
3652
3653 /* If this is a per-task event, it must be for current */
3654 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3655 event->hw.target != current);
3656
3657 /* If this is a per-CPU event, it must be for this CPU */
3658 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3659 event->cpu != smp_processor_id());
3660
3661 /*
3662 * It must not be an event with inherit set, we cannot read
3663 * all child counters from atomic context.
3664 */
3665 WARN_ON_ONCE(event->attr.inherit);
3666
3667 /*
3668 * It must not have a pmu::count method, those are not
3669 * NMI safe.
3670 */
3671 WARN_ON_ONCE(event->pmu->count);
3672
3673 /*
3674 * If the event is currently on this CPU, its either a per-task event,
3675 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3676 * oncpu == -1).
3677 */
3678 if (event->oncpu == smp_processor_id())
3679 event->pmu->read(event);
3680
3681 val = local64_read(&event->count);
3682 local_irq_restore(flags);
3683
3684 return val;
3685 }
3686
3687 static int perf_event_read(struct perf_event *event, bool group)
3688 {
3689 int event_cpu, ret = 0;
3690
3691 /*
3692 * If event is enabled and currently active on a CPU, update the
3693 * value in the event structure:
3694 */
3695 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3696 struct perf_read_data data = {
3697 .event = event,
3698 .group = group,
3699 .ret = 0,
3700 };
3701
3702 event_cpu = READ_ONCE(event->oncpu);
3703 if ((unsigned)event_cpu >= nr_cpu_ids)
3704 return 0;
3705
3706 preempt_disable();
3707 event_cpu = __perf_event_read_cpu(event, event_cpu);
3708
3709 /*
3710 * Purposely ignore the smp_call_function_single() return
3711 * value.
3712 *
3713 * If event_cpu isn't a valid CPU it means the event got
3714 * scheduled out and that will have updated the event count.
3715 *
3716 * Therefore, either way, we'll have an up-to-date event count
3717 * after this.
3718 */
3719 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3720 preempt_enable();
3721 ret = data.ret;
3722 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3723 struct perf_event_context *ctx = event->ctx;
3724 unsigned long flags;
3725
3726 raw_spin_lock_irqsave(&ctx->lock, flags);
3727 /*
3728 * may read while context is not active
3729 * (e.g., thread is blocked), in that case
3730 * we cannot update context time
3731 */
3732 if (ctx->is_active) {
3733 update_context_time(ctx);
3734 update_cgrp_time_from_event(event);
3735 }
3736 if (group)
3737 update_group_times(event);
3738 else
3739 update_event_times(event);
3740 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3741 }
3742
3743 return ret;
3744 }
3745
3746 /*
3747 * Initialize the perf_event context in a task_struct:
3748 */
3749 static void __perf_event_init_context(struct perf_event_context *ctx)
3750 {
3751 raw_spin_lock_init(&ctx->lock);
3752 mutex_init(&ctx->mutex);
3753 INIT_LIST_HEAD(&ctx->active_ctx_list);
3754 INIT_LIST_HEAD(&ctx->pinned_groups);
3755 INIT_LIST_HEAD(&ctx->flexible_groups);
3756 INIT_LIST_HEAD(&ctx->event_list);
3757 atomic_set(&ctx->refcount, 1);
3758 }
3759
3760 static struct perf_event_context *
3761 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3762 {
3763 struct perf_event_context *ctx;
3764
3765 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3766 if (!ctx)
3767 return NULL;
3768
3769 __perf_event_init_context(ctx);
3770 if (task) {
3771 ctx->task = task;
3772 get_task_struct(task);
3773 }
3774 ctx->pmu = pmu;
3775
3776 return ctx;
3777 }
3778
3779 static struct task_struct *
3780 find_lively_task_by_vpid(pid_t vpid)
3781 {
3782 struct task_struct *task;
3783
3784 rcu_read_lock();
3785 if (!vpid)
3786 task = current;
3787 else
3788 task = find_task_by_vpid(vpid);
3789 if (task)
3790 get_task_struct(task);
3791 rcu_read_unlock();
3792
3793 if (!task)
3794 return ERR_PTR(-ESRCH);
3795
3796 return task;
3797 }
3798
3799 /*
3800 * Returns a matching context with refcount and pincount.
3801 */
3802 static struct perf_event_context *
3803 find_get_context(struct pmu *pmu, struct task_struct *task,
3804 struct perf_event *event)
3805 {
3806 struct perf_event_context *ctx, *clone_ctx = NULL;
3807 struct perf_cpu_context *cpuctx;
3808 void *task_ctx_data = NULL;
3809 unsigned long flags;
3810 int ctxn, err;
3811 int cpu = event->cpu;
3812
3813 if (!task) {
3814 /* Must be root to operate on a CPU event: */
3815 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3816 return ERR_PTR(-EACCES);
3817
3818 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3819 ctx = &cpuctx->ctx;
3820 get_ctx(ctx);
3821 ++ctx->pin_count;
3822
3823 return ctx;
3824 }
3825
3826 err = -EINVAL;
3827 ctxn = pmu->task_ctx_nr;
3828 if (ctxn < 0)
3829 goto errout;
3830
3831 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3832 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3833 if (!task_ctx_data) {
3834 err = -ENOMEM;
3835 goto errout;
3836 }
3837 }
3838
3839 retry:
3840 ctx = perf_lock_task_context(task, ctxn, &flags);
3841 if (ctx) {
3842 clone_ctx = unclone_ctx(ctx);
3843 ++ctx->pin_count;
3844
3845 if (task_ctx_data && !ctx->task_ctx_data) {
3846 ctx->task_ctx_data = task_ctx_data;
3847 task_ctx_data = NULL;
3848 }
3849 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3850
3851 if (clone_ctx)
3852 put_ctx(clone_ctx);
3853 } else {
3854 ctx = alloc_perf_context(pmu, task);
3855 err = -ENOMEM;
3856 if (!ctx)
3857 goto errout;
3858
3859 if (task_ctx_data) {
3860 ctx->task_ctx_data = task_ctx_data;
3861 task_ctx_data = NULL;
3862 }
3863
3864 err = 0;
3865 mutex_lock(&task->perf_event_mutex);
3866 /*
3867 * If it has already passed perf_event_exit_task().
3868 * we must see PF_EXITING, it takes this mutex too.
3869 */
3870 if (task->flags & PF_EXITING)
3871 err = -ESRCH;
3872 else if (task->perf_event_ctxp[ctxn])
3873 err = -EAGAIN;
3874 else {
3875 get_ctx(ctx);
3876 ++ctx->pin_count;
3877 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3878 }
3879 mutex_unlock(&task->perf_event_mutex);
3880
3881 if (unlikely(err)) {
3882 put_ctx(ctx);
3883
3884 if (err == -EAGAIN)
3885 goto retry;
3886 goto errout;
3887 }
3888 }
3889
3890 kfree(task_ctx_data);
3891 return ctx;
3892
3893 errout:
3894 kfree(task_ctx_data);
3895 return ERR_PTR(err);
3896 }
3897
3898 static void perf_event_free_filter(struct perf_event *event);
3899 static void perf_event_free_bpf_prog(struct perf_event *event);
3900
3901 static void free_event_rcu(struct rcu_head *head)
3902 {
3903 struct perf_event *event;
3904
3905 event = container_of(head, struct perf_event, rcu_head);
3906 if (event->ns)
3907 put_pid_ns(event->ns);
3908 perf_event_free_filter(event);
3909 kfree(event);
3910 }
3911
3912 static void ring_buffer_attach(struct perf_event *event,
3913 struct ring_buffer *rb);
3914
3915 static void detach_sb_event(struct perf_event *event)
3916 {
3917 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3918
3919 raw_spin_lock(&pel->lock);
3920 list_del_rcu(&event->sb_list);
3921 raw_spin_unlock(&pel->lock);
3922 }
3923
3924 static bool is_sb_event(struct perf_event *event)
3925 {
3926 struct perf_event_attr *attr = &event->attr;
3927
3928 if (event->parent)
3929 return false;
3930
3931 if (event->attach_state & PERF_ATTACH_TASK)
3932 return false;
3933
3934 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3935 attr->comm || attr->comm_exec ||
3936 attr->task ||
3937 attr->context_switch)
3938 return true;
3939 return false;
3940 }
3941
3942 static void unaccount_pmu_sb_event(struct perf_event *event)
3943 {
3944 if (is_sb_event(event))
3945 detach_sb_event(event);
3946 }
3947
3948 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3949 {
3950 if (event->parent)
3951 return;
3952
3953 if (is_cgroup_event(event))
3954 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3955 }
3956
3957 #ifdef CONFIG_NO_HZ_FULL
3958 static DEFINE_SPINLOCK(nr_freq_lock);
3959 #endif
3960
3961 static void unaccount_freq_event_nohz(void)
3962 {
3963 #ifdef CONFIG_NO_HZ_FULL
3964 spin_lock(&nr_freq_lock);
3965 if (atomic_dec_and_test(&nr_freq_events))
3966 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3967 spin_unlock(&nr_freq_lock);
3968 #endif
3969 }
3970
3971 static void unaccount_freq_event(void)
3972 {
3973 if (tick_nohz_full_enabled())
3974 unaccount_freq_event_nohz();
3975 else
3976 atomic_dec(&nr_freq_events);
3977 }
3978
3979 static void unaccount_event(struct perf_event *event)
3980 {
3981 bool dec = false;
3982
3983 if (event->parent)
3984 return;
3985
3986 if (event->attach_state & PERF_ATTACH_TASK)
3987 dec = true;
3988 if (event->attr.mmap || event->attr.mmap_data)
3989 atomic_dec(&nr_mmap_events);
3990 if (event->attr.comm)
3991 atomic_dec(&nr_comm_events);
3992 if (event->attr.namespaces)
3993 atomic_dec(&nr_namespaces_events);
3994 if (event->attr.task)
3995 atomic_dec(&nr_task_events);
3996 if (event->attr.freq)
3997 unaccount_freq_event();
3998 if (event->attr.context_switch) {
3999 dec = true;
4000 atomic_dec(&nr_switch_events);
4001 }
4002 if (is_cgroup_event(event))
4003 dec = true;
4004 if (has_branch_stack(event))
4005 dec = true;
4006
4007 if (dec) {
4008 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4009 schedule_delayed_work(&perf_sched_work, HZ);
4010 }
4011
4012 unaccount_event_cpu(event, event->cpu);
4013
4014 unaccount_pmu_sb_event(event);
4015 }
4016
4017 static void perf_sched_delayed(struct work_struct *work)
4018 {
4019 mutex_lock(&perf_sched_mutex);
4020 if (atomic_dec_and_test(&perf_sched_count))
4021 static_branch_disable(&perf_sched_events);
4022 mutex_unlock(&perf_sched_mutex);
4023 }
4024
4025 /*
4026 * The following implement mutual exclusion of events on "exclusive" pmus
4027 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4028 * at a time, so we disallow creating events that might conflict, namely:
4029 *
4030 * 1) cpu-wide events in the presence of per-task events,
4031 * 2) per-task events in the presence of cpu-wide events,
4032 * 3) two matching events on the same context.
4033 *
4034 * The former two cases are handled in the allocation path (perf_event_alloc(),
4035 * _free_event()), the latter -- before the first perf_install_in_context().
4036 */
4037 static int exclusive_event_init(struct perf_event *event)
4038 {
4039 struct pmu *pmu = event->pmu;
4040
4041 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4042 return 0;
4043
4044 /*
4045 * Prevent co-existence of per-task and cpu-wide events on the
4046 * same exclusive pmu.
4047 *
4048 * Negative pmu::exclusive_cnt means there are cpu-wide
4049 * events on this "exclusive" pmu, positive means there are
4050 * per-task events.
4051 *
4052 * Since this is called in perf_event_alloc() path, event::ctx
4053 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4054 * to mean "per-task event", because unlike other attach states it
4055 * never gets cleared.
4056 */
4057 if (event->attach_state & PERF_ATTACH_TASK) {
4058 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4059 return -EBUSY;
4060 } else {
4061 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4062 return -EBUSY;
4063 }
4064
4065 return 0;
4066 }
4067
4068 static void exclusive_event_destroy(struct perf_event *event)
4069 {
4070 struct pmu *pmu = event->pmu;
4071
4072 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4073 return;
4074
4075 /* see comment in exclusive_event_init() */
4076 if (event->attach_state & PERF_ATTACH_TASK)
4077 atomic_dec(&pmu->exclusive_cnt);
4078 else
4079 atomic_inc(&pmu->exclusive_cnt);
4080 }
4081
4082 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4083 {
4084 if ((e1->pmu == e2->pmu) &&
4085 (e1->cpu == e2->cpu ||
4086 e1->cpu == -1 ||
4087 e2->cpu == -1))
4088 return true;
4089 return false;
4090 }
4091
4092 /* Called under the same ctx::mutex as perf_install_in_context() */
4093 static bool exclusive_event_installable(struct perf_event *event,
4094 struct perf_event_context *ctx)
4095 {
4096 struct perf_event *iter_event;
4097 struct pmu *pmu = event->pmu;
4098
4099 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4100 return true;
4101
4102 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4103 if (exclusive_event_match(iter_event, event))
4104 return false;
4105 }
4106
4107 return true;
4108 }
4109
4110 static void perf_addr_filters_splice(struct perf_event *event,
4111 struct list_head *head);
4112
4113 static void _free_event(struct perf_event *event)
4114 {
4115 irq_work_sync(&event->pending);
4116
4117 unaccount_event(event);
4118
4119 if (event->rb) {
4120 /*
4121 * Can happen when we close an event with re-directed output.
4122 *
4123 * Since we have a 0 refcount, perf_mmap_close() will skip
4124 * over us; possibly making our ring_buffer_put() the last.
4125 */
4126 mutex_lock(&event->mmap_mutex);
4127 ring_buffer_attach(event, NULL);
4128 mutex_unlock(&event->mmap_mutex);
4129 }
4130
4131 if (is_cgroup_event(event))
4132 perf_detach_cgroup(event);
4133
4134 if (!event->parent) {
4135 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4136 put_callchain_buffers();
4137 }
4138
4139 perf_event_free_bpf_prog(event);
4140 perf_addr_filters_splice(event, NULL);
4141 kfree(event->addr_filters_offs);
4142
4143 if (event->destroy)
4144 event->destroy(event);
4145
4146 if (event->ctx)
4147 put_ctx(event->ctx);
4148
4149 exclusive_event_destroy(event);
4150 module_put(event->pmu->module);
4151
4152 call_rcu(&event->rcu_head, free_event_rcu);
4153 }
4154
4155 /*
4156 * Used to free events which have a known refcount of 1, such as in error paths
4157 * where the event isn't exposed yet and inherited events.
4158 */
4159 static void free_event(struct perf_event *event)
4160 {
4161 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4162 "unexpected event refcount: %ld; ptr=%p\n",
4163 atomic_long_read(&event->refcount), event)) {
4164 /* leak to avoid use-after-free */
4165 return;
4166 }
4167
4168 _free_event(event);
4169 }
4170
4171 /*
4172 * Remove user event from the owner task.
4173 */
4174 static void perf_remove_from_owner(struct perf_event *event)
4175 {
4176 struct task_struct *owner;
4177
4178 rcu_read_lock();
4179 /*
4180 * Matches the smp_store_release() in perf_event_exit_task(). If we
4181 * observe !owner it means the list deletion is complete and we can
4182 * indeed free this event, otherwise we need to serialize on
4183 * owner->perf_event_mutex.
4184 */
4185 owner = lockless_dereference(event->owner);
4186 if (owner) {
4187 /*
4188 * Since delayed_put_task_struct() also drops the last
4189 * task reference we can safely take a new reference
4190 * while holding the rcu_read_lock().
4191 */
4192 get_task_struct(owner);
4193 }
4194 rcu_read_unlock();
4195
4196 if (owner) {
4197 /*
4198 * If we're here through perf_event_exit_task() we're already
4199 * holding ctx->mutex which would be an inversion wrt. the
4200 * normal lock order.
4201 *
4202 * However we can safely take this lock because its the child
4203 * ctx->mutex.
4204 */
4205 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4206
4207 /*
4208 * We have to re-check the event->owner field, if it is cleared
4209 * we raced with perf_event_exit_task(), acquiring the mutex
4210 * ensured they're done, and we can proceed with freeing the
4211 * event.
4212 */
4213 if (event->owner) {
4214 list_del_init(&event->owner_entry);
4215 smp_store_release(&event->owner, NULL);
4216 }
4217 mutex_unlock(&owner->perf_event_mutex);
4218 put_task_struct(owner);
4219 }
4220 }
4221
4222 static void put_event(struct perf_event *event)
4223 {
4224 if (!atomic_long_dec_and_test(&event->refcount))
4225 return;
4226
4227 _free_event(event);
4228 }
4229
4230 /*
4231 * Kill an event dead; while event:refcount will preserve the event
4232 * object, it will not preserve its functionality. Once the last 'user'
4233 * gives up the object, we'll destroy the thing.
4234 */
4235 int perf_event_release_kernel(struct perf_event *event)
4236 {
4237 struct perf_event_context *ctx = event->ctx;
4238 struct perf_event *child, *tmp;
4239
4240 /*
4241 * If we got here through err_file: fput(event_file); we will not have
4242 * attached to a context yet.
4243 */
4244 if (!ctx) {
4245 WARN_ON_ONCE(event->attach_state &
4246 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4247 goto no_ctx;
4248 }
4249
4250 if (!is_kernel_event(event))
4251 perf_remove_from_owner(event);
4252
4253 ctx = perf_event_ctx_lock(event);
4254 WARN_ON_ONCE(ctx->parent_ctx);
4255 perf_remove_from_context(event, DETACH_GROUP);
4256
4257 raw_spin_lock_irq(&ctx->lock);
4258 /*
4259 * Mark this event as STATE_DEAD, there is no external reference to it
4260 * anymore.
4261 *
4262 * Anybody acquiring event->child_mutex after the below loop _must_
4263 * also see this, most importantly inherit_event() which will avoid
4264 * placing more children on the list.
4265 *
4266 * Thus this guarantees that we will in fact observe and kill _ALL_
4267 * child events.
4268 */
4269 event->state = PERF_EVENT_STATE_DEAD;
4270 raw_spin_unlock_irq(&ctx->lock);
4271
4272 perf_event_ctx_unlock(event, ctx);
4273
4274 again:
4275 mutex_lock(&event->child_mutex);
4276 list_for_each_entry(child, &event->child_list, child_list) {
4277
4278 /*
4279 * Cannot change, child events are not migrated, see the
4280 * comment with perf_event_ctx_lock_nested().
4281 */
4282 ctx = lockless_dereference(child->ctx);
4283 /*
4284 * Since child_mutex nests inside ctx::mutex, we must jump
4285 * through hoops. We start by grabbing a reference on the ctx.
4286 *
4287 * Since the event cannot get freed while we hold the
4288 * child_mutex, the context must also exist and have a !0
4289 * reference count.
4290 */
4291 get_ctx(ctx);
4292
4293 /*
4294 * Now that we have a ctx ref, we can drop child_mutex, and
4295 * acquire ctx::mutex without fear of it going away. Then we
4296 * can re-acquire child_mutex.
4297 */
4298 mutex_unlock(&event->child_mutex);
4299 mutex_lock(&ctx->mutex);
4300 mutex_lock(&event->child_mutex);
4301
4302 /*
4303 * Now that we hold ctx::mutex and child_mutex, revalidate our
4304 * state, if child is still the first entry, it didn't get freed
4305 * and we can continue doing so.
4306 */
4307 tmp = list_first_entry_or_null(&event->child_list,
4308 struct perf_event, child_list);
4309 if (tmp == child) {
4310 perf_remove_from_context(child, DETACH_GROUP);
4311 list_del(&child->child_list);
4312 free_event(child);
4313 /*
4314 * This matches the refcount bump in inherit_event();
4315 * this can't be the last reference.
4316 */
4317 put_event(event);
4318 }
4319
4320 mutex_unlock(&event->child_mutex);
4321 mutex_unlock(&ctx->mutex);
4322 put_ctx(ctx);
4323 goto again;
4324 }
4325 mutex_unlock(&event->child_mutex);
4326
4327 no_ctx:
4328 put_event(event); /* Must be the 'last' reference */
4329 return 0;
4330 }
4331 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4332
4333 /*
4334 * Called when the last reference to the file is gone.
4335 */
4336 static int perf_release(struct inode *inode, struct file *file)
4337 {
4338 perf_event_release_kernel(file->private_data);
4339 return 0;
4340 }
4341
4342 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4343 {
4344 struct perf_event *child;
4345 u64 total = 0;
4346
4347 *enabled = 0;
4348 *running = 0;
4349
4350 mutex_lock(&event->child_mutex);
4351
4352 (void)perf_event_read(event, false);
4353 total += perf_event_count(event);
4354
4355 *enabled += event->total_time_enabled +
4356 atomic64_read(&event->child_total_time_enabled);
4357 *running += event->total_time_running +
4358 atomic64_read(&event->child_total_time_running);
4359
4360 list_for_each_entry(child, &event->child_list, child_list) {
4361 (void)perf_event_read(child, false);
4362 total += perf_event_count(child);
4363 *enabled += child->total_time_enabled;
4364 *running += child->total_time_running;
4365 }
4366 mutex_unlock(&event->child_mutex);
4367
4368 return total;
4369 }
4370 EXPORT_SYMBOL_GPL(perf_event_read_value);
4371
4372 static int __perf_read_group_add(struct perf_event *leader,
4373 u64 read_format, u64 *values)
4374 {
4375 struct perf_event_context *ctx = leader->ctx;
4376 struct perf_event *sub;
4377 unsigned long flags;
4378 int n = 1; /* skip @nr */
4379 int ret;
4380
4381 ret = perf_event_read(leader, true);
4382 if (ret)
4383 return ret;
4384
4385 /*
4386 * Since we co-schedule groups, {enabled,running} times of siblings
4387 * will be identical to those of the leader, so we only publish one
4388 * set.
4389 */
4390 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4391 values[n++] += leader->total_time_enabled +
4392 atomic64_read(&leader->child_total_time_enabled);
4393 }
4394
4395 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4396 values[n++] += leader->total_time_running +
4397 atomic64_read(&leader->child_total_time_running);
4398 }
4399
4400 /*
4401 * Write {count,id} tuples for every sibling.
4402 */
4403 values[n++] += perf_event_count(leader);
4404 if (read_format & PERF_FORMAT_ID)
4405 values[n++] = primary_event_id(leader);
4406
4407 raw_spin_lock_irqsave(&ctx->lock, flags);
4408
4409 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4410 values[n++] += perf_event_count(sub);
4411 if (read_format & PERF_FORMAT_ID)
4412 values[n++] = primary_event_id(sub);
4413 }
4414
4415 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4416 return 0;
4417 }
4418
4419 static int perf_read_group(struct perf_event *event,
4420 u64 read_format, char __user *buf)
4421 {
4422 struct perf_event *leader = event->group_leader, *child;
4423 struct perf_event_context *ctx = leader->ctx;
4424 int ret;
4425 u64 *values;
4426
4427 lockdep_assert_held(&ctx->mutex);
4428
4429 values = kzalloc(event->read_size, GFP_KERNEL);
4430 if (!values)
4431 return -ENOMEM;
4432
4433 values[0] = 1 + leader->nr_siblings;
4434
4435 /*
4436 * By locking the child_mutex of the leader we effectively
4437 * lock the child list of all siblings.. XXX explain how.
4438 */
4439 mutex_lock(&leader->child_mutex);
4440
4441 ret = __perf_read_group_add(leader, read_format, values);
4442 if (ret)
4443 goto unlock;
4444
4445 list_for_each_entry(child, &leader->child_list, child_list) {
4446 ret = __perf_read_group_add(child, read_format, values);
4447 if (ret)
4448 goto unlock;
4449 }
4450
4451 mutex_unlock(&leader->child_mutex);
4452
4453 ret = event->read_size;
4454 if (copy_to_user(buf, values, event->read_size))
4455 ret = -EFAULT;
4456 goto out;
4457
4458 unlock:
4459 mutex_unlock(&leader->child_mutex);
4460 out:
4461 kfree(values);
4462 return ret;
4463 }
4464
4465 static int perf_read_one(struct perf_event *event,
4466 u64 read_format, char __user *buf)
4467 {
4468 u64 enabled, running;
4469 u64 values[4];
4470 int n = 0;
4471
4472 values[n++] = perf_event_read_value(event, &enabled, &running);
4473 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4474 values[n++] = enabled;
4475 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4476 values[n++] = running;
4477 if (read_format & PERF_FORMAT_ID)
4478 values[n++] = primary_event_id(event);
4479
4480 if (copy_to_user(buf, values, n * sizeof(u64)))
4481 return -EFAULT;
4482
4483 return n * sizeof(u64);
4484 }
4485
4486 static bool is_event_hup(struct perf_event *event)
4487 {
4488 bool no_children;
4489
4490 if (event->state > PERF_EVENT_STATE_EXIT)
4491 return false;
4492
4493 mutex_lock(&event->child_mutex);
4494 no_children = list_empty(&event->child_list);
4495 mutex_unlock(&event->child_mutex);
4496 return no_children;
4497 }
4498
4499 /*
4500 * Read the performance event - simple non blocking version for now
4501 */
4502 static ssize_t
4503 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4504 {
4505 u64 read_format = event->attr.read_format;
4506 int ret;
4507
4508 /*
4509 * Return end-of-file for a read on a event that is in
4510 * error state (i.e. because it was pinned but it couldn't be
4511 * scheduled on to the CPU at some point).
4512 */
4513 if (event->state == PERF_EVENT_STATE_ERROR)
4514 return 0;
4515
4516 if (count < event->read_size)
4517 return -ENOSPC;
4518
4519 WARN_ON_ONCE(event->ctx->parent_ctx);
4520 if (read_format & PERF_FORMAT_GROUP)
4521 ret = perf_read_group(event, read_format, buf);
4522 else
4523 ret = perf_read_one(event, read_format, buf);
4524
4525 return ret;
4526 }
4527
4528 static ssize_t
4529 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4530 {
4531 struct perf_event *event = file->private_data;
4532 struct perf_event_context *ctx;
4533 int ret;
4534
4535 ctx = perf_event_ctx_lock(event);
4536 ret = __perf_read(event, buf, count);
4537 perf_event_ctx_unlock(event, ctx);
4538
4539 return ret;
4540 }
4541
4542 static unsigned int perf_poll(struct file *file, poll_table *wait)
4543 {
4544 struct perf_event *event = file->private_data;
4545 struct ring_buffer *rb;
4546 unsigned int events = POLLHUP;
4547
4548 poll_wait(file, &event->waitq, wait);
4549
4550 if (is_event_hup(event))
4551 return events;
4552
4553 /*
4554 * Pin the event->rb by taking event->mmap_mutex; otherwise
4555 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4556 */
4557 mutex_lock(&event->mmap_mutex);
4558 rb = event->rb;
4559 if (rb)
4560 events = atomic_xchg(&rb->poll, 0);
4561 mutex_unlock(&event->mmap_mutex);
4562 return events;
4563 }
4564
4565 static void _perf_event_reset(struct perf_event *event)
4566 {
4567 (void)perf_event_read(event, false);
4568 local64_set(&event->count, 0);
4569 perf_event_update_userpage(event);
4570 }
4571
4572 /*
4573 * Holding the top-level event's child_mutex means that any
4574 * descendant process that has inherited this event will block
4575 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4576 * task existence requirements of perf_event_enable/disable.
4577 */
4578 static void perf_event_for_each_child(struct perf_event *event,
4579 void (*func)(struct perf_event *))
4580 {
4581 struct perf_event *child;
4582
4583 WARN_ON_ONCE(event->ctx->parent_ctx);
4584
4585 mutex_lock(&event->child_mutex);
4586 func(event);
4587 list_for_each_entry(child, &event->child_list, child_list)
4588 func(child);
4589 mutex_unlock(&event->child_mutex);
4590 }
4591
4592 static void perf_event_for_each(struct perf_event *event,
4593 void (*func)(struct perf_event *))
4594 {
4595 struct perf_event_context *ctx = event->ctx;
4596 struct perf_event *sibling;
4597
4598 lockdep_assert_held(&ctx->mutex);
4599
4600 event = event->group_leader;
4601
4602 perf_event_for_each_child(event, func);
4603 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4604 perf_event_for_each_child(sibling, func);
4605 }
4606
4607 static void __perf_event_period(struct perf_event *event,
4608 struct perf_cpu_context *cpuctx,
4609 struct perf_event_context *ctx,
4610 void *info)
4611 {
4612 u64 value = *((u64 *)info);
4613 bool active;
4614
4615 if (event->attr.freq) {
4616 event->attr.sample_freq = value;
4617 } else {
4618 event->attr.sample_period = value;
4619 event->hw.sample_period = value;
4620 }
4621
4622 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4623 if (active) {
4624 perf_pmu_disable(ctx->pmu);
4625 /*
4626 * We could be throttled; unthrottle now to avoid the tick
4627 * trying to unthrottle while we already re-started the event.
4628 */
4629 if (event->hw.interrupts == MAX_INTERRUPTS) {
4630 event->hw.interrupts = 0;
4631 perf_log_throttle(event, 1);
4632 }
4633 event->pmu->stop(event, PERF_EF_UPDATE);
4634 }
4635
4636 local64_set(&event->hw.period_left, 0);
4637
4638 if (active) {
4639 event->pmu->start(event, PERF_EF_RELOAD);
4640 perf_pmu_enable(ctx->pmu);
4641 }
4642 }
4643
4644 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4645 {
4646 u64 value;
4647
4648 if (!is_sampling_event(event))
4649 return -EINVAL;
4650
4651 if (copy_from_user(&value, arg, sizeof(value)))
4652 return -EFAULT;
4653
4654 if (!value)
4655 return -EINVAL;
4656
4657 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4658 return -EINVAL;
4659
4660 event_function_call(event, __perf_event_period, &value);
4661
4662 return 0;
4663 }
4664
4665 static const struct file_operations perf_fops;
4666
4667 static inline int perf_fget_light(int fd, struct fd *p)
4668 {
4669 struct fd f = fdget(fd);
4670 if (!f.file)
4671 return -EBADF;
4672
4673 if (f.file->f_op != &perf_fops) {
4674 fdput(f);
4675 return -EBADF;
4676 }
4677 *p = f;
4678 return 0;
4679 }
4680
4681 static int perf_event_set_output(struct perf_event *event,
4682 struct perf_event *output_event);
4683 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4684 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4685
4686 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4687 {
4688 void (*func)(struct perf_event *);
4689 u32 flags = arg;
4690
4691 switch (cmd) {
4692 case PERF_EVENT_IOC_ENABLE:
4693 func = _perf_event_enable;
4694 break;
4695 case PERF_EVENT_IOC_DISABLE:
4696 func = _perf_event_disable;
4697 break;
4698 case PERF_EVENT_IOC_RESET:
4699 func = _perf_event_reset;
4700 break;
4701
4702 case PERF_EVENT_IOC_REFRESH:
4703 return _perf_event_refresh(event, arg);
4704
4705 case PERF_EVENT_IOC_PERIOD:
4706 return perf_event_period(event, (u64 __user *)arg);
4707
4708 case PERF_EVENT_IOC_ID:
4709 {
4710 u64 id = primary_event_id(event);
4711
4712 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4713 return -EFAULT;
4714 return 0;
4715 }
4716
4717 case PERF_EVENT_IOC_SET_OUTPUT:
4718 {
4719 int ret;
4720 if (arg != -1) {
4721 struct perf_event *output_event;
4722 struct fd output;
4723 ret = perf_fget_light(arg, &output);
4724 if (ret)
4725 return ret;
4726 output_event = output.file->private_data;
4727 ret = perf_event_set_output(event, output_event);
4728 fdput(output);
4729 } else {
4730 ret = perf_event_set_output(event, NULL);
4731 }
4732 return ret;
4733 }
4734
4735 case PERF_EVENT_IOC_SET_FILTER:
4736 return perf_event_set_filter(event, (void __user *)arg);
4737
4738 case PERF_EVENT_IOC_SET_BPF:
4739 return perf_event_set_bpf_prog(event, arg);
4740
4741 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4742 struct ring_buffer *rb;
4743
4744 rcu_read_lock();
4745 rb = rcu_dereference(event->rb);
4746 if (!rb || !rb->nr_pages) {
4747 rcu_read_unlock();
4748 return -EINVAL;
4749 }
4750 rb_toggle_paused(rb, !!arg);
4751 rcu_read_unlock();
4752 return 0;
4753 }
4754 default:
4755 return -ENOTTY;
4756 }
4757
4758 if (flags & PERF_IOC_FLAG_GROUP)
4759 perf_event_for_each(event, func);
4760 else
4761 perf_event_for_each_child(event, func);
4762
4763 return 0;
4764 }
4765
4766 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4767 {
4768 struct perf_event *event = file->private_data;
4769 struct perf_event_context *ctx;
4770 long ret;
4771
4772 ctx = perf_event_ctx_lock(event);
4773 ret = _perf_ioctl(event, cmd, arg);
4774 perf_event_ctx_unlock(event, ctx);
4775
4776 return ret;
4777 }
4778
4779 #ifdef CONFIG_COMPAT
4780 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4781 unsigned long arg)
4782 {
4783 switch (_IOC_NR(cmd)) {
4784 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4785 case _IOC_NR(PERF_EVENT_IOC_ID):
4786 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4787 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4788 cmd &= ~IOCSIZE_MASK;
4789 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4790 }
4791 break;
4792 }
4793 return perf_ioctl(file, cmd, arg);
4794 }
4795 #else
4796 # define perf_compat_ioctl NULL
4797 #endif
4798
4799 int perf_event_task_enable(void)
4800 {
4801 struct perf_event_context *ctx;
4802 struct perf_event *event;
4803
4804 mutex_lock(&current->perf_event_mutex);
4805 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4806 ctx = perf_event_ctx_lock(event);
4807 perf_event_for_each_child(event, _perf_event_enable);
4808 perf_event_ctx_unlock(event, ctx);
4809 }
4810 mutex_unlock(&current->perf_event_mutex);
4811
4812 return 0;
4813 }
4814
4815 int perf_event_task_disable(void)
4816 {
4817 struct perf_event_context *ctx;
4818 struct perf_event *event;
4819
4820 mutex_lock(&current->perf_event_mutex);
4821 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4822 ctx = perf_event_ctx_lock(event);
4823 perf_event_for_each_child(event, _perf_event_disable);
4824 perf_event_ctx_unlock(event, ctx);
4825 }
4826 mutex_unlock(&current->perf_event_mutex);
4827
4828 return 0;
4829 }
4830
4831 static int perf_event_index(struct perf_event *event)
4832 {
4833 if (event->hw.state & PERF_HES_STOPPED)
4834 return 0;
4835
4836 if (event->state != PERF_EVENT_STATE_ACTIVE)
4837 return 0;
4838
4839 return event->pmu->event_idx(event);
4840 }
4841
4842 static void calc_timer_values(struct perf_event *event,
4843 u64 *now,
4844 u64 *enabled,
4845 u64 *running)
4846 {
4847 u64 ctx_time;
4848
4849 *now = perf_clock();
4850 ctx_time = event->shadow_ctx_time + *now;
4851 *enabled = ctx_time - event->tstamp_enabled;
4852 *running = ctx_time - event->tstamp_running;
4853 }
4854
4855 static void perf_event_init_userpage(struct perf_event *event)
4856 {
4857 struct perf_event_mmap_page *userpg;
4858 struct ring_buffer *rb;
4859
4860 rcu_read_lock();
4861 rb = rcu_dereference(event->rb);
4862 if (!rb)
4863 goto unlock;
4864
4865 userpg = rb->user_page;
4866
4867 /* Allow new userspace to detect that bit 0 is deprecated */
4868 userpg->cap_bit0_is_deprecated = 1;
4869 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4870 userpg->data_offset = PAGE_SIZE;
4871 userpg->data_size = perf_data_size(rb);
4872
4873 unlock:
4874 rcu_read_unlock();
4875 }
4876
4877 void __weak arch_perf_update_userpage(
4878 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4879 {
4880 }
4881
4882 /*
4883 * Callers need to ensure there can be no nesting of this function, otherwise
4884 * the seqlock logic goes bad. We can not serialize this because the arch
4885 * code calls this from NMI context.
4886 */
4887 void perf_event_update_userpage(struct perf_event *event)
4888 {
4889 struct perf_event_mmap_page *userpg;
4890 struct ring_buffer *rb;
4891 u64 enabled, running, now;
4892
4893 rcu_read_lock();
4894 rb = rcu_dereference(event->rb);
4895 if (!rb)
4896 goto unlock;
4897
4898 /*
4899 * compute total_time_enabled, total_time_running
4900 * based on snapshot values taken when the event
4901 * was last scheduled in.
4902 *
4903 * we cannot simply called update_context_time()
4904 * because of locking issue as we can be called in
4905 * NMI context
4906 */
4907 calc_timer_values(event, &now, &enabled, &running);
4908
4909 userpg = rb->user_page;
4910 /*
4911 * Disable preemption so as to not let the corresponding user-space
4912 * spin too long if we get preempted.
4913 */
4914 preempt_disable();
4915 ++userpg->lock;
4916 barrier();
4917 userpg->index = perf_event_index(event);
4918 userpg->offset = perf_event_count(event);
4919 if (userpg->index)
4920 userpg->offset -= local64_read(&event->hw.prev_count);
4921
4922 userpg->time_enabled = enabled +
4923 atomic64_read(&event->child_total_time_enabled);
4924
4925 userpg->time_running = running +
4926 atomic64_read(&event->child_total_time_running);
4927
4928 arch_perf_update_userpage(event, userpg, now);
4929
4930 barrier();
4931 ++userpg->lock;
4932 preempt_enable();
4933 unlock:
4934 rcu_read_unlock();
4935 }
4936
4937 static int perf_mmap_fault(struct vm_fault *vmf)
4938 {
4939 struct perf_event *event = vmf->vma->vm_file->private_data;
4940 struct ring_buffer *rb;
4941 int ret = VM_FAULT_SIGBUS;
4942
4943 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4944 if (vmf->pgoff == 0)
4945 ret = 0;
4946 return ret;
4947 }
4948
4949 rcu_read_lock();
4950 rb = rcu_dereference(event->rb);
4951 if (!rb)
4952 goto unlock;
4953
4954 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4955 goto unlock;
4956
4957 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4958 if (!vmf->page)
4959 goto unlock;
4960
4961 get_page(vmf->page);
4962 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
4963 vmf->page->index = vmf->pgoff;
4964
4965 ret = 0;
4966 unlock:
4967 rcu_read_unlock();
4968
4969 return ret;
4970 }
4971
4972 static void ring_buffer_attach(struct perf_event *event,
4973 struct ring_buffer *rb)
4974 {
4975 struct ring_buffer *old_rb = NULL;
4976 unsigned long flags;
4977
4978 if (event->rb) {
4979 /*
4980 * Should be impossible, we set this when removing
4981 * event->rb_entry and wait/clear when adding event->rb_entry.
4982 */
4983 WARN_ON_ONCE(event->rcu_pending);
4984
4985 old_rb = event->rb;
4986 spin_lock_irqsave(&old_rb->event_lock, flags);
4987 list_del_rcu(&event->rb_entry);
4988 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4989
4990 event->rcu_batches = get_state_synchronize_rcu();
4991 event->rcu_pending = 1;
4992 }
4993
4994 if (rb) {
4995 if (event->rcu_pending) {
4996 cond_synchronize_rcu(event->rcu_batches);
4997 event->rcu_pending = 0;
4998 }
4999
5000 spin_lock_irqsave(&rb->event_lock, flags);
5001 list_add_rcu(&event->rb_entry, &rb->event_list);
5002 spin_unlock_irqrestore(&rb->event_lock, flags);
5003 }
5004
5005 /*
5006 * Avoid racing with perf_mmap_close(AUX): stop the event
5007 * before swizzling the event::rb pointer; if it's getting
5008 * unmapped, its aux_mmap_count will be 0 and it won't
5009 * restart. See the comment in __perf_pmu_output_stop().
5010 *
5011 * Data will inevitably be lost when set_output is done in
5012 * mid-air, but then again, whoever does it like this is
5013 * not in for the data anyway.
5014 */
5015 if (has_aux(event))
5016 perf_event_stop(event, 0);
5017
5018 rcu_assign_pointer(event->rb, rb);
5019
5020 if (old_rb) {
5021 ring_buffer_put(old_rb);
5022 /*
5023 * Since we detached before setting the new rb, so that we
5024 * could attach the new rb, we could have missed a wakeup.
5025 * Provide it now.
5026 */
5027 wake_up_all(&event->waitq);
5028 }
5029 }
5030
5031 static void ring_buffer_wakeup(struct perf_event *event)
5032 {
5033 struct ring_buffer *rb;
5034
5035 rcu_read_lock();
5036 rb = rcu_dereference(event->rb);
5037 if (rb) {
5038 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5039 wake_up_all(&event->waitq);
5040 }
5041 rcu_read_unlock();
5042 }
5043
5044 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5045 {
5046 struct ring_buffer *rb;
5047
5048 rcu_read_lock();
5049 rb = rcu_dereference(event->rb);
5050 if (rb) {
5051 if (!atomic_inc_not_zero(&rb->refcount))
5052 rb = NULL;
5053 }
5054 rcu_read_unlock();
5055
5056 return rb;
5057 }
5058
5059 void ring_buffer_put(struct ring_buffer *rb)
5060 {
5061 if (!atomic_dec_and_test(&rb->refcount))
5062 return;
5063
5064 WARN_ON_ONCE(!list_empty(&rb->event_list));
5065
5066 call_rcu(&rb->rcu_head, rb_free_rcu);
5067 }
5068
5069 static void perf_mmap_open(struct vm_area_struct *vma)
5070 {
5071 struct perf_event *event = vma->vm_file->private_data;
5072
5073 atomic_inc(&event->mmap_count);
5074 atomic_inc(&event->rb->mmap_count);
5075
5076 if (vma->vm_pgoff)
5077 atomic_inc(&event->rb->aux_mmap_count);
5078
5079 if (event->pmu->event_mapped)
5080 event->pmu->event_mapped(event);
5081 }
5082
5083 static void perf_pmu_output_stop(struct perf_event *event);
5084
5085 /*
5086 * A buffer can be mmap()ed multiple times; either directly through the same
5087 * event, or through other events by use of perf_event_set_output().
5088 *
5089 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5090 * the buffer here, where we still have a VM context. This means we need
5091 * to detach all events redirecting to us.
5092 */
5093 static void perf_mmap_close(struct vm_area_struct *vma)
5094 {
5095 struct perf_event *event = vma->vm_file->private_data;
5096
5097 struct ring_buffer *rb = ring_buffer_get(event);
5098 struct user_struct *mmap_user = rb->mmap_user;
5099 int mmap_locked = rb->mmap_locked;
5100 unsigned long size = perf_data_size(rb);
5101
5102 if (event->pmu->event_unmapped)
5103 event->pmu->event_unmapped(event);
5104
5105 /*
5106 * rb->aux_mmap_count will always drop before rb->mmap_count and
5107 * event->mmap_count, so it is ok to use event->mmap_mutex to
5108 * serialize with perf_mmap here.
5109 */
5110 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5111 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5112 /*
5113 * Stop all AUX events that are writing to this buffer,
5114 * so that we can free its AUX pages and corresponding PMU
5115 * data. Note that after rb::aux_mmap_count dropped to zero,
5116 * they won't start any more (see perf_aux_output_begin()).
5117 */
5118 perf_pmu_output_stop(event);
5119
5120 /* now it's safe to free the pages */
5121 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5122 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5123
5124 /* this has to be the last one */
5125 rb_free_aux(rb);
5126 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5127
5128 mutex_unlock(&event->mmap_mutex);
5129 }
5130
5131 atomic_dec(&rb->mmap_count);
5132
5133 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5134 goto out_put;
5135
5136 ring_buffer_attach(event, NULL);
5137 mutex_unlock(&event->mmap_mutex);
5138
5139 /* If there's still other mmap()s of this buffer, we're done. */
5140 if (atomic_read(&rb->mmap_count))
5141 goto out_put;
5142
5143 /*
5144 * No other mmap()s, detach from all other events that might redirect
5145 * into the now unreachable buffer. Somewhat complicated by the
5146 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5147 */
5148 again:
5149 rcu_read_lock();
5150 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5151 if (!atomic_long_inc_not_zero(&event->refcount)) {
5152 /*
5153 * This event is en-route to free_event() which will
5154 * detach it and remove it from the list.
5155 */
5156 continue;
5157 }
5158 rcu_read_unlock();
5159
5160 mutex_lock(&event->mmap_mutex);
5161 /*
5162 * Check we didn't race with perf_event_set_output() which can
5163 * swizzle the rb from under us while we were waiting to
5164 * acquire mmap_mutex.
5165 *
5166 * If we find a different rb; ignore this event, a next
5167 * iteration will no longer find it on the list. We have to
5168 * still restart the iteration to make sure we're not now
5169 * iterating the wrong list.
5170 */
5171 if (event->rb == rb)
5172 ring_buffer_attach(event, NULL);
5173
5174 mutex_unlock(&event->mmap_mutex);
5175 put_event(event);
5176
5177 /*
5178 * Restart the iteration; either we're on the wrong list or
5179 * destroyed its integrity by doing a deletion.
5180 */
5181 goto again;
5182 }
5183 rcu_read_unlock();
5184
5185 /*
5186 * It could be there's still a few 0-ref events on the list; they'll
5187 * get cleaned up by free_event() -- they'll also still have their
5188 * ref on the rb and will free it whenever they are done with it.
5189 *
5190 * Aside from that, this buffer is 'fully' detached and unmapped,
5191 * undo the VM accounting.
5192 */
5193
5194 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5195 vma->vm_mm->pinned_vm -= mmap_locked;
5196 free_uid(mmap_user);
5197
5198 out_put:
5199 ring_buffer_put(rb); /* could be last */
5200 }
5201
5202 static const struct vm_operations_struct perf_mmap_vmops = {
5203 .open = perf_mmap_open,
5204 .close = perf_mmap_close, /* non mergable */
5205 .fault = perf_mmap_fault,
5206 .page_mkwrite = perf_mmap_fault,
5207 };
5208
5209 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5210 {
5211 struct perf_event *event = file->private_data;
5212 unsigned long user_locked, user_lock_limit;
5213 struct user_struct *user = current_user();
5214 unsigned long locked, lock_limit;
5215 struct ring_buffer *rb = NULL;
5216 unsigned long vma_size;
5217 unsigned long nr_pages;
5218 long user_extra = 0, extra = 0;
5219 int ret = 0, flags = 0;
5220
5221 /*
5222 * Don't allow mmap() of inherited per-task counters. This would
5223 * create a performance issue due to all children writing to the
5224 * same rb.
5225 */
5226 if (event->cpu == -1 && event->attr.inherit)
5227 return -EINVAL;
5228
5229 if (!(vma->vm_flags & VM_SHARED))
5230 return -EINVAL;
5231
5232 vma_size = vma->vm_end - vma->vm_start;
5233
5234 if (vma->vm_pgoff == 0) {
5235 nr_pages = (vma_size / PAGE_SIZE) - 1;
5236 } else {
5237 /*
5238 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5239 * mapped, all subsequent mappings should have the same size
5240 * and offset. Must be above the normal perf buffer.
5241 */
5242 u64 aux_offset, aux_size;
5243
5244 if (!event->rb)
5245 return -EINVAL;
5246
5247 nr_pages = vma_size / PAGE_SIZE;
5248
5249 mutex_lock(&event->mmap_mutex);
5250 ret = -EINVAL;
5251
5252 rb = event->rb;
5253 if (!rb)
5254 goto aux_unlock;
5255
5256 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5257 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5258
5259 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5260 goto aux_unlock;
5261
5262 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5263 goto aux_unlock;
5264
5265 /* already mapped with a different offset */
5266 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5267 goto aux_unlock;
5268
5269 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5270 goto aux_unlock;
5271
5272 /* already mapped with a different size */
5273 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5274 goto aux_unlock;
5275
5276 if (!is_power_of_2(nr_pages))
5277 goto aux_unlock;
5278
5279 if (!atomic_inc_not_zero(&rb->mmap_count))
5280 goto aux_unlock;
5281
5282 if (rb_has_aux(rb)) {
5283 atomic_inc(&rb->aux_mmap_count);
5284 ret = 0;
5285 goto unlock;
5286 }
5287
5288 atomic_set(&rb->aux_mmap_count, 1);
5289 user_extra = nr_pages;
5290
5291 goto accounting;
5292 }
5293
5294 /*
5295 * If we have rb pages ensure they're a power-of-two number, so we
5296 * can do bitmasks instead of modulo.
5297 */
5298 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5299 return -EINVAL;
5300
5301 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5302 return -EINVAL;
5303
5304 WARN_ON_ONCE(event->ctx->parent_ctx);
5305 again:
5306 mutex_lock(&event->mmap_mutex);
5307 if (event->rb) {
5308 if (event->rb->nr_pages != nr_pages) {
5309 ret = -EINVAL;
5310 goto unlock;
5311 }
5312
5313 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5314 /*
5315 * Raced against perf_mmap_close() through
5316 * perf_event_set_output(). Try again, hope for better
5317 * luck.
5318 */
5319 mutex_unlock(&event->mmap_mutex);
5320 goto again;
5321 }
5322
5323 goto unlock;
5324 }
5325
5326 user_extra = nr_pages + 1;
5327
5328 accounting:
5329 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5330
5331 /*
5332 * Increase the limit linearly with more CPUs:
5333 */
5334 user_lock_limit *= num_online_cpus();
5335
5336 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5337
5338 if (user_locked > user_lock_limit)
5339 extra = user_locked - user_lock_limit;
5340
5341 lock_limit = rlimit(RLIMIT_MEMLOCK);
5342 lock_limit >>= PAGE_SHIFT;
5343 locked = vma->vm_mm->pinned_vm + extra;
5344
5345 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5346 !capable(CAP_IPC_LOCK)) {
5347 ret = -EPERM;
5348 goto unlock;
5349 }
5350
5351 WARN_ON(!rb && event->rb);
5352
5353 if (vma->vm_flags & VM_WRITE)
5354 flags |= RING_BUFFER_WRITABLE;
5355
5356 if (!rb) {
5357 rb = rb_alloc(nr_pages,
5358 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5359 event->cpu, flags);
5360
5361 if (!rb) {
5362 ret = -ENOMEM;
5363 goto unlock;
5364 }
5365
5366 atomic_set(&rb->mmap_count, 1);
5367 rb->mmap_user = get_current_user();
5368 rb->mmap_locked = extra;
5369
5370 ring_buffer_attach(event, rb);
5371
5372 perf_event_init_userpage(event);
5373 perf_event_update_userpage(event);
5374 } else {
5375 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5376 event->attr.aux_watermark, flags);
5377 if (!ret)
5378 rb->aux_mmap_locked = extra;
5379 }
5380
5381 unlock:
5382 if (!ret) {
5383 atomic_long_add(user_extra, &user->locked_vm);
5384 vma->vm_mm->pinned_vm += extra;
5385
5386 atomic_inc(&event->mmap_count);
5387 } else if (rb) {
5388 atomic_dec(&rb->mmap_count);
5389 }
5390 aux_unlock:
5391 mutex_unlock(&event->mmap_mutex);
5392
5393 /*
5394 * Since pinned accounting is per vm we cannot allow fork() to copy our
5395 * vma.
5396 */
5397 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5398 vma->vm_ops = &perf_mmap_vmops;
5399
5400 if (event->pmu->event_mapped)
5401 event->pmu->event_mapped(event);
5402
5403 return ret;
5404 }
5405
5406 static int perf_fasync(int fd, struct file *filp, int on)
5407 {
5408 struct inode *inode = file_inode(filp);
5409 struct perf_event *event = filp->private_data;
5410 int retval;
5411
5412 inode_lock(inode);
5413 retval = fasync_helper(fd, filp, on, &event->fasync);
5414 inode_unlock(inode);
5415
5416 if (retval < 0)
5417 return retval;
5418
5419 return 0;
5420 }
5421
5422 static const struct file_operations perf_fops = {
5423 .llseek = no_llseek,
5424 .release = perf_release,
5425 .read = perf_read,
5426 .poll = perf_poll,
5427 .unlocked_ioctl = perf_ioctl,
5428 .compat_ioctl = perf_compat_ioctl,
5429 .mmap = perf_mmap,
5430 .fasync = perf_fasync,
5431 };
5432
5433 /*
5434 * Perf event wakeup
5435 *
5436 * If there's data, ensure we set the poll() state and publish everything
5437 * to user-space before waking everybody up.
5438 */
5439
5440 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5441 {
5442 /* only the parent has fasync state */
5443 if (event->parent)
5444 event = event->parent;
5445 return &event->fasync;
5446 }
5447
5448 void perf_event_wakeup(struct perf_event *event)
5449 {
5450 ring_buffer_wakeup(event);
5451
5452 if (event->pending_kill) {
5453 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5454 event->pending_kill = 0;
5455 }
5456 }
5457
5458 static void perf_pending_event(struct irq_work *entry)
5459 {
5460 struct perf_event *event = container_of(entry,
5461 struct perf_event, pending);
5462 int rctx;
5463
5464 rctx = perf_swevent_get_recursion_context();
5465 /*
5466 * If we 'fail' here, that's OK, it means recursion is already disabled
5467 * and we won't recurse 'further'.
5468 */
5469
5470 if (event->pending_disable) {
5471 event->pending_disable = 0;
5472 perf_event_disable_local(event);
5473 }
5474
5475 if (event->pending_wakeup) {
5476 event->pending_wakeup = 0;
5477 perf_event_wakeup(event);
5478 }
5479
5480 if (rctx >= 0)
5481 perf_swevent_put_recursion_context(rctx);
5482 }
5483
5484 /*
5485 * We assume there is only KVM supporting the callbacks.
5486 * Later on, we might change it to a list if there is
5487 * another virtualization implementation supporting the callbacks.
5488 */
5489 struct perf_guest_info_callbacks *perf_guest_cbs;
5490
5491 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5492 {
5493 perf_guest_cbs = cbs;
5494 return 0;
5495 }
5496 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5497
5498 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5499 {
5500 perf_guest_cbs = NULL;
5501 return 0;
5502 }
5503 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5504
5505 static void
5506 perf_output_sample_regs(struct perf_output_handle *handle,
5507 struct pt_regs *regs, u64 mask)
5508 {
5509 int bit;
5510 DECLARE_BITMAP(_mask, 64);
5511
5512 bitmap_from_u64(_mask, mask);
5513 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5514 u64 val;
5515
5516 val = perf_reg_value(regs, bit);
5517 perf_output_put(handle, val);
5518 }
5519 }
5520
5521 static void perf_sample_regs_user(struct perf_regs *regs_user,
5522 struct pt_regs *regs,
5523 struct pt_regs *regs_user_copy)
5524 {
5525 if (user_mode(regs)) {
5526 regs_user->abi = perf_reg_abi(current);
5527 regs_user->regs = regs;
5528 } else if (current->mm) {
5529 perf_get_regs_user(regs_user, regs, regs_user_copy);
5530 } else {
5531 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5532 regs_user->regs = NULL;
5533 }
5534 }
5535
5536 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5537 struct pt_regs *regs)
5538 {
5539 regs_intr->regs = regs;
5540 regs_intr->abi = perf_reg_abi(current);
5541 }
5542
5543
5544 /*
5545 * Get remaining task size from user stack pointer.
5546 *
5547 * It'd be better to take stack vma map and limit this more
5548 * precisly, but there's no way to get it safely under interrupt,
5549 * so using TASK_SIZE as limit.
5550 */
5551 static u64 perf_ustack_task_size(struct pt_regs *regs)
5552 {
5553 unsigned long addr = perf_user_stack_pointer(regs);
5554
5555 if (!addr || addr >= TASK_SIZE)
5556 return 0;
5557
5558 return TASK_SIZE - addr;
5559 }
5560
5561 static u16
5562 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5563 struct pt_regs *regs)
5564 {
5565 u64 task_size;
5566
5567 /* No regs, no stack pointer, no dump. */
5568 if (!regs)
5569 return 0;
5570
5571 /*
5572 * Check if we fit in with the requested stack size into the:
5573 * - TASK_SIZE
5574 * If we don't, we limit the size to the TASK_SIZE.
5575 *
5576 * - remaining sample size
5577 * If we don't, we customize the stack size to
5578 * fit in to the remaining sample size.
5579 */
5580
5581 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5582 stack_size = min(stack_size, (u16) task_size);
5583
5584 /* Current header size plus static size and dynamic size. */
5585 header_size += 2 * sizeof(u64);
5586
5587 /* Do we fit in with the current stack dump size? */
5588 if ((u16) (header_size + stack_size) < header_size) {
5589 /*
5590 * If we overflow the maximum size for the sample,
5591 * we customize the stack dump size to fit in.
5592 */
5593 stack_size = USHRT_MAX - header_size - sizeof(u64);
5594 stack_size = round_up(stack_size, sizeof(u64));
5595 }
5596
5597 return stack_size;
5598 }
5599
5600 static void
5601 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5602 struct pt_regs *regs)
5603 {
5604 /* Case of a kernel thread, nothing to dump */
5605 if (!regs) {
5606 u64 size = 0;
5607 perf_output_put(handle, size);
5608 } else {
5609 unsigned long sp;
5610 unsigned int rem;
5611 u64 dyn_size;
5612
5613 /*
5614 * We dump:
5615 * static size
5616 * - the size requested by user or the best one we can fit
5617 * in to the sample max size
5618 * data
5619 * - user stack dump data
5620 * dynamic size
5621 * - the actual dumped size
5622 */
5623
5624 /* Static size. */
5625 perf_output_put(handle, dump_size);
5626
5627 /* Data. */
5628 sp = perf_user_stack_pointer(regs);
5629 rem = __output_copy_user(handle, (void *) sp, dump_size);
5630 dyn_size = dump_size - rem;
5631
5632 perf_output_skip(handle, rem);
5633
5634 /* Dynamic size. */
5635 perf_output_put(handle, dyn_size);
5636 }
5637 }
5638
5639 static void __perf_event_header__init_id(struct perf_event_header *header,
5640 struct perf_sample_data *data,
5641 struct perf_event *event)
5642 {
5643 u64 sample_type = event->attr.sample_type;
5644
5645 data->type = sample_type;
5646 header->size += event->id_header_size;
5647
5648 if (sample_type & PERF_SAMPLE_TID) {
5649 /* namespace issues */
5650 data->tid_entry.pid = perf_event_pid(event, current);
5651 data->tid_entry.tid = perf_event_tid(event, current);
5652 }
5653
5654 if (sample_type & PERF_SAMPLE_TIME)
5655 data->time = perf_event_clock(event);
5656
5657 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5658 data->id = primary_event_id(event);
5659
5660 if (sample_type & PERF_SAMPLE_STREAM_ID)
5661 data->stream_id = event->id;
5662
5663 if (sample_type & PERF_SAMPLE_CPU) {
5664 data->cpu_entry.cpu = raw_smp_processor_id();
5665 data->cpu_entry.reserved = 0;
5666 }
5667 }
5668
5669 void perf_event_header__init_id(struct perf_event_header *header,
5670 struct perf_sample_data *data,
5671 struct perf_event *event)
5672 {
5673 if (event->attr.sample_id_all)
5674 __perf_event_header__init_id(header, data, event);
5675 }
5676
5677 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5678 struct perf_sample_data *data)
5679 {
5680 u64 sample_type = data->type;
5681
5682 if (sample_type & PERF_SAMPLE_TID)
5683 perf_output_put(handle, data->tid_entry);
5684
5685 if (sample_type & PERF_SAMPLE_TIME)
5686 perf_output_put(handle, data->time);
5687
5688 if (sample_type & PERF_SAMPLE_ID)
5689 perf_output_put(handle, data->id);
5690
5691 if (sample_type & PERF_SAMPLE_STREAM_ID)
5692 perf_output_put(handle, data->stream_id);
5693
5694 if (sample_type & PERF_SAMPLE_CPU)
5695 perf_output_put(handle, data->cpu_entry);
5696
5697 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5698 perf_output_put(handle, data->id);
5699 }
5700
5701 void perf_event__output_id_sample(struct perf_event *event,
5702 struct perf_output_handle *handle,
5703 struct perf_sample_data *sample)
5704 {
5705 if (event->attr.sample_id_all)
5706 __perf_event__output_id_sample(handle, sample);
5707 }
5708
5709 static void perf_output_read_one(struct perf_output_handle *handle,
5710 struct perf_event *event,
5711 u64 enabled, u64 running)
5712 {
5713 u64 read_format = event->attr.read_format;
5714 u64 values[4];
5715 int n = 0;
5716
5717 values[n++] = perf_event_count(event);
5718 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5719 values[n++] = enabled +
5720 atomic64_read(&event->child_total_time_enabled);
5721 }
5722 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5723 values[n++] = running +
5724 atomic64_read(&event->child_total_time_running);
5725 }
5726 if (read_format & PERF_FORMAT_ID)
5727 values[n++] = primary_event_id(event);
5728
5729 __output_copy(handle, values, n * sizeof(u64));
5730 }
5731
5732 static void perf_output_read_group(struct perf_output_handle *handle,
5733 struct perf_event *event,
5734 u64 enabled, u64 running)
5735 {
5736 struct perf_event *leader = event->group_leader, *sub;
5737 u64 read_format = event->attr.read_format;
5738 u64 values[5];
5739 int n = 0;
5740
5741 values[n++] = 1 + leader->nr_siblings;
5742
5743 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5744 values[n++] = enabled;
5745
5746 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5747 values[n++] = running;
5748
5749 if (leader != event)
5750 leader->pmu->read(leader);
5751
5752 values[n++] = perf_event_count(leader);
5753 if (read_format & PERF_FORMAT_ID)
5754 values[n++] = primary_event_id(leader);
5755
5756 __output_copy(handle, values, n * sizeof(u64));
5757
5758 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5759 n = 0;
5760
5761 if ((sub != event) &&
5762 (sub->state == PERF_EVENT_STATE_ACTIVE))
5763 sub->pmu->read(sub);
5764
5765 values[n++] = perf_event_count(sub);
5766 if (read_format & PERF_FORMAT_ID)
5767 values[n++] = primary_event_id(sub);
5768
5769 __output_copy(handle, values, n * sizeof(u64));
5770 }
5771 }
5772
5773 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5774 PERF_FORMAT_TOTAL_TIME_RUNNING)
5775
5776 /*
5777 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5778 *
5779 * The problem is that its both hard and excessively expensive to iterate the
5780 * child list, not to mention that its impossible to IPI the children running
5781 * on another CPU, from interrupt/NMI context.
5782 */
5783 static void perf_output_read(struct perf_output_handle *handle,
5784 struct perf_event *event)
5785 {
5786 u64 enabled = 0, running = 0, now;
5787 u64 read_format = event->attr.read_format;
5788
5789 /*
5790 * compute total_time_enabled, total_time_running
5791 * based on snapshot values taken when the event
5792 * was last scheduled in.
5793 *
5794 * we cannot simply called update_context_time()
5795 * because of locking issue as we are called in
5796 * NMI context
5797 */
5798 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5799 calc_timer_values(event, &now, &enabled, &running);
5800
5801 if (event->attr.read_format & PERF_FORMAT_GROUP)
5802 perf_output_read_group(handle, event, enabled, running);
5803 else
5804 perf_output_read_one(handle, event, enabled, running);
5805 }
5806
5807 void perf_output_sample(struct perf_output_handle *handle,
5808 struct perf_event_header *header,
5809 struct perf_sample_data *data,
5810 struct perf_event *event)
5811 {
5812 u64 sample_type = data->type;
5813
5814 perf_output_put(handle, *header);
5815
5816 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5817 perf_output_put(handle, data->id);
5818
5819 if (sample_type & PERF_SAMPLE_IP)
5820 perf_output_put(handle, data->ip);
5821
5822 if (sample_type & PERF_SAMPLE_TID)
5823 perf_output_put(handle, data->tid_entry);
5824
5825 if (sample_type & PERF_SAMPLE_TIME)
5826 perf_output_put(handle, data->time);
5827
5828 if (sample_type & PERF_SAMPLE_ADDR)
5829 perf_output_put(handle, data->addr);
5830
5831 if (sample_type & PERF_SAMPLE_ID)
5832 perf_output_put(handle, data->id);
5833
5834 if (sample_type & PERF_SAMPLE_STREAM_ID)
5835 perf_output_put(handle, data->stream_id);
5836
5837 if (sample_type & PERF_SAMPLE_CPU)
5838 perf_output_put(handle, data->cpu_entry);
5839
5840 if (sample_type & PERF_SAMPLE_PERIOD)
5841 perf_output_put(handle, data->period);
5842
5843 if (sample_type & PERF_SAMPLE_READ)
5844 perf_output_read(handle, event);
5845
5846 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5847 if (data->callchain) {
5848 int size = 1;
5849
5850 if (data->callchain)
5851 size += data->callchain->nr;
5852
5853 size *= sizeof(u64);
5854
5855 __output_copy(handle, data->callchain, size);
5856 } else {
5857 u64 nr = 0;
5858 perf_output_put(handle, nr);
5859 }
5860 }
5861
5862 if (sample_type & PERF_SAMPLE_RAW) {
5863 struct perf_raw_record *raw = data->raw;
5864
5865 if (raw) {
5866 struct perf_raw_frag *frag = &raw->frag;
5867
5868 perf_output_put(handle, raw->size);
5869 do {
5870 if (frag->copy) {
5871 __output_custom(handle, frag->copy,
5872 frag->data, frag->size);
5873 } else {
5874 __output_copy(handle, frag->data,
5875 frag->size);
5876 }
5877 if (perf_raw_frag_last(frag))
5878 break;
5879 frag = frag->next;
5880 } while (1);
5881 if (frag->pad)
5882 __output_skip(handle, NULL, frag->pad);
5883 } else {
5884 struct {
5885 u32 size;
5886 u32 data;
5887 } raw = {
5888 .size = sizeof(u32),
5889 .data = 0,
5890 };
5891 perf_output_put(handle, raw);
5892 }
5893 }
5894
5895 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5896 if (data->br_stack) {
5897 size_t size;
5898
5899 size = data->br_stack->nr
5900 * sizeof(struct perf_branch_entry);
5901
5902 perf_output_put(handle, data->br_stack->nr);
5903 perf_output_copy(handle, data->br_stack->entries, size);
5904 } else {
5905 /*
5906 * we always store at least the value of nr
5907 */
5908 u64 nr = 0;
5909 perf_output_put(handle, nr);
5910 }
5911 }
5912
5913 if (sample_type & PERF_SAMPLE_REGS_USER) {
5914 u64 abi = data->regs_user.abi;
5915
5916 /*
5917 * If there are no regs to dump, notice it through
5918 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5919 */
5920 perf_output_put(handle, abi);
5921
5922 if (abi) {
5923 u64 mask = event->attr.sample_regs_user;
5924 perf_output_sample_regs(handle,
5925 data->regs_user.regs,
5926 mask);
5927 }
5928 }
5929
5930 if (sample_type & PERF_SAMPLE_STACK_USER) {
5931 perf_output_sample_ustack(handle,
5932 data->stack_user_size,
5933 data->regs_user.regs);
5934 }
5935
5936 if (sample_type & PERF_SAMPLE_WEIGHT)
5937 perf_output_put(handle, data->weight);
5938
5939 if (sample_type & PERF_SAMPLE_DATA_SRC)
5940 perf_output_put(handle, data->data_src.val);
5941
5942 if (sample_type & PERF_SAMPLE_TRANSACTION)
5943 perf_output_put(handle, data->txn);
5944
5945 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5946 u64 abi = data->regs_intr.abi;
5947 /*
5948 * If there are no regs to dump, notice it through
5949 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5950 */
5951 perf_output_put(handle, abi);
5952
5953 if (abi) {
5954 u64 mask = event->attr.sample_regs_intr;
5955
5956 perf_output_sample_regs(handle,
5957 data->regs_intr.regs,
5958 mask);
5959 }
5960 }
5961
5962 if (!event->attr.watermark) {
5963 int wakeup_events = event->attr.wakeup_events;
5964
5965 if (wakeup_events) {
5966 struct ring_buffer *rb = handle->rb;
5967 int events = local_inc_return(&rb->events);
5968
5969 if (events >= wakeup_events) {
5970 local_sub(wakeup_events, &rb->events);
5971 local_inc(&rb->wakeup);
5972 }
5973 }
5974 }
5975 }
5976
5977 void perf_prepare_sample(struct perf_event_header *header,
5978 struct perf_sample_data *data,
5979 struct perf_event *event,
5980 struct pt_regs *regs)
5981 {
5982 u64 sample_type = event->attr.sample_type;
5983
5984 header->type = PERF_RECORD_SAMPLE;
5985 header->size = sizeof(*header) + event->header_size;
5986
5987 header->misc = 0;
5988 header->misc |= perf_misc_flags(regs);
5989
5990 __perf_event_header__init_id(header, data, event);
5991
5992 if (sample_type & PERF_SAMPLE_IP)
5993 data->ip = perf_instruction_pointer(regs);
5994
5995 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5996 int size = 1;
5997
5998 data->callchain = perf_callchain(event, regs);
5999
6000 if (data->callchain)
6001 size += data->callchain->nr;
6002
6003 header->size += size * sizeof(u64);
6004 }
6005
6006 if (sample_type & PERF_SAMPLE_RAW) {
6007 struct perf_raw_record *raw = data->raw;
6008 int size;
6009
6010 if (raw) {
6011 struct perf_raw_frag *frag = &raw->frag;
6012 u32 sum = 0;
6013
6014 do {
6015 sum += frag->size;
6016 if (perf_raw_frag_last(frag))
6017 break;
6018 frag = frag->next;
6019 } while (1);
6020
6021 size = round_up(sum + sizeof(u32), sizeof(u64));
6022 raw->size = size - sizeof(u32);
6023 frag->pad = raw->size - sum;
6024 } else {
6025 size = sizeof(u64);
6026 }
6027
6028 header->size += size;
6029 }
6030
6031 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6032 int size = sizeof(u64); /* nr */
6033 if (data->br_stack) {
6034 size += data->br_stack->nr
6035 * sizeof(struct perf_branch_entry);
6036 }
6037 header->size += size;
6038 }
6039
6040 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6041 perf_sample_regs_user(&data->regs_user, regs,
6042 &data->regs_user_copy);
6043
6044 if (sample_type & PERF_SAMPLE_REGS_USER) {
6045 /* regs dump ABI info */
6046 int size = sizeof(u64);
6047
6048 if (data->regs_user.regs) {
6049 u64 mask = event->attr.sample_regs_user;
6050 size += hweight64(mask) * sizeof(u64);
6051 }
6052
6053 header->size += size;
6054 }
6055
6056 if (sample_type & PERF_SAMPLE_STACK_USER) {
6057 /*
6058 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6059 * processed as the last one or have additional check added
6060 * in case new sample type is added, because we could eat
6061 * up the rest of the sample size.
6062 */
6063 u16 stack_size = event->attr.sample_stack_user;
6064 u16 size = sizeof(u64);
6065
6066 stack_size = perf_sample_ustack_size(stack_size, header->size,
6067 data->regs_user.regs);
6068
6069 /*
6070 * If there is something to dump, add space for the dump
6071 * itself and for the field that tells the dynamic size,
6072 * which is how many have been actually dumped.
6073 */
6074 if (stack_size)
6075 size += sizeof(u64) + stack_size;
6076
6077 data->stack_user_size = stack_size;
6078 header->size += size;
6079 }
6080
6081 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6082 /* regs dump ABI info */
6083 int size = sizeof(u64);
6084
6085 perf_sample_regs_intr(&data->regs_intr, regs);
6086
6087 if (data->regs_intr.regs) {
6088 u64 mask = event->attr.sample_regs_intr;
6089
6090 size += hweight64(mask) * sizeof(u64);
6091 }
6092
6093 header->size += size;
6094 }
6095 }
6096
6097 static void __always_inline
6098 __perf_event_output(struct perf_event *event,
6099 struct perf_sample_data *data,
6100 struct pt_regs *regs,
6101 int (*output_begin)(struct perf_output_handle *,
6102 struct perf_event *,
6103 unsigned int))
6104 {
6105 struct perf_output_handle handle;
6106 struct perf_event_header header;
6107
6108 /* protect the callchain buffers */
6109 rcu_read_lock();
6110
6111 perf_prepare_sample(&header, data, event, regs);
6112
6113 if (output_begin(&handle, event, header.size))
6114 goto exit;
6115
6116 perf_output_sample(&handle, &header, data, event);
6117
6118 perf_output_end(&handle);
6119
6120 exit:
6121 rcu_read_unlock();
6122 }
6123
6124 void
6125 perf_event_output_forward(struct perf_event *event,
6126 struct perf_sample_data *data,
6127 struct pt_regs *regs)
6128 {
6129 __perf_event_output(event, data, regs, perf_output_begin_forward);
6130 }
6131
6132 void
6133 perf_event_output_backward(struct perf_event *event,
6134 struct perf_sample_data *data,
6135 struct pt_regs *regs)
6136 {
6137 __perf_event_output(event, data, regs, perf_output_begin_backward);
6138 }
6139
6140 void
6141 perf_event_output(struct perf_event *event,
6142 struct perf_sample_data *data,
6143 struct pt_regs *regs)
6144 {
6145 __perf_event_output(event, data, regs, perf_output_begin);
6146 }
6147
6148 /*
6149 * read event_id
6150 */
6151
6152 struct perf_read_event {
6153 struct perf_event_header header;
6154
6155 u32 pid;
6156 u32 tid;
6157 };
6158
6159 static void
6160 perf_event_read_event(struct perf_event *event,
6161 struct task_struct *task)
6162 {
6163 struct perf_output_handle handle;
6164 struct perf_sample_data sample;
6165 struct perf_read_event read_event = {
6166 .header = {
6167 .type = PERF_RECORD_READ,
6168 .misc = 0,
6169 .size = sizeof(read_event) + event->read_size,
6170 },
6171 .pid = perf_event_pid(event, task),
6172 .tid = perf_event_tid(event, task),
6173 };
6174 int ret;
6175
6176 perf_event_header__init_id(&read_event.header, &sample, event);
6177 ret = perf_output_begin(&handle, event, read_event.header.size);
6178 if (ret)
6179 return;
6180
6181 perf_output_put(&handle, read_event);
6182 perf_output_read(&handle, event);
6183 perf_event__output_id_sample(event, &handle, &sample);
6184
6185 perf_output_end(&handle);
6186 }
6187
6188 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6189
6190 static void
6191 perf_iterate_ctx(struct perf_event_context *ctx,
6192 perf_iterate_f output,
6193 void *data, bool all)
6194 {
6195 struct perf_event *event;
6196
6197 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6198 if (!all) {
6199 if (event->state < PERF_EVENT_STATE_INACTIVE)
6200 continue;
6201 if (!event_filter_match(event))
6202 continue;
6203 }
6204
6205 output(event, data);
6206 }
6207 }
6208
6209 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6210 {
6211 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6212 struct perf_event *event;
6213
6214 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6215 /*
6216 * Skip events that are not fully formed yet; ensure that
6217 * if we observe event->ctx, both event and ctx will be
6218 * complete enough. See perf_install_in_context().
6219 */
6220 if (!smp_load_acquire(&event->ctx))
6221 continue;
6222
6223 if (event->state < PERF_EVENT_STATE_INACTIVE)
6224 continue;
6225 if (!event_filter_match(event))
6226 continue;
6227 output(event, data);
6228 }
6229 }
6230
6231 /*
6232 * Iterate all events that need to receive side-band events.
6233 *
6234 * For new callers; ensure that account_pmu_sb_event() includes
6235 * your event, otherwise it might not get delivered.
6236 */
6237 static void
6238 perf_iterate_sb(perf_iterate_f output, void *data,
6239 struct perf_event_context *task_ctx)
6240 {
6241 struct perf_event_context *ctx;
6242 int ctxn;
6243
6244 rcu_read_lock();
6245 preempt_disable();
6246
6247 /*
6248 * If we have task_ctx != NULL we only notify the task context itself.
6249 * The task_ctx is set only for EXIT events before releasing task
6250 * context.
6251 */
6252 if (task_ctx) {
6253 perf_iterate_ctx(task_ctx, output, data, false);
6254 goto done;
6255 }
6256
6257 perf_iterate_sb_cpu(output, data);
6258
6259 for_each_task_context_nr(ctxn) {
6260 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6261 if (ctx)
6262 perf_iterate_ctx(ctx, output, data, false);
6263 }
6264 done:
6265 preempt_enable();
6266 rcu_read_unlock();
6267 }
6268
6269 /*
6270 * Clear all file-based filters at exec, they'll have to be
6271 * re-instated when/if these objects are mmapped again.
6272 */
6273 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6274 {
6275 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6276 struct perf_addr_filter *filter;
6277 unsigned int restart = 0, count = 0;
6278 unsigned long flags;
6279
6280 if (!has_addr_filter(event))
6281 return;
6282
6283 raw_spin_lock_irqsave(&ifh->lock, flags);
6284 list_for_each_entry(filter, &ifh->list, entry) {
6285 if (filter->inode) {
6286 event->addr_filters_offs[count] = 0;
6287 restart++;
6288 }
6289
6290 count++;
6291 }
6292
6293 if (restart)
6294 event->addr_filters_gen++;
6295 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6296
6297 if (restart)
6298 perf_event_stop(event, 1);
6299 }
6300
6301 void perf_event_exec(void)
6302 {
6303 struct perf_event_context *ctx;
6304 int ctxn;
6305
6306 rcu_read_lock();
6307 for_each_task_context_nr(ctxn) {
6308 ctx = current->perf_event_ctxp[ctxn];
6309 if (!ctx)
6310 continue;
6311
6312 perf_event_enable_on_exec(ctxn);
6313
6314 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6315 true);
6316 }
6317 rcu_read_unlock();
6318 }
6319
6320 struct remote_output {
6321 struct ring_buffer *rb;
6322 int err;
6323 };
6324
6325 static void __perf_event_output_stop(struct perf_event *event, void *data)
6326 {
6327 struct perf_event *parent = event->parent;
6328 struct remote_output *ro = data;
6329 struct ring_buffer *rb = ro->rb;
6330 struct stop_event_data sd = {
6331 .event = event,
6332 };
6333
6334 if (!has_aux(event))
6335 return;
6336
6337 if (!parent)
6338 parent = event;
6339
6340 /*
6341 * In case of inheritance, it will be the parent that links to the
6342 * ring-buffer, but it will be the child that's actually using it.
6343 *
6344 * We are using event::rb to determine if the event should be stopped,
6345 * however this may race with ring_buffer_attach() (through set_output),
6346 * which will make us skip the event that actually needs to be stopped.
6347 * So ring_buffer_attach() has to stop an aux event before re-assigning
6348 * its rb pointer.
6349 */
6350 if (rcu_dereference(parent->rb) == rb)
6351 ro->err = __perf_event_stop(&sd);
6352 }
6353
6354 static int __perf_pmu_output_stop(void *info)
6355 {
6356 struct perf_event *event = info;
6357 struct pmu *pmu = event->pmu;
6358 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6359 struct remote_output ro = {
6360 .rb = event->rb,
6361 };
6362
6363 rcu_read_lock();
6364 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6365 if (cpuctx->task_ctx)
6366 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6367 &ro, false);
6368 rcu_read_unlock();
6369
6370 return ro.err;
6371 }
6372
6373 static void perf_pmu_output_stop(struct perf_event *event)
6374 {
6375 struct perf_event *iter;
6376 int err, cpu;
6377
6378 restart:
6379 rcu_read_lock();
6380 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6381 /*
6382 * For per-CPU events, we need to make sure that neither they
6383 * nor their children are running; for cpu==-1 events it's
6384 * sufficient to stop the event itself if it's active, since
6385 * it can't have children.
6386 */
6387 cpu = iter->cpu;
6388 if (cpu == -1)
6389 cpu = READ_ONCE(iter->oncpu);
6390
6391 if (cpu == -1)
6392 continue;
6393
6394 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6395 if (err == -EAGAIN) {
6396 rcu_read_unlock();
6397 goto restart;
6398 }
6399 }
6400 rcu_read_unlock();
6401 }
6402
6403 /*
6404 * task tracking -- fork/exit
6405 *
6406 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6407 */
6408
6409 struct perf_task_event {
6410 struct task_struct *task;
6411 struct perf_event_context *task_ctx;
6412
6413 struct {
6414 struct perf_event_header header;
6415
6416 u32 pid;
6417 u32 ppid;
6418 u32 tid;
6419 u32 ptid;
6420 u64 time;
6421 } event_id;
6422 };
6423
6424 static int perf_event_task_match(struct perf_event *event)
6425 {
6426 return event->attr.comm || event->attr.mmap ||
6427 event->attr.mmap2 || event->attr.mmap_data ||
6428 event->attr.task;
6429 }
6430
6431 static void perf_event_task_output(struct perf_event *event,
6432 void *data)
6433 {
6434 struct perf_task_event *task_event = data;
6435 struct perf_output_handle handle;
6436 struct perf_sample_data sample;
6437 struct task_struct *task = task_event->task;
6438 int ret, size = task_event->event_id.header.size;
6439
6440 if (!perf_event_task_match(event))
6441 return;
6442
6443 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6444
6445 ret = perf_output_begin(&handle, event,
6446 task_event->event_id.header.size);
6447 if (ret)
6448 goto out;
6449
6450 task_event->event_id.pid = perf_event_pid(event, task);
6451 task_event->event_id.ppid = perf_event_pid(event, current);
6452
6453 task_event->event_id.tid = perf_event_tid(event, task);
6454 task_event->event_id.ptid = perf_event_tid(event, current);
6455
6456 task_event->event_id.time = perf_event_clock(event);
6457
6458 perf_output_put(&handle, task_event->event_id);
6459
6460 perf_event__output_id_sample(event, &handle, &sample);
6461
6462 perf_output_end(&handle);
6463 out:
6464 task_event->event_id.header.size = size;
6465 }
6466
6467 static void perf_event_task(struct task_struct *task,
6468 struct perf_event_context *task_ctx,
6469 int new)
6470 {
6471 struct perf_task_event task_event;
6472
6473 if (!atomic_read(&nr_comm_events) &&
6474 !atomic_read(&nr_mmap_events) &&
6475 !atomic_read(&nr_task_events))
6476 return;
6477
6478 task_event = (struct perf_task_event){
6479 .task = task,
6480 .task_ctx = task_ctx,
6481 .event_id = {
6482 .header = {
6483 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6484 .misc = 0,
6485 .size = sizeof(task_event.event_id),
6486 },
6487 /* .pid */
6488 /* .ppid */
6489 /* .tid */
6490 /* .ptid */
6491 /* .time */
6492 },
6493 };
6494
6495 perf_iterate_sb(perf_event_task_output,
6496 &task_event,
6497 task_ctx);
6498 }
6499
6500 void perf_event_fork(struct task_struct *task)
6501 {
6502 perf_event_task(task, NULL, 1);
6503 perf_event_namespaces(task);
6504 }
6505
6506 /*
6507 * comm tracking
6508 */
6509
6510 struct perf_comm_event {
6511 struct task_struct *task;
6512 char *comm;
6513 int comm_size;
6514
6515 struct {
6516 struct perf_event_header header;
6517
6518 u32 pid;
6519 u32 tid;
6520 } event_id;
6521 };
6522
6523 static int perf_event_comm_match(struct perf_event *event)
6524 {
6525 return event->attr.comm;
6526 }
6527
6528 static void perf_event_comm_output(struct perf_event *event,
6529 void *data)
6530 {
6531 struct perf_comm_event *comm_event = data;
6532 struct perf_output_handle handle;
6533 struct perf_sample_data sample;
6534 int size = comm_event->event_id.header.size;
6535 int ret;
6536
6537 if (!perf_event_comm_match(event))
6538 return;
6539
6540 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6541 ret = perf_output_begin(&handle, event,
6542 comm_event->event_id.header.size);
6543
6544 if (ret)
6545 goto out;
6546
6547 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6548 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6549
6550 perf_output_put(&handle, comm_event->event_id);
6551 __output_copy(&handle, comm_event->comm,
6552 comm_event->comm_size);
6553
6554 perf_event__output_id_sample(event, &handle, &sample);
6555
6556 perf_output_end(&handle);
6557 out:
6558 comm_event->event_id.header.size = size;
6559 }
6560
6561 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6562 {
6563 char comm[TASK_COMM_LEN];
6564 unsigned int size;
6565
6566 memset(comm, 0, sizeof(comm));
6567 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6568 size = ALIGN(strlen(comm)+1, sizeof(u64));
6569
6570 comm_event->comm = comm;
6571 comm_event->comm_size = size;
6572
6573 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6574
6575 perf_iterate_sb(perf_event_comm_output,
6576 comm_event,
6577 NULL);
6578 }
6579
6580 void perf_event_comm(struct task_struct *task, bool exec)
6581 {
6582 struct perf_comm_event comm_event;
6583
6584 if (!atomic_read(&nr_comm_events))
6585 return;
6586
6587 comm_event = (struct perf_comm_event){
6588 .task = task,
6589 /* .comm */
6590 /* .comm_size */
6591 .event_id = {
6592 .header = {
6593 .type = PERF_RECORD_COMM,
6594 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6595 /* .size */
6596 },
6597 /* .pid */
6598 /* .tid */
6599 },
6600 };
6601
6602 perf_event_comm_event(&comm_event);
6603 }
6604
6605 /*
6606 * namespaces tracking
6607 */
6608
6609 struct perf_namespaces_event {
6610 struct task_struct *task;
6611
6612 struct {
6613 struct perf_event_header header;
6614
6615 u32 pid;
6616 u32 tid;
6617 u64 nr_namespaces;
6618 struct perf_ns_link_info link_info[NR_NAMESPACES];
6619 } event_id;
6620 };
6621
6622 static int perf_event_namespaces_match(struct perf_event *event)
6623 {
6624 return event->attr.namespaces;
6625 }
6626
6627 static void perf_event_namespaces_output(struct perf_event *event,
6628 void *data)
6629 {
6630 struct perf_namespaces_event *namespaces_event = data;
6631 struct perf_output_handle handle;
6632 struct perf_sample_data sample;
6633 int ret;
6634
6635 if (!perf_event_namespaces_match(event))
6636 return;
6637
6638 perf_event_header__init_id(&namespaces_event->event_id.header,
6639 &sample, event);
6640 ret = perf_output_begin(&handle, event,
6641 namespaces_event->event_id.header.size);
6642 if (ret)
6643 return;
6644
6645 namespaces_event->event_id.pid = perf_event_pid(event,
6646 namespaces_event->task);
6647 namespaces_event->event_id.tid = perf_event_tid(event,
6648 namespaces_event->task);
6649
6650 perf_output_put(&handle, namespaces_event->event_id);
6651
6652 perf_event__output_id_sample(event, &handle, &sample);
6653
6654 perf_output_end(&handle);
6655 }
6656
6657 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6658 struct task_struct *task,
6659 const struct proc_ns_operations *ns_ops)
6660 {
6661 struct path ns_path;
6662 struct inode *ns_inode;
6663 void *error;
6664
6665 error = ns_get_path(&ns_path, task, ns_ops);
6666 if (!error) {
6667 ns_inode = ns_path.dentry->d_inode;
6668 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6669 ns_link_info->ino = ns_inode->i_ino;
6670 }
6671 }
6672
6673 void perf_event_namespaces(struct task_struct *task)
6674 {
6675 struct perf_namespaces_event namespaces_event;
6676 struct perf_ns_link_info *ns_link_info;
6677
6678 if (!atomic_read(&nr_namespaces_events))
6679 return;
6680
6681 namespaces_event = (struct perf_namespaces_event){
6682 .task = task,
6683 .event_id = {
6684 .header = {
6685 .type = PERF_RECORD_NAMESPACES,
6686 .misc = 0,
6687 .size = sizeof(namespaces_event.event_id),
6688 },
6689 /* .pid */
6690 /* .tid */
6691 .nr_namespaces = NR_NAMESPACES,
6692 /* .link_info[NR_NAMESPACES] */
6693 },
6694 };
6695
6696 ns_link_info = namespaces_event.event_id.link_info;
6697
6698 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6699 task, &mntns_operations);
6700
6701 #ifdef CONFIG_USER_NS
6702 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6703 task, &userns_operations);
6704 #endif
6705 #ifdef CONFIG_NET_NS
6706 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6707 task, &netns_operations);
6708 #endif
6709 #ifdef CONFIG_UTS_NS
6710 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6711 task, &utsns_operations);
6712 #endif
6713 #ifdef CONFIG_IPC_NS
6714 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6715 task, &ipcns_operations);
6716 #endif
6717 #ifdef CONFIG_PID_NS
6718 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6719 task, &pidns_operations);
6720 #endif
6721 #ifdef CONFIG_CGROUPS
6722 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6723 task, &cgroupns_operations);
6724 #endif
6725
6726 perf_iterate_sb(perf_event_namespaces_output,
6727 &namespaces_event,
6728 NULL);
6729 }
6730
6731 /*
6732 * mmap tracking
6733 */
6734
6735 struct perf_mmap_event {
6736 struct vm_area_struct *vma;
6737
6738 const char *file_name;
6739 int file_size;
6740 int maj, min;
6741 u64 ino;
6742 u64 ino_generation;
6743 u32 prot, flags;
6744
6745 struct {
6746 struct perf_event_header header;
6747
6748 u32 pid;
6749 u32 tid;
6750 u64 start;
6751 u64 len;
6752 u64 pgoff;
6753 } event_id;
6754 };
6755
6756 static int perf_event_mmap_match(struct perf_event *event,
6757 void *data)
6758 {
6759 struct perf_mmap_event *mmap_event = data;
6760 struct vm_area_struct *vma = mmap_event->vma;
6761 int executable = vma->vm_flags & VM_EXEC;
6762
6763 return (!executable && event->attr.mmap_data) ||
6764 (executable && (event->attr.mmap || event->attr.mmap2));
6765 }
6766
6767 static void perf_event_mmap_output(struct perf_event *event,
6768 void *data)
6769 {
6770 struct perf_mmap_event *mmap_event = data;
6771 struct perf_output_handle handle;
6772 struct perf_sample_data sample;
6773 int size = mmap_event->event_id.header.size;
6774 int ret;
6775
6776 if (!perf_event_mmap_match(event, data))
6777 return;
6778
6779 if (event->attr.mmap2) {
6780 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6781 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6782 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6783 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6784 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6785 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6786 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6787 }
6788
6789 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6790 ret = perf_output_begin(&handle, event,
6791 mmap_event->event_id.header.size);
6792 if (ret)
6793 goto out;
6794
6795 mmap_event->event_id.pid = perf_event_pid(event, current);
6796 mmap_event->event_id.tid = perf_event_tid(event, current);
6797
6798 perf_output_put(&handle, mmap_event->event_id);
6799
6800 if (event->attr.mmap2) {
6801 perf_output_put(&handle, mmap_event->maj);
6802 perf_output_put(&handle, mmap_event->min);
6803 perf_output_put(&handle, mmap_event->ino);
6804 perf_output_put(&handle, mmap_event->ino_generation);
6805 perf_output_put(&handle, mmap_event->prot);
6806 perf_output_put(&handle, mmap_event->flags);
6807 }
6808
6809 __output_copy(&handle, mmap_event->file_name,
6810 mmap_event->file_size);
6811
6812 perf_event__output_id_sample(event, &handle, &sample);
6813
6814 perf_output_end(&handle);
6815 out:
6816 mmap_event->event_id.header.size = size;
6817 }
6818
6819 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6820 {
6821 struct vm_area_struct *vma = mmap_event->vma;
6822 struct file *file = vma->vm_file;
6823 int maj = 0, min = 0;
6824 u64 ino = 0, gen = 0;
6825 u32 prot = 0, flags = 0;
6826 unsigned int size;
6827 char tmp[16];
6828 char *buf = NULL;
6829 char *name;
6830
6831 if (vma->vm_flags & VM_READ)
6832 prot |= PROT_READ;
6833 if (vma->vm_flags & VM_WRITE)
6834 prot |= PROT_WRITE;
6835 if (vma->vm_flags & VM_EXEC)
6836 prot |= PROT_EXEC;
6837
6838 if (vma->vm_flags & VM_MAYSHARE)
6839 flags = MAP_SHARED;
6840 else
6841 flags = MAP_PRIVATE;
6842
6843 if (vma->vm_flags & VM_DENYWRITE)
6844 flags |= MAP_DENYWRITE;
6845 if (vma->vm_flags & VM_MAYEXEC)
6846 flags |= MAP_EXECUTABLE;
6847 if (vma->vm_flags & VM_LOCKED)
6848 flags |= MAP_LOCKED;
6849 if (vma->vm_flags & VM_HUGETLB)
6850 flags |= MAP_HUGETLB;
6851
6852 if (file) {
6853 struct inode *inode;
6854 dev_t dev;
6855
6856 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6857 if (!buf) {
6858 name = "//enomem";
6859 goto cpy_name;
6860 }
6861 /*
6862 * d_path() works from the end of the rb backwards, so we
6863 * need to add enough zero bytes after the string to handle
6864 * the 64bit alignment we do later.
6865 */
6866 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6867 if (IS_ERR(name)) {
6868 name = "//toolong";
6869 goto cpy_name;
6870 }
6871 inode = file_inode(vma->vm_file);
6872 dev = inode->i_sb->s_dev;
6873 ino = inode->i_ino;
6874 gen = inode->i_generation;
6875 maj = MAJOR(dev);
6876 min = MINOR(dev);
6877
6878 goto got_name;
6879 } else {
6880 if (vma->vm_ops && vma->vm_ops->name) {
6881 name = (char *) vma->vm_ops->name(vma);
6882 if (name)
6883 goto cpy_name;
6884 }
6885
6886 name = (char *)arch_vma_name(vma);
6887 if (name)
6888 goto cpy_name;
6889
6890 if (vma->vm_start <= vma->vm_mm->start_brk &&
6891 vma->vm_end >= vma->vm_mm->brk) {
6892 name = "[heap]";
6893 goto cpy_name;
6894 }
6895 if (vma->vm_start <= vma->vm_mm->start_stack &&
6896 vma->vm_end >= vma->vm_mm->start_stack) {
6897 name = "[stack]";
6898 goto cpy_name;
6899 }
6900
6901 name = "//anon";
6902 goto cpy_name;
6903 }
6904
6905 cpy_name:
6906 strlcpy(tmp, name, sizeof(tmp));
6907 name = tmp;
6908 got_name:
6909 /*
6910 * Since our buffer works in 8 byte units we need to align our string
6911 * size to a multiple of 8. However, we must guarantee the tail end is
6912 * zero'd out to avoid leaking random bits to userspace.
6913 */
6914 size = strlen(name)+1;
6915 while (!IS_ALIGNED(size, sizeof(u64)))
6916 name[size++] = '\0';
6917
6918 mmap_event->file_name = name;
6919 mmap_event->file_size = size;
6920 mmap_event->maj = maj;
6921 mmap_event->min = min;
6922 mmap_event->ino = ino;
6923 mmap_event->ino_generation = gen;
6924 mmap_event->prot = prot;
6925 mmap_event->flags = flags;
6926
6927 if (!(vma->vm_flags & VM_EXEC))
6928 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6929
6930 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6931
6932 perf_iterate_sb(perf_event_mmap_output,
6933 mmap_event,
6934 NULL);
6935
6936 kfree(buf);
6937 }
6938
6939 /*
6940 * Check whether inode and address range match filter criteria.
6941 */
6942 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6943 struct file *file, unsigned long offset,
6944 unsigned long size)
6945 {
6946 if (filter->inode != file_inode(file))
6947 return false;
6948
6949 if (filter->offset > offset + size)
6950 return false;
6951
6952 if (filter->offset + filter->size < offset)
6953 return false;
6954
6955 return true;
6956 }
6957
6958 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6959 {
6960 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6961 struct vm_area_struct *vma = data;
6962 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6963 struct file *file = vma->vm_file;
6964 struct perf_addr_filter *filter;
6965 unsigned int restart = 0, count = 0;
6966
6967 if (!has_addr_filter(event))
6968 return;
6969
6970 if (!file)
6971 return;
6972
6973 raw_spin_lock_irqsave(&ifh->lock, flags);
6974 list_for_each_entry(filter, &ifh->list, entry) {
6975 if (perf_addr_filter_match(filter, file, off,
6976 vma->vm_end - vma->vm_start)) {
6977 event->addr_filters_offs[count] = vma->vm_start;
6978 restart++;
6979 }
6980
6981 count++;
6982 }
6983
6984 if (restart)
6985 event->addr_filters_gen++;
6986 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6987
6988 if (restart)
6989 perf_event_stop(event, 1);
6990 }
6991
6992 /*
6993 * Adjust all task's events' filters to the new vma
6994 */
6995 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6996 {
6997 struct perf_event_context *ctx;
6998 int ctxn;
6999
7000 /*
7001 * Data tracing isn't supported yet and as such there is no need
7002 * to keep track of anything that isn't related to executable code:
7003 */
7004 if (!(vma->vm_flags & VM_EXEC))
7005 return;
7006
7007 rcu_read_lock();
7008 for_each_task_context_nr(ctxn) {
7009 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7010 if (!ctx)
7011 continue;
7012
7013 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7014 }
7015 rcu_read_unlock();
7016 }
7017
7018 void perf_event_mmap(struct vm_area_struct *vma)
7019 {
7020 struct perf_mmap_event mmap_event;
7021
7022 if (!atomic_read(&nr_mmap_events))
7023 return;
7024
7025 mmap_event = (struct perf_mmap_event){
7026 .vma = vma,
7027 /* .file_name */
7028 /* .file_size */
7029 .event_id = {
7030 .header = {
7031 .type = PERF_RECORD_MMAP,
7032 .misc = PERF_RECORD_MISC_USER,
7033 /* .size */
7034 },
7035 /* .pid */
7036 /* .tid */
7037 .start = vma->vm_start,
7038 .len = vma->vm_end - vma->vm_start,
7039 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7040 },
7041 /* .maj (attr_mmap2 only) */
7042 /* .min (attr_mmap2 only) */
7043 /* .ino (attr_mmap2 only) */
7044 /* .ino_generation (attr_mmap2 only) */
7045 /* .prot (attr_mmap2 only) */
7046 /* .flags (attr_mmap2 only) */
7047 };
7048
7049 perf_addr_filters_adjust(vma);
7050 perf_event_mmap_event(&mmap_event);
7051 }
7052
7053 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7054 unsigned long size, u64 flags)
7055 {
7056 struct perf_output_handle handle;
7057 struct perf_sample_data sample;
7058 struct perf_aux_event {
7059 struct perf_event_header header;
7060 u64 offset;
7061 u64 size;
7062 u64 flags;
7063 } rec = {
7064 .header = {
7065 .type = PERF_RECORD_AUX,
7066 .misc = 0,
7067 .size = sizeof(rec),
7068 },
7069 .offset = head,
7070 .size = size,
7071 .flags = flags,
7072 };
7073 int ret;
7074
7075 perf_event_header__init_id(&rec.header, &sample, event);
7076 ret = perf_output_begin(&handle, event, rec.header.size);
7077
7078 if (ret)
7079 return;
7080
7081 perf_output_put(&handle, rec);
7082 perf_event__output_id_sample(event, &handle, &sample);
7083
7084 perf_output_end(&handle);
7085 }
7086
7087 /*
7088 * Lost/dropped samples logging
7089 */
7090 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7091 {
7092 struct perf_output_handle handle;
7093 struct perf_sample_data sample;
7094 int ret;
7095
7096 struct {
7097 struct perf_event_header header;
7098 u64 lost;
7099 } lost_samples_event = {
7100 .header = {
7101 .type = PERF_RECORD_LOST_SAMPLES,
7102 .misc = 0,
7103 .size = sizeof(lost_samples_event),
7104 },
7105 .lost = lost,
7106 };
7107
7108 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7109
7110 ret = perf_output_begin(&handle, event,
7111 lost_samples_event.header.size);
7112 if (ret)
7113 return;
7114
7115 perf_output_put(&handle, lost_samples_event);
7116 perf_event__output_id_sample(event, &handle, &sample);
7117 perf_output_end(&handle);
7118 }
7119
7120 /*
7121 * context_switch tracking
7122 */
7123
7124 struct perf_switch_event {
7125 struct task_struct *task;
7126 struct task_struct *next_prev;
7127
7128 struct {
7129 struct perf_event_header header;
7130 u32 next_prev_pid;
7131 u32 next_prev_tid;
7132 } event_id;
7133 };
7134
7135 static int perf_event_switch_match(struct perf_event *event)
7136 {
7137 return event->attr.context_switch;
7138 }
7139
7140 static void perf_event_switch_output(struct perf_event *event, void *data)
7141 {
7142 struct perf_switch_event *se = data;
7143 struct perf_output_handle handle;
7144 struct perf_sample_data sample;
7145 int ret;
7146
7147 if (!perf_event_switch_match(event))
7148 return;
7149
7150 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7151 if (event->ctx->task) {
7152 se->event_id.header.type = PERF_RECORD_SWITCH;
7153 se->event_id.header.size = sizeof(se->event_id.header);
7154 } else {
7155 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7156 se->event_id.header.size = sizeof(se->event_id);
7157 se->event_id.next_prev_pid =
7158 perf_event_pid(event, se->next_prev);
7159 se->event_id.next_prev_tid =
7160 perf_event_tid(event, se->next_prev);
7161 }
7162
7163 perf_event_header__init_id(&se->event_id.header, &sample, event);
7164
7165 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7166 if (ret)
7167 return;
7168
7169 if (event->ctx->task)
7170 perf_output_put(&handle, se->event_id.header);
7171 else
7172 perf_output_put(&handle, se->event_id);
7173
7174 perf_event__output_id_sample(event, &handle, &sample);
7175
7176 perf_output_end(&handle);
7177 }
7178
7179 static void perf_event_switch(struct task_struct *task,
7180 struct task_struct *next_prev, bool sched_in)
7181 {
7182 struct perf_switch_event switch_event;
7183
7184 /* N.B. caller checks nr_switch_events != 0 */
7185
7186 switch_event = (struct perf_switch_event){
7187 .task = task,
7188 .next_prev = next_prev,
7189 .event_id = {
7190 .header = {
7191 /* .type */
7192 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7193 /* .size */
7194 },
7195 /* .next_prev_pid */
7196 /* .next_prev_tid */
7197 },
7198 };
7199
7200 perf_iterate_sb(perf_event_switch_output,
7201 &switch_event,
7202 NULL);
7203 }
7204
7205 /*
7206 * IRQ throttle logging
7207 */
7208
7209 static void perf_log_throttle(struct perf_event *event, int enable)
7210 {
7211 struct perf_output_handle handle;
7212 struct perf_sample_data sample;
7213 int ret;
7214
7215 struct {
7216 struct perf_event_header header;
7217 u64 time;
7218 u64 id;
7219 u64 stream_id;
7220 } throttle_event = {
7221 .header = {
7222 .type = PERF_RECORD_THROTTLE,
7223 .misc = 0,
7224 .size = sizeof(throttle_event),
7225 },
7226 .time = perf_event_clock(event),
7227 .id = primary_event_id(event),
7228 .stream_id = event->id,
7229 };
7230
7231 if (enable)
7232 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7233
7234 perf_event_header__init_id(&throttle_event.header, &sample, event);
7235
7236 ret = perf_output_begin(&handle, event,
7237 throttle_event.header.size);
7238 if (ret)
7239 return;
7240
7241 perf_output_put(&handle, throttle_event);
7242 perf_event__output_id_sample(event, &handle, &sample);
7243 perf_output_end(&handle);
7244 }
7245
7246 static void perf_log_itrace_start(struct perf_event *event)
7247 {
7248 struct perf_output_handle handle;
7249 struct perf_sample_data sample;
7250 struct perf_aux_event {
7251 struct perf_event_header header;
7252 u32 pid;
7253 u32 tid;
7254 } rec;
7255 int ret;
7256
7257 if (event->parent)
7258 event = event->parent;
7259
7260 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7261 event->hw.itrace_started)
7262 return;
7263
7264 rec.header.type = PERF_RECORD_ITRACE_START;
7265 rec.header.misc = 0;
7266 rec.header.size = sizeof(rec);
7267 rec.pid = perf_event_pid(event, current);
7268 rec.tid = perf_event_tid(event, current);
7269
7270 perf_event_header__init_id(&rec.header, &sample, event);
7271 ret = perf_output_begin(&handle, event, rec.header.size);
7272
7273 if (ret)
7274 return;
7275
7276 perf_output_put(&handle, rec);
7277 perf_event__output_id_sample(event, &handle, &sample);
7278
7279 perf_output_end(&handle);
7280 }
7281
7282 static int
7283 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7284 {
7285 struct hw_perf_event *hwc = &event->hw;
7286 int ret = 0;
7287 u64 seq;
7288
7289 seq = __this_cpu_read(perf_throttled_seq);
7290 if (seq != hwc->interrupts_seq) {
7291 hwc->interrupts_seq = seq;
7292 hwc->interrupts = 1;
7293 } else {
7294 hwc->interrupts++;
7295 if (unlikely(throttle
7296 && hwc->interrupts >= max_samples_per_tick)) {
7297 __this_cpu_inc(perf_throttled_count);
7298 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7299 hwc->interrupts = MAX_INTERRUPTS;
7300 perf_log_throttle(event, 0);
7301 ret = 1;
7302 }
7303 }
7304
7305 if (event->attr.freq) {
7306 u64 now = perf_clock();
7307 s64 delta = now - hwc->freq_time_stamp;
7308
7309 hwc->freq_time_stamp = now;
7310
7311 if (delta > 0 && delta < 2*TICK_NSEC)
7312 perf_adjust_period(event, delta, hwc->last_period, true);
7313 }
7314
7315 return ret;
7316 }
7317
7318 int perf_event_account_interrupt(struct perf_event *event)
7319 {
7320 return __perf_event_account_interrupt(event, 1);
7321 }
7322
7323 /*
7324 * Generic event overflow handling, sampling.
7325 */
7326
7327 static int __perf_event_overflow(struct perf_event *event,
7328 int throttle, struct perf_sample_data *data,
7329 struct pt_regs *regs)
7330 {
7331 int events = atomic_read(&event->event_limit);
7332 int ret = 0;
7333
7334 /*
7335 * Non-sampling counters might still use the PMI to fold short
7336 * hardware counters, ignore those.
7337 */
7338 if (unlikely(!is_sampling_event(event)))
7339 return 0;
7340
7341 ret = __perf_event_account_interrupt(event, throttle);
7342
7343 /*
7344 * XXX event_limit might not quite work as expected on inherited
7345 * events
7346 */
7347
7348 event->pending_kill = POLL_IN;
7349 if (events && atomic_dec_and_test(&event->event_limit)) {
7350 ret = 1;
7351 event->pending_kill = POLL_HUP;
7352
7353 perf_event_disable_inatomic(event);
7354 }
7355
7356 READ_ONCE(event->overflow_handler)(event, data, regs);
7357
7358 if (*perf_event_fasync(event) && event->pending_kill) {
7359 event->pending_wakeup = 1;
7360 irq_work_queue(&event->pending);
7361 }
7362
7363 return ret;
7364 }
7365
7366 int perf_event_overflow(struct perf_event *event,
7367 struct perf_sample_data *data,
7368 struct pt_regs *regs)
7369 {
7370 return __perf_event_overflow(event, 1, data, regs);
7371 }
7372
7373 /*
7374 * Generic software event infrastructure
7375 */
7376
7377 struct swevent_htable {
7378 struct swevent_hlist *swevent_hlist;
7379 struct mutex hlist_mutex;
7380 int hlist_refcount;
7381
7382 /* Recursion avoidance in each contexts */
7383 int recursion[PERF_NR_CONTEXTS];
7384 };
7385
7386 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7387
7388 /*
7389 * We directly increment event->count and keep a second value in
7390 * event->hw.period_left to count intervals. This period event
7391 * is kept in the range [-sample_period, 0] so that we can use the
7392 * sign as trigger.
7393 */
7394
7395 u64 perf_swevent_set_period(struct perf_event *event)
7396 {
7397 struct hw_perf_event *hwc = &event->hw;
7398 u64 period = hwc->last_period;
7399 u64 nr, offset;
7400 s64 old, val;
7401
7402 hwc->last_period = hwc->sample_period;
7403
7404 again:
7405 old = val = local64_read(&hwc->period_left);
7406 if (val < 0)
7407 return 0;
7408
7409 nr = div64_u64(period + val, period);
7410 offset = nr * period;
7411 val -= offset;
7412 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7413 goto again;
7414
7415 return nr;
7416 }
7417
7418 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7419 struct perf_sample_data *data,
7420 struct pt_regs *regs)
7421 {
7422 struct hw_perf_event *hwc = &event->hw;
7423 int throttle = 0;
7424
7425 if (!overflow)
7426 overflow = perf_swevent_set_period(event);
7427
7428 if (hwc->interrupts == MAX_INTERRUPTS)
7429 return;
7430
7431 for (; overflow; overflow--) {
7432 if (__perf_event_overflow(event, throttle,
7433 data, regs)) {
7434 /*
7435 * We inhibit the overflow from happening when
7436 * hwc->interrupts == MAX_INTERRUPTS.
7437 */
7438 break;
7439 }
7440 throttle = 1;
7441 }
7442 }
7443
7444 static void perf_swevent_event(struct perf_event *event, u64 nr,
7445 struct perf_sample_data *data,
7446 struct pt_regs *regs)
7447 {
7448 struct hw_perf_event *hwc = &event->hw;
7449
7450 local64_add(nr, &event->count);
7451
7452 if (!regs)
7453 return;
7454
7455 if (!is_sampling_event(event))
7456 return;
7457
7458 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7459 data->period = nr;
7460 return perf_swevent_overflow(event, 1, data, regs);
7461 } else
7462 data->period = event->hw.last_period;
7463
7464 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7465 return perf_swevent_overflow(event, 1, data, regs);
7466
7467 if (local64_add_negative(nr, &hwc->period_left))
7468 return;
7469
7470 perf_swevent_overflow(event, 0, data, regs);
7471 }
7472
7473 static int perf_exclude_event(struct perf_event *event,
7474 struct pt_regs *regs)
7475 {
7476 if (event->hw.state & PERF_HES_STOPPED)
7477 return 1;
7478
7479 if (regs) {
7480 if (event->attr.exclude_user && user_mode(regs))
7481 return 1;
7482
7483 if (event->attr.exclude_kernel && !user_mode(regs))
7484 return 1;
7485 }
7486
7487 return 0;
7488 }
7489
7490 static int perf_swevent_match(struct perf_event *event,
7491 enum perf_type_id type,
7492 u32 event_id,
7493 struct perf_sample_data *data,
7494 struct pt_regs *regs)
7495 {
7496 if (event->attr.type != type)
7497 return 0;
7498
7499 if (event->attr.config != event_id)
7500 return 0;
7501
7502 if (perf_exclude_event(event, regs))
7503 return 0;
7504
7505 return 1;
7506 }
7507
7508 static inline u64 swevent_hash(u64 type, u32 event_id)
7509 {
7510 u64 val = event_id | (type << 32);
7511
7512 return hash_64(val, SWEVENT_HLIST_BITS);
7513 }
7514
7515 static inline struct hlist_head *
7516 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7517 {
7518 u64 hash = swevent_hash(type, event_id);
7519
7520 return &hlist->heads[hash];
7521 }
7522
7523 /* For the read side: events when they trigger */
7524 static inline struct hlist_head *
7525 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7526 {
7527 struct swevent_hlist *hlist;
7528
7529 hlist = rcu_dereference(swhash->swevent_hlist);
7530 if (!hlist)
7531 return NULL;
7532
7533 return __find_swevent_head(hlist, type, event_id);
7534 }
7535
7536 /* For the event head insertion and removal in the hlist */
7537 static inline struct hlist_head *
7538 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7539 {
7540 struct swevent_hlist *hlist;
7541 u32 event_id = event->attr.config;
7542 u64 type = event->attr.type;
7543
7544 /*
7545 * Event scheduling is always serialized against hlist allocation
7546 * and release. Which makes the protected version suitable here.
7547 * The context lock guarantees that.
7548 */
7549 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7550 lockdep_is_held(&event->ctx->lock));
7551 if (!hlist)
7552 return NULL;
7553
7554 return __find_swevent_head(hlist, type, event_id);
7555 }
7556
7557 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7558 u64 nr,
7559 struct perf_sample_data *data,
7560 struct pt_regs *regs)
7561 {
7562 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7563 struct perf_event *event;
7564 struct hlist_head *head;
7565
7566 rcu_read_lock();
7567 head = find_swevent_head_rcu(swhash, type, event_id);
7568 if (!head)
7569 goto end;
7570
7571 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7572 if (perf_swevent_match(event, type, event_id, data, regs))
7573 perf_swevent_event(event, nr, data, regs);
7574 }
7575 end:
7576 rcu_read_unlock();
7577 }
7578
7579 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7580
7581 int perf_swevent_get_recursion_context(void)
7582 {
7583 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7584
7585 return get_recursion_context(swhash->recursion);
7586 }
7587 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7588
7589 void perf_swevent_put_recursion_context(int rctx)
7590 {
7591 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7592
7593 put_recursion_context(swhash->recursion, rctx);
7594 }
7595
7596 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7597 {
7598 struct perf_sample_data data;
7599
7600 if (WARN_ON_ONCE(!regs))
7601 return;
7602
7603 perf_sample_data_init(&data, addr, 0);
7604 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7605 }
7606
7607 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7608 {
7609 int rctx;
7610
7611 preempt_disable_notrace();
7612 rctx = perf_swevent_get_recursion_context();
7613 if (unlikely(rctx < 0))
7614 goto fail;
7615
7616 ___perf_sw_event(event_id, nr, regs, addr);
7617
7618 perf_swevent_put_recursion_context(rctx);
7619 fail:
7620 preempt_enable_notrace();
7621 }
7622
7623 static void perf_swevent_read(struct perf_event *event)
7624 {
7625 }
7626
7627 static int perf_swevent_add(struct perf_event *event, int flags)
7628 {
7629 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7630 struct hw_perf_event *hwc = &event->hw;
7631 struct hlist_head *head;
7632
7633 if (is_sampling_event(event)) {
7634 hwc->last_period = hwc->sample_period;
7635 perf_swevent_set_period(event);
7636 }
7637
7638 hwc->state = !(flags & PERF_EF_START);
7639
7640 head = find_swevent_head(swhash, event);
7641 if (WARN_ON_ONCE(!head))
7642 return -EINVAL;
7643
7644 hlist_add_head_rcu(&event->hlist_entry, head);
7645 perf_event_update_userpage(event);
7646
7647 return 0;
7648 }
7649
7650 static void perf_swevent_del(struct perf_event *event, int flags)
7651 {
7652 hlist_del_rcu(&event->hlist_entry);
7653 }
7654
7655 static void perf_swevent_start(struct perf_event *event, int flags)
7656 {
7657 event->hw.state = 0;
7658 }
7659
7660 static void perf_swevent_stop(struct perf_event *event, int flags)
7661 {
7662 event->hw.state = PERF_HES_STOPPED;
7663 }
7664
7665 /* Deref the hlist from the update side */
7666 static inline struct swevent_hlist *
7667 swevent_hlist_deref(struct swevent_htable *swhash)
7668 {
7669 return rcu_dereference_protected(swhash->swevent_hlist,
7670 lockdep_is_held(&swhash->hlist_mutex));
7671 }
7672
7673 static void swevent_hlist_release(struct swevent_htable *swhash)
7674 {
7675 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7676
7677 if (!hlist)
7678 return;
7679
7680 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7681 kfree_rcu(hlist, rcu_head);
7682 }
7683
7684 static void swevent_hlist_put_cpu(int cpu)
7685 {
7686 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7687
7688 mutex_lock(&swhash->hlist_mutex);
7689
7690 if (!--swhash->hlist_refcount)
7691 swevent_hlist_release(swhash);
7692
7693 mutex_unlock(&swhash->hlist_mutex);
7694 }
7695
7696 static void swevent_hlist_put(void)
7697 {
7698 int cpu;
7699
7700 for_each_possible_cpu(cpu)
7701 swevent_hlist_put_cpu(cpu);
7702 }
7703
7704 static int swevent_hlist_get_cpu(int cpu)
7705 {
7706 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7707 int err = 0;
7708
7709 mutex_lock(&swhash->hlist_mutex);
7710 if (!swevent_hlist_deref(swhash) &&
7711 cpumask_test_cpu(cpu, perf_online_mask)) {
7712 struct swevent_hlist *hlist;
7713
7714 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7715 if (!hlist) {
7716 err = -ENOMEM;
7717 goto exit;
7718 }
7719 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7720 }
7721 swhash->hlist_refcount++;
7722 exit:
7723 mutex_unlock(&swhash->hlist_mutex);
7724
7725 return err;
7726 }
7727
7728 static int swevent_hlist_get(void)
7729 {
7730 int err, cpu, failed_cpu;
7731
7732 mutex_lock(&pmus_lock);
7733 for_each_possible_cpu(cpu) {
7734 err = swevent_hlist_get_cpu(cpu);
7735 if (err) {
7736 failed_cpu = cpu;
7737 goto fail;
7738 }
7739 }
7740 mutex_unlock(&pmus_lock);
7741 return 0;
7742 fail:
7743 for_each_possible_cpu(cpu) {
7744 if (cpu == failed_cpu)
7745 break;
7746 swevent_hlist_put_cpu(cpu);
7747 }
7748 mutex_unlock(&pmus_lock);
7749 return err;
7750 }
7751
7752 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7753
7754 static void sw_perf_event_destroy(struct perf_event *event)
7755 {
7756 u64 event_id = event->attr.config;
7757
7758 WARN_ON(event->parent);
7759
7760 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7761 swevent_hlist_put();
7762 }
7763
7764 static int perf_swevent_init(struct perf_event *event)
7765 {
7766 u64 event_id = event->attr.config;
7767
7768 if (event->attr.type != PERF_TYPE_SOFTWARE)
7769 return -ENOENT;
7770
7771 /*
7772 * no branch sampling for software events
7773 */
7774 if (has_branch_stack(event))
7775 return -EOPNOTSUPP;
7776
7777 switch (event_id) {
7778 case PERF_COUNT_SW_CPU_CLOCK:
7779 case PERF_COUNT_SW_TASK_CLOCK:
7780 return -ENOENT;
7781
7782 default:
7783 break;
7784 }
7785
7786 if (event_id >= PERF_COUNT_SW_MAX)
7787 return -ENOENT;
7788
7789 if (!event->parent) {
7790 int err;
7791
7792 err = swevent_hlist_get();
7793 if (err)
7794 return err;
7795
7796 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7797 event->destroy = sw_perf_event_destroy;
7798 }
7799
7800 return 0;
7801 }
7802
7803 static struct pmu perf_swevent = {
7804 .task_ctx_nr = perf_sw_context,
7805
7806 .capabilities = PERF_PMU_CAP_NO_NMI,
7807
7808 .event_init = perf_swevent_init,
7809 .add = perf_swevent_add,
7810 .del = perf_swevent_del,
7811 .start = perf_swevent_start,
7812 .stop = perf_swevent_stop,
7813 .read = perf_swevent_read,
7814 };
7815
7816 #ifdef CONFIG_EVENT_TRACING
7817
7818 static int perf_tp_filter_match(struct perf_event *event,
7819 struct perf_sample_data *data)
7820 {
7821 void *record = data->raw->frag.data;
7822
7823 /* only top level events have filters set */
7824 if (event->parent)
7825 event = event->parent;
7826
7827 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7828 return 1;
7829 return 0;
7830 }
7831
7832 static int perf_tp_event_match(struct perf_event *event,
7833 struct perf_sample_data *data,
7834 struct pt_regs *regs)
7835 {
7836 if (event->hw.state & PERF_HES_STOPPED)
7837 return 0;
7838 /*
7839 * All tracepoints are from kernel-space.
7840 */
7841 if (event->attr.exclude_kernel)
7842 return 0;
7843
7844 if (!perf_tp_filter_match(event, data))
7845 return 0;
7846
7847 return 1;
7848 }
7849
7850 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7851 struct trace_event_call *call, u64 count,
7852 struct pt_regs *regs, struct hlist_head *head,
7853 struct task_struct *task)
7854 {
7855 struct bpf_prog *prog = call->prog;
7856
7857 if (prog) {
7858 *(struct pt_regs **)raw_data = regs;
7859 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7860 perf_swevent_put_recursion_context(rctx);
7861 return;
7862 }
7863 }
7864 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7865 rctx, task);
7866 }
7867 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7868
7869 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7870 struct pt_regs *regs, struct hlist_head *head, int rctx,
7871 struct task_struct *task)
7872 {
7873 struct perf_sample_data data;
7874 struct perf_event *event;
7875
7876 struct perf_raw_record raw = {
7877 .frag = {
7878 .size = entry_size,
7879 .data = record,
7880 },
7881 };
7882
7883 perf_sample_data_init(&data, 0, 0);
7884 data.raw = &raw;
7885
7886 perf_trace_buf_update(record, event_type);
7887
7888 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7889 if (perf_tp_event_match(event, &data, regs))
7890 perf_swevent_event(event, count, &data, regs);
7891 }
7892
7893 /*
7894 * If we got specified a target task, also iterate its context and
7895 * deliver this event there too.
7896 */
7897 if (task && task != current) {
7898 struct perf_event_context *ctx;
7899 struct trace_entry *entry = record;
7900
7901 rcu_read_lock();
7902 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7903 if (!ctx)
7904 goto unlock;
7905
7906 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7907 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7908 continue;
7909 if (event->attr.config != entry->type)
7910 continue;
7911 if (perf_tp_event_match(event, &data, regs))
7912 perf_swevent_event(event, count, &data, regs);
7913 }
7914 unlock:
7915 rcu_read_unlock();
7916 }
7917
7918 perf_swevent_put_recursion_context(rctx);
7919 }
7920 EXPORT_SYMBOL_GPL(perf_tp_event);
7921
7922 static void tp_perf_event_destroy(struct perf_event *event)
7923 {
7924 perf_trace_destroy(event);
7925 }
7926
7927 static int perf_tp_event_init(struct perf_event *event)
7928 {
7929 int err;
7930
7931 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7932 return -ENOENT;
7933
7934 /*
7935 * no branch sampling for tracepoint events
7936 */
7937 if (has_branch_stack(event))
7938 return -EOPNOTSUPP;
7939
7940 err = perf_trace_init(event);
7941 if (err)
7942 return err;
7943
7944 event->destroy = tp_perf_event_destroy;
7945
7946 return 0;
7947 }
7948
7949 static struct pmu perf_tracepoint = {
7950 .task_ctx_nr = perf_sw_context,
7951
7952 .event_init = perf_tp_event_init,
7953 .add = perf_trace_add,
7954 .del = perf_trace_del,
7955 .start = perf_swevent_start,
7956 .stop = perf_swevent_stop,
7957 .read = perf_swevent_read,
7958 };
7959
7960 static inline void perf_tp_register(void)
7961 {
7962 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7963 }
7964
7965 static void perf_event_free_filter(struct perf_event *event)
7966 {
7967 ftrace_profile_free_filter(event);
7968 }
7969
7970 #ifdef CONFIG_BPF_SYSCALL
7971 static void bpf_overflow_handler(struct perf_event *event,
7972 struct perf_sample_data *data,
7973 struct pt_regs *regs)
7974 {
7975 struct bpf_perf_event_data_kern ctx = {
7976 .data = data,
7977 .regs = regs,
7978 };
7979 int ret = 0;
7980
7981 preempt_disable();
7982 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7983 goto out;
7984 rcu_read_lock();
7985 ret = BPF_PROG_RUN(event->prog, &ctx);
7986 rcu_read_unlock();
7987 out:
7988 __this_cpu_dec(bpf_prog_active);
7989 preempt_enable();
7990 if (!ret)
7991 return;
7992
7993 event->orig_overflow_handler(event, data, regs);
7994 }
7995
7996 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7997 {
7998 struct bpf_prog *prog;
7999
8000 if (event->overflow_handler_context)
8001 /* hw breakpoint or kernel counter */
8002 return -EINVAL;
8003
8004 if (event->prog)
8005 return -EEXIST;
8006
8007 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8008 if (IS_ERR(prog))
8009 return PTR_ERR(prog);
8010
8011 event->prog = prog;
8012 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8013 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8014 return 0;
8015 }
8016
8017 static void perf_event_free_bpf_handler(struct perf_event *event)
8018 {
8019 struct bpf_prog *prog = event->prog;
8020
8021 if (!prog)
8022 return;
8023
8024 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8025 event->prog = NULL;
8026 bpf_prog_put(prog);
8027 }
8028 #else
8029 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8030 {
8031 return -EOPNOTSUPP;
8032 }
8033 static void perf_event_free_bpf_handler(struct perf_event *event)
8034 {
8035 }
8036 #endif
8037
8038 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8039 {
8040 bool is_kprobe, is_tracepoint;
8041 struct bpf_prog *prog;
8042
8043 if (event->attr.type == PERF_TYPE_HARDWARE ||
8044 event->attr.type == PERF_TYPE_SOFTWARE)
8045 return perf_event_set_bpf_handler(event, prog_fd);
8046
8047 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8048 return -EINVAL;
8049
8050 if (event->tp_event->prog)
8051 return -EEXIST;
8052
8053 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8054 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8055 if (!is_kprobe && !is_tracepoint)
8056 /* bpf programs can only be attached to u/kprobe or tracepoint */
8057 return -EINVAL;
8058
8059 prog = bpf_prog_get(prog_fd);
8060 if (IS_ERR(prog))
8061 return PTR_ERR(prog);
8062
8063 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8064 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8065 /* valid fd, but invalid bpf program type */
8066 bpf_prog_put(prog);
8067 return -EINVAL;
8068 }
8069
8070 if (is_tracepoint) {
8071 int off = trace_event_get_offsets(event->tp_event);
8072
8073 if (prog->aux->max_ctx_offset > off) {
8074 bpf_prog_put(prog);
8075 return -EACCES;
8076 }
8077 }
8078 event->tp_event->prog = prog;
8079
8080 return 0;
8081 }
8082
8083 static void perf_event_free_bpf_prog(struct perf_event *event)
8084 {
8085 struct bpf_prog *prog;
8086
8087 perf_event_free_bpf_handler(event);
8088
8089 if (!event->tp_event)
8090 return;
8091
8092 prog = event->tp_event->prog;
8093 if (prog) {
8094 event->tp_event->prog = NULL;
8095 bpf_prog_put(prog);
8096 }
8097 }
8098
8099 #else
8100
8101 static inline void perf_tp_register(void)
8102 {
8103 }
8104
8105 static void perf_event_free_filter(struct perf_event *event)
8106 {
8107 }
8108
8109 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8110 {
8111 return -ENOENT;
8112 }
8113
8114 static void perf_event_free_bpf_prog(struct perf_event *event)
8115 {
8116 }
8117 #endif /* CONFIG_EVENT_TRACING */
8118
8119 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8120 void perf_bp_event(struct perf_event *bp, void *data)
8121 {
8122 struct perf_sample_data sample;
8123 struct pt_regs *regs = data;
8124
8125 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8126
8127 if (!bp->hw.state && !perf_exclude_event(bp, regs))
8128 perf_swevent_event(bp, 1, &sample, regs);
8129 }
8130 #endif
8131
8132 /*
8133 * Allocate a new address filter
8134 */
8135 static struct perf_addr_filter *
8136 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8137 {
8138 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8139 struct perf_addr_filter *filter;
8140
8141 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8142 if (!filter)
8143 return NULL;
8144
8145 INIT_LIST_HEAD(&filter->entry);
8146 list_add_tail(&filter->entry, filters);
8147
8148 return filter;
8149 }
8150
8151 static void free_filters_list(struct list_head *filters)
8152 {
8153 struct perf_addr_filter *filter, *iter;
8154
8155 list_for_each_entry_safe(filter, iter, filters, entry) {
8156 if (filter->inode)
8157 iput(filter->inode);
8158 list_del(&filter->entry);
8159 kfree(filter);
8160 }
8161 }
8162
8163 /*
8164 * Free existing address filters and optionally install new ones
8165 */
8166 static void perf_addr_filters_splice(struct perf_event *event,
8167 struct list_head *head)
8168 {
8169 unsigned long flags;
8170 LIST_HEAD(list);
8171
8172 if (!has_addr_filter(event))
8173 return;
8174
8175 /* don't bother with children, they don't have their own filters */
8176 if (event->parent)
8177 return;
8178
8179 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8180
8181 list_splice_init(&event->addr_filters.list, &list);
8182 if (head)
8183 list_splice(head, &event->addr_filters.list);
8184
8185 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8186
8187 free_filters_list(&list);
8188 }
8189
8190 /*
8191 * Scan through mm's vmas and see if one of them matches the
8192 * @filter; if so, adjust filter's address range.
8193 * Called with mm::mmap_sem down for reading.
8194 */
8195 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8196 struct mm_struct *mm)
8197 {
8198 struct vm_area_struct *vma;
8199
8200 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8201 struct file *file = vma->vm_file;
8202 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8203 unsigned long vma_size = vma->vm_end - vma->vm_start;
8204
8205 if (!file)
8206 continue;
8207
8208 if (!perf_addr_filter_match(filter, file, off, vma_size))
8209 continue;
8210
8211 return vma->vm_start;
8212 }
8213
8214 return 0;
8215 }
8216
8217 /*
8218 * Update event's address range filters based on the
8219 * task's existing mappings, if any.
8220 */
8221 static void perf_event_addr_filters_apply(struct perf_event *event)
8222 {
8223 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8224 struct task_struct *task = READ_ONCE(event->ctx->task);
8225 struct perf_addr_filter *filter;
8226 struct mm_struct *mm = NULL;
8227 unsigned int count = 0;
8228 unsigned long flags;
8229
8230 /*
8231 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8232 * will stop on the parent's child_mutex that our caller is also holding
8233 */
8234 if (task == TASK_TOMBSTONE)
8235 return;
8236
8237 if (!ifh->nr_file_filters)
8238 return;
8239
8240 mm = get_task_mm(event->ctx->task);
8241 if (!mm)
8242 goto restart;
8243
8244 down_read(&mm->mmap_sem);
8245
8246 raw_spin_lock_irqsave(&ifh->lock, flags);
8247 list_for_each_entry(filter, &ifh->list, entry) {
8248 event->addr_filters_offs[count] = 0;
8249
8250 /*
8251 * Adjust base offset if the filter is associated to a binary
8252 * that needs to be mapped:
8253 */
8254 if (filter->inode)
8255 event->addr_filters_offs[count] =
8256 perf_addr_filter_apply(filter, mm);
8257
8258 count++;
8259 }
8260
8261 event->addr_filters_gen++;
8262 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8263
8264 up_read(&mm->mmap_sem);
8265
8266 mmput(mm);
8267
8268 restart:
8269 perf_event_stop(event, 1);
8270 }
8271
8272 /*
8273 * Address range filtering: limiting the data to certain
8274 * instruction address ranges. Filters are ioctl()ed to us from
8275 * userspace as ascii strings.
8276 *
8277 * Filter string format:
8278 *
8279 * ACTION RANGE_SPEC
8280 * where ACTION is one of the
8281 * * "filter": limit the trace to this region
8282 * * "start": start tracing from this address
8283 * * "stop": stop tracing at this address/region;
8284 * RANGE_SPEC is
8285 * * for kernel addresses: <start address>[/<size>]
8286 * * for object files: <start address>[/<size>]@</path/to/object/file>
8287 *
8288 * if <size> is not specified, the range is treated as a single address.
8289 */
8290 enum {
8291 IF_ACT_NONE = -1,
8292 IF_ACT_FILTER,
8293 IF_ACT_START,
8294 IF_ACT_STOP,
8295 IF_SRC_FILE,
8296 IF_SRC_KERNEL,
8297 IF_SRC_FILEADDR,
8298 IF_SRC_KERNELADDR,
8299 };
8300
8301 enum {
8302 IF_STATE_ACTION = 0,
8303 IF_STATE_SOURCE,
8304 IF_STATE_END,
8305 };
8306
8307 static const match_table_t if_tokens = {
8308 { IF_ACT_FILTER, "filter" },
8309 { IF_ACT_START, "start" },
8310 { IF_ACT_STOP, "stop" },
8311 { IF_SRC_FILE, "%u/%u@%s" },
8312 { IF_SRC_KERNEL, "%u/%u" },
8313 { IF_SRC_FILEADDR, "%u@%s" },
8314 { IF_SRC_KERNELADDR, "%u" },
8315 { IF_ACT_NONE, NULL },
8316 };
8317
8318 /*
8319 * Address filter string parser
8320 */
8321 static int
8322 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8323 struct list_head *filters)
8324 {
8325 struct perf_addr_filter *filter = NULL;
8326 char *start, *orig, *filename = NULL;
8327 struct path path;
8328 substring_t args[MAX_OPT_ARGS];
8329 int state = IF_STATE_ACTION, token;
8330 unsigned int kernel = 0;
8331 int ret = -EINVAL;
8332
8333 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8334 if (!fstr)
8335 return -ENOMEM;
8336
8337 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8338 ret = -EINVAL;
8339
8340 if (!*start)
8341 continue;
8342
8343 /* filter definition begins */
8344 if (state == IF_STATE_ACTION) {
8345 filter = perf_addr_filter_new(event, filters);
8346 if (!filter)
8347 goto fail;
8348 }
8349
8350 token = match_token(start, if_tokens, args);
8351 switch (token) {
8352 case IF_ACT_FILTER:
8353 case IF_ACT_START:
8354 filter->filter = 1;
8355
8356 case IF_ACT_STOP:
8357 if (state != IF_STATE_ACTION)
8358 goto fail;
8359
8360 state = IF_STATE_SOURCE;
8361 break;
8362
8363 case IF_SRC_KERNELADDR:
8364 case IF_SRC_KERNEL:
8365 kernel = 1;
8366
8367 case IF_SRC_FILEADDR:
8368 case IF_SRC_FILE:
8369 if (state != IF_STATE_SOURCE)
8370 goto fail;
8371
8372 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8373 filter->range = 1;
8374
8375 *args[0].to = 0;
8376 ret = kstrtoul(args[0].from, 0, &filter->offset);
8377 if (ret)
8378 goto fail;
8379
8380 if (filter->range) {
8381 *args[1].to = 0;
8382 ret = kstrtoul(args[1].from, 0, &filter->size);
8383 if (ret)
8384 goto fail;
8385 }
8386
8387 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8388 int fpos = filter->range ? 2 : 1;
8389
8390 filename = match_strdup(&args[fpos]);
8391 if (!filename) {
8392 ret = -ENOMEM;
8393 goto fail;
8394 }
8395 }
8396
8397 state = IF_STATE_END;
8398 break;
8399
8400 default:
8401 goto fail;
8402 }
8403
8404 /*
8405 * Filter definition is fully parsed, validate and install it.
8406 * Make sure that it doesn't contradict itself or the event's
8407 * attribute.
8408 */
8409 if (state == IF_STATE_END) {
8410 ret = -EINVAL;
8411 if (kernel && event->attr.exclude_kernel)
8412 goto fail;
8413
8414 if (!kernel) {
8415 if (!filename)
8416 goto fail;
8417
8418 /*
8419 * For now, we only support file-based filters
8420 * in per-task events; doing so for CPU-wide
8421 * events requires additional context switching
8422 * trickery, since same object code will be
8423 * mapped at different virtual addresses in
8424 * different processes.
8425 */
8426 ret = -EOPNOTSUPP;
8427 if (!event->ctx->task)
8428 goto fail_free_name;
8429
8430 /* look up the path and grab its inode */
8431 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8432 if (ret)
8433 goto fail_free_name;
8434
8435 filter->inode = igrab(d_inode(path.dentry));
8436 path_put(&path);
8437 kfree(filename);
8438 filename = NULL;
8439
8440 ret = -EINVAL;
8441 if (!filter->inode ||
8442 !S_ISREG(filter->inode->i_mode))
8443 /* free_filters_list() will iput() */
8444 goto fail;
8445
8446 event->addr_filters.nr_file_filters++;
8447 }
8448
8449 /* ready to consume more filters */
8450 state = IF_STATE_ACTION;
8451 filter = NULL;
8452 }
8453 }
8454
8455 if (state != IF_STATE_ACTION)
8456 goto fail;
8457
8458 kfree(orig);
8459
8460 return 0;
8461
8462 fail_free_name:
8463 kfree(filename);
8464 fail:
8465 free_filters_list(filters);
8466 kfree(orig);
8467
8468 return ret;
8469 }
8470
8471 static int
8472 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8473 {
8474 LIST_HEAD(filters);
8475 int ret;
8476
8477 /*
8478 * Since this is called in perf_ioctl() path, we're already holding
8479 * ctx::mutex.
8480 */
8481 lockdep_assert_held(&event->ctx->mutex);
8482
8483 if (WARN_ON_ONCE(event->parent))
8484 return -EINVAL;
8485
8486 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8487 if (ret)
8488 goto fail_clear_files;
8489
8490 ret = event->pmu->addr_filters_validate(&filters);
8491 if (ret)
8492 goto fail_free_filters;
8493
8494 /* remove existing filters, if any */
8495 perf_addr_filters_splice(event, &filters);
8496
8497 /* install new filters */
8498 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8499
8500 return ret;
8501
8502 fail_free_filters:
8503 free_filters_list(&filters);
8504
8505 fail_clear_files:
8506 event->addr_filters.nr_file_filters = 0;
8507
8508 return ret;
8509 }
8510
8511 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8512 {
8513 char *filter_str;
8514 int ret = -EINVAL;
8515
8516 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8517 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8518 !has_addr_filter(event))
8519 return -EINVAL;
8520
8521 filter_str = strndup_user(arg, PAGE_SIZE);
8522 if (IS_ERR(filter_str))
8523 return PTR_ERR(filter_str);
8524
8525 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8526 event->attr.type == PERF_TYPE_TRACEPOINT)
8527 ret = ftrace_profile_set_filter(event, event->attr.config,
8528 filter_str);
8529 else if (has_addr_filter(event))
8530 ret = perf_event_set_addr_filter(event, filter_str);
8531
8532 kfree(filter_str);
8533 return ret;
8534 }
8535
8536 /*
8537 * hrtimer based swevent callback
8538 */
8539
8540 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8541 {
8542 enum hrtimer_restart ret = HRTIMER_RESTART;
8543 struct perf_sample_data data;
8544 struct pt_regs *regs;
8545 struct perf_event *event;
8546 u64 period;
8547
8548 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8549
8550 if (event->state != PERF_EVENT_STATE_ACTIVE)
8551 return HRTIMER_NORESTART;
8552
8553 event->pmu->read(event);
8554
8555 perf_sample_data_init(&data, 0, event->hw.last_period);
8556 regs = get_irq_regs();
8557
8558 if (regs && !perf_exclude_event(event, regs)) {
8559 if (!(event->attr.exclude_idle && is_idle_task(current)))
8560 if (__perf_event_overflow(event, 1, &data, regs))
8561 ret = HRTIMER_NORESTART;
8562 }
8563
8564 period = max_t(u64, 10000, event->hw.sample_period);
8565 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8566
8567 return ret;
8568 }
8569
8570 static void perf_swevent_start_hrtimer(struct perf_event *event)
8571 {
8572 struct hw_perf_event *hwc = &event->hw;
8573 s64 period;
8574
8575 if (!is_sampling_event(event))
8576 return;
8577
8578 period = local64_read(&hwc->period_left);
8579 if (period) {
8580 if (period < 0)
8581 period = 10000;
8582
8583 local64_set(&hwc->period_left, 0);
8584 } else {
8585 period = max_t(u64, 10000, hwc->sample_period);
8586 }
8587 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8588 HRTIMER_MODE_REL_PINNED);
8589 }
8590
8591 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8592 {
8593 struct hw_perf_event *hwc = &event->hw;
8594
8595 if (is_sampling_event(event)) {
8596 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8597 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8598
8599 hrtimer_cancel(&hwc->hrtimer);
8600 }
8601 }
8602
8603 static void perf_swevent_init_hrtimer(struct perf_event *event)
8604 {
8605 struct hw_perf_event *hwc = &event->hw;
8606
8607 if (!is_sampling_event(event))
8608 return;
8609
8610 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8611 hwc->hrtimer.function = perf_swevent_hrtimer;
8612
8613 /*
8614 * Since hrtimers have a fixed rate, we can do a static freq->period
8615 * mapping and avoid the whole period adjust feedback stuff.
8616 */
8617 if (event->attr.freq) {
8618 long freq = event->attr.sample_freq;
8619
8620 event->attr.sample_period = NSEC_PER_SEC / freq;
8621 hwc->sample_period = event->attr.sample_period;
8622 local64_set(&hwc->period_left, hwc->sample_period);
8623 hwc->last_period = hwc->sample_period;
8624 event->attr.freq = 0;
8625 }
8626 }
8627
8628 /*
8629 * Software event: cpu wall time clock
8630 */
8631
8632 static void cpu_clock_event_update(struct perf_event *event)
8633 {
8634 s64 prev;
8635 u64 now;
8636
8637 now = local_clock();
8638 prev = local64_xchg(&event->hw.prev_count, now);
8639 local64_add(now - prev, &event->count);
8640 }
8641
8642 static void cpu_clock_event_start(struct perf_event *event, int flags)
8643 {
8644 local64_set(&event->hw.prev_count, local_clock());
8645 perf_swevent_start_hrtimer(event);
8646 }
8647
8648 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8649 {
8650 perf_swevent_cancel_hrtimer(event);
8651 cpu_clock_event_update(event);
8652 }
8653
8654 static int cpu_clock_event_add(struct perf_event *event, int flags)
8655 {
8656 if (flags & PERF_EF_START)
8657 cpu_clock_event_start(event, flags);
8658 perf_event_update_userpage(event);
8659
8660 return 0;
8661 }
8662
8663 static void cpu_clock_event_del(struct perf_event *event, int flags)
8664 {
8665 cpu_clock_event_stop(event, flags);
8666 }
8667
8668 static void cpu_clock_event_read(struct perf_event *event)
8669 {
8670 cpu_clock_event_update(event);
8671 }
8672
8673 static int cpu_clock_event_init(struct perf_event *event)
8674 {
8675 if (event->attr.type != PERF_TYPE_SOFTWARE)
8676 return -ENOENT;
8677
8678 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8679 return -ENOENT;
8680
8681 /*
8682 * no branch sampling for software events
8683 */
8684 if (has_branch_stack(event))
8685 return -EOPNOTSUPP;
8686
8687 perf_swevent_init_hrtimer(event);
8688
8689 return 0;
8690 }
8691
8692 static struct pmu perf_cpu_clock = {
8693 .task_ctx_nr = perf_sw_context,
8694
8695 .capabilities = PERF_PMU_CAP_NO_NMI,
8696
8697 .event_init = cpu_clock_event_init,
8698 .add = cpu_clock_event_add,
8699 .del = cpu_clock_event_del,
8700 .start = cpu_clock_event_start,
8701 .stop = cpu_clock_event_stop,
8702 .read = cpu_clock_event_read,
8703 };
8704
8705 /*
8706 * Software event: task time clock
8707 */
8708
8709 static void task_clock_event_update(struct perf_event *event, u64 now)
8710 {
8711 u64 prev;
8712 s64 delta;
8713
8714 prev = local64_xchg(&event->hw.prev_count, now);
8715 delta = now - prev;
8716 local64_add(delta, &event->count);
8717 }
8718
8719 static void task_clock_event_start(struct perf_event *event, int flags)
8720 {
8721 local64_set(&event->hw.prev_count, event->ctx->time);
8722 perf_swevent_start_hrtimer(event);
8723 }
8724
8725 static void task_clock_event_stop(struct perf_event *event, int flags)
8726 {
8727 perf_swevent_cancel_hrtimer(event);
8728 task_clock_event_update(event, event->ctx->time);
8729 }
8730
8731 static int task_clock_event_add(struct perf_event *event, int flags)
8732 {
8733 if (flags & PERF_EF_START)
8734 task_clock_event_start(event, flags);
8735 perf_event_update_userpage(event);
8736
8737 return 0;
8738 }
8739
8740 static void task_clock_event_del(struct perf_event *event, int flags)
8741 {
8742 task_clock_event_stop(event, PERF_EF_UPDATE);
8743 }
8744
8745 static void task_clock_event_read(struct perf_event *event)
8746 {
8747 u64 now = perf_clock();
8748 u64 delta = now - event->ctx->timestamp;
8749 u64 time = event->ctx->time + delta;
8750
8751 task_clock_event_update(event, time);
8752 }
8753
8754 static int task_clock_event_init(struct perf_event *event)
8755 {
8756 if (event->attr.type != PERF_TYPE_SOFTWARE)
8757 return -ENOENT;
8758
8759 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8760 return -ENOENT;
8761
8762 /*
8763 * no branch sampling for software events
8764 */
8765 if (has_branch_stack(event))
8766 return -EOPNOTSUPP;
8767
8768 perf_swevent_init_hrtimer(event);
8769
8770 return 0;
8771 }
8772
8773 static struct pmu perf_task_clock = {
8774 .task_ctx_nr = perf_sw_context,
8775
8776 .capabilities = PERF_PMU_CAP_NO_NMI,
8777
8778 .event_init = task_clock_event_init,
8779 .add = task_clock_event_add,
8780 .del = task_clock_event_del,
8781 .start = task_clock_event_start,
8782 .stop = task_clock_event_stop,
8783 .read = task_clock_event_read,
8784 };
8785
8786 static void perf_pmu_nop_void(struct pmu *pmu)
8787 {
8788 }
8789
8790 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8791 {
8792 }
8793
8794 static int perf_pmu_nop_int(struct pmu *pmu)
8795 {
8796 return 0;
8797 }
8798
8799 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8800
8801 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8802 {
8803 __this_cpu_write(nop_txn_flags, flags);
8804
8805 if (flags & ~PERF_PMU_TXN_ADD)
8806 return;
8807
8808 perf_pmu_disable(pmu);
8809 }
8810
8811 static int perf_pmu_commit_txn(struct pmu *pmu)
8812 {
8813 unsigned int flags = __this_cpu_read(nop_txn_flags);
8814
8815 __this_cpu_write(nop_txn_flags, 0);
8816
8817 if (flags & ~PERF_PMU_TXN_ADD)
8818 return 0;
8819
8820 perf_pmu_enable(pmu);
8821 return 0;
8822 }
8823
8824 static void perf_pmu_cancel_txn(struct pmu *pmu)
8825 {
8826 unsigned int flags = __this_cpu_read(nop_txn_flags);
8827
8828 __this_cpu_write(nop_txn_flags, 0);
8829
8830 if (flags & ~PERF_PMU_TXN_ADD)
8831 return;
8832
8833 perf_pmu_enable(pmu);
8834 }
8835
8836 static int perf_event_idx_default(struct perf_event *event)
8837 {
8838 return 0;
8839 }
8840
8841 /*
8842 * Ensures all contexts with the same task_ctx_nr have the same
8843 * pmu_cpu_context too.
8844 */
8845 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8846 {
8847 struct pmu *pmu;
8848
8849 if (ctxn < 0)
8850 return NULL;
8851
8852 list_for_each_entry(pmu, &pmus, entry) {
8853 if (pmu->task_ctx_nr == ctxn)
8854 return pmu->pmu_cpu_context;
8855 }
8856
8857 return NULL;
8858 }
8859
8860 static void free_pmu_context(struct pmu *pmu)
8861 {
8862 mutex_lock(&pmus_lock);
8863 free_percpu(pmu->pmu_cpu_context);
8864 mutex_unlock(&pmus_lock);
8865 }
8866
8867 /*
8868 * Let userspace know that this PMU supports address range filtering:
8869 */
8870 static ssize_t nr_addr_filters_show(struct device *dev,
8871 struct device_attribute *attr,
8872 char *page)
8873 {
8874 struct pmu *pmu = dev_get_drvdata(dev);
8875
8876 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8877 }
8878 DEVICE_ATTR_RO(nr_addr_filters);
8879
8880 static struct idr pmu_idr;
8881
8882 static ssize_t
8883 type_show(struct device *dev, struct device_attribute *attr, char *page)
8884 {
8885 struct pmu *pmu = dev_get_drvdata(dev);
8886
8887 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8888 }
8889 static DEVICE_ATTR_RO(type);
8890
8891 static ssize_t
8892 perf_event_mux_interval_ms_show(struct device *dev,
8893 struct device_attribute *attr,
8894 char *page)
8895 {
8896 struct pmu *pmu = dev_get_drvdata(dev);
8897
8898 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8899 }
8900
8901 static DEFINE_MUTEX(mux_interval_mutex);
8902
8903 static ssize_t
8904 perf_event_mux_interval_ms_store(struct device *dev,
8905 struct device_attribute *attr,
8906 const char *buf, size_t count)
8907 {
8908 struct pmu *pmu = dev_get_drvdata(dev);
8909 int timer, cpu, ret;
8910
8911 ret = kstrtoint(buf, 0, &timer);
8912 if (ret)
8913 return ret;
8914
8915 if (timer < 1)
8916 return -EINVAL;
8917
8918 /* same value, noting to do */
8919 if (timer == pmu->hrtimer_interval_ms)
8920 return count;
8921
8922 mutex_lock(&mux_interval_mutex);
8923 pmu->hrtimer_interval_ms = timer;
8924
8925 /* update all cpuctx for this PMU */
8926 cpus_read_lock();
8927 for_each_online_cpu(cpu) {
8928 struct perf_cpu_context *cpuctx;
8929 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8930 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8931
8932 cpu_function_call(cpu,
8933 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8934 }
8935 cpus_read_unlock();
8936 mutex_unlock(&mux_interval_mutex);
8937
8938 return count;
8939 }
8940 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8941
8942 static struct attribute *pmu_dev_attrs[] = {
8943 &dev_attr_type.attr,
8944 &dev_attr_perf_event_mux_interval_ms.attr,
8945 NULL,
8946 };
8947 ATTRIBUTE_GROUPS(pmu_dev);
8948
8949 static int pmu_bus_running;
8950 static struct bus_type pmu_bus = {
8951 .name = "event_source",
8952 .dev_groups = pmu_dev_groups,
8953 };
8954
8955 static void pmu_dev_release(struct device *dev)
8956 {
8957 kfree(dev);
8958 }
8959
8960 static int pmu_dev_alloc(struct pmu *pmu)
8961 {
8962 int ret = -ENOMEM;
8963
8964 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8965 if (!pmu->dev)
8966 goto out;
8967
8968 pmu->dev->groups = pmu->attr_groups;
8969 device_initialize(pmu->dev);
8970 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8971 if (ret)
8972 goto free_dev;
8973
8974 dev_set_drvdata(pmu->dev, pmu);
8975 pmu->dev->bus = &pmu_bus;
8976 pmu->dev->release = pmu_dev_release;
8977 ret = device_add(pmu->dev);
8978 if (ret)
8979 goto free_dev;
8980
8981 /* For PMUs with address filters, throw in an extra attribute: */
8982 if (pmu->nr_addr_filters)
8983 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8984
8985 if (ret)
8986 goto del_dev;
8987
8988 out:
8989 return ret;
8990
8991 del_dev:
8992 device_del(pmu->dev);
8993
8994 free_dev:
8995 put_device(pmu->dev);
8996 goto out;
8997 }
8998
8999 static struct lock_class_key cpuctx_mutex;
9000 static struct lock_class_key cpuctx_lock;
9001
9002 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9003 {
9004 int cpu, ret;
9005
9006 mutex_lock(&pmus_lock);
9007 ret = -ENOMEM;
9008 pmu->pmu_disable_count = alloc_percpu(int);
9009 if (!pmu->pmu_disable_count)
9010 goto unlock;
9011
9012 pmu->type = -1;
9013 if (!name)
9014 goto skip_type;
9015 pmu->name = name;
9016
9017 if (type < 0) {
9018 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9019 if (type < 0) {
9020 ret = type;
9021 goto free_pdc;
9022 }
9023 }
9024 pmu->type = type;
9025
9026 if (pmu_bus_running) {
9027 ret = pmu_dev_alloc(pmu);
9028 if (ret)
9029 goto free_idr;
9030 }
9031
9032 skip_type:
9033 if (pmu->task_ctx_nr == perf_hw_context) {
9034 static int hw_context_taken = 0;
9035
9036 /*
9037 * Other than systems with heterogeneous CPUs, it never makes
9038 * sense for two PMUs to share perf_hw_context. PMUs which are
9039 * uncore must use perf_invalid_context.
9040 */
9041 if (WARN_ON_ONCE(hw_context_taken &&
9042 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9043 pmu->task_ctx_nr = perf_invalid_context;
9044
9045 hw_context_taken = 1;
9046 }
9047
9048 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9049 if (pmu->pmu_cpu_context)
9050 goto got_cpu_context;
9051
9052 ret = -ENOMEM;
9053 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9054 if (!pmu->pmu_cpu_context)
9055 goto free_dev;
9056
9057 for_each_possible_cpu(cpu) {
9058 struct perf_cpu_context *cpuctx;
9059
9060 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9061 __perf_event_init_context(&cpuctx->ctx);
9062 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9063 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9064 cpuctx->ctx.pmu = pmu;
9065 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9066
9067 __perf_mux_hrtimer_init(cpuctx, cpu);
9068 }
9069
9070 got_cpu_context:
9071 if (!pmu->start_txn) {
9072 if (pmu->pmu_enable) {
9073 /*
9074 * If we have pmu_enable/pmu_disable calls, install
9075 * transaction stubs that use that to try and batch
9076 * hardware accesses.
9077 */
9078 pmu->start_txn = perf_pmu_start_txn;
9079 pmu->commit_txn = perf_pmu_commit_txn;
9080 pmu->cancel_txn = perf_pmu_cancel_txn;
9081 } else {
9082 pmu->start_txn = perf_pmu_nop_txn;
9083 pmu->commit_txn = perf_pmu_nop_int;
9084 pmu->cancel_txn = perf_pmu_nop_void;
9085 }
9086 }
9087
9088 if (!pmu->pmu_enable) {
9089 pmu->pmu_enable = perf_pmu_nop_void;
9090 pmu->pmu_disable = perf_pmu_nop_void;
9091 }
9092
9093 if (!pmu->event_idx)
9094 pmu->event_idx = perf_event_idx_default;
9095
9096 list_add_rcu(&pmu->entry, &pmus);
9097 atomic_set(&pmu->exclusive_cnt, 0);
9098 ret = 0;
9099 unlock:
9100 mutex_unlock(&pmus_lock);
9101
9102 return ret;
9103
9104 free_dev:
9105 device_del(pmu->dev);
9106 put_device(pmu->dev);
9107
9108 free_idr:
9109 if (pmu->type >= PERF_TYPE_MAX)
9110 idr_remove(&pmu_idr, pmu->type);
9111
9112 free_pdc:
9113 free_percpu(pmu->pmu_disable_count);
9114 goto unlock;
9115 }
9116 EXPORT_SYMBOL_GPL(perf_pmu_register);
9117
9118 void perf_pmu_unregister(struct pmu *pmu)
9119 {
9120 int remove_device;
9121
9122 mutex_lock(&pmus_lock);
9123 remove_device = pmu_bus_running;
9124 list_del_rcu(&pmu->entry);
9125 mutex_unlock(&pmus_lock);
9126
9127 /*
9128 * We dereference the pmu list under both SRCU and regular RCU, so
9129 * synchronize against both of those.
9130 */
9131 synchronize_srcu(&pmus_srcu);
9132 synchronize_rcu();
9133
9134 free_percpu(pmu->pmu_disable_count);
9135 if (pmu->type >= PERF_TYPE_MAX)
9136 idr_remove(&pmu_idr, pmu->type);
9137 if (remove_device) {
9138 if (pmu->nr_addr_filters)
9139 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9140 device_del(pmu->dev);
9141 put_device(pmu->dev);
9142 }
9143 free_pmu_context(pmu);
9144 }
9145 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9146
9147 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9148 {
9149 struct perf_event_context *ctx = NULL;
9150 int ret;
9151
9152 if (!try_module_get(pmu->module))
9153 return -ENODEV;
9154
9155 if (event->group_leader != event) {
9156 /*
9157 * This ctx->mutex can nest when we're called through
9158 * inheritance. See the perf_event_ctx_lock_nested() comment.
9159 */
9160 ctx = perf_event_ctx_lock_nested(event->group_leader,
9161 SINGLE_DEPTH_NESTING);
9162 BUG_ON(!ctx);
9163 }
9164
9165 event->pmu = pmu;
9166 ret = pmu->event_init(event);
9167
9168 if (ctx)
9169 perf_event_ctx_unlock(event->group_leader, ctx);
9170
9171 if (ret)
9172 module_put(pmu->module);
9173
9174 return ret;
9175 }
9176
9177 static struct pmu *perf_init_event(struct perf_event *event)
9178 {
9179 struct pmu *pmu;
9180 int idx;
9181 int ret;
9182
9183 idx = srcu_read_lock(&pmus_srcu);
9184
9185 /* Try parent's PMU first: */
9186 if (event->parent && event->parent->pmu) {
9187 pmu = event->parent->pmu;
9188 ret = perf_try_init_event(pmu, event);
9189 if (!ret)
9190 goto unlock;
9191 }
9192
9193 rcu_read_lock();
9194 pmu = idr_find(&pmu_idr, event->attr.type);
9195 rcu_read_unlock();
9196 if (pmu) {
9197 ret = perf_try_init_event(pmu, event);
9198 if (ret)
9199 pmu = ERR_PTR(ret);
9200 goto unlock;
9201 }
9202
9203 list_for_each_entry_rcu(pmu, &pmus, entry) {
9204 ret = perf_try_init_event(pmu, event);
9205 if (!ret)
9206 goto unlock;
9207
9208 if (ret != -ENOENT) {
9209 pmu = ERR_PTR(ret);
9210 goto unlock;
9211 }
9212 }
9213 pmu = ERR_PTR(-ENOENT);
9214 unlock:
9215 srcu_read_unlock(&pmus_srcu, idx);
9216
9217 return pmu;
9218 }
9219
9220 static void attach_sb_event(struct perf_event *event)
9221 {
9222 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9223
9224 raw_spin_lock(&pel->lock);
9225 list_add_rcu(&event->sb_list, &pel->list);
9226 raw_spin_unlock(&pel->lock);
9227 }
9228
9229 /*
9230 * We keep a list of all !task (and therefore per-cpu) events
9231 * that need to receive side-band records.
9232 *
9233 * This avoids having to scan all the various PMU per-cpu contexts
9234 * looking for them.
9235 */
9236 static void account_pmu_sb_event(struct perf_event *event)
9237 {
9238 if (is_sb_event(event))
9239 attach_sb_event(event);
9240 }
9241
9242 static void account_event_cpu(struct perf_event *event, int cpu)
9243 {
9244 if (event->parent)
9245 return;
9246
9247 if (is_cgroup_event(event))
9248 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9249 }
9250
9251 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9252 static void account_freq_event_nohz(void)
9253 {
9254 #ifdef CONFIG_NO_HZ_FULL
9255 /* Lock so we don't race with concurrent unaccount */
9256 spin_lock(&nr_freq_lock);
9257 if (atomic_inc_return(&nr_freq_events) == 1)
9258 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9259 spin_unlock(&nr_freq_lock);
9260 #endif
9261 }
9262
9263 static void account_freq_event(void)
9264 {
9265 if (tick_nohz_full_enabled())
9266 account_freq_event_nohz();
9267 else
9268 atomic_inc(&nr_freq_events);
9269 }
9270
9271
9272 static void account_event(struct perf_event *event)
9273 {
9274 bool inc = false;
9275
9276 if (event->parent)
9277 return;
9278
9279 if (event->attach_state & PERF_ATTACH_TASK)
9280 inc = true;
9281 if (event->attr.mmap || event->attr.mmap_data)
9282 atomic_inc(&nr_mmap_events);
9283 if (event->attr.comm)
9284 atomic_inc(&nr_comm_events);
9285 if (event->attr.namespaces)
9286 atomic_inc(&nr_namespaces_events);
9287 if (event->attr.task)
9288 atomic_inc(&nr_task_events);
9289 if (event->attr.freq)
9290 account_freq_event();
9291 if (event->attr.context_switch) {
9292 atomic_inc(&nr_switch_events);
9293 inc = true;
9294 }
9295 if (has_branch_stack(event))
9296 inc = true;
9297 if (is_cgroup_event(event))
9298 inc = true;
9299
9300 if (inc) {
9301 if (atomic_inc_not_zero(&perf_sched_count))
9302 goto enabled;
9303
9304 mutex_lock(&perf_sched_mutex);
9305 if (!atomic_read(&perf_sched_count)) {
9306 static_branch_enable(&perf_sched_events);
9307 /*
9308 * Guarantee that all CPUs observe they key change and
9309 * call the perf scheduling hooks before proceeding to
9310 * install events that need them.
9311 */
9312 synchronize_sched();
9313 }
9314 /*
9315 * Now that we have waited for the sync_sched(), allow further
9316 * increments to by-pass the mutex.
9317 */
9318 atomic_inc(&perf_sched_count);
9319 mutex_unlock(&perf_sched_mutex);
9320 }
9321 enabled:
9322
9323 account_event_cpu(event, event->cpu);
9324
9325 account_pmu_sb_event(event);
9326 }
9327
9328 /*
9329 * Allocate and initialize a event structure
9330 */
9331 static struct perf_event *
9332 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9333 struct task_struct *task,
9334 struct perf_event *group_leader,
9335 struct perf_event *parent_event,
9336 perf_overflow_handler_t overflow_handler,
9337 void *context, int cgroup_fd)
9338 {
9339 struct pmu *pmu;
9340 struct perf_event *event;
9341 struct hw_perf_event *hwc;
9342 long err = -EINVAL;
9343
9344 if ((unsigned)cpu >= nr_cpu_ids) {
9345 if (!task || cpu != -1)
9346 return ERR_PTR(-EINVAL);
9347 }
9348
9349 event = kzalloc(sizeof(*event), GFP_KERNEL);
9350 if (!event)
9351 return ERR_PTR(-ENOMEM);
9352
9353 /*
9354 * Single events are their own group leaders, with an
9355 * empty sibling list:
9356 */
9357 if (!group_leader)
9358 group_leader = event;
9359
9360 mutex_init(&event->child_mutex);
9361 INIT_LIST_HEAD(&event->child_list);
9362
9363 INIT_LIST_HEAD(&event->group_entry);
9364 INIT_LIST_HEAD(&event->event_entry);
9365 INIT_LIST_HEAD(&event->sibling_list);
9366 INIT_LIST_HEAD(&event->rb_entry);
9367 INIT_LIST_HEAD(&event->active_entry);
9368 INIT_LIST_HEAD(&event->addr_filters.list);
9369 INIT_HLIST_NODE(&event->hlist_entry);
9370
9371
9372 init_waitqueue_head(&event->waitq);
9373 init_irq_work(&event->pending, perf_pending_event);
9374
9375 mutex_init(&event->mmap_mutex);
9376 raw_spin_lock_init(&event->addr_filters.lock);
9377
9378 atomic_long_set(&event->refcount, 1);
9379 event->cpu = cpu;
9380 event->attr = *attr;
9381 event->group_leader = group_leader;
9382 event->pmu = NULL;
9383 event->oncpu = -1;
9384
9385 event->parent = parent_event;
9386
9387 event->ns = get_pid_ns(task_active_pid_ns(current));
9388 event->id = atomic64_inc_return(&perf_event_id);
9389
9390 event->state = PERF_EVENT_STATE_INACTIVE;
9391
9392 if (task) {
9393 event->attach_state = PERF_ATTACH_TASK;
9394 /*
9395 * XXX pmu::event_init needs to know what task to account to
9396 * and we cannot use the ctx information because we need the
9397 * pmu before we get a ctx.
9398 */
9399 event->hw.target = task;
9400 }
9401
9402 event->clock = &local_clock;
9403 if (parent_event)
9404 event->clock = parent_event->clock;
9405
9406 if (!overflow_handler && parent_event) {
9407 overflow_handler = parent_event->overflow_handler;
9408 context = parent_event->overflow_handler_context;
9409 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9410 if (overflow_handler == bpf_overflow_handler) {
9411 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9412
9413 if (IS_ERR(prog)) {
9414 err = PTR_ERR(prog);
9415 goto err_ns;
9416 }
9417 event->prog = prog;
9418 event->orig_overflow_handler =
9419 parent_event->orig_overflow_handler;
9420 }
9421 #endif
9422 }
9423
9424 if (overflow_handler) {
9425 event->overflow_handler = overflow_handler;
9426 event->overflow_handler_context = context;
9427 } else if (is_write_backward(event)){
9428 event->overflow_handler = perf_event_output_backward;
9429 event->overflow_handler_context = NULL;
9430 } else {
9431 event->overflow_handler = perf_event_output_forward;
9432 event->overflow_handler_context = NULL;
9433 }
9434
9435 perf_event__state_init(event);
9436
9437 pmu = NULL;
9438
9439 hwc = &event->hw;
9440 hwc->sample_period = attr->sample_period;
9441 if (attr->freq && attr->sample_freq)
9442 hwc->sample_period = 1;
9443 hwc->last_period = hwc->sample_period;
9444
9445 local64_set(&hwc->period_left, hwc->sample_period);
9446
9447 /*
9448 * We currently do not support PERF_SAMPLE_READ on inherited events.
9449 * See perf_output_read().
9450 */
9451 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9452 goto err_ns;
9453
9454 if (!has_branch_stack(event))
9455 event->attr.branch_sample_type = 0;
9456
9457 if (cgroup_fd != -1) {
9458 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9459 if (err)
9460 goto err_ns;
9461 }
9462
9463 pmu = perf_init_event(event);
9464 if (IS_ERR(pmu)) {
9465 err = PTR_ERR(pmu);
9466 goto err_ns;
9467 }
9468
9469 err = exclusive_event_init(event);
9470 if (err)
9471 goto err_pmu;
9472
9473 if (has_addr_filter(event)) {
9474 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9475 sizeof(unsigned long),
9476 GFP_KERNEL);
9477 if (!event->addr_filters_offs) {
9478 err = -ENOMEM;
9479 goto err_per_task;
9480 }
9481
9482 /* force hw sync on the address filters */
9483 event->addr_filters_gen = 1;
9484 }
9485
9486 if (!event->parent) {
9487 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9488 err = get_callchain_buffers(attr->sample_max_stack);
9489 if (err)
9490 goto err_addr_filters;
9491 }
9492 }
9493
9494 /* symmetric to unaccount_event() in _free_event() */
9495 account_event(event);
9496
9497 return event;
9498
9499 err_addr_filters:
9500 kfree(event->addr_filters_offs);
9501
9502 err_per_task:
9503 exclusive_event_destroy(event);
9504
9505 err_pmu:
9506 if (event->destroy)
9507 event->destroy(event);
9508 module_put(pmu->module);
9509 err_ns:
9510 if (is_cgroup_event(event))
9511 perf_detach_cgroup(event);
9512 if (event->ns)
9513 put_pid_ns(event->ns);
9514 kfree(event);
9515
9516 return ERR_PTR(err);
9517 }
9518
9519 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9520 struct perf_event_attr *attr)
9521 {
9522 u32 size;
9523 int ret;
9524
9525 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9526 return -EFAULT;
9527
9528 /*
9529 * zero the full structure, so that a short copy will be nice.
9530 */
9531 memset(attr, 0, sizeof(*attr));
9532
9533 ret = get_user(size, &uattr->size);
9534 if (ret)
9535 return ret;
9536
9537 if (size > PAGE_SIZE) /* silly large */
9538 goto err_size;
9539
9540 if (!size) /* abi compat */
9541 size = PERF_ATTR_SIZE_VER0;
9542
9543 if (size < PERF_ATTR_SIZE_VER0)
9544 goto err_size;
9545
9546 /*
9547 * If we're handed a bigger struct than we know of,
9548 * ensure all the unknown bits are 0 - i.e. new
9549 * user-space does not rely on any kernel feature
9550 * extensions we dont know about yet.
9551 */
9552 if (size > sizeof(*attr)) {
9553 unsigned char __user *addr;
9554 unsigned char __user *end;
9555 unsigned char val;
9556
9557 addr = (void __user *)uattr + sizeof(*attr);
9558 end = (void __user *)uattr + size;
9559
9560 for (; addr < end; addr++) {
9561 ret = get_user(val, addr);
9562 if (ret)
9563 return ret;
9564 if (val)
9565 goto err_size;
9566 }
9567 size = sizeof(*attr);
9568 }
9569
9570 ret = copy_from_user(attr, uattr, size);
9571 if (ret)
9572 return -EFAULT;
9573
9574 if (attr->__reserved_1)
9575 return -EINVAL;
9576
9577 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9578 return -EINVAL;
9579
9580 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9581 return -EINVAL;
9582
9583 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9584 u64 mask = attr->branch_sample_type;
9585
9586 /* only using defined bits */
9587 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9588 return -EINVAL;
9589
9590 /* at least one branch bit must be set */
9591 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9592 return -EINVAL;
9593
9594 /* propagate priv level, when not set for branch */
9595 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9596
9597 /* exclude_kernel checked on syscall entry */
9598 if (!attr->exclude_kernel)
9599 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9600
9601 if (!attr->exclude_user)
9602 mask |= PERF_SAMPLE_BRANCH_USER;
9603
9604 if (!attr->exclude_hv)
9605 mask |= PERF_SAMPLE_BRANCH_HV;
9606 /*
9607 * adjust user setting (for HW filter setup)
9608 */
9609 attr->branch_sample_type = mask;
9610 }
9611 /* privileged levels capture (kernel, hv): check permissions */
9612 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9613 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9614 return -EACCES;
9615 }
9616
9617 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9618 ret = perf_reg_validate(attr->sample_regs_user);
9619 if (ret)
9620 return ret;
9621 }
9622
9623 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9624 if (!arch_perf_have_user_stack_dump())
9625 return -ENOSYS;
9626
9627 /*
9628 * We have __u32 type for the size, but so far
9629 * we can only use __u16 as maximum due to the
9630 * __u16 sample size limit.
9631 */
9632 if (attr->sample_stack_user >= USHRT_MAX)
9633 ret = -EINVAL;
9634 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9635 ret = -EINVAL;
9636 }
9637
9638 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9639 ret = perf_reg_validate(attr->sample_regs_intr);
9640 out:
9641 return ret;
9642
9643 err_size:
9644 put_user(sizeof(*attr), &uattr->size);
9645 ret = -E2BIG;
9646 goto out;
9647 }
9648
9649 static int
9650 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9651 {
9652 struct ring_buffer *rb = NULL;
9653 int ret = -EINVAL;
9654
9655 if (!output_event)
9656 goto set;
9657
9658 /* don't allow circular references */
9659 if (event == output_event)
9660 goto out;
9661
9662 /*
9663 * Don't allow cross-cpu buffers
9664 */
9665 if (output_event->cpu != event->cpu)
9666 goto out;
9667
9668 /*
9669 * If its not a per-cpu rb, it must be the same task.
9670 */
9671 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9672 goto out;
9673
9674 /*
9675 * Mixing clocks in the same buffer is trouble you don't need.
9676 */
9677 if (output_event->clock != event->clock)
9678 goto out;
9679
9680 /*
9681 * Either writing ring buffer from beginning or from end.
9682 * Mixing is not allowed.
9683 */
9684 if (is_write_backward(output_event) != is_write_backward(event))
9685 goto out;
9686
9687 /*
9688 * If both events generate aux data, they must be on the same PMU
9689 */
9690 if (has_aux(event) && has_aux(output_event) &&
9691 event->pmu != output_event->pmu)
9692 goto out;
9693
9694 set:
9695 mutex_lock(&event->mmap_mutex);
9696 /* Can't redirect output if we've got an active mmap() */
9697 if (atomic_read(&event->mmap_count))
9698 goto unlock;
9699
9700 if (output_event) {
9701 /* get the rb we want to redirect to */
9702 rb = ring_buffer_get(output_event);
9703 if (!rb)
9704 goto unlock;
9705 }
9706
9707 ring_buffer_attach(event, rb);
9708
9709 ret = 0;
9710 unlock:
9711 mutex_unlock(&event->mmap_mutex);
9712
9713 out:
9714 return ret;
9715 }
9716
9717 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9718 {
9719 if (b < a)
9720 swap(a, b);
9721
9722 mutex_lock(a);
9723 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9724 }
9725
9726 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9727 {
9728 bool nmi_safe = false;
9729
9730 switch (clk_id) {
9731 case CLOCK_MONOTONIC:
9732 event->clock = &ktime_get_mono_fast_ns;
9733 nmi_safe = true;
9734 break;
9735
9736 case CLOCK_MONOTONIC_RAW:
9737 event->clock = &ktime_get_raw_fast_ns;
9738 nmi_safe = true;
9739 break;
9740
9741 case CLOCK_REALTIME:
9742 event->clock = &ktime_get_real_ns;
9743 break;
9744
9745 case CLOCK_BOOTTIME:
9746 event->clock = &ktime_get_boot_ns;
9747 break;
9748
9749 case CLOCK_TAI:
9750 event->clock = &ktime_get_tai_ns;
9751 break;
9752
9753 default:
9754 return -EINVAL;
9755 }
9756
9757 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9758 return -EINVAL;
9759
9760 return 0;
9761 }
9762
9763 /*
9764 * Variation on perf_event_ctx_lock_nested(), except we take two context
9765 * mutexes.
9766 */
9767 static struct perf_event_context *
9768 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9769 struct perf_event_context *ctx)
9770 {
9771 struct perf_event_context *gctx;
9772
9773 again:
9774 rcu_read_lock();
9775 gctx = READ_ONCE(group_leader->ctx);
9776 if (!atomic_inc_not_zero(&gctx->refcount)) {
9777 rcu_read_unlock();
9778 goto again;
9779 }
9780 rcu_read_unlock();
9781
9782 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9783
9784 if (group_leader->ctx != gctx) {
9785 mutex_unlock(&ctx->mutex);
9786 mutex_unlock(&gctx->mutex);
9787 put_ctx(gctx);
9788 goto again;
9789 }
9790
9791 return gctx;
9792 }
9793
9794 /**
9795 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9796 *
9797 * @attr_uptr: event_id type attributes for monitoring/sampling
9798 * @pid: target pid
9799 * @cpu: target cpu
9800 * @group_fd: group leader event fd
9801 */
9802 SYSCALL_DEFINE5(perf_event_open,
9803 struct perf_event_attr __user *, attr_uptr,
9804 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9805 {
9806 struct perf_event *group_leader = NULL, *output_event = NULL;
9807 struct perf_event *event, *sibling;
9808 struct perf_event_attr attr;
9809 struct perf_event_context *ctx, *uninitialized_var(gctx);
9810 struct file *event_file = NULL;
9811 struct fd group = {NULL, 0};
9812 struct task_struct *task = NULL;
9813 struct pmu *pmu;
9814 int event_fd;
9815 int move_group = 0;
9816 int err;
9817 int f_flags = O_RDWR;
9818 int cgroup_fd = -1;
9819
9820 /* for future expandability... */
9821 if (flags & ~PERF_FLAG_ALL)
9822 return -EINVAL;
9823
9824 err = perf_copy_attr(attr_uptr, &attr);
9825 if (err)
9826 return err;
9827
9828 if (!attr.exclude_kernel) {
9829 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9830 return -EACCES;
9831 }
9832
9833 if (attr.namespaces) {
9834 if (!capable(CAP_SYS_ADMIN))
9835 return -EACCES;
9836 }
9837
9838 if (attr.freq) {
9839 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9840 return -EINVAL;
9841 } else {
9842 if (attr.sample_period & (1ULL << 63))
9843 return -EINVAL;
9844 }
9845
9846 if (!attr.sample_max_stack)
9847 attr.sample_max_stack = sysctl_perf_event_max_stack;
9848
9849 /*
9850 * In cgroup mode, the pid argument is used to pass the fd
9851 * opened to the cgroup directory in cgroupfs. The cpu argument
9852 * designates the cpu on which to monitor threads from that
9853 * cgroup.
9854 */
9855 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9856 return -EINVAL;
9857
9858 if (flags & PERF_FLAG_FD_CLOEXEC)
9859 f_flags |= O_CLOEXEC;
9860
9861 event_fd = get_unused_fd_flags(f_flags);
9862 if (event_fd < 0)
9863 return event_fd;
9864
9865 if (group_fd != -1) {
9866 err = perf_fget_light(group_fd, &group);
9867 if (err)
9868 goto err_fd;
9869 group_leader = group.file->private_data;
9870 if (flags & PERF_FLAG_FD_OUTPUT)
9871 output_event = group_leader;
9872 if (flags & PERF_FLAG_FD_NO_GROUP)
9873 group_leader = NULL;
9874 }
9875
9876 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9877 task = find_lively_task_by_vpid(pid);
9878 if (IS_ERR(task)) {
9879 err = PTR_ERR(task);
9880 goto err_group_fd;
9881 }
9882 }
9883
9884 if (task && group_leader &&
9885 group_leader->attr.inherit != attr.inherit) {
9886 err = -EINVAL;
9887 goto err_task;
9888 }
9889
9890 if (task) {
9891 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9892 if (err)
9893 goto err_task;
9894
9895 /*
9896 * Reuse ptrace permission checks for now.
9897 *
9898 * We must hold cred_guard_mutex across this and any potential
9899 * perf_install_in_context() call for this new event to
9900 * serialize against exec() altering our credentials (and the
9901 * perf_event_exit_task() that could imply).
9902 */
9903 err = -EACCES;
9904 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9905 goto err_cred;
9906 }
9907
9908 if (flags & PERF_FLAG_PID_CGROUP)
9909 cgroup_fd = pid;
9910
9911 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9912 NULL, NULL, cgroup_fd);
9913 if (IS_ERR(event)) {
9914 err = PTR_ERR(event);
9915 goto err_cred;
9916 }
9917
9918 if (is_sampling_event(event)) {
9919 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9920 err = -EOPNOTSUPP;
9921 goto err_alloc;
9922 }
9923 }
9924
9925 /*
9926 * Special case software events and allow them to be part of
9927 * any hardware group.
9928 */
9929 pmu = event->pmu;
9930
9931 if (attr.use_clockid) {
9932 err = perf_event_set_clock(event, attr.clockid);
9933 if (err)
9934 goto err_alloc;
9935 }
9936
9937 if (pmu->task_ctx_nr == perf_sw_context)
9938 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9939
9940 if (group_leader &&
9941 (is_software_event(event) != is_software_event(group_leader))) {
9942 if (is_software_event(event)) {
9943 /*
9944 * If event and group_leader are not both a software
9945 * event, and event is, then group leader is not.
9946 *
9947 * Allow the addition of software events to !software
9948 * groups, this is safe because software events never
9949 * fail to schedule.
9950 */
9951 pmu = group_leader->pmu;
9952 } else if (is_software_event(group_leader) &&
9953 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9954 /*
9955 * In case the group is a pure software group, and we
9956 * try to add a hardware event, move the whole group to
9957 * the hardware context.
9958 */
9959 move_group = 1;
9960 }
9961 }
9962
9963 /*
9964 * Get the target context (task or percpu):
9965 */
9966 ctx = find_get_context(pmu, task, event);
9967 if (IS_ERR(ctx)) {
9968 err = PTR_ERR(ctx);
9969 goto err_alloc;
9970 }
9971
9972 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9973 err = -EBUSY;
9974 goto err_context;
9975 }
9976
9977 /*
9978 * Look up the group leader (we will attach this event to it):
9979 */
9980 if (group_leader) {
9981 err = -EINVAL;
9982
9983 /*
9984 * Do not allow a recursive hierarchy (this new sibling
9985 * becoming part of another group-sibling):
9986 */
9987 if (group_leader->group_leader != group_leader)
9988 goto err_context;
9989
9990 /* All events in a group should have the same clock */
9991 if (group_leader->clock != event->clock)
9992 goto err_context;
9993
9994 /*
9995 * Do not allow to attach to a group in a different
9996 * task or CPU context:
9997 */
9998 if (move_group) {
9999 /*
10000 * Make sure we're both on the same task, or both
10001 * per-cpu events.
10002 */
10003 if (group_leader->ctx->task != ctx->task)
10004 goto err_context;
10005
10006 /*
10007 * Make sure we're both events for the same CPU;
10008 * grouping events for different CPUs is broken; since
10009 * you can never concurrently schedule them anyhow.
10010 */
10011 if (group_leader->cpu != event->cpu)
10012 goto err_context;
10013 } else {
10014 if (group_leader->ctx != ctx)
10015 goto err_context;
10016 }
10017
10018 /*
10019 * Only a group leader can be exclusive or pinned
10020 */
10021 if (attr.exclusive || attr.pinned)
10022 goto err_context;
10023 }
10024
10025 if (output_event) {
10026 err = perf_event_set_output(event, output_event);
10027 if (err)
10028 goto err_context;
10029 }
10030
10031 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10032 f_flags);
10033 if (IS_ERR(event_file)) {
10034 err = PTR_ERR(event_file);
10035 event_file = NULL;
10036 goto err_context;
10037 }
10038
10039 if (move_group) {
10040 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10041
10042 if (gctx->task == TASK_TOMBSTONE) {
10043 err = -ESRCH;
10044 goto err_locked;
10045 }
10046
10047 /*
10048 * Check if we raced against another sys_perf_event_open() call
10049 * moving the software group underneath us.
10050 */
10051 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10052 /*
10053 * If someone moved the group out from under us, check
10054 * if this new event wound up on the same ctx, if so
10055 * its the regular !move_group case, otherwise fail.
10056 */
10057 if (gctx != ctx) {
10058 err = -EINVAL;
10059 goto err_locked;
10060 } else {
10061 perf_event_ctx_unlock(group_leader, gctx);
10062 move_group = 0;
10063 }
10064 }
10065 } else {
10066 mutex_lock(&ctx->mutex);
10067 }
10068
10069 if (ctx->task == TASK_TOMBSTONE) {
10070 err = -ESRCH;
10071 goto err_locked;
10072 }
10073
10074 if (!perf_event_validate_size(event)) {
10075 err = -E2BIG;
10076 goto err_locked;
10077 }
10078
10079 if (!task) {
10080 /*
10081 * Check if the @cpu we're creating an event for is online.
10082 *
10083 * We use the perf_cpu_context::ctx::mutex to serialize against
10084 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10085 */
10086 struct perf_cpu_context *cpuctx =
10087 container_of(ctx, struct perf_cpu_context, ctx);
10088
10089 if (!cpuctx->online) {
10090 err = -ENODEV;
10091 goto err_locked;
10092 }
10093 }
10094
10095
10096 /*
10097 * Must be under the same ctx::mutex as perf_install_in_context(),
10098 * because we need to serialize with concurrent event creation.
10099 */
10100 if (!exclusive_event_installable(event, ctx)) {
10101 /* exclusive and group stuff are assumed mutually exclusive */
10102 WARN_ON_ONCE(move_group);
10103
10104 err = -EBUSY;
10105 goto err_locked;
10106 }
10107
10108 WARN_ON_ONCE(ctx->parent_ctx);
10109
10110 /*
10111 * This is the point on no return; we cannot fail hereafter. This is
10112 * where we start modifying current state.
10113 */
10114
10115 if (move_group) {
10116 /*
10117 * See perf_event_ctx_lock() for comments on the details
10118 * of swizzling perf_event::ctx.
10119 */
10120 perf_remove_from_context(group_leader, 0);
10121 put_ctx(gctx);
10122
10123 list_for_each_entry(sibling, &group_leader->sibling_list,
10124 group_entry) {
10125 perf_remove_from_context(sibling, 0);
10126 put_ctx(gctx);
10127 }
10128
10129 /*
10130 * Wait for everybody to stop referencing the events through
10131 * the old lists, before installing it on new lists.
10132 */
10133 synchronize_rcu();
10134
10135 /*
10136 * Install the group siblings before the group leader.
10137 *
10138 * Because a group leader will try and install the entire group
10139 * (through the sibling list, which is still in-tact), we can
10140 * end up with siblings installed in the wrong context.
10141 *
10142 * By installing siblings first we NO-OP because they're not
10143 * reachable through the group lists.
10144 */
10145 list_for_each_entry(sibling, &group_leader->sibling_list,
10146 group_entry) {
10147 perf_event__state_init(sibling);
10148 perf_install_in_context(ctx, sibling, sibling->cpu);
10149 get_ctx(ctx);
10150 }
10151
10152 /*
10153 * Removing from the context ends up with disabled
10154 * event. What we want here is event in the initial
10155 * startup state, ready to be add into new context.
10156 */
10157 perf_event__state_init(group_leader);
10158 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10159 get_ctx(ctx);
10160 }
10161
10162 /*
10163 * Precalculate sample_data sizes; do while holding ctx::mutex such
10164 * that we're serialized against further additions and before
10165 * perf_install_in_context() which is the point the event is active and
10166 * can use these values.
10167 */
10168 perf_event__header_size(event);
10169 perf_event__id_header_size(event);
10170
10171 event->owner = current;
10172
10173 perf_install_in_context(ctx, event, event->cpu);
10174 perf_unpin_context(ctx);
10175
10176 if (move_group)
10177 perf_event_ctx_unlock(group_leader, gctx);
10178 mutex_unlock(&ctx->mutex);
10179
10180 if (task) {
10181 mutex_unlock(&task->signal->cred_guard_mutex);
10182 put_task_struct(task);
10183 }
10184
10185 mutex_lock(&current->perf_event_mutex);
10186 list_add_tail(&event->owner_entry, &current->perf_event_list);
10187 mutex_unlock(&current->perf_event_mutex);
10188
10189 /*
10190 * Drop the reference on the group_event after placing the
10191 * new event on the sibling_list. This ensures destruction
10192 * of the group leader will find the pointer to itself in
10193 * perf_group_detach().
10194 */
10195 fdput(group);
10196 fd_install(event_fd, event_file);
10197 return event_fd;
10198
10199 err_locked:
10200 if (move_group)
10201 perf_event_ctx_unlock(group_leader, gctx);
10202 mutex_unlock(&ctx->mutex);
10203 /* err_file: */
10204 fput(event_file);
10205 err_context:
10206 perf_unpin_context(ctx);
10207 put_ctx(ctx);
10208 err_alloc:
10209 /*
10210 * If event_file is set, the fput() above will have called ->release()
10211 * and that will take care of freeing the event.
10212 */
10213 if (!event_file)
10214 free_event(event);
10215 err_cred:
10216 if (task)
10217 mutex_unlock(&task->signal->cred_guard_mutex);
10218 err_task:
10219 if (task)
10220 put_task_struct(task);
10221 err_group_fd:
10222 fdput(group);
10223 err_fd:
10224 put_unused_fd(event_fd);
10225 return err;
10226 }
10227
10228 /**
10229 * perf_event_create_kernel_counter
10230 *
10231 * @attr: attributes of the counter to create
10232 * @cpu: cpu in which the counter is bound
10233 * @task: task to profile (NULL for percpu)
10234 */
10235 struct perf_event *
10236 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10237 struct task_struct *task,
10238 perf_overflow_handler_t overflow_handler,
10239 void *context)
10240 {
10241 struct perf_event_context *ctx;
10242 struct perf_event *event;
10243 int err;
10244
10245 /*
10246 * Get the target context (task or percpu):
10247 */
10248
10249 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10250 overflow_handler, context, -1);
10251 if (IS_ERR(event)) {
10252 err = PTR_ERR(event);
10253 goto err;
10254 }
10255
10256 /* Mark owner so we could distinguish it from user events. */
10257 event->owner = TASK_TOMBSTONE;
10258
10259 ctx = find_get_context(event->pmu, task, event);
10260 if (IS_ERR(ctx)) {
10261 err = PTR_ERR(ctx);
10262 goto err_free;
10263 }
10264
10265 WARN_ON_ONCE(ctx->parent_ctx);
10266 mutex_lock(&ctx->mutex);
10267 if (ctx->task == TASK_TOMBSTONE) {
10268 err = -ESRCH;
10269 goto err_unlock;
10270 }
10271
10272 if (!task) {
10273 /*
10274 * Check if the @cpu we're creating an event for is online.
10275 *
10276 * We use the perf_cpu_context::ctx::mutex to serialize against
10277 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10278 */
10279 struct perf_cpu_context *cpuctx =
10280 container_of(ctx, struct perf_cpu_context, ctx);
10281 if (!cpuctx->online) {
10282 err = -ENODEV;
10283 goto err_unlock;
10284 }
10285 }
10286
10287 if (!exclusive_event_installable(event, ctx)) {
10288 err = -EBUSY;
10289 goto err_unlock;
10290 }
10291
10292 perf_install_in_context(ctx, event, cpu);
10293 perf_unpin_context(ctx);
10294 mutex_unlock(&ctx->mutex);
10295
10296 return event;
10297
10298 err_unlock:
10299 mutex_unlock(&ctx->mutex);
10300 perf_unpin_context(ctx);
10301 put_ctx(ctx);
10302 err_free:
10303 free_event(event);
10304 err:
10305 return ERR_PTR(err);
10306 }
10307 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10308
10309 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10310 {
10311 struct perf_event_context *src_ctx;
10312 struct perf_event_context *dst_ctx;
10313 struct perf_event *event, *tmp;
10314 LIST_HEAD(events);
10315
10316 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10317 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10318
10319 /*
10320 * See perf_event_ctx_lock() for comments on the details
10321 * of swizzling perf_event::ctx.
10322 */
10323 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10324 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10325 event_entry) {
10326 perf_remove_from_context(event, 0);
10327 unaccount_event_cpu(event, src_cpu);
10328 put_ctx(src_ctx);
10329 list_add(&event->migrate_entry, &events);
10330 }
10331
10332 /*
10333 * Wait for the events to quiesce before re-instating them.
10334 */
10335 synchronize_rcu();
10336
10337 /*
10338 * Re-instate events in 2 passes.
10339 *
10340 * Skip over group leaders and only install siblings on this first
10341 * pass, siblings will not get enabled without a leader, however a
10342 * leader will enable its siblings, even if those are still on the old
10343 * context.
10344 */
10345 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10346 if (event->group_leader == event)
10347 continue;
10348
10349 list_del(&event->migrate_entry);
10350 if (event->state >= PERF_EVENT_STATE_OFF)
10351 event->state = PERF_EVENT_STATE_INACTIVE;
10352 account_event_cpu(event, dst_cpu);
10353 perf_install_in_context(dst_ctx, event, dst_cpu);
10354 get_ctx(dst_ctx);
10355 }
10356
10357 /*
10358 * Once all the siblings are setup properly, install the group leaders
10359 * to make it go.
10360 */
10361 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10362 list_del(&event->migrate_entry);
10363 if (event->state >= PERF_EVENT_STATE_OFF)
10364 event->state = PERF_EVENT_STATE_INACTIVE;
10365 account_event_cpu(event, dst_cpu);
10366 perf_install_in_context(dst_ctx, event, dst_cpu);
10367 get_ctx(dst_ctx);
10368 }
10369 mutex_unlock(&dst_ctx->mutex);
10370 mutex_unlock(&src_ctx->mutex);
10371 }
10372 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10373
10374 static void sync_child_event(struct perf_event *child_event,
10375 struct task_struct *child)
10376 {
10377 struct perf_event *parent_event = child_event->parent;
10378 u64 child_val;
10379
10380 if (child_event->attr.inherit_stat)
10381 perf_event_read_event(child_event, child);
10382
10383 child_val = perf_event_count(child_event);
10384
10385 /*
10386 * Add back the child's count to the parent's count:
10387 */
10388 atomic64_add(child_val, &parent_event->child_count);
10389 atomic64_add(child_event->total_time_enabled,
10390 &parent_event->child_total_time_enabled);
10391 atomic64_add(child_event->total_time_running,
10392 &parent_event->child_total_time_running);
10393 }
10394
10395 static void
10396 perf_event_exit_event(struct perf_event *child_event,
10397 struct perf_event_context *child_ctx,
10398 struct task_struct *child)
10399 {
10400 struct perf_event *parent_event = child_event->parent;
10401
10402 /*
10403 * Do not destroy the 'original' grouping; because of the context
10404 * switch optimization the original events could've ended up in a
10405 * random child task.
10406 *
10407 * If we were to destroy the original group, all group related
10408 * operations would cease to function properly after this random
10409 * child dies.
10410 *
10411 * Do destroy all inherited groups, we don't care about those
10412 * and being thorough is better.
10413 */
10414 raw_spin_lock_irq(&child_ctx->lock);
10415 WARN_ON_ONCE(child_ctx->is_active);
10416
10417 if (parent_event)
10418 perf_group_detach(child_event);
10419 list_del_event(child_event, child_ctx);
10420 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10421 raw_spin_unlock_irq(&child_ctx->lock);
10422
10423 /*
10424 * Parent events are governed by their filedesc, retain them.
10425 */
10426 if (!parent_event) {
10427 perf_event_wakeup(child_event);
10428 return;
10429 }
10430 /*
10431 * Child events can be cleaned up.
10432 */
10433
10434 sync_child_event(child_event, child);
10435
10436 /*
10437 * Remove this event from the parent's list
10438 */
10439 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10440 mutex_lock(&parent_event->child_mutex);
10441 list_del_init(&child_event->child_list);
10442 mutex_unlock(&parent_event->child_mutex);
10443
10444 /*
10445 * Kick perf_poll() for is_event_hup().
10446 */
10447 perf_event_wakeup(parent_event);
10448 free_event(child_event);
10449 put_event(parent_event);
10450 }
10451
10452 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10453 {
10454 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10455 struct perf_event *child_event, *next;
10456
10457 WARN_ON_ONCE(child != current);
10458
10459 child_ctx = perf_pin_task_context(child, ctxn);
10460 if (!child_ctx)
10461 return;
10462
10463 /*
10464 * In order to reduce the amount of tricky in ctx tear-down, we hold
10465 * ctx::mutex over the entire thing. This serializes against almost
10466 * everything that wants to access the ctx.
10467 *
10468 * The exception is sys_perf_event_open() /
10469 * perf_event_create_kernel_count() which does find_get_context()
10470 * without ctx::mutex (it cannot because of the move_group double mutex
10471 * lock thing). See the comments in perf_install_in_context().
10472 */
10473 mutex_lock(&child_ctx->mutex);
10474
10475 /*
10476 * In a single ctx::lock section, de-schedule the events and detach the
10477 * context from the task such that we cannot ever get it scheduled back
10478 * in.
10479 */
10480 raw_spin_lock_irq(&child_ctx->lock);
10481 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10482
10483 /*
10484 * Now that the context is inactive, destroy the task <-> ctx relation
10485 * and mark the context dead.
10486 */
10487 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10488 put_ctx(child_ctx); /* cannot be last */
10489 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10490 put_task_struct(current); /* cannot be last */
10491
10492 clone_ctx = unclone_ctx(child_ctx);
10493 raw_spin_unlock_irq(&child_ctx->lock);
10494
10495 if (clone_ctx)
10496 put_ctx(clone_ctx);
10497
10498 /*
10499 * Report the task dead after unscheduling the events so that we
10500 * won't get any samples after PERF_RECORD_EXIT. We can however still
10501 * get a few PERF_RECORD_READ events.
10502 */
10503 perf_event_task(child, child_ctx, 0);
10504
10505 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10506 perf_event_exit_event(child_event, child_ctx, child);
10507
10508 mutex_unlock(&child_ctx->mutex);
10509
10510 put_ctx(child_ctx);
10511 }
10512
10513 /*
10514 * When a child task exits, feed back event values to parent events.
10515 *
10516 * Can be called with cred_guard_mutex held when called from
10517 * install_exec_creds().
10518 */
10519 void perf_event_exit_task(struct task_struct *child)
10520 {
10521 struct perf_event *event, *tmp;
10522 int ctxn;
10523
10524 mutex_lock(&child->perf_event_mutex);
10525 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10526 owner_entry) {
10527 list_del_init(&event->owner_entry);
10528
10529 /*
10530 * Ensure the list deletion is visible before we clear
10531 * the owner, closes a race against perf_release() where
10532 * we need to serialize on the owner->perf_event_mutex.
10533 */
10534 smp_store_release(&event->owner, NULL);
10535 }
10536 mutex_unlock(&child->perf_event_mutex);
10537
10538 for_each_task_context_nr(ctxn)
10539 perf_event_exit_task_context(child, ctxn);
10540
10541 /*
10542 * The perf_event_exit_task_context calls perf_event_task
10543 * with child's task_ctx, which generates EXIT events for
10544 * child contexts and sets child->perf_event_ctxp[] to NULL.
10545 * At this point we need to send EXIT events to cpu contexts.
10546 */
10547 perf_event_task(child, NULL, 0);
10548 }
10549
10550 static void perf_free_event(struct perf_event *event,
10551 struct perf_event_context *ctx)
10552 {
10553 struct perf_event *parent = event->parent;
10554
10555 if (WARN_ON_ONCE(!parent))
10556 return;
10557
10558 mutex_lock(&parent->child_mutex);
10559 list_del_init(&event->child_list);
10560 mutex_unlock(&parent->child_mutex);
10561
10562 put_event(parent);
10563
10564 raw_spin_lock_irq(&ctx->lock);
10565 perf_group_detach(event);
10566 list_del_event(event, ctx);
10567 raw_spin_unlock_irq(&ctx->lock);
10568 free_event(event);
10569 }
10570
10571 /*
10572 * Free an unexposed, unused context as created by inheritance by
10573 * perf_event_init_task below, used by fork() in case of fail.
10574 *
10575 * Not all locks are strictly required, but take them anyway to be nice and
10576 * help out with the lockdep assertions.
10577 */
10578 void perf_event_free_task(struct task_struct *task)
10579 {
10580 struct perf_event_context *ctx;
10581 struct perf_event *event, *tmp;
10582 int ctxn;
10583
10584 for_each_task_context_nr(ctxn) {
10585 ctx = task->perf_event_ctxp[ctxn];
10586 if (!ctx)
10587 continue;
10588
10589 mutex_lock(&ctx->mutex);
10590 raw_spin_lock_irq(&ctx->lock);
10591 /*
10592 * Destroy the task <-> ctx relation and mark the context dead.
10593 *
10594 * This is important because even though the task hasn't been
10595 * exposed yet the context has been (through child_list).
10596 */
10597 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10598 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10599 put_task_struct(task); /* cannot be last */
10600 raw_spin_unlock_irq(&ctx->lock);
10601
10602 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10603 perf_free_event(event, ctx);
10604
10605 mutex_unlock(&ctx->mutex);
10606 put_ctx(ctx);
10607 }
10608 }
10609
10610 void perf_event_delayed_put(struct task_struct *task)
10611 {
10612 int ctxn;
10613
10614 for_each_task_context_nr(ctxn)
10615 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10616 }
10617
10618 struct file *perf_event_get(unsigned int fd)
10619 {
10620 struct file *file;
10621
10622 file = fget_raw(fd);
10623 if (!file)
10624 return ERR_PTR(-EBADF);
10625
10626 if (file->f_op != &perf_fops) {
10627 fput(file);
10628 return ERR_PTR(-EBADF);
10629 }
10630
10631 return file;
10632 }
10633
10634 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10635 {
10636 if (!event)
10637 return ERR_PTR(-EINVAL);
10638
10639 return &event->attr;
10640 }
10641
10642 /*
10643 * Inherit a event from parent task to child task.
10644 *
10645 * Returns:
10646 * - valid pointer on success
10647 * - NULL for orphaned events
10648 * - IS_ERR() on error
10649 */
10650 static struct perf_event *
10651 inherit_event(struct perf_event *parent_event,
10652 struct task_struct *parent,
10653 struct perf_event_context *parent_ctx,
10654 struct task_struct *child,
10655 struct perf_event *group_leader,
10656 struct perf_event_context *child_ctx)
10657 {
10658 enum perf_event_active_state parent_state = parent_event->state;
10659 struct perf_event *child_event;
10660 unsigned long flags;
10661
10662 /*
10663 * Instead of creating recursive hierarchies of events,
10664 * we link inherited events back to the original parent,
10665 * which has a filp for sure, which we use as the reference
10666 * count:
10667 */
10668 if (parent_event->parent)
10669 parent_event = parent_event->parent;
10670
10671 child_event = perf_event_alloc(&parent_event->attr,
10672 parent_event->cpu,
10673 child,
10674 group_leader, parent_event,
10675 NULL, NULL, -1);
10676 if (IS_ERR(child_event))
10677 return child_event;
10678
10679 /*
10680 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10681 * must be under the same lock in order to serialize against
10682 * perf_event_release_kernel(), such that either we must observe
10683 * is_orphaned_event() or they will observe us on the child_list.
10684 */
10685 mutex_lock(&parent_event->child_mutex);
10686 if (is_orphaned_event(parent_event) ||
10687 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10688 mutex_unlock(&parent_event->child_mutex);
10689 free_event(child_event);
10690 return NULL;
10691 }
10692
10693 get_ctx(child_ctx);
10694
10695 /*
10696 * Make the child state follow the state of the parent event,
10697 * not its attr.disabled bit. We hold the parent's mutex,
10698 * so we won't race with perf_event_{en, dis}able_family.
10699 */
10700 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10701 child_event->state = PERF_EVENT_STATE_INACTIVE;
10702 else
10703 child_event->state = PERF_EVENT_STATE_OFF;
10704
10705 if (parent_event->attr.freq) {
10706 u64 sample_period = parent_event->hw.sample_period;
10707 struct hw_perf_event *hwc = &child_event->hw;
10708
10709 hwc->sample_period = sample_period;
10710 hwc->last_period = sample_period;
10711
10712 local64_set(&hwc->period_left, sample_period);
10713 }
10714
10715 child_event->ctx = child_ctx;
10716 child_event->overflow_handler = parent_event->overflow_handler;
10717 child_event->overflow_handler_context
10718 = parent_event->overflow_handler_context;
10719
10720 /*
10721 * Precalculate sample_data sizes
10722 */
10723 perf_event__header_size(child_event);
10724 perf_event__id_header_size(child_event);
10725
10726 /*
10727 * Link it up in the child's context:
10728 */
10729 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10730 add_event_to_ctx(child_event, child_ctx);
10731 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10732
10733 /*
10734 * Link this into the parent event's child list
10735 */
10736 list_add_tail(&child_event->child_list, &parent_event->child_list);
10737 mutex_unlock(&parent_event->child_mutex);
10738
10739 return child_event;
10740 }
10741
10742 /*
10743 * Inherits an event group.
10744 *
10745 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10746 * This matches with perf_event_release_kernel() removing all child events.
10747 *
10748 * Returns:
10749 * - 0 on success
10750 * - <0 on error
10751 */
10752 static int inherit_group(struct perf_event *parent_event,
10753 struct task_struct *parent,
10754 struct perf_event_context *parent_ctx,
10755 struct task_struct *child,
10756 struct perf_event_context *child_ctx)
10757 {
10758 struct perf_event *leader;
10759 struct perf_event *sub;
10760 struct perf_event *child_ctr;
10761
10762 leader = inherit_event(parent_event, parent, parent_ctx,
10763 child, NULL, child_ctx);
10764 if (IS_ERR(leader))
10765 return PTR_ERR(leader);
10766 /*
10767 * @leader can be NULL here because of is_orphaned_event(). In this
10768 * case inherit_event() will create individual events, similar to what
10769 * perf_group_detach() would do anyway.
10770 */
10771 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10772 child_ctr = inherit_event(sub, parent, parent_ctx,
10773 child, leader, child_ctx);
10774 if (IS_ERR(child_ctr))
10775 return PTR_ERR(child_ctr);
10776 }
10777 return 0;
10778 }
10779
10780 /*
10781 * Creates the child task context and tries to inherit the event-group.
10782 *
10783 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10784 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10785 * consistent with perf_event_release_kernel() removing all child events.
10786 *
10787 * Returns:
10788 * - 0 on success
10789 * - <0 on error
10790 */
10791 static int
10792 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10793 struct perf_event_context *parent_ctx,
10794 struct task_struct *child, int ctxn,
10795 int *inherited_all)
10796 {
10797 int ret;
10798 struct perf_event_context *child_ctx;
10799
10800 if (!event->attr.inherit) {
10801 *inherited_all = 0;
10802 return 0;
10803 }
10804
10805 child_ctx = child->perf_event_ctxp[ctxn];
10806 if (!child_ctx) {
10807 /*
10808 * This is executed from the parent task context, so
10809 * inherit events that have been marked for cloning.
10810 * First allocate and initialize a context for the
10811 * child.
10812 */
10813 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10814 if (!child_ctx)
10815 return -ENOMEM;
10816
10817 child->perf_event_ctxp[ctxn] = child_ctx;
10818 }
10819
10820 ret = inherit_group(event, parent, parent_ctx,
10821 child, child_ctx);
10822
10823 if (ret)
10824 *inherited_all = 0;
10825
10826 return ret;
10827 }
10828
10829 /*
10830 * Initialize the perf_event context in task_struct
10831 */
10832 static int perf_event_init_context(struct task_struct *child, int ctxn)
10833 {
10834 struct perf_event_context *child_ctx, *parent_ctx;
10835 struct perf_event_context *cloned_ctx;
10836 struct perf_event *event;
10837 struct task_struct *parent = current;
10838 int inherited_all = 1;
10839 unsigned long flags;
10840 int ret = 0;
10841
10842 if (likely(!parent->perf_event_ctxp[ctxn]))
10843 return 0;
10844
10845 /*
10846 * If the parent's context is a clone, pin it so it won't get
10847 * swapped under us.
10848 */
10849 parent_ctx = perf_pin_task_context(parent, ctxn);
10850 if (!parent_ctx)
10851 return 0;
10852
10853 /*
10854 * No need to check if parent_ctx != NULL here; since we saw
10855 * it non-NULL earlier, the only reason for it to become NULL
10856 * is if we exit, and since we're currently in the middle of
10857 * a fork we can't be exiting at the same time.
10858 */
10859
10860 /*
10861 * Lock the parent list. No need to lock the child - not PID
10862 * hashed yet and not running, so nobody can access it.
10863 */
10864 mutex_lock(&parent_ctx->mutex);
10865
10866 /*
10867 * We dont have to disable NMIs - we are only looking at
10868 * the list, not manipulating it:
10869 */
10870 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10871 ret = inherit_task_group(event, parent, parent_ctx,
10872 child, ctxn, &inherited_all);
10873 if (ret)
10874 goto out_unlock;
10875 }
10876
10877 /*
10878 * We can't hold ctx->lock when iterating the ->flexible_group list due
10879 * to allocations, but we need to prevent rotation because
10880 * rotate_ctx() will change the list from interrupt context.
10881 */
10882 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10883 parent_ctx->rotate_disable = 1;
10884 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10885
10886 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10887 ret = inherit_task_group(event, parent, parent_ctx,
10888 child, ctxn, &inherited_all);
10889 if (ret)
10890 goto out_unlock;
10891 }
10892
10893 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10894 parent_ctx->rotate_disable = 0;
10895
10896 child_ctx = child->perf_event_ctxp[ctxn];
10897
10898 if (child_ctx && inherited_all) {
10899 /*
10900 * Mark the child context as a clone of the parent
10901 * context, or of whatever the parent is a clone of.
10902 *
10903 * Note that if the parent is a clone, the holding of
10904 * parent_ctx->lock avoids it from being uncloned.
10905 */
10906 cloned_ctx = parent_ctx->parent_ctx;
10907 if (cloned_ctx) {
10908 child_ctx->parent_ctx = cloned_ctx;
10909 child_ctx->parent_gen = parent_ctx->parent_gen;
10910 } else {
10911 child_ctx->parent_ctx = parent_ctx;
10912 child_ctx->parent_gen = parent_ctx->generation;
10913 }
10914 get_ctx(child_ctx->parent_ctx);
10915 }
10916
10917 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10918 out_unlock:
10919 mutex_unlock(&parent_ctx->mutex);
10920
10921 perf_unpin_context(parent_ctx);
10922 put_ctx(parent_ctx);
10923
10924 return ret;
10925 }
10926
10927 /*
10928 * Initialize the perf_event context in task_struct
10929 */
10930 int perf_event_init_task(struct task_struct *child)
10931 {
10932 int ctxn, ret;
10933
10934 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10935 mutex_init(&child->perf_event_mutex);
10936 INIT_LIST_HEAD(&child->perf_event_list);
10937
10938 for_each_task_context_nr(ctxn) {
10939 ret = perf_event_init_context(child, ctxn);
10940 if (ret) {
10941 perf_event_free_task(child);
10942 return ret;
10943 }
10944 }
10945
10946 return 0;
10947 }
10948
10949 static void __init perf_event_init_all_cpus(void)
10950 {
10951 struct swevent_htable *swhash;
10952 int cpu;
10953
10954 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
10955
10956 for_each_possible_cpu(cpu) {
10957 swhash = &per_cpu(swevent_htable, cpu);
10958 mutex_init(&swhash->hlist_mutex);
10959 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10960
10961 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10962 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10963
10964 #ifdef CONFIG_CGROUP_PERF
10965 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10966 #endif
10967 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10968 }
10969 }
10970
10971 void perf_swevent_init_cpu(unsigned int cpu)
10972 {
10973 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10974
10975 mutex_lock(&swhash->hlist_mutex);
10976 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10977 struct swevent_hlist *hlist;
10978
10979 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10980 WARN_ON(!hlist);
10981 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10982 }
10983 mutex_unlock(&swhash->hlist_mutex);
10984 }
10985
10986 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10987 static void __perf_event_exit_context(void *__info)
10988 {
10989 struct perf_event_context *ctx = __info;
10990 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10991 struct perf_event *event;
10992
10993 raw_spin_lock(&ctx->lock);
10994 list_for_each_entry(event, &ctx->event_list, event_entry)
10995 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10996 raw_spin_unlock(&ctx->lock);
10997 }
10998
10999 static void perf_event_exit_cpu_context(int cpu)
11000 {
11001 struct perf_cpu_context *cpuctx;
11002 struct perf_event_context *ctx;
11003 struct pmu *pmu;
11004
11005 mutex_lock(&pmus_lock);
11006 list_for_each_entry(pmu, &pmus, entry) {
11007 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11008 ctx = &cpuctx->ctx;
11009
11010 mutex_lock(&ctx->mutex);
11011 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11012 cpuctx->online = 0;
11013 mutex_unlock(&ctx->mutex);
11014 }
11015 cpumask_clear_cpu(cpu, perf_online_mask);
11016 mutex_unlock(&pmus_lock);
11017 }
11018 #else
11019
11020 static void perf_event_exit_cpu_context(int cpu) { }
11021
11022 #endif
11023
11024 int perf_event_init_cpu(unsigned int cpu)
11025 {
11026 struct perf_cpu_context *cpuctx;
11027 struct perf_event_context *ctx;
11028 struct pmu *pmu;
11029
11030 perf_swevent_init_cpu(cpu);
11031
11032 mutex_lock(&pmus_lock);
11033 cpumask_set_cpu(cpu, perf_online_mask);
11034 list_for_each_entry(pmu, &pmus, entry) {
11035 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11036 ctx = &cpuctx->ctx;
11037
11038 mutex_lock(&ctx->mutex);
11039 cpuctx->online = 1;
11040 mutex_unlock(&ctx->mutex);
11041 }
11042 mutex_unlock(&pmus_lock);
11043
11044 return 0;
11045 }
11046
11047 int perf_event_exit_cpu(unsigned int cpu)
11048 {
11049 perf_event_exit_cpu_context(cpu);
11050 return 0;
11051 }
11052
11053 static int
11054 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11055 {
11056 int cpu;
11057
11058 for_each_online_cpu(cpu)
11059 perf_event_exit_cpu(cpu);
11060
11061 return NOTIFY_OK;
11062 }
11063
11064 /*
11065 * Run the perf reboot notifier at the very last possible moment so that
11066 * the generic watchdog code runs as long as possible.
11067 */
11068 static struct notifier_block perf_reboot_notifier = {
11069 .notifier_call = perf_reboot,
11070 .priority = INT_MIN,
11071 };
11072
11073 void __init perf_event_init(void)
11074 {
11075 int ret;
11076
11077 idr_init(&pmu_idr);
11078
11079 perf_event_init_all_cpus();
11080 init_srcu_struct(&pmus_srcu);
11081 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11082 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11083 perf_pmu_register(&perf_task_clock, NULL, -1);
11084 perf_tp_register();
11085 perf_event_init_cpu(smp_processor_id());
11086 register_reboot_notifier(&perf_reboot_notifier);
11087
11088 ret = init_hw_breakpoint();
11089 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11090
11091 /*
11092 * Build time assertion that we keep the data_head at the intended
11093 * location. IOW, validation we got the __reserved[] size right.
11094 */
11095 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11096 != 1024);
11097 }
11098
11099 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11100 char *page)
11101 {
11102 struct perf_pmu_events_attr *pmu_attr =
11103 container_of(attr, struct perf_pmu_events_attr, attr);
11104
11105 if (pmu_attr->event_str)
11106 return sprintf(page, "%s\n", pmu_attr->event_str);
11107
11108 return 0;
11109 }
11110 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11111
11112 static int __init perf_event_sysfs_init(void)
11113 {
11114 struct pmu *pmu;
11115 int ret;
11116
11117 mutex_lock(&pmus_lock);
11118
11119 ret = bus_register(&pmu_bus);
11120 if (ret)
11121 goto unlock;
11122
11123 list_for_each_entry(pmu, &pmus, entry) {
11124 if (!pmu->name || pmu->type < 0)
11125 continue;
11126
11127 ret = pmu_dev_alloc(pmu);
11128 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11129 }
11130 pmu_bus_running = 1;
11131 ret = 0;
11132
11133 unlock:
11134 mutex_unlock(&pmus_lock);
11135
11136 return ret;
11137 }
11138 device_initcall(perf_event_sysfs_init);
11139
11140 #ifdef CONFIG_CGROUP_PERF
11141 static struct cgroup_subsys_state *
11142 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11143 {
11144 struct perf_cgroup *jc;
11145
11146 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11147 if (!jc)
11148 return ERR_PTR(-ENOMEM);
11149
11150 jc->info = alloc_percpu(struct perf_cgroup_info);
11151 if (!jc->info) {
11152 kfree(jc);
11153 return ERR_PTR(-ENOMEM);
11154 }
11155
11156 return &jc->css;
11157 }
11158
11159 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11160 {
11161 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11162
11163 free_percpu(jc->info);
11164 kfree(jc);
11165 }
11166
11167 static int __perf_cgroup_move(void *info)
11168 {
11169 struct task_struct *task = info;
11170 rcu_read_lock();
11171 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11172 rcu_read_unlock();
11173 return 0;
11174 }
11175
11176 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11177 {
11178 struct task_struct *task;
11179 struct cgroup_subsys_state *css;
11180
11181 cgroup_taskset_for_each(task, css, tset)
11182 task_function_call(task, __perf_cgroup_move, task);
11183 }
11184
11185 struct cgroup_subsys perf_event_cgrp_subsys = {
11186 .css_alloc = perf_cgroup_css_alloc,
11187 .css_free = perf_cgroup_css_free,
11188 .attach = perf_cgroup_attach,
11189 /*
11190 * Implicitly enable on dfl hierarchy so that perf events can
11191 * always be filtered by cgroup2 path as long as perf_event
11192 * controller is not mounted on a legacy hierarchy.
11193 */
11194 .implicit_on_dfl = true,
11195 };
11196 #endif /* CONFIG_CGROUP_PERF */