]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/rtmutex.h>
22 #include <linux/init.h>
23 #include <linux/unistd.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/completion.h>
27 #include <linux/personality.h>
28 #include <linux/mempolicy.h>
29 #include <linux/sem.h>
30 #include <linux/file.h>
31 #include <linux/fdtable.h>
32 #include <linux/iocontext.h>
33 #include <linux/key.h>
34 #include <linux/binfmts.h>
35 #include <linux/mman.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/fs.h>
38 #include <linux/mm.h>
39 #include <linux/vmacache.h>
40 #include <linux/nsproxy.h>
41 #include <linux/capability.h>
42 #include <linux/cpu.h>
43 #include <linux/cgroup.h>
44 #include <linux/security.h>
45 #include <linux/hugetlb.h>
46 #include <linux/seccomp.h>
47 #include <linux/swap.h>
48 #include <linux/syscalls.h>
49 #include <linux/jiffies.h>
50 #include <linux/futex.h>
51 #include <linux/compat.h>
52 #include <linux/kthread.h>
53 #include <linux/task_io_accounting_ops.h>
54 #include <linux/rcupdate.h>
55 #include <linux/ptrace.h>
56 #include <linux/mount.h>
57 #include <linux/audit.h>
58 #include <linux/memcontrol.h>
59 #include <linux/ftrace.h>
60 #include <linux/proc_fs.h>
61 #include <linux/profile.h>
62 #include <linux/rmap.h>
63 #include <linux/ksm.h>
64 #include <linux/acct.h>
65 #include <linux/userfaultfd_k.h>
66 #include <linux/tsacct_kern.h>
67 #include <linux/cn_proc.h>
68 #include <linux/freezer.h>
69 #include <linux/delayacct.h>
70 #include <linux/taskstats_kern.h>
71 #include <linux/random.h>
72 #include <linux/tty.h>
73 #include <linux/blkdev.h>
74 #include <linux/fs_struct.h>
75 #include <linux/magic.h>
76 #include <linux/perf_event.h>
77 #include <linux/posix-timers.h>
78 #include <linux/user-return-notifier.h>
79 #include <linux/oom.h>
80 #include <linux/khugepaged.h>
81 #include <linux/signalfd.h>
82 #include <linux/uprobes.h>
83 #include <linux/aio.h>
84 #include <linux/compiler.h>
85 #include <linux/sysctl.h>
86 #include <linux/kcov.h>
87
88 #include <asm/pgtable.h>
89 #include <asm/pgalloc.h>
90 #include <linux/uaccess.h>
91 #include <asm/mmu_context.h>
92 #include <asm/cacheflush.h>
93 #include <asm/tlbflush.h>
94
95 #include <trace/events/sched.h>
96
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/task.h>
99
100 /*
101 * Minimum number of threads to boot the kernel
102 */
103 #define MIN_THREADS 20
104
105 /*
106 * Maximum number of threads
107 */
108 #define MAX_THREADS FUTEX_TID_MASK
109
110 /*
111 * Protected counters by write_lock_irq(&tasklist_lock)
112 */
113 unsigned long total_forks; /* Handle normal Linux uptimes. */
114 int nr_threads; /* The idle threads do not count.. */
115
116 int max_threads; /* tunable limit on nr_threads */
117
118 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
119
120 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
121
122 #ifdef CONFIG_PROVE_RCU
123 int lockdep_tasklist_lock_is_held(void)
124 {
125 return lockdep_is_held(&tasklist_lock);
126 }
127 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
128 #endif /* #ifdef CONFIG_PROVE_RCU */
129
130 int nr_processes(void)
131 {
132 int cpu;
133 int total = 0;
134
135 for_each_possible_cpu(cpu)
136 total += per_cpu(process_counts, cpu);
137
138 return total;
139 }
140
141 void __weak arch_release_task_struct(struct task_struct *tsk)
142 {
143 }
144
145 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
146 static struct kmem_cache *task_struct_cachep;
147
148 static inline struct task_struct *alloc_task_struct_node(int node)
149 {
150 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
151 }
152
153 static inline void free_task_struct(struct task_struct *tsk)
154 {
155 kmem_cache_free(task_struct_cachep, tsk);
156 }
157 #endif
158
159 void __weak arch_release_thread_stack(unsigned long *stack)
160 {
161 }
162
163 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
164
165 /*
166 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
167 * kmemcache based allocator.
168 */
169 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
170
171 #ifdef CONFIG_VMAP_STACK
172 /*
173 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
174 * flush. Try to minimize the number of calls by caching stacks.
175 */
176 #define NR_CACHED_STACKS 2
177 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
178 #endif
179
180 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
181 {
182 #ifdef CONFIG_VMAP_STACK
183 void *stack;
184 int i;
185
186 local_irq_disable();
187 for (i = 0; i < NR_CACHED_STACKS; i++) {
188 struct vm_struct *s = this_cpu_read(cached_stacks[i]);
189
190 if (!s)
191 continue;
192 this_cpu_write(cached_stacks[i], NULL);
193
194 tsk->stack_vm_area = s;
195 local_irq_enable();
196 return s->addr;
197 }
198 local_irq_enable();
199
200 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
201 VMALLOC_START, VMALLOC_END,
202 THREADINFO_GFP | __GFP_HIGHMEM,
203 PAGE_KERNEL,
204 0, node, __builtin_return_address(0));
205
206 /*
207 * We can't call find_vm_area() in interrupt context, and
208 * free_thread_stack() can be called in interrupt context,
209 * so cache the vm_struct.
210 */
211 if (stack)
212 tsk->stack_vm_area = find_vm_area(stack);
213 return stack;
214 #else
215 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
216 THREAD_SIZE_ORDER);
217
218 return page ? page_address(page) : NULL;
219 #endif
220 }
221
222 static inline void free_thread_stack(struct task_struct *tsk)
223 {
224 #ifdef CONFIG_VMAP_STACK
225 if (task_stack_vm_area(tsk)) {
226 unsigned long flags;
227 int i;
228
229 local_irq_save(flags);
230 for (i = 0; i < NR_CACHED_STACKS; i++) {
231 if (this_cpu_read(cached_stacks[i]))
232 continue;
233
234 this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
235 local_irq_restore(flags);
236 return;
237 }
238 local_irq_restore(flags);
239
240 vfree_atomic(tsk->stack);
241 return;
242 }
243 #endif
244
245 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
246 }
247 # else
248 static struct kmem_cache *thread_stack_cache;
249
250 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
251 int node)
252 {
253 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
254 }
255
256 static void free_thread_stack(struct task_struct *tsk)
257 {
258 kmem_cache_free(thread_stack_cache, tsk->stack);
259 }
260
261 void thread_stack_cache_init(void)
262 {
263 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
264 THREAD_SIZE, 0, NULL);
265 BUG_ON(thread_stack_cache == NULL);
266 }
267 # endif
268 #endif
269
270 /* SLAB cache for signal_struct structures (tsk->signal) */
271 static struct kmem_cache *signal_cachep;
272
273 /* SLAB cache for sighand_struct structures (tsk->sighand) */
274 struct kmem_cache *sighand_cachep;
275
276 /* SLAB cache for files_struct structures (tsk->files) */
277 struct kmem_cache *files_cachep;
278
279 /* SLAB cache for fs_struct structures (tsk->fs) */
280 struct kmem_cache *fs_cachep;
281
282 /* SLAB cache for vm_area_struct structures */
283 struct kmem_cache *vm_area_cachep;
284
285 /* SLAB cache for mm_struct structures (tsk->mm) */
286 static struct kmem_cache *mm_cachep;
287
288 static void account_kernel_stack(struct task_struct *tsk, int account)
289 {
290 void *stack = task_stack_page(tsk);
291 struct vm_struct *vm = task_stack_vm_area(tsk);
292
293 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
294
295 if (vm) {
296 int i;
297
298 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
299
300 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
301 mod_zone_page_state(page_zone(vm->pages[i]),
302 NR_KERNEL_STACK_KB,
303 PAGE_SIZE / 1024 * account);
304 }
305
306 /* All stack pages belong to the same memcg. */
307 memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
308 account * (THREAD_SIZE / 1024));
309 } else {
310 /*
311 * All stack pages are in the same zone and belong to the
312 * same memcg.
313 */
314 struct page *first_page = virt_to_page(stack);
315
316 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
317 THREAD_SIZE / 1024 * account);
318
319 memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
320 account * (THREAD_SIZE / 1024));
321 }
322 }
323
324 static void release_task_stack(struct task_struct *tsk)
325 {
326 if (WARN_ON(tsk->state != TASK_DEAD))
327 return; /* Better to leak the stack than to free prematurely */
328
329 account_kernel_stack(tsk, -1);
330 arch_release_thread_stack(tsk->stack);
331 free_thread_stack(tsk);
332 tsk->stack = NULL;
333 #ifdef CONFIG_VMAP_STACK
334 tsk->stack_vm_area = NULL;
335 #endif
336 }
337
338 #ifdef CONFIG_THREAD_INFO_IN_TASK
339 void put_task_stack(struct task_struct *tsk)
340 {
341 if (atomic_dec_and_test(&tsk->stack_refcount))
342 release_task_stack(tsk);
343 }
344 #endif
345
346 void free_task(struct task_struct *tsk)
347 {
348 #ifndef CONFIG_THREAD_INFO_IN_TASK
349 /*
350 * The task is finally done with both the stack and thread_info,
351 * so free both.
352 */
353 release_task_stack(tsk);
354 #else
355 /*
356 * If the task had a separate stack allocation, it should be gone
357 * by now.
358 */
359 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
360 #endif
361 rt_mutex_debug_task_free(tsk);
362 ftrace_graph_exit_task(tsk);
363 put_seccomp_filter(tsk);
364 arch_release_task_struct(tsk);
365 if (tsk->flags & PF_KTHREAD)
366 free_kthread_struct(tsk);
367 free_task_struct(tsk);
368 }
369 EXPORT_SYMBOL(free_task);
370
371 static inline void free_signal_struct(struct signal_struct *sig)
372 {
373 taskstats_tgid_free(sig);
374 sched_autogroup_exit(sig);
375 /*
376 * __mmdrop is not safe to call from softirq context on x86 due to
377 * pgd_dtor so postpone it to the async context
378 */
379 if (sig->oom_mm)
380 mmdrop_async(sig->oom_mm);
381 kmem_cache_free(signal_cachep, sig);
382 }
383
384 static inline void put_signal_struct(struct signal_struct *sig)
385 {
386 if (atomic_dec_and_test(&sig->sigcnt))
387 free_signal_struct(sig);
388 }
389
390 void __put_task_struct(struct task_struct *tsk)
391 {
392 WARN_ON(!tsk->exit_state);
393 WARN_ON(atomic_read(&tsk->usage));
394 WARN_ON(tsk == current);
395
396 cgroup_free(tsk);
397 task_numa_free(tsk);
398 security_task_free(tsk);
399 exit_creds(tsk);
400 delayacct_tsk_free(tsk);
401 put_signal_struct(tsk->signal);
402
403 if (!profile_handoff_task(tsk))
404 free_task(tsk);
405 }
406 EXPORT_SYMBOL_GPL(__put_task_struct);
407
408 void __init __weak arch_task_cache_init(void) { }
409
410 /*
411 * set_max_threads
412 */
413 static void set_max_threads(unsigned int max_threads_suggested)
414 {
415 u64 threads;
416
417 /*
418 * The number of threads shall be limited such that the thread
419 * structures may only consume a small part of the available memory.
420 */
421 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
422 threads = MAX_THREADS;
423 else
424 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
425 (u64) THREAD_SIZE * 8UL);
426
427 if (threads > max_threads_suggested)
428 threads = max_threads_suggested;
429
430 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
431 }
432
433 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
434 /* Initialized by the architecture: */
435 int arch_task_struct_size __read_mostly;
436 #endif
437
438 void __init fork_init(void)
439 {
440 int i;
441 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
442 #ifndef ARCH_MIN_TASKALIGN
443 #define ARCH_MIN_TASKALIGN 0
444 #endif
445 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
446
447 /* create a slab on which task_structs can be allocated */
448 task_struct_cachep = kmem_cache_create("task_struct",
449 arch_task_struct_size, align,
450 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
451 #endif
452
453 /* do the arch specific task caches init */
454 arch_task_cache_init();
455
456 set_max_threads(MAX_THREADS);
457
458 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
459 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
460 init_task.signal->rlim[RLIMIT_SIGPENDING] =
461 init_task.signal->rlim[RLIMIT_NPROC];
462
463 for (i = 0; i < UCOUNT_COUNTS; i++) {
464 init_user_ns.ucount_max[i] = max_threads/2;
465 }
466 }
467
468 int __weak arch_dup_task_struct(struct task_struct *dst,
469 struct task_struct *src)
470 {
471 *dst = *src;
472 return 0;
473 }
474
475 void set_task_stack_end_magic(struct task_struct *tsk)
476 {
477 unsigned long *stackend;
478
479 stackend = end_of_stack(tsk);
480 *stackend = STACK_END_MAGIC; /* for overflow detection */
481 }
482
483 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
484 {
485 struct task_struct *tsk;
486 unsigned long *stack;
487 struct vm_struct *stack_vm_area;
488 int err;
489
490 if (node == NUMA_NO_NODE)
491 node = tsk_fork_get_node(orig);
492 tsk = alloc_task_struct_node(node);
493 if (!tsk)
494 return NULL;
495
496 stack = alloc_thread_stack_node(tsk, node);
497 if (!stack)
498 goto free_tsk;
499
500 stack_vm_area = task_stack_vm_area(tsk);
501
502 err = arch_dup_task_struct(tsk, orig);
503
504 /*
505 * arch_dup_task_struct() clobbers the stack-related fields. Make
506 * sure they're properly initialized before using any stack-related
507 * functions again.
508 */
509 tsk->stack = stack;
510 #ifdef CONFIG_VMAP_STACK
511 tsk->stack_vm_area = stack_vm_area;
512 #endif
513 #ifdef CONFIG_THREAD_INFO_IN_TASK
514 atomic_set(&tsk->stack_refcount, 1);
515 #endif
516
517 if (err)
518 goto free_stack;
519
520 #ifdef CONFIG_SECCOMP
521 /*
522 * We must handle setting up seccomp filters once we're under
523 * the sighand lock in case orig has changed between now and
524 * then. Until then, filter must be NULL to avoid messing up
525 * the usage counts on the error path calling free_task.
526 */
527 tsk->seccomp.filter = NULL;
528 #endif
529
530 setup_thread_stack(tsk, orig);
531 clear_user_return_notifier(tsk);
532 clear_tsk_need_resched(tsk);
533 set_task_stack_end_magic(tsk);
534
535 #ifdef CONFIG_CC_STACKPROTECTOR
536 tsk->stack_canary = get_random_int();
537 #endif
538
539 /*
540 * One for us, one for whoever does the "release_task()" (usually
541 * parent)
542 */
543 atomic_set(&tsk->usage, 2);
544 #ifdef CONFIG_BLK_DEV_IO_TRACE
545 tsk->btrace_seq = 0;
546 #endif
547 tsk->splice_pipe = NULL;
548 tsk->task_frag.page = NULL;
549 tsk->wake_q.next = NULL;
550
551 account_kernel_stack(tsk, 1);
552
553 kcov_task_init(tsk);
554
555 return tsk;
556
557 free_stack:
558 free_thread_stack(tsk);
559 free_tsk:
560 free_task_struct(tsk);
561 return NULL;
562 }
563
564 #ifdef CONFIG_MMU
565 static __latent_entropy int dup_mmap(struct mm_struct *mm,
566 struct mm_struct *oldmm)
567 {
568 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
569 struct rb_node **rb_link, *rb_parent;
570 int retval;
571 unsigned long charge;
572 LIST_HEAD(uf);
573
574 uprobe_start_dup_mmap();
575 if (down_write_killable(&oldmm->mmap_sem)) {
576 retval = -EINTR;
577 goto fail_uprobe_end;
578 }
579 flush_cache_dup_mm(oldmm);
580 uprobe_dup_mmap(oldmm, mm);
581 /*
582 * Not linked in yet - no deadlock potential:
583 */
584 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
585
586 /* No ordering required: file already has been exposed. */
587 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
588
589 mm->total_vm = oldmm->total_vm;
590 mm->data_vm = oldmm->data_vm;
591 mm->exec_vm = oldmm->exec_vm;
592 mm->stack_vm = oldmm->stack_vm;
593
594 rb_link = &mm->mm_rb.rb_node;
595 rb_parent = NULL;
596 pprev = &mm->mmap;
597 retval = ksm_fork(mm, oldmm);
598 if (retval)
599 goto out;
600 retval = khugepaged_fork(mm, oldmm);
601 if (retval)
602 goto out;
603
604 prev = NULL;
605 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
606 struct file *file;
607
608 if (mpnt->vm_flags & VM_DONTCOPY) {
609 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
610 continue;
611 }
612 charge = 0;
613 if (mpnt->vm_flags & VM_ACCOUNT) {
614 unsigned long len = vma_pages(mpnt);
615
616 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
617 goto fail_nomem;
618 charge = len;
619 }
620 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
621 if (!tmp)
622 goto fail_nomem;
623 *tmp = *mpnt;
624 INIT_LIST_HEAD(&tmp->anon_vma_chain);
625 retval = vma_dup_policy(mpnt, tmp);
626 if (retval)
627 goto fail_nomem_policy;
628 tmp->vm_mm = mm;
629 retval = dup_userfaultfd(tmp, &uf);
630 if (retval)
631 goto fail_nomem_anon_vma_fork;
632 if (anon_vma_fork(tmp, mpnt))
633 goto fail_nomem_anon_vma_fork;
634 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
635 tmp->vm_next = tmp->vm_prev = NULL;
636 file = tmp->vm_file;
637 if (file) {
638 struct inode *inode = file_inode(file);
639 struct address_space *mapping = file->f_mapping;
640
641 get_file(file);
642 if (tmp->vm_flags & VM_DENYWRITE)
643 atomic_dec(&inode->i_writecount);
644 i_mmap_lock_write(mapping);
645 if (tmp->vm_flags & VM_SHARED)
646 atomic_inc(&mapping->i_mmap_writable);
647 flush_dcache_mmap_lock(mapping);
648 /* insert tmp into the share list, just after mpnt */
649 vma_interval_tree_insert_after(tmp, mpnt,
650 &mapping->i_mmap);
651 flush_dcache_mmap_unlock(mapping);
652 i_mmap_unlock_write(mapping);
653 }
654
655 /*
656 * Clear hugetlb-related page reserves for children. This only
657 * affects MAP_PRIVATE mappings. Faults generated by the child
658 * are not guaranteed to succeed, even if read-only
659 */
660 if (is_vm_hugetlb_page(tmp))
661 reset_vma_resv_huge_pages(tmp);
662
663 /*
664 * Link in the new vma and copy the page table entries.
665 */
666 *pprev = tmp;
667 pprev = &tmp->vm_next;
668 tmp->vm_prev = prev;
669 prev = tmp;
670
671 __vma_link_rb(mm, tmp, rb_link, rb_parent);
672 rb_link = &tmp->vm_rb.rb_right;
673 rb_parent = &tmp->vm_rb;
674
675 mm->map_count++;
676 retval = copy_page_range(mm, oldmm, mpnt);
677
678 if (tmp->vm_ops && tmp->vm_ops->open)
679 tmp->vm_ops->open(tmp);
680
681 if (retval)
682 goto out;
683 }
684 /* a new mm has just been created */
685 arch_dup_mmap(oldmm, mm);
686 retval = 0;
687 out:
688 up_write(&mm->mmap_sem);
689 flush_tlb_mm(oldmm);
690 up_write(&oldmm->mmap_sem);
691 dup_userfaultfd_complete(&uf);
692 fail_uprobe_end:
693 uprobe_end_dup_mmap();
694 return retval;
695 fail_nomem_anon_vma_fork:
696 mpol_put(vma_policy(tmp));
697 fail_nomem_policy:
698 kmem_cache_free(vm_area_cachep, tmp);
699 fail_nomem:
700 retval = -ENOMEM;
701 vm_unacct_memory(charge);
702 goto out;
703 }
704
705 static inline int mm_alloc_pgd(struct mm_struct *mm)
706 {
707 mm->pgd = pgd_alloc(mm);
708 if (unlikely(!mm->pgd))
709 return -ENOMEM;
710 return 0;
711 }
712
713 static inline void mm_free_pgd(struct mm_struct *mm)
714 {
715 pgd_free(mm, mm->pgd);
716 }
717 #else
718 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
719 {
720 down_write(&oldmm->mmap_sem);
721 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
722 up_write(&oldmm->mmap_sem);
723 return 0;
724 }
725 #define mm_alloc_pgd(mm) (0)
726 #define mm_free_pgd(mm)
727 #endif /* CONFIG_MMU */
728
729 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
730
731 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
732 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
733
734 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
735
736 static int __init coredump_filter_setup(char *s)
737 {
738 default_dump_filter =
739 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
740 MMF_DUMP_FILTER_MASK;
741 return 1;
742 }
743
744 __setup("coredump_filter=", coredump_filter_setup);
745
746 #include <linux/init_task.h>
747
748 static void mm_init_aio(struct mm_struct *mm)
749 {
750 #ifdef CONFIG_AIO
751 spin_lock_init(&mm->ioctx_lock);
752 mm->ioctx_table = NULL;
753 #endif
754 }
755
756 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
757 {
758 #ifdef CONFIG_MEMCG
759 mm->owner = p;
760 #endif
761 }
762
763 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
764 struct user_namespace *user_ns)
765 {
766 mm->mmap = NULL;
767 mm->mm_rb = RB_ROOT;
768 mm->vmacache_seqnum = 0;
769 atomic_set(&mm->mm_users, 1);
770 atomic_set(&mm->mm_count, 1);
771 init_rwsem(&mm->mmap_sem);
772 INIT_LIST_HEAD(&mm->mmlist);
773 mm->core_state = NULL;
774 atomic_long_set(&mm->nr_ptes, 0);
775 mm_nr_pmds_init(mm);
776 mm->map_count = 0;
777 mm->locked_vm = 0;
778 mm->pinned_vm = 0;
779 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
780 spin_lock_init(&mm->page_table_lock);
781 mm_init_cpumask(mm);
782 mm_init_aio(mm);
783 mm_init_owner(mm, p);
784 mmu_notifier_mm_init(mm);
785 clear_tlb_flush_pending(mm);
786 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
787 mm->pmd_huge_pte = NULL;
788 #endif
789
790 if (current->mm) {
791 mm->flags = current->mm->flags & MMF_INIT_MASK;
792 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
793 } else {
794 mm->flags = default_dump_filter;
795 mm->def_flags = 0;
796 }
797
798 if (mm_alloc_pgd(mm))
799 goto fail_nopgd;
800
801 if (init_new_context(p, mm))
802 goto fail_nocontext;
803
804 mm->user_ns = get_user_ns(user_ns);
805 return mm;
806
807 fail_nocontext:
808 mm_free_pgd(mm);
809 fail_nopgd:
810 free_mm(mm);
811 return NULL;
812 }
813
814 static void check_mm(struct mm_struct *mm)
815 {
816 int i;
817
818 for (i = 0; i < NR_MM_COUNTERS; i++) {
819 long x = atomic_long_read(&mm->rss_stat.count[i]);
820
821 if (unlikely(x))
822 printk(KERN_ALERT "BUG: Bad rss-counter state "
823 "mm:%p idx:%d val:%ld\n", mm, i, x);
824 }
825
826 if (atomic_long_read(&mm->nr_ptes))
827 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
828 atomic_long_read(&mm->nr_ptes));
829 if (mm_nr_pmds(mm))
830 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
831 mm_nr_pmds(mm));
832
833 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
834 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
835 #endif
836 }
837
838 /*
839 * Allocate and initialize an mm_struct.
840 */
841 struct mm_struct *mm_alloc(void)
842 {
843 struct mm_struct *mm;
844
845 mm = allocate_mm();
846 if (!mm)
847 return NULL;
848
849 memset(mm, 0, sizeof(*mm));
850 return mm_init(mm, current, current_user_ns());
851 }
852
853 /*
854 * Called when the last reference to the mm
855 * is dropped: either by a lazy thread or by
856 * mmput. Free the page directory and the mm.
857 */
858 void __mmdrop(struct mm_struct *mm)
859 {
860 BUG_ON(mm == &init_mm);
861 mm_free_pgd(mm);
862 destroy_context(mm);
863 mmu_notifier_mm_destroy(mm);
864 check_mm(mm);
865 put_user_ns(mm->user_ns);
866 free_mm(mm);
867 }
868 EXPORT_SYMBOL_GPL(__mmdrop);
869
870 static inline void __mmput(struct mm_struct *mm)
871 {
872 VM_BUG_ON(atomic_read(&mm->mm_users));
873
874 uprobe_clear_state(mm);
875 exit_aio(mm);
876 ksm_exit(mm);
877 khugepaged_exit(mm); /* must run before exit_mmap */
878 exit_mmap(mm);
879 mm_put_huge_zero_page(mm);
880 set_mm_exe_file(mm, NULL);
881 if (!list_empty(&mm->mmlist)) {
882 spin_lock(&mmlist_lock);
883 list_del(&mm->mmlist);
884 spin_unlock(&mmlist_lock);
885 }
886 if (mm->binfmt)
887 module_put(mm->binfmt->module);
888 set_bit(MMF_OOM_SKIP, &mm->flags);
889 mmdrop(mm);
890 }
891
892 /*
893 * Decrement the use count and release all resources for an mm.
894 */
895 void mmput(struct mm_struct *mm)
896 {
897 might_sleep();
898
899 if (atomic_dec_and_test(&mm->mm_users))
900 __mmput(mm);
901 }
902 EXPORT_SYMBOL_GPL(mmput);
903
904 #ifdef CONFIG_MMU
905 static void mmput_async_fn(struct work_struct *work)
906 {
907 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
908 __mmput(mm);
909 }
910
911 void mmput_async(struct mm_struct *mm)
912 {
913 if (atomic_dec_and_test(&mm->mm_users)) {
914 INIT_WORK(&mm->async_put_work, mmput_async_fn);
915 schedule_work(&mm->async_put_work);
916 }
917 }
918 #endif
919
920 /**
921 * set_mm_exe_file - change a reference to the mm's executable file
922 *
923 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
924 *
925 * Main users are mmput() and sys_execve(). Callers prevent concurrent
926 * invocations: in mmput() nobody alive left, in execve task is single
927 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
928 * mm->exe_file, but does so without using set_mm_exe_file() in order
929 * to do avoid the need for any locks.
930 */
931 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
932 {
933 struct file *old_exe_file;
934
935 /*
936 * It is safe to dereference the exe_file without RCU as
937 * this function is only called if nobody else can access
938 * this mm -- see comment above for justification.
939 */
940 old_exe_file = rcu_dereference_raw(mm->exe_file);
941
942 if (new_exe_file)
943 get_file(new_exe_file);
944 rcu_assign_pointer(mm->exe_file, new_exe_file);
945 if (old_exe_file)
946 fput(old_exe_file);
947 }
948
949 /**
950 * get_mm_exe_file - acquire a reference to the mm's executable file
951 *
952 * Returns %NULL if mm has no associated executable file.
953 * User must release file via fput().
954 */
955 struct file *get_mm_exe_file(struct mm_struct *mm)
956 {
957 struct file *exe_file;
958
959 rcu_read_lock();
960 exe_file = rcu_dereference(mm->exe_file);
961 if (exe_file && !get_file_rcu(exe_file))
962 exe_file = NULL;
963 rcu_read_unlock();
964 return exe_file;
965 }
966 EXPORT_SYMBOL(get_mm_exe_file);
967
968 /**
969 * get_task_exe_file - acquire a reference to the task's executable file
970 *
971 * Returns %NULL if task's mm (if any) has no associated executable file or
972 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
973 * User must release file via fput().
974 */
975 struct file *get_task_exe_file(struct task_struct *task)
976 {
977 struct file *exe_file = NULL;
978 struct mm_struct *mm;
979
980 task_lock(task);
981 mm = task->mm;
982 if (mm) {
983 if (!(task->flags & PF_KTHREAD))
984 exe_file = get_mm_exe_file(mm);
985 }
986 task_unlock(task);
987 return exe_file;
988 }
989 EXPORT_SYMBOL(get_task_exe_file);
990
991 /**
992 * get_task_mm - acquire a reference to the task's mm
993 *
994 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
995 * this kernel workthread has transiently adopted a user mm with use_mm,
996 * to do its AIO) is not set and if so returns a reference to it, after
997 * bumping up the use count. User must release the mm via mmput()
998 * after use. Typically used by /proc and ptrace.
999 */
1000 struct mm_struct *get_task_mm(struct task_struct *task)
1001 {
1002 struct mm_struct *mm;
1003
1004 task_lock(task);
1005 mm = task->mm;
1006 if (mm) {
1007 if (task->flags & PF_KTHREAD)
1008 mm = NULL;
1009 else
1010 mmget(mm);
1011 }
1012 task_unlock(task);
1013 return mm;
1014 }
1015 EXPORT_SYMBOL_GPL(get_task_mm);
1016
1017 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1018 {
1019 struct mm_struct *mm;
1020 int err;
1021
1022 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1023 if (err)
1024 return ERR_PTR(err);
1025
1026 mm = get_task_mm(task);
1027 if (mm && mm != current->mm &&
1028 !ptrace_may_access(task, mode)) {
1029 mmput(mm);
1030 mm = ERR_PTR(-EACCES);
1031 }
1032 mutex_unlock(&task->signal->cred_guard_mutex);
1033
1034 return mm;
1035 }
1036
1037 static void complete_vfork_done(struct task_struct *tsk)
1038 {
1039 struct completion *vfork;
1040
1041 task_lock(tsk);
1042 vfork = tsk->vfork_done;
1043 if (likely(vfork)) {
1044 tsk->vfork_done = NULL;
1045 complete(vfork);
1046 }
1047 task_unlock(tsk);
1048 }
1049
1050 static int wait_for_vfork_done(struct task_struct *child,
1051 struct completion *vfork)
1052 {
1053 int killed;
1054
1055 freezer_do_not_count();
1056 killed = wait_for_completion_killable(vfork);
1057 freezer_count();
1058
1059 if (killed) {
1060 task_lock(child);
1061 child->vfork_done = NULL;
1062 task_unlock(child);
1063 }
1064
1065 put_task_struct(child);
1066 return killed;
1067 }
1068
1069 /* Please note the differences between mmput and mm_release.
1070 * mmput is called whenever we stop holding onto a mm_struct,
1071 * error success whatever.
1072 *
1073 * mm_release is called after a mm_struct has been removed
1074 * from the current process.
1075 *
1076 * This difference is important for error handling, when we
1077 * only half set up a mm_struct for a new process and need to restore
1078 * the old one. Because we mmput the new mm_struct before
1079 * restoring the old one. . .
1080 * Eric Biederman 10 January 1998
1081 */
1082 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1083 {
1084 /* Get rid of any futexes when releasing the mm */
1085 #ifdef CONFIG_FUTEX
1086 if (unlikely(tsk->robust_list)) {
1087 exit_robust_list(tsk);
1088 tsk->robust_list = NULL;
1089 }
1090 #ifdef CONFIG_COMPAT
1091 if (unlikely(tsk->compat_robust_list)) {
1092 compat_exit_robust_list(tsk);
1093 tsk->compat_robust_list = NULL;
1094 }
1095 #endif
1096 if (unlikely(!list_empty(&tsk->pi_state_list)))
1097 exit_pi_state_list(tsk);
1098 #endif
1099
1100 uprobe_free_utask(tsk);
1101
1102 /* Get rid of any cached register state */
1103 deactivate_mm(tsk, mm);
1104
1105 /*
1106 * Signal userspace if we're not exiting with a core dump
1107 * because we want to leave the value intact for debugging
1108 * purposes.
1109 */
1110 if (tsk->clear_child_tid) {
1111 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1112 atomic_read(&mm->mm_users) > 1) {
1113 /*
1114 * We don't check the error code - if userspace has
1115 * not set up a proper pointer then tough luck.
1116 */
1117 put_user(0, tsk->clear_child_tid);
1118 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1119 1, NULL, NULL, 0);
1120 }
1121 tsk->clear_child_tid = NULL;
1122 }
1123
1124 /*
1125 * All done, finally we can wake up parent and return this mm to him.
1126 * Also kthread_stop() uses this completion for synchronization.
1127 */
1128 if (tsk->vfork_done)
1129 complete_vfork_done(tsk);
1130 }
1131
1132 /*
1133 * Allocate a new mm structure and copy contents from the
1134 * mm structure of the passed in task structure.
1135 */
1136 static struct mm_struct *dup_mm(struct task_struct *tsk)
1137 {
1138 struct mm_struct *mm, *oldmm = current->mm;
1139 int err;
1140
1141 mm = allocate_mm();
1142 if (!mm)
1143 goto fail_nomem;
1144
1145 memcpy(mm, oldmm, sizeof(*mm));
1146
1147 if (!mm_init(mm, tsk, mm->user_ns))
1148 goto fail_nomem;
1149
1150 err = dup_mmap(mm, oldmm);
1151 if (err)
1152 goto free_pt;
1153
1154 mm->hiwater_rss = get_mm_rss(mm);
1155 mm->hiwater_vm = mm->total_vm;
1156
1157 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1158 goto free_pt;
1159
1160 return mm;
1161
1162 free_pt:
1163 /* don't put binfmt in mmput, we haven't got module yet */
1164 mm->binfmt = NULL;
1165 mmput(mm);
1166
1167 fail_nomem:
1168 return NULL;
1169 }
1170
1171 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1172 {
1173 struct mm_struct *mm, *oldmm;
1174 int retval;
1175
1176 tsk->min_flt = tsk->maj_flt = 0;
1177 tsk->nvcsw = tsk->nivcsw = 0;
1178 #ifdef CONFIG_DETECT_HUNG_TASK
1179 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1180 #endif
1181
1182 tsk->mm = NULL;
1183 tsk->active_mm = NULL;
1184
1185 /*
1186 * Are we cloning a kernel thread?
1187 *
1188 * We need to steal a active VM for that..
1189 */
1190 oldmm = current->mm;
1191 if (!oldmm)
1192 return 0;
1193
1194 /* initialize the new vmacache entries */
1195 vmacache_flush(tsk);
1196
1197 if (clone_flags & CLONE_VM) {
1198 mmget(oldmm);
1199 mm = oldmm;
1200 goto good_mm;
1201 }
1202
1203 retval = -ENOMEM;
1204 mm = dup_mm(tsk);
1205 if (!mm)
1206 goto fail_nomem;
1207
1208 good_mm:
1209 tsk->mm = mm;
1210 tsk->active_mm = mm;
1211 return 0;
1212
1213 fail_nomem:
1214 return retval;
1215 }
1216
1217 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1218 {
1219 struct fs_struct *fs = current->fs;
1220 if (clone_flags & CLONE_FS) {
1221 /* tsk->fs is already what we want */
1222 spin_lock(&fs->lock);
1223 if (fs->in_exec) {
1224 spin_unlock(&fs->lock);
1225 return -EAGAIN;
1226 }
1227 fs->users++;
1228 spin_unlock(&fs->lock);
1229 return 0;
1230 }
1231 tsk->fs = copy_fs_struct(fs);
1232 if (!tsk->fs)
1233 return -ENOMEM;
1234 return 0;
1235 }
1236
1237 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1238 {
1239 struct files_struct *oldf, *newf;
1240 int error = 0;
1241
1242 /*
1243 * A background process may not have any files ...
1244 */
1245 oldf = current->files;
1246 if (!oldf)
1247 goto out;
1248
1249 if (clone_flags & CLONE_FILES) {
1250 atomic_inc(&oldf->count);
1251 goto out;
1252 }
1253
1254 newf = dup_fd(oldf, &error);
1255 if (!newf)
1256 goto out;
1257
1258 tsk->files = newf;
1259 error = 0;
1260 out:
1261 return error;
1262 }
1263
1264 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1265 {
1266 #ifdef CONFIG_BLOCK
1267 struct io_context *ioc = current->io_context;
1268 struct io_context *new_ioc;
1269
1270 if (!ioc)
1271 return 0;
1272 /*
1273 * Share io context with parent, if CLONE_IO is set
1274 */
1275 if (clone_flags & CLONE_IO) {
1276 ioc_task_link(ioc);
1277 tsk->io_context = ioc;
1278 } else if (ioprio_valid(ioc->ioprio)) {
1279 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1280 if (unlikely(!new_ioc))
1281 return -ENOMEM;
1282
1283 new_ioc->ioprio = ioc->ioprio;
1284 put_io_context(new_ioc);
1285 }
1286 #endif
1287 return 0;
1288 }
1289
1290 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1291 {
1292 struct sighand_struct *sig;
1293
1294 if (clone_flags & CLONE_SIGHAND) {
1295 atomic_inc(&current->sighand->count);
1296 return 0;
1297 }
1298 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1299 rcu_assign_pointer(tsk->sighand, sig);
1300 if (!sig)
1301 return -ENOMEM;
1302
1303 atomic_set(&sig->count, 1);
1304 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1305 return 0;
1306 }
1307
1308 void __cleanup_sighand(struct sighand_struct *sighand)
1309 {
1310 if (atomic_dec_and_test(&sighand->count)) {
1311 signalfd_cleanup(sighand);
1312 /*
1313 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1314 * without an RCU grace period, see __lock_task_sighand().
1315 */
1316 kmem_cache_free(sighand_cachep, sighand);
1317 }
1318 }
1319
1320 #ifdef CONFIG_POSIX_TIMERS
1321 /*
1322 * Initialize POSIX timer handling for a thread group.
1323 */
1324 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1325 {
1326 unsigned long cpu_limit;
1327
1328 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1329 if (cpu_limit != RLIM_INFINITY) {
1330 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1331 sig->cputimer.running = true;
1332 }
1333
1334 /* The timer lists. */
1335 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1336 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1337 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1338 }
1339 #else
1340 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1341 #endif
1342
1343 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1344 {
1345 struct signal_struct *sig;
1346
1347 if (clone_flags & CLONE_THREAD)
1348 return 0;
1349
1350 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1351 tsk->signal = sig;
1352 if (!sig)
1353 return -ENOMEM;
1354
1355 sig->nr_threads = 1;
1356 atomic_set(&sig->live, 1);
1357 atomic_set(&sig->sigcnt, 1);
1358
1359 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1360 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1361 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1362
1363 init_waitqueue_head(&sig->wait_chldexit);
1364 sig->curr_target = tsk;
1365 init_sigpending(&sig->shared_pending);
1366 seqlock_init(&sig->stats_lock);
1367 prev_cputime_init(&sig->prev_cputime);
1368
1369 #ifdef CONFIG_POSIX_TIMERS
1370 INIT_LIST_HEAD(&sig->posix_timers);
1371 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1372 sig->real_timer.function = it_real_fn;
1373 #endif
1374
1375 task_lock(current->group_leader);
1376 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1377 task_unlock(current->group_leader);
1378
1379 posix_cpu_timers_init_group(sig);
1380
1381 tty_audit_fork(sig);
1382 sched_autogroup_fork(sig);
1383
1384 sig->oom_score_adj = current->signal->oom_score_adj;
1385 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1386
1387 mutex_init(&sig->cred_guard_mutex);
1388
1389 return 0;
1390 }
1391
1392 static void copy_seccomp(struct task_struct *p)
1393 {
1394 #ifdef CONFIG_SECCOMP
1395 /*
1396 * Must be called with sighand->lock held, which is common to
1397 * all threads in the group. Holding cred_guard_mutex is not
1398 * needed because this new task is not yet running and cannot
1399 * be racing exec.
1400 */
1401 assert_spin_locked(&current->sighand->siglock);
1402
1403 /* Ref-count the new filter user, and assign it. */
1404 get_seccomp_filter(current);
1405 p->seccomp = current->seccomp;
1406
1407 /*
1408 * Explicitly enable no_new_privs here in case it got set
1409 * between the task_struct being duplicated and holding the
1410 * sighand lock. The seccomp state and nnp must be in sync.
1411 */
1412 if (task_no_new_privs(current))
1413 task_set_no_new_privs(p);
1414
1415 /*
1416 * If the parent gained a seccomp mode after copying thread
1417 * flags and between before we held the sighand lock, we have
1418 * to manually enable the seccomp thread flag here.
1419 */
1420 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1421 set_tsk_thread_flag(p, TIF_SECCOMP);
1422 #endif
1423 }
1424
1425 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1426 {
1427 current->clear_child_tid = tidptr;
1428
1429 return task_pid_vnr(current);
1430 }
1431
1432 static void rt_mutex_init_task(struct task_struct *p)
1433 {
1434 raw_spin_lock_init(&p->pi_lock);
1435 #ifdef CONFIG_RT_MUTEXES
1436 p->pi_waiters = RB_ROOT;
1437 p->pi_waiters_leftmost = NULL;
1438 p->pi_blocked_on = NULL;
1439 #endif
1440 }
1441
1442 #ifdef CONFIG_POSIX_TIMERS
1443 /*
1444 * Initialize POSIX timer handling for a single task.
1445 */
1446 static void posix_cpu_timers_init(struct task_struct *tsk)
1447 {
1448 tsk->cputime_expires.prof_exp = 0;
1449 tsk->cputime_expires.virt_exp = 0;
1450 tsk->cputime_expires.sched_exp = 0;
1451 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1452 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1453 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1454 }
1455 #else
1456 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1457 #endif
1458
1459 static inline void
1460 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1461 {
1462 task->pids[type].pid = pid;
1463 }
1464
1465 /*
1466 * This creates a new process as a copy of the old one,
1467 * but does not actually start it yet.
1468 *
1469 * It copies the registers, and all the appropriate
1470 * parts of the process environment (as per the clone
1471 * flags). The actual kick-off is left to the caller.
1472 */
1473 static __latent_entropy struct task_struct *copy_process(
1474 unsigned long clone_flags,
1475 unsigned long stack_start,
1476 unsigned long stack_size,
1477 int __user *child_tidptr,
1478 struct pid *pid,
1479 int trace,
1480 unsigned long tls,
1481 int node)
1482 {
1483 int retval;
1484 struct task_struct *p;
1485
1486 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1487 return ERR_PTR(-EINVAL);
1488
1489 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1490 return ERR_PTR(-EINVAL);
1491
1492 /*
1493 * Thread groups must share signals as well, and detached threads
1494 * can only be started up within the thread group.
1495 */
1496 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1497 return ERR_PTR(-EINVAL);
1498
1499 /*
1500 * Shared signal handlers imply shared VM. By way of the above,
1501 * thread groups also imply shared VM. Blocking this case allows
1502 * for various simplifications in other code.
1503 */
1504 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1505 return ERR_PTR(-EINVAL);
1506
1507 /*
1508 * Siblings of global init remain as zombies on exit since they are
1509 * not reaped by their parent (swapper). To solve this and to avoid
1510 * multi-rooted process trees, prevent global and container-inits
1511 * from creating siblings.
1512 */
1513 if ((clone_flags & CLONE_PARENT) &&
1514 current->signal->flags & SIGNAL_UNKILLABLE)
1515 return ERR_PTR(-EINVAL);
1516
1517 /*
1518 * If the new process will be in a different pid or user namespace
1519 * do not allow it to share a thread group with the forking task.
1520 */
1521 if (clone_flags & CLONE_THREAD) {
1522 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1523 (task_active_pid_ns(current) !=
1524 current->nsproxy->pid_ns_for_children))
1525 return ERR_PTR(-EINVAL);
1526 }
1527
1528 retval = security_task_create(clone_flags);
1529 if (retval)
1530 goto fork_out;
1531
1532 retval = -ENOMEM;
1533 p = dup_task_struct(current, node);
1534 if (!p)
1535 goto fork_out;
1536
1537 ftrace_graph_init_task(p);
1538
1539 rt_mutex_init_task(p);
1540
1541 #ifdef CONFIG_PROVE_LOCKING
1542 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1543 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1544 #endif
1545 retval = -EAGAIN;
1546 if (atomic_read(&p->real_cred->user->processes) >=
1547 task_rlimit(p, RLIMIT_NPROC)) {
1548 if (p->real_cred->user != INIT_USER &&
1549 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1550 goto bad_fork_free;
1551 }
1552 current->flags &= ~PF_NPROC_EXCEEDED;
1553
1554 retval = copy_creds(p, clone_flags);
1555 if (retval < 0)
1556 goto bad_fork_free;
1557
1558 /*
1559 * If multiple threads are within copy_process(), then this check
1560 * triggers too late. This doesn't hurt, the check is only there
1561 * to stop root fork bombs.
1562 */
1563 retval = -EAGAIN;
1564 if (nr_threads >= max_threads)
1565 goto bad_fork_cleanup_count;
1566
1567 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1568 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1569 p->flags |= PF_FORKNOEXEC;
1570 INIT_LIST_HEAD(&p->children);
1571 INIT_LIST_HEAD(&p->sibling);
1572 rcu_copy_process(p);
1573 p->vfork_done = NULL;
1574 spin_lock_init(&p->alloc_lock);
1575
1576 init_sigpending(&p->pending);
1577
1578 p->utime = p->stime = p->gtime = 0;
1579 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1580 p->utimescaled = p->stimescaled = 0;
1581 #endif
1582 prev_cputime_init(&p->prev_cputime);
1583
1584 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1585 seqcount_init(&p->vtime_seqcount);
1586 p->vtime_snap = 0;
1587 p->vtime_snap_whence = VTIME_INACTIVE;
1588 #endif
1589
1590 #if defined(SPLIT_RSS_COUNTING)
1591 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1592 #endif
1593
1594 p->default_timer_slack_ns = current->timer_slack_ns;
1595
1596 task_io_accounting_init(&p->ioac);
1597 acct_clear_integrals(p);
1598
1599 posix_cpu_timers_init(p);
1600
1601 p->start_time = ktime_get_ns();
1602 p->real_start_time = ktime_get_boot_ns();
1603 p->io_context = NULL;
1604 p->audit_context = NULL;
1605 cgroup_fork(p);
1606 #ifdef CONFIG_NUMA
1607 p->mempolicy = mpol_dup(p->mempolicy);
1608 if (IS_ERR(p->mempolicy)) {
1609 retval = PTR_ERR(p->mempolicy);
1610 p->mempolicy = NULL;
1611 goto bad_fork_cleanup_threadgroup_lock;
1612 }
1613 #endif
1614 #ifdef CONFIG_CPUSETS
1615 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1616 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1617 seqcount_init(&p->mems_allowed_seq);
1618 #endif
1619 #ifdef CONFIG_TRACE_IRQFLAGS
1620 p->irq_events = 0;
1621 p->hardirqs_enabled = 0;
1622 p->hardirq_enable_ip = 0;
1623 p->hardirq_enable_event = 0;
1624 p->hardirq_disable_ip = _THIS_IP_;
1625 p->hardirq_disable_event = 0;
1626 p->softirqs_enabled = 1;
1627 p->softirq_enable_ip = _THIS_IP_;
1628 p->softirq_enable_event = 0;
1629 p->softirq_disable_ip = 0;
1630 p->softirq_disable_event = 0;
1631 p->hardirq_context = 0;
1632 p->softirq_context = 0;
1633 #endif
1634
1635 p->pagefault_disabled = 0;
1636
1637 #ifdef CONFIG_LOCKDEP
1638 p->lockdep_depth = 0; /* no locks held yet */
1639 p->curr_chain_key = 0;
1640 p->lockdep_recursion = 0;
1641 #endif
1642
1643 #ifdef CONFIG_DEBUG_MUTEXES
1644 p->blocked_on = NULL; /* not blocked yet */
1645 #endif
1646 #ifdef CONFIG_BCACHE
1647 p->sequential_io = 0;
1648 p->sequential_io_avg = 0;
1649 #endif
1650
1651 /* Perform scheduler related setup. Assign this task to a CPU. */
1652 retval = sched_fork(clone_flags, p);
1653 if (retval)
1654 goto bad_fork_cleanup_policy;
1655
1656 retval = perf_event_init_task(p);
1657 if (retval)
1658 goto bad_fork_cleanup_policy;
1659 retval = audit_alloc(p);
1660 if (retval)
1661 goto bad_fork_cleanup_perf;
1662 /* copy all the process information */
1663 shm_init_task(p);
1664 retval = copy_semundo(clone_flags, p);
1665 if (retval)
1666 goto bad_fork_cleanup_audit;
1667 retval = copy_files(clone_flags, p);
1668 if (retval)
1669 goto bad_fork_cleanup_semundo;
1670 retval = copy_fs(clone_flags, p);
1671 if (retval)
1672 goto bad_fork_cleanup_files;
1673 retval = copy_sighand(clone_flags, p);
1674 if (retval)
1675 goto bad_fork_cleanup_fs;
1676 retval = copy_signal(clone_flags, p);
1677 if (retval)
1678 goto bad_fork_cleanup_sighand;
1679 retval = copy_mm(clone_flags, p);
1680 if (retval)
1681 goto bad_fork_cleanup_signal;
1682 retval = copy_namespaces(clone_flags, p);
1683 if (retval)
1684 goto bad_fork_cleanup_mm;
1685 retval = copy_io(clone_flags, p);
1686 if (retval)
1687 goto bad_fork_cleanup_namespaces;
1688 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1689 if (retval)
1690 goto bad_fork_cleanup_io;
1691
1692 if (pid != &init_struct_pid) {
1693 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1694 if (IS_ERR(pid)) {
1695 retval = PTR_ERR(pid);
1696 goto bad_fork_cleanup_thread;
1697 }
1698 }
1699
1700 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1701 /*
1702 * Clear TID on mm_release()?
1703 */
1704 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1705 #ifdef CONFIG_BLOCK
1706 p->plug = NULL;
1707 #endif
1708 #ifdef CONFIG_FUTEX
1709 p->robust_list = NULL;
1710 #ifdef CONFIG_COMPAT
1711 p->compat_robust_list = NULL;
1712 #endif
1713 INIT_LIST_HEAD(&p->pi_state_list);
1714 p->pi_state_cache = NULL;
1715 #endif
1716 /*
1717 * sigaltstack should be cleared when sharing the same VM
1718 */
1719 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1720 sas_ss_reset(p);
1721
1722 /*
1723 * Syscall tracing and stepping should be turned off in the
1724 * child regardless of CLONE_PTRACE.
1725 */
1726 user_disable_single_step(p);
1727 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1728 #ifdef TIF_SYSCALL_EMU
1729 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1730 #endif
1731 clear_all_latency_tracing(p);
1732
1733 /* ok, now we should be set up.. */
1734 p->pid = pid_nr(pid);
1735 if (clone_flags & CLONE_THREAD) {
1736 p->exit_signal = -1;
1737 p->group_leader = current->group_leader;
1738 p->tgid = current->tgid;
1739 } else {
1740 if (clone_flags & CLONE_PARENT)
1741 p->exit_signal = current->group_leader->exit_signal;
1742 else
1743 p->exit_signal = (clone_flags & CSIGNAL);
1744 p->group_leader = p;
1745 p->tgid = p->pid;
1746 }
1747
1748 p->nr_dirtied = 0;
1749 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1750 p->dirty_paused_when = 0;
1751
1752 p->pdeath_signal = 0;
1753 INIT_LIST_HEAD(&p->thread_group);
1754 p->task_works = NULL;
1755
1756 cgroup_threadgroup_change_begin(current);
1757 /*
1758 * Ensure that the cgroup subsystem policies allow the new process to be
1759 * forked. It should be noted the the new process's css_set can be changed
1760 * between here and cgroup_post_fork() if an organisation operation is in
1761 * progress.
1762 */
1763 retval = cgroup_can_fork(p);
1764 if (retval)
1765 goto bad_fork_free_pid;
1766
1767 /*
1768 * Make it visible to the rest of the system, but dont wake it up yet.
1769 * Need tasklist lock for parent etc handling!
1770 */
1771 write_lock_irq(&tasklist_lock);
1772
1773 /* CLONE_PARENT re-uses the old parent */
1774 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1775 p->real_parent = current->real_parent;
1776 p->parent_exec_id = current->parent_exec_id;
1777 } else {
1778 p->real_parent = current;
1779 p->parent_exec_id = current->self_exec_id;
1780 }
1781
1782 spin_lock(&current->sighand->siglock);
1783
1784 /*
1785 * Copy seccomp details explicitly here, in case they were changed
1786 * before holding sighand lock.
1787 */
1788 copy_seccomp(p);
1789
1790 /*
1791 * Process group and session signals need to be delivered to just the
1792 * parent before the fork or both the parent and the child after the
1793 * fork. Restart if a signal comes in before we add the new process to
1794 * it's process group.
1795 * A fatal signal pending means that current will exit, so the new
1796 * thread can't slip out of an OOM kill (or normal SIGKILL).
1797 */
1798 recalc_sigpending();
1799 if (signal_pending(current)) {
1800 spin_unlock(&current->sighand->siglock);
1801 write_unlock_irq(&tasklist_lock);
1802 retval = -ERESTARTNOINTR;
1803 goto bad_fork_cancel_cgroup;
1804 }
1805
1806 if (likely(p->pid)) {
1807 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1808
1809 init_task_pid(p, PIDTYPE_PID, pid);
1810 if (thread_group_leader(p)) {
1811 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1812 init_task_pid(p, PIDTYPE_SID, task_session(current));
1813
1814 if (is_child_reaper(pid)) {
1815 ns_of_pid(pid)->child_reaper = p;
1816 p->signal->flags |= SIGNAL_UNKILLABLE;
1817 }
1818
1819 p->signal->leader_pid = pid;
1820 p->signal->tty = tty_kref_get(current->signal->tty);
1821 /*
1822 * Inherit has_child_subreaper flag under the same
1823 * tasklist_lock with adding child to the process tree
1824 * for propagate_has_child_subreaper optimization.
1825 */
1826 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1827 p->real_parent->signal->is_child_subreaper;
1828 list_add_tail(&p->sibling, &p->real_parent->children);
1829 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1830 attach_pid(p, PIDTYPE_PGID);
1831 attach_pid(p, PIDTYPE_SID);
1832 __this_cpu_inc(process_counts);
1833 } else {
1834 current->signal->nr_threads++;
1835 atomic_inc(&current->signal->live);
1836 atomic_inc(&current->signal->sigcnt);
1837 list_add_tail_rcu(&p->thread_group,
1838 &p->group_leader->thread_group);
1839 list_add_tail_rcu(&p->thread_node,
1840 &p->signal->thread_head);
1841 }
1842 attach_pid(p, PIDTYPE_PID);
1843 nr_threads++;
1844 }
1845
1846 total_forks++;
1847 spin_unlock(&current->sighand->siglock);
1848 syscall_tracepoint_update(p);
1849 write_unlock_irq(&tasklist_lock);
1850
1851 proc_fork_connector(p);
1852 cgroup_post_fork(p);
1853 cgroup_threadgroup_change_end(current);
1854 perf_event_fork(p);
1855
1856 trace_task_newtask(p, clone_flags);
1857 uprobe_copy_process(p, clone_flags);
1858
1859 return p;
1860
1861 bad_fork_cancel_cgroup:
1862 cgroup_cancel_fork(p);
1863 bad_fork_free_pid:
1864 cgroup_threadgroup_change_end(current);
1865 if (pid != &init_struct_pid)
1866 free_pid(pid);
1867 bad_fork_cleanup_thread:
1868 exit_thread(p);
1869 bad_fork_cleanup_io:
1870 if (p->io_context)
1871 exit_io_context(p);
1872 bad_fork_cleanup_namespaces:
1873 exit_task_namespaces(p);
1874 bad_fork_cleanup_mm:
1875 if (p->mm)
1876 mmput(p->mm);
1877 bad_fork_cleanup_signal:
1878 if (!(clone_flags & CLONE_THREAD))
1879 free_signal_struct(p->signal);
1880 bad_fork_cleanup_sighand:
1881 __cleanup_sighand(p->sighand);
1882 bad_fork_cleanup_fs:
1883 exit_fs(p); /* blocking */
1884 bad_fork_cleanup_files:
1885 exit_files(p); /* blocking */
1886 bad_fork_cleanup_semundo:
1887 exit_sem(p);
1888 bad_fork_cleanup_audit:
1889 audit_free(p);
1890 bad_fork_cleanup_perf:
1891 perf_event_free_task(p);
1892 bad_fork_cleanup_policy:
1893 #ifdef CONFIG_NUMA
1894 mpol_put(p->mempolicy);
1895 bad_fork_cleanup_threadgroup_lock:
1896 #endif
1897 delayacct_tsk_free(p);
1898 bad_fork_cleanup_count:
1899 atomic_dec(&p->cred->user->processes);
1900 exit_creds(p);
1901 bad_fork_free:
1902 p->state = TASK_DEAD;
1903 put_task_stack(p);
1904 free_task(p);
1905 fork_out:
1906 return ERR_PTR(retval);
1907 }
1908
1909 static inline void init_idle_pids(struct pid_link *links)
1910 {
1911 enum pid_type type;
1912
1913 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1914 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1915 links[type].pid = &init_struct_pid;
1916 }
1917 }
1918
1919 struct task_struct *fork_idle(int cpu)
1920 {
1921 struct task_struct *task;
1922 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1923 cpu_to_node(cpu));
1924 if (!IS_ERR(task)) {
1925 init_idle_pids(task->pids);
1926 init_idle(task, cpu);
1927 }
1928
1929 return task;
1930 }
1931
1932 /*
1933 * Ok, this is the main fork-routine.
1934 *
1935 * It copies the process, and if successful kick-starts
1936 * it and waits for it to finish using the VM if required.
1937 */
1938 long _do_fork(unsigned long clone_flags,
1939 unsigned long stack_start,
1940 unsigned long stack_size,
1941 int __user *parent_tidptr,
1942 int __user *child_tidptr,
1943 unsigned long tls)
1944 {
1945 struct task_struct *p;
1946 int trace = 0;
1947 long nr;
1948
1949 /*
1950 * Determine whether and which event to report to ptracer. When
1951 * called from kernel_thread or CLONE_UNTRACED is explicitly
1952 * requested, no event is reported; otherwise, report if the event
1953 * for the type of forking is enabled.
1954 */
1955 if (!(clone_flags & CLONE_UNTRACED)) {
1956 if (clone_flags & CLONE_VFORK)
1957 trace = PTRACE_EVENT_VFORK;
1958 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1959 trace = PTRACE_EVENT_CLONE;
1960 else
1961 trace = PTRACE_EVENT_FORK;
1962
1963 if (likely(!ptrace_event_enabled(current, trace)))
1964 trace = 0;
1965 }
1966
1967 p = copy_process(clone_flags, stack_start, stack_size,
1968 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1969 add_latent_entropy();
1970 /*
1971 * Do this prior waking up the new thread - the thread pointer
1972 * might get invalid after that point, if the thread exits quickly.
1973 */
1974 if (!IS_ERR(p)) {
1975 struct completion vfork;
1976 struct pid *pid;
1977
1978 trace_sched_process_fork(current, p);
1979
1980 pid = get_task_pid(p, PIDTYPE_PID);
1981 nr = pid_vnr(pid);
1982
1983 if (clone_flags & CLONE_PARENT_SETTID)
1984 put_user(nr, parent_tidptr);
1985
1986 if (clone_flags & CLONE_VFORK) {
1987 p->vfork_done = &vfork;
1988 init_completion(&vfork);
1989 get_task_struct(p);
1990 }
1991
1992 wake_up_new_task(p);
1993
1994 /* forking complete and child started to run, tell ptracer */
1995 if (unlikely(trace))
1996 ptrace_event_pid(trace, pid);
1997
1998 if (clone_flags & CLONE_VFORK) {
1999 if (!wait_for_vfork_done(p, &vfork))
2000 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2001 }
2002
2003 put_pid(pid);
2004 } else {
2005 nr = PTR_ERR(p);
2006 }
2007 return nr;
2008 }
2009
2010 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2011 /* For compatibility with architectures that call do_fork directly rather than
2012 * using the syscall entry points below. */
2013 long do_fork(unsigned long clone_flags,
2014 unsigned long stack_start,
2015 unsigned long stack_size,
2016 int __user *parent_tidptr,
2017 int __user *child_tidptr)
2018 {
2019 return _do_fork(clone_flags, stack_start, stack_size,
2020 parent_tidptr, child_tidptr, 0);
2021 }
2022 #endif
2023
2024 /*
2025 * Create a kernel thread.
2026 */
2027 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2028 {
2029 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2030 (unsigned long)arg, NULL, NULL, 0);
2031 }
2032
2033 #ifdef __ARCH_WANT_SYS_FORK
2034 SYSCALL_DEFINE0(fork)
2035 {
2036 #ifdef CONFIG_MMU
2037 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2038 #else
2039 /* can not support in nommu mode */
2040 return -EINVAL;
2041 #endif
2042 }
2043 #endif
2044
2045 #ifdef __ARCH_WANT_SYS_VFORK
2046 SYSCALL_DEFINE0(vfork)
2047 {
2048 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2049 0, NULL, NULL, 0);
2050 }
2051 #endif
2052
2053 #ifdef __ARCH_WANT_SYS_CLONE
2054 #ifdef CONFIG_CLONE_BACKWARDS
2055 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2056 int __user *, parent_tidptr,
2057 unsigned long, tls,
2058 int __user *, child_tidptr)
2059 #elif defined(CONFIG_CLONE_BACKWARDS2)
2060 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2061 int __user *, parent_tidptr,
2062 int __user *, child_tidptr,
2063 unsigned long, tls)
2064 #elif defined(CONFIG_CLONE_BACKWARDS3)
2065 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2066 int, stack_size,
2067 int __user *, parent_tidptr,
2068 int __user *, child_tidptr,
2069 unsigned long, tls)
2070 #else
2071 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2072 int __user *, parent_tidptr,
2073 int __user *, child_tidptr,
2074 unsigned long, tls)
2075 #endif
2076 {
2077 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2078 }
2079 #endif
2080
2081 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2082 {
2083 struct task_struct *leader, *parent, *child;
2084 int res;
2085
2086 read_lock(&tasklist_lock);
2087 leader = top = top->group_leader;
2088 down:
2089 for_each_thread(leader, parent) {
2090 list_for_each_entry(child, &parent->children, sibling) {
2091 res = visitor(child, data);
2092 if (res) {
2093 if (res < 0)
2094 goto out;
2095 leader = child;
2096 goto down;
2097 }
2098 up:
2099 ;
2100 }
2101 }
2102
2103 if (leader != top) {
2104 child = leader;
2105 parent = child->real_parent;
2106 leader = parent->group_leader;
2107 goto up;
2108 }
2109 out:
2110 read_unlock(&tasklist_lock);
2111 }
2112
2113 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2114 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2115 #endif
2116
2117 static void sighand_ctor(void *data)
2118 {
2119 struct sighand_struct *sighand = data;
2120
2121 spin_lock_init(&sighand->siglock);
2122 init_waitqueue_head(&sighand->signalfd_wqh);
2123 }
2124
2125 void __init proc_caches_init(void)
2126 {
2127 sighand_cachep = kmem_cache_create("sighand_cache",
2128 sizeof(struct sighand_struct), 0,
2129 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2130 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2131 signal_cachep = kmem_cache_create("signal_cache",
2132 sizeof(struct signal_struct), 0,
2133 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2134 NULL);
2135 files_cachep = kmem_cache_create("files_cache",
2136 sizeof(struct files_struct), 0,
2137 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2138 NULL);
2139 fs_cachep = kmem_cache_create("fs_cache",
2140 sizeof(struct fs_struct), 0,
2141 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2142 NULL);
2143 /*
2144 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2145 * whole struct cpumask for the OFFSTACK case. We could change
2146 * this to *only* allocate as much of it as required by the
2147 * maximum number of CPU's we can ever have. The cpumask_allocation
2148 * is at the end of the structure, exactly for that reason.
2149 */
2150 mm_cachep = kmem_cache_create("mm_struct",
2151 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2152 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2153 NULL);
2154 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2155 mmap_init();
2156 nsproxy_cache_init();
2157 }
2158
2159 /*
2160 * Check constraints on flags passed to the unshare system call.
2161 */
2162 static int check_unshare_flags(unsigned long unshare_flags)
2163 {
2164 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2165 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2166 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2167 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2168 return -EINVAL;
2169 /*
2170 * Not implemented, but pretend it works if there is nothing
2171 * to unshare. Note that unsharing the address space or the
2172 * signal handlers also need to unshare the signal queues (aka
2173 * CLONE_THREAD).
2174 */
2175 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2176 if (!thread_group_empty(current))
2177 return -EINVAL;
2178 }
2179 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2180 if (atomic_read(&current->sighand->count) > 1)
2181 return -EINVAL;
2182 }
2183 if (unshare_flags & CLONE_VM) {
2184 if (!current_is_single_threaded())
2185 return -EINVAL;
2186 }
2187
2188 return 0;
2189 }
2190
2191 /*
2192 * Unshare the filesystem structure if it is being shared
2193 */
2194 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2195 {
2196 struct fs_struct *fs = current->fs;
2197
2198 if (!(unshare_flags & CLONE_FS) || !fs)
2199 return 0;
2200
2201 /* don't need lock here; in the worst case we'll do useless copy */
2202 if (fs->users == 1)
2203 return 0;
2204
2205 *new_fsp = copy_fs_struct(fs);
2206 if (!*new_fsp)
2207 return -ENOMEM;
2208
2209 return 0;
2210 }
2211
2212 /*
2213 * Unshare file descriptor table if it is being shared
2214 */
2215 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2216 {
2217 struct files_struct *fd = current->files;
2218 int error = 0;
2219
2220 if ((unshare_flags & CLONE_FILES) &&
2221 (fd && atomic_read(&fd->count) > 1)) {
2222 *new_fdp = dup_fd(fd, &error);
2223 if (!*new_fdp)
2224 return error;
2225 }
2226
2227 return 0;
2228 }
2229
2230 /*
2231 * unshare allows a process to 'unshare' part of the process
2232 * context which was originally shared using clone. copy_*
2233 * functions used by do_fork() cannot be used here directly
2234 * because they modify an inactive task_struct that is being
2235 * constructed. Here we are modifying the current, active,
2236 * task_struct.
2237 */
2238 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2239 {
2240 struct fs_struct *fs, *new_fs = NULL;
2241 struct files_struct *fd, *new_fd = NULL;
2242 struct cred *new_cred = NULL;
2243 struct nsproxy *new_nsproxy = NULL;
2244 int do_sysvsem = 0;
2245 int err;
2246
2247 /*
2248 * If unsharing a user namespace must also unshare the thread group
2249 * and unshare the filesystem root and working directories.
2250 */
2251 if (unshare_flags & CLONE_NEWUSER)
2252 unshare_flags |= CLONE_THREAD | CLONE_FS;
2253 /*
2254 * If unsharing vm, must also unshare signal handlers.
2255 */
2256 if (unshare_flags & CLONE_VM)
2257 unshare_flags |= CLONE_SIGHAND;
2258 /*
2259 * If unsharing a signal handlers, must also unshare the signal queues.
2260 */
2261 if (unshare_flags & CLONE_SIGHAND)
2262 unshare_flags |= CLONE_THREAD;
2263 /*
2264 * If unsharing namespace, must also unshare filesystem information.
2265 */
2266 if (unshare_flags & CLONE_NEWNS)
2267 unshare_flags |= CLONE_FS;
2268
2269 err = check_unshare_flags(unshare_flags);
2270 if (err)
2271 goto bad_unshare_out;
2272 /*
2273 * CLONE_NEWIPC must also detach from the undolist: after switching
2274 * to a new ipc namespace, the semaphore arrays from the old
2275 * namespace are unreachable.
2276 */
2277 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2278 do_sysvsem = 1;
2279 err = unshare_fs(unshare_flags, &new_fs);
2280 if (err)
2281 goto bad_unshare_out;
2282 err = unshare_fd(unshare_flags, &new_fd);
2283 if (err)
2284 goto bad_unshare_cleanup_fs;
2285 err = unshare_userns(unshare_flags, &new_cred);
2286 if (err)
2287 goto bad_unshare_cleanup_fd;
2288 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2289 new_cred, new_fs);
2290 if (err)
2291 goto bad_unshare_cleanup_cred;
2292
2293 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2294 if (do_sysvsem) {
2295 /*
2296 * CLONE_SYSVSEM is equivalent to sys_exit().
2297 */
2298 exit_sem(current);
2299 }
2300 if (unshare_flags & CLONE_NEWIPC) {
2301 /* Orphan segments in old ns (see sem above). */
2302 exit_shm(current);
2303 shm_init_task(current);
2304 }
2305
2306 if (new_nsproxy)
2307 switch_task_namespaces(current, new_nsproxy);
2308
2309 task_lock(current);
2310
2311 if (new_fs) {
2312 fs = current->fs;
2313 spin_lock(&fs->lock);
2314 current->fs = new_fs;
2315 if (--fs->users)
2316 new_fs = NULL;
2317 else
2318 new_fs = fs;
2319 spin_unlock(&fs->lock);
2320 }
2321
2322 if (new_fd) {
2323 fd = current->files;
2324 current->files = new_fd;
2325 new_fd = fd;
2326 }
2327
2328 task_unlock(current);
2329
2330 if (new_cred) {
2331 /* Install the new user namespace */
2332 commit_creds(new_cred);
2333 new_cred = NULL;
2334 }
2335 }
2336
2337 bad_unshare_cleanup_cred:
2338 if (new_cred)
2339 put_cred(new_cred);
2340 bad_unshare_cleanup_fd:
2341 if (new_fd)
2342 put_files_struct(new_fd);
2343
2344 bad_unshare_cleanup_fs:
2345 if (new_fs)
2346 free_fs_struct(new_fs);
2347
2348 bad_unshare_out:
2349 return err;
2350 }
2351
2352 /*
2353 * Helper to unshare the files of the current task.
2354 * We don't want to expose copy_files internals to
2355 * the exec layer of the kernel.
2356 */
2357
2358 int unshare_files(struct files_struct **displaced)
2359 {
2360 struct task_struct *task = current;
2361 struct files_struct *copy = NULL;
2362 int error;
2363
2364 error = unshare_fd(CLONE_FILES, &copy);
2365 if (error || !copy) {
2366 *displaced = NULL;
2367 return error;
2368 }
2369 *displaced = task->files;
2370 task_lock(task);
2371 task->files = copy;
2372 task_unlock(task);
2373 return 0;
2374 }
2375
2376 int sysctl_max_threads(struct ctl_table *table, int write,
2377 void __user *buffer, size_t *lenp, loff_t *ppos)
2378 {
2379 struct ctl_table t;
2380 int ret;
2381 int threads = max_threads;
2382 int min = MIN_THREADS;
2383 int max = MAX_THREADS;
2384
2385 t = *table;
2386 t.data = &threads;
2387 t.extra1 = &min;
2388 t.extra2 = &max;
2389
2390 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2391 if (ret || !write)
2392 return ret;
2393
2394 set_max_threads(threads);
2395
2396 return 0;
2397 }