]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/futex.c
thermal/drivers/int340x: Do not set a wrong tcc offset on resume
[mirror_ubuntu-hirsute-kernel.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
33 */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/freezer.h>
39 #include <linux/memblock.h>
40 #include <linux/fault-inject.h>
41 #include <linux/time_namespace.h>
42
43 #include <asm/futex.h>
44
45 #include "locking/rtmutex_common.h"
46
47 /*
48 * READ this before attempting to hack on futexes!
49 *
50 * Basic futex operation and ordering guarantees
51 * =============================================
52 *
53 * The waiter reads the futex value in user space and calls
54 * futex_wait(). This function computes the hash bucket and acquires
55 * the hash bucket lock. After that it reads the futex user space value
56 * again and verifies that the data has not changed. If it has not changed
57 * it enqueues itself into the hash bucket, releases the hash bucket lock
58 * and schedules.
59 *
60 * The waker side modifies the user space value of the futex and calls
61 * futex_wake(). This function computes the hash bucket and acquires the
62 * hash bucket lock. Then it looks for waiters on that futex in the hash
63 * bucket and wakes them.
64 *
65 * In futex wake up scenarios where no tasks are blocked on a futex, taking
66 * the hb spinlock can be avoided and simply return. In order for this
67 * optimization to work, ordering guarantees must exist so that the waiter
68 * being added to the list is acknowledged when the list is concurrently being
69 * checked by the waker, avoiding scenarios like the following:
70 *
71 * CPU 0 CPU 1
72 * val = *futex;
73 * sys_futex(WAIT, futex, val);
74 * futex_wait(futex, val);
75 * uval = *futex;
76 * *futex = newval;
77 * sys_futex(WAKE, futex);
78 * futex_wake(futex);
79 * if (queue_empty())
80 * return;
81 * if (uval == val)
82 * lock(hash_bucket(futex));
83 * queue();
84 * unlock(hash_bucket(futex));
85 * schedule();
86 *
87 * This would cause the waiter on CPU 0 to wait forever because it
88 * missed the transition of the user space value from val to newval
89 * and the waker did not find the waiter in the hash bucket queue.
90 *
91 * The correct serialization ensures that a waiter either observes
92 * the changed user space value before blocking or is woken by a
93 * concurrent waker:
94 *
95 * CPU 0 CPU 1
96 * val = *futex;
97 * sys_futex(WAIT, futex, val);
98 * futex_wait(futex, val);
99 *
100 * waiters++; (a)
101 * smp_mb(); (A) <-- paired with -.
102 * |
103 * lock(hash_bucket(futex)); |
104 * |
105 * uval = *futex; |
106 * | *futex = newval;
107 * | sys_futex(WAKE, futex);
108 * | futex_wake(futex);
109 * |
110 * `--------> smp_mb(); (B)
111 * if (uval == val)
112 * queue();
113 * unlock(hash_bucket(futex));
114 * schedule(); if (waiters)
115 * lock(hash_bucket(futex));
116 * else wake_waiters(futex);
117 * waiters--; (b) unlock(hash_bucket(futex));
118 *
119 * Where (A) orders the waiters increment and the futex value read through
120 * atomic operations (see hb_waiters_inc) and where (B) orders the write
121 * to futex and the waiters read (see hb_waiters_pending()).
122 *
123 * This yields the following case (where X:=waiters, Y:=futex):
124 *
125 * X = Y = 0
126 *
127 * w[X]=1 w[Y]=1
128 * MB MB
129 * r[Y]=y r[X]=x
130 *
131 * Which guarantees that x==0 && y==0 is impossible; which translates back into
132 * the guarantee that we cannot both miss the futex variable change and the
133 * enqueue.
134 *
135 * Note that a new waiter is accounted for in (a) even when it is possible that
136 * the wait call can return error, in which case we backtrack from it in (b).
137 * Refer to the comment in queue_lock().
138 *
139 * Similarly, in order to account for waiters being requeued on another
140 * address we always increment the waiters for the destination bucket before
141 * acquiring the lock. It then decrements them again after releasing it -
142 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
143 * will do the additional required waiter count housekeeping. This is done for
144 * double_lock_hb() and double_unlock_hb(), respectively.
145 */
146
147 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
148 #define futex_cmpxchg_enabled 1
149 #else
150 static int __read_mostly futex_cmpxchg_enabled;
151 #endif
152
153 /*
154 * Futex flags used to encode options to functions and preserve them across
155 * restarts.
156 */
157 #ifdef CONFIG_MMU
158 # define FLAGS_SHARED 0x01
159 #else
160 /*
161 * NOMMU does not have per process address space. Let the compiler optimize
162 * code away.
163 */
164 # define FLAGS_SHARED 0x00
165 #endif
166 #define FLAGS_CLOCKRT 0x02
167 #define FLAGS_HAS_TIMEOUT 0x04
168
169 /*
170 * Priority Inheritance state:
171 */
172 struct futex_pi_state {
173 /*
174 * list of 'owned' pi_state instances - these have to be
175 * cleaned up in do_exit() if the task exits prematurely:
176 */
177 struct list_head list;
178
179 /*
180 * The PI object:
181 */
182 struct rt_mutex pi_mutex;
183
184 struct task_struct *owner;
185 refcount_t refcount;
186
187 union futex_key key;
188 } __randomize_layout;
189
190 /**
191 * struct futex_q - The hashed futex queue entry, one per waiting task
192 * @list: priority-sorted list of tasks waiting on this futex
193 * @task: the task waiting on the futex
194 * @lock_ptr: the hash bucket lock
195 * @key: the key the futex is hashed on
196 * @pi_state: optional priority inheritance state
197 * @rt_waiter: rt_waiter storage for use with requeue_pi
198 * @requeue_pi_key: the requeue_pi target futex key
199 * @bitset: bitset for the optional bitmasked wakeup
200 *
201 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
202 * we can wake only the relevant ones (hashed queues may be shared).
203 *
204 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
205 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
206 * The order of wakeup is always to make the first condition true, then
207 * the second.
208 *
209 * PI futexes are typically woken before they are removed from the hash list via
210 * the rt_mutex code. See unqueue_me_pi().
211 */
212 struct futex_q {
213 struct plist_node list;
214
215 struct task_struct *task;
216 spinlock_t *lock_ptr;
217 union futex_key key;
218 struct futex_pi_state *pi_state;
219 struct rt_mutex_waiter *rt_waiter;
220 union futex_key *requeue_pi_key;
221 u32 bitset;
222 } __randomize_layout;
223
224 static const struct futex_q futex_q_init = {
225 /* list gets initialized in queue_me()*/
226 .key = FUTEX_KEY_INIT,
227 .bitset = FUTEX_BITSET_MATCH_ANY
228 };
229
230 /*
231 * Hash buckets are shared by all the futex_keys that hash to the same
232 * location. Each key may have multiple futex_q structures, one for each task
233 * waiting on a futex.
234 */
235 struct futex_hash_bucket {
236 atomic_t waiters;
237 spinlock_t lock;
238 struct plist_head chain;
239 } ____cacheline_aligned_in_smp;
240
241 /*
242 * The base of the bucket array and its size are always used together
243 * (after initialization only in hash_futex()), so ensure that they
244 * reside in the same cacheline.
245 */
246 static struct {
247 struct futex_hash_bucket *queues;
248 unsigned long hashsize;
249 } __futex_data __read_mostly __aligned(2*sizeof(long));
250 #define futex_queues (__futex_data.queues)
251 #define futex_hashsize (__futex_data.hashsize)
252
253
254 /*
255 * Fault injections for futexes.
256 */
257 #ifdef CONFIG_FAIL_FUTEX
258
259 static struct {
260 struct fault_attr attr;
261
262 bool ignore_private;
263 } fail_futex = {
264 .attr = FAULT_ATTR_INITIALIZER,
265 .ignore_private = false,
266 };
267
268 static int __init setup_fail_futex(char *str)
269 {
270 return setup_fault_attr(&fail_futex.attr, str);
271 }
272 __setup("fail_futex=", setup_fail_futex);
273
274 static bool should_fail_futex(bool fshared)
275 {
276 if (fail_futex.ignore_private && !fshared)
277 return false;
278
279 return should_fail(&fail_futex.attr, 1);
280 }
281
282 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
283
284 static int __init fail_futex_debugfs(void)
285 {
286 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
287 struct dentry *dir;
288
289 dir = fault_create_debugfs_attr("fail_futex", NULL,
290 &fail_futex.attr);
291 if (IS_ERR(dir))
292 return PTR_ERR(dir);
293
294 debugfs_create_bool("ignore-private", mode, dir,
295 &fail_futex.ignore_private);
296 return 0;
297 }
298
299 late_initcall(fail_futex_debugfs);
300
301 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
302
303 #else
304 static inline bool should_fail_futex(bool fshared)
305 {
306 return false;
307 }
308 #endif /* CONFIG_FAIL_FUTEX */
309
310 #ifdef CONFIG_COMPAT
311 static void compat_exit_robust_list(struct task_struct *curr);
312 #endif
313
314 /*
315 * Reflects a new waiter being added to the waitqueue.
316 */
317 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
318 {
319 #ifdef CONFIG_SMP
320 atomic_inc(&hb->waiters);
321 /*
322 * Full barrier (A), see the ordering comment above.
323 */
324 smp_mb__after_atomic();
325 #endif
326 }
327
328 /*
329 * Reflects a waiter being removed from the waitqueue by wakeup
330 * paths.
331 */
332 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
333 {
334 #ifdef CONFIG_SMP
335 atomic_dec(&hb->waiters);
336 #endif
337 }
338
339 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
340 {
341 #ifdef CONFIG_SMP
342 /*
343 * Full barrier (B), see the ordering comment above.
344 */
345 smp_mb();
346 return atomic_read(&hb->waiters);
347 #else
348 return 1;
349 #endif
350 }
351
352 /**
353 * hash_futex - Return the hash bucket in the global hash
354 * @key: Pointer to the futex key for which the hash is calculated
355 *
356 * We hash on the keys returned from get_futex_key (see below) and return the
357 * corresponding hash bucket in the global hash.
358 */
359 static struct futex_hash_bucket *hash_futex(union futex_key *key)
360 {
361 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
362 key->both.offset);
363
364 return &futex_queues[hash & (futex_hashsize - 1)];
365 }
366
367
368 /**
369 * match_futex - Check whether two futex keys are equal
370 * @key1: Pointer to key1
371 * @key2: Pointer to key2
372 *
373 * Return 1 if two futex_keys are equal, 0 otherwise.
374 */
375 static inline int match_futex(union futex_key *key1, union futex_key *key2)
376 {
377 return (key1 && key2
378 && key1->both.word == key2->both.word
379 && key1->both.ptr == key2->both.ptr
380 && key1->both.offset == key2->both.offset);
381 }
382
383 enum futex_access {
384 FUTEX_READ,
385 FUTEX_WRITE
386 };
387
388 /**
389 * futex_setup_timer - set up the sleeping hrtimer.
390 * @time: ptr to the given timeout value
391 * @timeout: the hrtimer_sleeper structure to be set up
392 * @flags: futex flags
393 * @range_ns: optional range in ns
394 *
395 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
396 * value given
397 */
398 static inline struct hrtimer_sleeper *
399 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
400 int flags, u64 range_ns)
401 {
402 if (!time)
403 return NULL;
404
405 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
406 CLOCK_REALTIME : CLOCK_MONOTONIC,
407 HRTIMER_MODE_ABS);
408 /*
409 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
410 * effectively the same as calling hrtimer_set_expires().
411 */
412 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
413
414 return timeout;
415 }
416
417 /*
418 * Generate a machine wide unique identifier for this inode.
419 *
420 * This relies on u64 not wrapping in the life-time of the machine; which with
421 * 1ns resolution means almost 585 years.
422 *
423 * This further relies on the fact that a well formed program will not unmap
424 * the file while it has a (shared) futex waiting on it. This mapping will have
425 * a file reference which pins the mount and inode.
426 *
427 * If for some reason an inode gets evicted and read back in again, it will get
428 * a new sequence number and will _NOT_ match, even though it is the exact same
429 * file.
430 *
431 * It is important that match_futex() will never have a false-positive, esp.
432 * for PI futexes that can mess up the state. The above argues that false-negatives
433 * are only possible for malformed programs.
434 */
435 static u64 get_inode_sequence_number(struct inode *inode)
436 {
437 static atomic64_t i_seq;
438 u64 old;
439
440 /* Does the inode already have a sequence number? */
441 old = atomic64_read(&inode->i_sequence);
442 if (likely(old))
443 return old;
444
445 for (;;) {
446 u64 new = atomic64_add_return(1, &i_seq);
447 if (WARN_ON_ONCE(!new))
448 continue;
449
450 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
451 if (old)
452 return old;
453 return new;
454 }
455 }
456
457 /**
458 * get_futex_key() - Get parameters which are the keys for a futex
459 * @uaddr: virtual address of the futex
460 * @fshared: false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
461 * @key: address where result is stored.
462 * @rw: mapping needs to be read/write (values: FUTEX_READ,
463 * FUTEX_WRITE)
464 *
465 * Return: a negative error code or 0
466 *
467 * The key words are stored in @key on success.
468 *
469 * For shared mappings (when @fshared), the key is:
470 *
471 * ( inode->i_sequence, page->index, offset_within_page )
472 *
473 * [ also see get_inode_sequence_number() ]
474 *
475 * For private mappings (or when !@fshared), the key is:
476 *
477 * ( current->mm, address, 0 )
478 *
479 * This allows (cross process, where applicable) identification of the futex
480 * without keeping the page pinned for the duration of the FUTEX_WAIT.
481 *
482 * lock_page() might sleep, the caller should not hold a spinlock.
483 */
484 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
485 enum futex_access rw)
486 {
487 unsigned long address = (unsigned long)uaddr;
488 struct mm_struct *mm = current->mm;
489 struct page *page, *tail;
490 struct address_space *mapping;
491 int err, ro = 0;
492
493 /*
494 * The futex address must be "naturally" aligned.
495 */
496 key->both.offset = address % PAGE_SIZE;
497 if (unlikely((address % sizeof(u32)) != 0))
498 return -EINVAL;
499 address -= key->both.offset;
500
501 if (unlikely(!access_ok(uaddr, sizeof(u32))))
502 return -EFAULT;
503
504 if (unlikely(should_fail_futex(fshared)))
505 return -EFAULT;
506
507 /*
508 * PROCESS_PRIVATE futexes are fast.
509 * As the mm cannot disappear under us and the 'key' only needs
510 * virtual address, we dont even have to find the underlying vma.
511 * Note : We do have to check 'uaddr' is a valid user address,
512 * but access_ok() should be faster than find_vma()
513 */
514 if (!fshared) {
515 key->private.mm = mm;
516 key->private.address = address;
517 return 0;
518 }
519
520 again:
521 /* Ignore any VERIFY_READ mapping (futex common case) */
522 if (unlikely(should_fail_futex(true)))
523 return -EFAULT;
524
525 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
526 /*
527 * If write access is not required (eg. FUTEX_WAIT), try
528 * and get read-only access.
529 */
530 if (err == -EFAULT && rw == FUTEX_READ) {
531 err = get_user_pages_fast(address, 1, 0, &page);
532 ro = 1;
533 }
534 if (err < 0)
535 return err;
536 else
537 err = 0;
538
539 /*
540 * The treatment of mapping from this point on is critical. The page
541 * lock protects many things but in this context the page lock
542 * stabilizes mapping, prevents inode freeing in the shared
543 * file-backed region case and guards against movement to swap cache.
544 *
545 * Strictly speaking the page lock is not needed in all cases being
546 * considered here and page lock forces unnecessarily serialization
547 * From this point on, mapping will be re-verified if necessary and
548 * page lock will be acquired only if it is unavoidable
549 *
550 * Mapping checks require the head page for any compound page so the
551 * head page and mapping is looked up now. For anonymous pages, it
552 * does not matter if the page splits in the future as the key is
553 * based on the address. For filesystem-backed pages, the tail is
554 * required as the index of the page determines the key. For
555 * base pages, there is no tail page and tail == page.
556 */
557 tail = page;
558 page = compound_head(page);
559 mapping = READ_ONCE(page->mapping);
560
561 /*
562 * If page->mapping is NULL, then it cannot be a PageAnon
563 * page; but it might be the ZERO_PAGE or in the gate area or
564 * in a special mapping (all cases which we are happy to fail);
565 * or it may have been a good file page when get_user_pages_fast
566 * found it, but truncated or holepunched or subjected to
567 * invalidate_complete_page2 before we got the page lock (also
568 * cases which we are happy to fail). And we hold a reference,
569 * so refcount care in invalidate_complete_page's remove_mapping
570 * prevents drop_caches from setting mapping to NULL beneath us.
571 *
572 * The case we do have to guard against is when memory pressure made
573 * shmem_writepage move it from filecache to swapcache beneath us:
574 * an unlikely race, but we do need to retry for page->mapping.
575 */
576 if (unlikely(!mapping)) {
577 int shmem_swizzled;
578
579 /*
580 * Page lock is required to identify which special case above
581 * applies. If this is really a shmem page then the page lock
582 * will prevent unexpected transitions.
583 */
584 lock_page(page);
585 shmem_swizzled = PageSwapCache(page) || page->mapping;
586 unlock_page(page);
587 put_page(page);
588
589 if (shmem_swizzled)
590 goto again;
591
592 return -EFAULT;
593 }
594
595 /*
596 * Private mappings are handled in a simple way.
597 *
598 * If the futex key is stored on an anonymous page, then the associated
599 * object is the mm which is implicitly pinned by the calling process.
600 *
601 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
602 * it's a read-only handle, it's expected that futexes attach to
603 * the object not the particular process.
604 */
605 if (PageAnon(page)) {
606 /*
607 * A RO anonymous page will never change and thus doesn't make
608 * sense for futex operations.
609 */
610 if (unlikely(should_fail_futex(true)) || ro) {
611 err = -EFAULT;
612 goto out;
613 }
614
615 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
616 key->private.mm = mm;
617 key->private.address = address;
618
619 } else {
620 struct inode *inode;
621
622 /*
623 * The associated futex object in this case is the inode and
624 * the page->mapping must be traversed. Ordinarily this should
625 * be stabilised under page lock but it's not strictly
626 * necessary in this case as we just want to pin the inode, not
627 * update the radix tree or anything like that.
628 *
629 * The RCU read lock is taken as the inode is finally freed
630 * under RCU. If the mapping still matches expectations then the
631 * mapping->host can be safely accessed as being a valid inode.
632 */
633 rcu_read_lock();
634
635 if (READ_ONCE(page->mapping) != mapping) {
636 rcu_read_unlock();
637 put_page(page);
638
639 goto again;
640 }
641
642 inode = READ_ONCE(mapping->host);
643 if (!inode) {
644 rcu_read_unlock();
645 put_page(page);
646
647 goto again;
648 }
649
650 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
651 key->shared.i_seq = get_inode_sequence_number(inode);
652 key->shared.pgoff = page_to_pgoff(tail);
653 rcu_read_unlock();
654 }
655
656 out:
657 put_page(page);
658 return err;
659 }
660
661 /**
662 * fault_in_user_writeable() - Fault in user address and verify RW access
663 * @uaddr: pointer to faulting user space address
664 *
665 * Slow path to fixup the fault we just took in the atomic write
666 * access to @uaddr.
667 *
668 * We have no generic implementation of a non-destructive write to the
669 * user address. We know that we faulted in the atomic pagefault
670 * disabled section so we can as well avoid the #PF overhead by
671 * calling get_user_pages() right away.
672 */
673 static int fault_in_user_writeable(u32 __user *uaddr)
674 {
675 struct mm_struct *mm = current->mm;
676 int ret;
677
678 mmap_read_lock(mm);
679 ret = fixup_user_fault(mm, (unsigned long)uaddr,
680 FAULT_FLAG_WRITE, NULL);
681 mmap_read_unlock(mm);
682
683 return ret < 0 ? ret : 0;
684 }
685
686 /**
687 * futex_top_waiter() - Return the highest priority waiter on a futex
688 * @hb: the hash bucket the futex_q's reside in
689 * @key: the futex key (to distinguish it from other futex futex_q's)
690 *
691 * Must be called with the hb lock held.
692 */
693 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
694 union futex_key *key)
695 {
696 struct futex_q *this;
697
698 plist_for_each_entry(this, &hb->chain, list) {
699 if (match_futex(&this->key, key))
700 return this;
701 }
702 return NULL;
703 }
704
705 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
706 u32 uval, u32 newval)
707 {
708 int ret;
709
710 pagefault_disable();
711 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
712 pagefault_enable();
713
714 return ret;
715 }
716
717 static int get_futex_value_locked(u32 *dest, u32 __user *from)
718 {
719 int ret;
720
721 pagefault_disable();
722 ret = __get_user(*dest, from);
723 pagefault_enable();
724
725 return ret ? -EFAULT : 0;
726 }
727
728
729 /*
730 * PI code:
731 */
732 static int refill_pi_state_cache(void)
733 {
734 struct futex_pi_state *pi_state;
735
736 if (likely(current->pi_state_cache))
737 return 0;
738
739 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
740
741 if (!pi_state)
742 return -ENOMEM;
743
744 INIT_LIST_HEAD(&pi_state->list);
745 /* pi_mutex gets initialized later */
746 pi_state->owner = NULL;
747 refcount_set(&pi_state->refcount, 1);
748 pi_state->key = FUTEX_KEY_INIT;
749
750 current->pi_state_cache = pi_state;
751
752 return 0;
753 }
754
755 static struct futex_pi_state *alloc_pi_state(void)
756 {
757 struct futex_pi_state *pi_state = current->pi_state_cache;
758
759 WARN_ON(!pi_state);
760 current->pi_state_cache = NULL;
761
762 return pi_state;
763 }
764
765 static void pi_state_update_owner(struct futex_pi_state *pi_state,
766 struct task_struct *new_owner)
767 {
768 struct task_struct *old_owner = pi_state->owner;
769
770 lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
771
772 if (old_owner) {
773 raw_spin_lock(&old_owner->pi_lock);
774 WARN_ON(list_empty(&pi_state->list));
775 list_del_init(&pi_state->list);
776 raw_spin_unlock(&old_owner->pi_lock);
777 }
778
779 if (new_owner) {
780 raw_spin_lock(&new_owner->pi_lock);
781 WARN_ON(!list_empty(&pi_state->list));
782 list_add(&pi_state->list, &new_owner->pi_state_list);
783 pi_state->owner = new_owner;
784 raw_spin_unlock(&new_owner->pi_lock);
785 }
786 }
787
788 static void get_pi_state(struct futex_pi_state *pi_state)
789 {
790 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
791 }
792
793 /*
794 * Drops a reference to the pi_state object and frees or caches it
795 * when the last reference is gone.
796 */
797 static void put_pi_state(struct futex_pi_state *pi_state)
798 {
799 if (!pi_state)
800 return;
801
802 if (!refcount_dec_and_test(&pi_state->refcount))
803 return;
804
805 /*
806 * If pi_state->owner is NULL, the owner is most probably dying
807 * and has cleaned up the pi_state already
808 */
809 if (pi_state->owner) {
810 unsigned long flags;
811
812 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
813 pi_state_update_owner(pi_state, NULL);
814 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
815 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
816 }
817
818 if (current->pi_state_cache) {
819 kfree(pi_state);
820 } else {
821 /*
822 * pi_state->list is already empty.
823 * clear pi_state->owner.
824 * refcount is at 0 - put it back to 1.
825 */
826 pi_state->owner = NULL;
827 refcount_set(&pi_state->refcount, 1);
828 current->pi_state_cache = pi_state;
829 }
830 }
831
832 #ifdef CONFIG_FUTEX_PI
833
834 /*
835 * This task is holding PI mutexes at exit time => bad.
836 * Kernel cleans up PI-state, but userspace is likely hosed.
837 * (Robust-futex cleanup is separate and might save the day for userspace.)
838 */
839 static void exit_pi_state_list(struct task_struct *curr)
840 {
841 struct list_head *next, *head = &curr->pi_state_list;
842 struct futex_pi_state *pi_state;
843 struct futex_hash_bucket *hb;
844 union futex_key key = FUTEX_KEY_INIT;
845
846 if (!futex_cmpxchg_enabled)
847 return;
848 /*
849 * We are a ZOMBIE and nobody can enqueue itself on
850 * pi_state_list anymore, but we have to be careful
851 * versus waiters unqueueing themselves:
852 */
853 raw_spin_lock_irq(&curr->pi_lock);
854 while (!list_empty(head)) {
855 next = head->next;
856 pi_state = list_entry(next, struct futex_pi_state, list);
857 key = pi_state->key;
858 hb = hash_futex(&key);
859
860 /*
861 * We can race against put_pi_state() removing itself from the
862 * list (a waiter going away). put_pi_state() will first
863 * decrement the reference count and then modify the list, so
864 * its possible to see the list entry but fail this reference
865 * acquire.
866 *
867 * In that case; drop the locks to let put_pi_state() make
868 * progress and retry the loop.
869 */
870 if (!refcount_inc_not_zero(&pi_state->refcount)) {
871 raw_spin_unlock_irq(&curr->pi_lock);
872 cpu_relax();
873 raw_spin_lock_irq(&curr->pi_lock);
874 continue;
875 }
876 raw_spin_unlock_irq(&curr->pi_lock);
877
878 spin_lock(&hb->lock);
879 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
880 raw_spin_lock(&curr->pi_lock);
881 /*
882 * We dropped the pi-lock, so re-check whether this
883 * task still owns the PI-state:
884 */
885 if (head->next != next) {
886 /* retain curr->pi_lock for the loop invariant */
887 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
888 spin_unlock(&hb->lock);
889 put_pi_state(pi_state);
890 continue;
891 }
892
893 WARN_ON(pi_state->owner != curr);
894 WARN_ON(list_empty(&pi_state->list));
895 list_del_init(&pi_state->list);
896 pi_state->owner = NULL;
897
898 raw_spin_unlock(&curr->pi_lock);
899 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
900 spin_unlock(&hb->lock);
901
902 rt_mutex_futex_unlock(&pi_state->pi_mutex);
903 put_pi_state(pi_state);
904
905 raw_spin_lock_irq(&curr->pi_lock);
906 }
907 raw_spin_unlock_irq(&curr->pi_lock);
908 }
909 #else
910 static inline void exit_pi_state_list(struct task_struct *curr) { }
911 #endif
912
913 /*
914 * We need to check the following states:
915 *
916 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
917 *
918 * [1] NULL | --- | --- | 0 | 0/1 | Valid
919 * [2] NULL | --- | --- | >0 | 0/1 | Valid
920 *
921 * [3] Found | NULL | -- | Any | 0/1 | Invalid
922 *
923 * [4] Found | Found | NULL | 0 | 1 | Valid
924 * [5] Found | Found | NULL | >0 | 1 | Invalid
925 *
926 * [6] Found | Found | task | 0 | 1 | Valid
927 *
928 * [7] Found | Found | NULL | Any | 0 | Invalid
929 *
930 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
931 * [9] Found | Found | task | 0 | 0 | Invalid
932 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
933 *
934 * [1] Indicates that the kernel can acquire the futex atomically. We
935 * came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
936 *
937 * [2] Valid, if TID does not belong to a kernel thread. If no matching
938 * thread is found then it indicates that the owner TID has died.
939 *
940 * [3] Invalid. The waiter is queued on a non PI futex
941 *
942 * [4] Valid state after exit_robust_list(), which sets the user space
943 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
944 *
945 * [5] The user space value got manipulated between exit_robust_list()
946 * and exit_pi_state_list()
947 *
948 * [6] Valid state after exit_pi_state_list() which sets the new owner in
949 * the pi_state but cannot access the user space value.
950 *
951 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
952 *
953 * [8] Owner and user space value match
954 *
955 * [9] There is no transient state which sets the user space TID to 0
956 * except exit_robust_list(), but this is indicated by the
957 * FUTEX_OWNER_DIED bit. See [4]
958 *
959 * [10] There is no transient state which leaves owner and user space
960 * TID out of sync. Except one error case where the kernel is denied
961 * write access to the user address, see fixup_pi_state_owner().
962 *
963 *
964 * Serialization and lifetime rules:
965 *
966 * hb->lock:
967 *
968 * hb -> futex_q, relation
969 * futex_q -> pi_state, relation
970 *
971 * (cannot be raw because hb can contain arbitrary amount
972 * of futex_q's)
973 *
974 * pi_mutex->wait_lock:
975 *
976 * {uval, pi_state}
977 *
978 * (and pi_mutex 'obviously')
979 *
980 * p->pi_lock:
981 *
982 * p->pi_state_list -> pi_state->list, relation
983 *
984 * pi_state->refcount:
985 *
986 * pi_state lifetime
987 *
988 *
989 * Lock order:
990 *
991 * hb->lock
992 * pi_mutex->wait_lock
993 * p->pi_lock
994 *
995 */
996
997 /*
998 * Validate that the existing waiter has a pi_state and sanity check
999 * the pi_state against the user space value. If correct, attach to
1000 * it.
1001 */
1002 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1003 struct futex_pi_state *pi_state,
1004 struct futex_pi_state **ps)
1005 {
1006 pid_t pid = uval & FUTEX_TID_MASK;
1007 u32 uval2;
1008 int ret;
1009
1010 /*
1011 * Userspace might have messed up non-PI and PI futexes [3]
1012 */
1013 if (unlikely(!pi_state))
1014 return -EINVAL;
1015
1016 /*
1017 * We get here with hb->lock held, and having found a
1018 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1019 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1020 * which in turn means that futex_lock_pi() still has a reference on
1021 * our pi_state.
1022 *
1023 * The waiter holding a reference on @pi_state also protects against
1024 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1025 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1026 * free pi_state before we can take a reference ourselves.
1027 */
1028 WARN_ON(!refcount_read(&pi_state->refcount));
1029
1030 /*
1031 * Now that we have a pi_state, we can acquire wait_lock
1032 * and do the state validation.
1033 */
1034 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1035
1036 /*
1037 * Since {uval, pi_state} is serialized by wait_lock, and our current
1038 * uval was read without holding it, it can have changed. Verify it
1039 * still is what we expect it to be, otherwise retry the entire
1040 * operation.
1041 */
1042 if (get_futex_value_locked(&uval2, uaddr))
1043 goto out_efault;
1044
1045 if (uval != uval2)
1046 goto out_eagain;
1047
1048 /*
1049 * Handle the owner died case:
1050 */
1051 if (uval & FUTEX_OWNER_DIED) {
1052 /*
1053 * exit_pi_state_list sets owner to NULL and wakes the
1054 * topmost waiter. The task which acquires the
1055 * pi_state->rt_mutex will fixup owner.
1056 */
1057 if (!pi_state->owner) {
1058 /*
1059 * No pi state owner, but the user space TID
1060 * is not 0. Inconsistent state. [5]
1061 */
1062 if (pid)
1063 goto out_einval;
1064 /*
1065 * Take a ref on the state and return success. [4]
1066 */
1067 goto out_attach;
1068 }
1069
1070 /*
1071 * If TID is 0, then either the dying owner has not
1072 * yet executed exit_pi_state_list() or some waiter
1073 * acquired the rtmutex in the pi state, but did not
1074 * yet fixup the TID in user space.
1075 *
1076 * Take a ref on the state and return success. [6]
1077 */
1078 if (!pid)
1079 goto out_attach;
1080 } else {
1081 /*
1082 * If the owner died bit is not set, then the pi_state
1083 * must have an owner. [7]
1084 */
1085 if (!pi_state->owner)
1086 goto out_einval;
1087 }
1088
1089 /*
1090 * Bail out if user space manipulated the futex value. If pi
1091 * state exists then the owner TID must be the same as the
1092 * user space TID. [9/10]
1093 */
1094 if (pid != task_pid_vnr(pi_state->owner))
1095 goto out_einval;
1096
1097 out_attach:
1098 get_pi_state(pi_state);
1099 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1100 *ps = pi_state;
1101 return 0;
1102
1103 out_einval:
1104 ret = -EINVAL;
1105 goto out_error;
1106
1107 out_eagain:
1108 ret = -EAGAIN;
1109 goto out_error;
1110
1111 out_efault:
1112 ret = -EFAULT;
1113 goto out_error;
1114
1115 out_error:
1116 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1117 return ret;
1118 }
1119
1120 /**
1121 * wait_for_owner_exiting - Block until the owner has exited
1122 * @ret: owner's current futex lock status
1123 * @exiting: Pointer to the exiting task
1124 *
1125 * Caller must hold a refcount on @exiting.
1126 */
1127 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1128 {
1129 if (ret != -EBUSY) {
1130 WARN_ON_ONCE(exiting);
1131 return;
1132 }
1133
1134 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1135 return;
1136
1137 mutex_lock(&exiting->futex_exit_mutex);
1138 /*
1139 * No point in doing state checking here. If the waiter got here
1140 * while the task was in exec()->exec_futex_release() then it can
1141 * have any FUTEX_STATE_* value when the waiter has acquired the
1142 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1143 * already. Highly unlikely and not a problem. Just one more round
1144 * through the futex maze.
1145 */
1146 mutex_unlock(&exiting->futex_exit_mutex);
1147
1148 put_task_struct(exiting);
1149 }
1150
1151 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1152 struct task_struct *tsk)
1153 {
1154 u32 uval2;
1155
1156 /*
1157 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1158 * caller that the alleged owner is busy.
1159 */
1160 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1161 return -EBUSY;
1162
1163 /*
1164 * Reread the user space value to handle the following situation:
1165 *
1166 * CPU0 CPU1
1167 *
1168 * sys_exit() sys_futex()
1169 * do_exit() futex_lock_pi()
1170 * futex_lock_pi_atomic()
1171 * exit_signals(tsk) No waiters:
1172 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1173 * mm_release(tsk) Set waiter bit
1174 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1175 * Set owner died attach_to_pi_owner() {
1176 * *uaddr = 0xC0000000; tsk = get_task(PID);
1177 * } if (!tsk->flags & PF_EXITING) {
1178 * ... attach();
1179 * tsk->futex_state = } else {
1180 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1181 * FUTEX_STATE_DEAD)
1182 * return -EAGAIN;
1183 * return -ESRCH; <--- FAIL
1184 * }
1185 *
1186 * Returning ESRCH unconditionally is wrong here because the
1187 * user space value has been changed by the exiting task.
1188 *
1189 * The same logic applies to the case where the exiting task is
1190 * already gone.
1191 */
1192 if (get_futex_value_locked(&uval2, uaddr))
1193 return -EFAULT;
1194
1195 /* If the user space value has changed, try again. */
1196 if (uval2 != uval)
1197 return -EAGAIN;
1198
1199 /*
1200 * The exiting task did not have a robust list, the robust list was
1201 * corrupted or the user space value in *uaddr is simply bogus.
1202 * Give up and tell user space.
1203 */
1204 return -ESRCH;
1205 }
1206
1207 /*
1208 * Lookup the task for the TID provided from user space and attach to
1209 * it after doing proper sanity checks.
1210 */
1211 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1212 struct futex_pi_state **ps,
1213 struct task_struct **exiting)
1214 {
1215 pid_t pid = uval & FUTEX_TID_MASK;
1216 struct futex_pi_state *pi_state;
1217 struct task_struct *p;
1218
1219 /*
1220 * We are the first waiter - try to look up the real owner and attach
1221 * the new pi_state to it, but bail out when TID = 0 [1]
1222 *
1223 * The !pid check is paranoid. None of the call sites should end up
1224 * with pid == 0, but better safe than sorry. Let the caller retry
1225 */
1226 if (!pid)
1227 return -EAGAIN;
1228 p = find_get_task_by_vpid(pid);
1229 if (!p)
1230 return handle_exit_race(uaddr, uval, NULL);
1231
1232 if (unlikely(p->flags & PF_KTHREAD)) {
1233 put_task_struct(p);
1234 return -EPERM;
1235 }
1236
1237 /*
1238 * We need to look at the task state to figure out, whether the
1239 * task is exiting. To protect against the change of the task state
1240 * in futex_exit_release(), we do this protected by p->pi_lock:
1241 */
1242 raw_spin_lock_irq(&p->pi_lock);
1243 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1244 /*
1245 * The task is on the way out. When the futex state is
1246 * FUTEX_STATE_DEAD, we know that the task has finished
1247 * the cleanup:
1248 */
1249 int ret = handle_exit_race(uaddr, uval, p);
1250
1251 raw_spin_unlock_irq(&p->pi_lock);
1252 /*
1253 * If the owner task is between FUTEX_STATE_EXITING and
1254 * FUTEX_STATE_DEAD then store the task pointer and keep
1255 * the reference on the task struct. The calling code will
1256 * drop all locks, wait for the task to reach
1257 * FUTEX_STATE_DEAD and then drop the refcount. This is
1258 * required to prevent a live lock when the current task
1259 * preempted the exiting task between the two states.
1260 */
1261 if (ret == -EBUSY)
1262 *exiting = p;
1263 else
1264 put_task_struct(p);
1265 return ret;
1266 }
1267
1268 /*
1269 * No existing pi state. First waiter. [2]
1270 *
1271 * This creates pi_state, we have hb->lock held, this means nothing can
1272 * observe this state, wait_lock is irrelevant.
1273 */
1274 pi_state = alloc_pi_state();
1275
1276 /*
1277 * Initialize the pi_mutex in locked state and make @p
1278 * the owner of it:
1279 */
1280 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1281
1282 /* Store the key for possible exit cleanups: */
1283 pi_state->key = *key;
1284
1285 WARN_ON(!list_empty(&pi_state->list));
1286 list_add(&pi_state->list, &p->pi_state_list);
1287 /*
1288 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1289 * because there is no concurrency as the object is not published yet.
1290 */
1291 pi_state->owner = p;
1292 raw_spin_unlock_irq(&p->pi_lock);
1293
1294 put_task_struct(p);
1295
1296 *ps = pi_state;
1297
1298 return 0;
1299 }
1300
1301 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1302 struct futex_hash_bucket *hb,
1303 union futex_key *key, struct futex_pi_state **ps,
1304 struct task_struct **exiting)
1305 {
1306 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1307
1308 /*
1309 * If there is a waiter on that futex, validate it and
1310 * attach to the pi_state when the validation succeeds.
1311 */
1312 if (top_waiter)
1313 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1314
1315 /*
1316 * We are the first waiter - try to look up the owner based on
1317 * @uval and attach to it.
1318 */
1319 return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1320 }
1321
1322 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1323 {
1324 int err;
1325 u32 curval;
1326
1327 if (unlikely(should_fail_futex(true)))
1328 return -EFAULT;
1329
1330 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1331 if (unlikely(err))
1332 return err;
1333
1334 /* If user space value changed, let the caller retry */
1335 return curval != uval ? -EAGAIN : 0;
1336 }
1337
1338 /**
1339 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1340 * @uaddr: the pi futex user address
1341 * @hb: the pi futex hash bucket
1342 * @key: the futex key associated with uaddr and hb
1343 * @ps: the pi_state pointer where we store the result of the
1344 * lookup
1345 * @task: the task to perform the atomic lock work for. This will
1346 * be "current" except in the case of requeue pi.
1347 * @exiting: Pointer to store the task pointer of the owner task
1348 * which is in the middle of exiting
1349 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1350 *
1351 * Return:
1352 * - 0 - ready to wait;
1353 * - 1 - acquired the lock;
1354 * - <0 - error
1355 *
1356 * The hb->lock and futex_key refs shall be held by the caller.
1357 *
1358 * @exiting is only set when the return value is -EBUSY. If so, this holds
1359 * a refcount on the exiting task on return and the caller needs to drop it
1360 * after waiting for the exit to complete.
1361 */
1362 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1363 union futex_key *key,
1364 struct futex_pi_state **ps,
1365 struct task_struct *task,
1366 struct task_struct **exiting,
1367 int set_waiters)
1368 {
1369 u32 uval, newval, vpid = task_pid_vnr(task);
1370 struct futex_q *top_waiter;
1371 int ret;
1372
1373 /*
1374 * Read the user space value first so we can validate a few
1375 * things before proceeding further.
1376 */
1377 if (get_futex_value_locked(&uval, uaddr))
1378 return -EFAULT;
1379
1380 if (unlikely(should_fail_futex(true)))
1381 return -EFAULT;
1382
1383 /*
1384 * Detect deadlocks.
1385 */
1386 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1387 return -EDEADLK;
1388
1389 if ((unlikely(should_fail_futex(true))))
1390 return -EDEADLK;
1391
1392 /*
1393 * Lookup existing state first. If it exists, try to attach to
1394 * its pi_state.
1395 */
1396 top_waiter = futex_top_waiter(hb, key);
1397 if (top_waiter)
1398 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1399
1400 /*
1401 * No waiter and user TID is 0. We are here because the
1402 * waiters or the owner died bit is set or called from
1403 * requeue_cmp_pi or for whatever reason something took the
1404 * syscall.
1405 */
1406 if (!(uval & FUTEX_TID_MASK)) {
1407 /*
1408 * We take over the futex. No other waiters and the user space
1409 * TID is 0. We preserve the owner died bit.
1410 */
1411 newval = uval & FUTEX_OWNER_DIED;
1412 newval |= vpid;
1413
1414 /* The futex requeue_pi code can enforce the waiters bit */
1415 if (set_waiters)
1416 newval |= FUTEX_WAITERS;
1417
1418 ret = lock_pi_update_atomic(uaddr, uval, newval);
1419 /* If the take over worked, return 1 */
1420 return ret < 0 ? ret : 1;
1421 }
1422
1423 /*
1424 * First waiter. Set the waiters bit before attaching ourself to
1425 * the owner. If owner tries to unlock, it will be forced into
1426 * the kernel and blocked on hb->lock.
1427 */
1428 newval = uval | FUTEX_WAITERS;
1429 ret = lock_pi_update_atomic(uaddr, uval, newval);
1430 if (ret)
1431 return ret;
1432 /*
1433 * If the update of the user space value succeeded, we try to
1434 * attach to the owner. If that fails, no harm done, we only
1435 * set the FUTEX_WAITERS bit in the user space variable.
1436 */
1437 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1438 }
1439
1440 /**
1441 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1442 * @q: The futex_q to unqueue
1443 *
1444 * The q->lock_ptr must not be NULL and must be held by the caller.
1445 */
1446 static void __unqueue_futex(struct futex_q *q)
1447 {
1448 struct futex_hash_bucket *hb;
1449
1450 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1451 return;
1452 lockdep_assert_held(q->lock_ptr);
1453
1454 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1455 plist_del(&q->list, &hb->chain);
1456 hb_waiters_dec(hb);
1457 }
1458
1459 /*
1460 * The hash bucket lock must be held when this is called.
1461 * Afterwards, the futex_q must not be accessed. Callers
1462 * must ensure to later call wake_up_q() for the actual
1463 * wakeups to occur.
1464 */
1465 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1466 {
1467 struct task_struct *p = q->task;
1468
1469 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1470 return;
1471
1472 get_task_struct(p);
1473 __unqueue_futex(q);
1474 /*
1475 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1476 * is written, without taking any locks. This is possible in the event
1477 * of a spurious wakeup, for example. A memory barrier is required here
1478 * to prevent the following store to lock_ptr from getting ahead of the
1479 * plist_del in __unqueue_futex().
1480 */
1481 smp_store_release(&q->lock_ptr, NULL);
1482
1483 /*
1484 * Queue the task for later wakeup for after we've released
1485 * the hb->lock.
1486 */
1487 wake_q_add_safe(wake_q, p);
1488 }
1489
1490 /*
1491 * Caller must hold a reference on @pi_state.
1492 */
1493 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1494 {
1495 u32 curval, newval;
1496 struct task_struct *new_owner;
1497 bool postunlock = false;
1498 DEFINE_WAKE_Q(wake_q);
1499 int ret = 0;
1500
1501 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1502 if (WARN_ON_ONCE(!new_owner)) {
1503 /*
1504 * As per the comment in futex_unlock_pi() this should not happen.
1505 *
1506 * When this happens, give up our locks and try again, giving
1507 * the futex_lock_pi() instance time to complete, either by
1508 * waiting on the rtmutex or removing itself from the futex
1509 * queue.
1510 */
1511 ret = -EAGAIN;
1512 goto out_unlock;
1513 }
1514
1515 /*
1516 * We pass it to the next owner. The WAITERS bit is always kept
1517 * enabled while there is PI state around. We cleanup the owner
1518 * died bit, because we are the owner.
1519 */
1520 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1521
1522 if (unlikely(should_fail_futex(true))) {
1523 ret = -EFAULT;
1524 goto out_unlock;
1525 }
1526
1527 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1528 if (!ret && (curval != uval)) {
1529 /*
1530 * If a unconditional UNLOCK_PI operation (user space did not
1531 * try the TID->0 transition) raced with a waiter setting the
1532 * FUTEX_WAITERS flag between get_user() and locking the hash
1533 * bucket lock, retry the operation.
1534 */
1535 if ((FUTEX_TID_MASK & curval) == uval)
1536 ret = -EAGAIN;
1537 else
1538 ret = -EINVAL;
1539 }
1540
1541 if (!ret) {
1542 /*
1543 * This is a point of no return; once we modified the uval
1544 * there is no going back and subsequent operations must
1545 * not fail.
1546 */
1547 pi_state_update_owner(pi_state, new_owner);
1548 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1549 }
1550
1551 out_unlock:
1552 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1553
1554 if (postunlock)
1555 rt_mutex_postunlock(&wake_q);
1556
1557 return ret;
1558 }
1559
1560 /*
1561 * Express the locking dependencies for lockdep:
1562 */
1563 static inline void
1564 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1565 {
1566 if (hb1 <= hb2) {
1567 spin_lock(&hb1->lock);
1568 if (hb1 < hb2)
1569 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1570 } else { /* hb1 > hb2 */
1571 spin_lock(&hb2->lock);
1572 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1573 }
1574 }
1575
1576 static inline void
1577 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1578 {
1579 spin_unlock(&hb1->lock);
1580 if (hb1 != hb2)
1581 spin_unlock(&hb2->lock);
1582 }
1583
1584 /*
1585 * Wake up waiters matching bitset queued on this futex (uaddr).
1586 */
1587 static int
1588 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1589 {
1590 struct futex_hash_bucket *hb;
1591 struct futex_q *this, *next;
1592 union futex_key key = FUTEX_KEY_INIT;
1593 int ret;
1594 DEFINE_WAKE_Q(wake_q);
1595
1596 if (!bitset)
1597 return -EINVAL;
1598
1599 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1600 if (unlikely(ret != 0))
1601 return ret;
1602
1603 hb = hash_futex(&key);
1604
1605 /* Make sure we really have tasks to wakeup */
1606 if (!hb_waiters_pending(hb))
1607 return ret;
1608
1609 spin_lock(&hb->lock);
1610
1611 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1612 if (match_futex (&this->key, &key)) {
1613 if (this->pi_state || this->rt_waiter) {
1614 ret = -EINVAL;
1615 break;
1616 }
1617
1618 /* Check if one of the bits is set in both bitsets */
1619 if (!(this->bitset & bitset))
1620 continue;
1621
1622 mark_wake_futex(&wake_q, this);
1623 if (++ret >= nr_wake)
1624 break;
1625 }
1626 }
1627
1628 spin_unlock(&hb->lock);
1629 wake_up_q(&wake_q);
1630 return ret;
1631 }
1632
1633 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1634 {
1635 unsigned int op = (encoded_op & 0x70000000) >> 28;
1636 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1637 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1638 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1639 int oldval, ret;
1640
1641 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1642 if (oparg < 0 || oparg > 31) {
1643 char comm[sizeof(current->comm)];
1644 /*
1645 * kill this print and return -EINVAL when userspace
1646 * is sane again
1647 */
1648 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1649 get_task_comm(comm, current), oparg);
1650 oparg &= 31;
1651 }
1652 oparg = 1 << oparg;
1653 }
1654
1655 pagefault_disable();
1656 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1657 pagefault_enable();
1658 if (ret)
1659 return ret;
1660
1661 switch (cmp) {
1662 case FUTEX_OP_CMP_EQ:
1663 return oldval == cmparg;
1664 case FUTEX_OP_CMP_NE:
1665 return oldval != cmparg;
1666 case FUTEX_OP_CMP_LT:
1667 return oldval < cmparg;
1668 case FUTEX_OP_CMP_GE:
1669 return oldval >= cmparg;
1670 case FUTEX_OP_CMP_LE:
1671 return oldval <= cmparg;
1672 case FUTEX_OP_CMP_GT:
1673 return oldval > cmparg;
1674 default:
1675 return -ENOSYS;
1676 }
1677 }
1678
1679 /*
1680 * Wake up all waiters hashed on the physical page that is mapped
1681 * to this virtual address:
1682 */
1683 static int
1684 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1685 int nr_wake, int nr_wake2, int op)
1686 {
1687 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1688 struct futex_hash_bucket *hb1, *hb2;
1689 struct futex_q *this, *next;
1690 int ret, op_ret;
1691 DEFINE_WAKE_Q(wake_q);
1692
1693 retry:
1694 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1695 if (unlikely(ret != 0))
1696 return ret;
1697 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1698 if (unlikely(ret != 0))
1699 return ret;
1700
1701 hb1 = hash_futex(&key1);
1702 hb2 = hash_futex(&key2);
1703
1704 retry_private:
1705 double_lock_hb(hb1, hb2);
1706 op_ret = futex_atomic_op_inuser(op, uaddr2);
1707 if (unlikely(op_ret < 0)) {
1708 double_unlock_hb(hb1, hb2);
1709
1710 if (!IS_ENABLED(CONFIG_MMU) ||
1711 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1712 /*
1713 * we don't get EFAULT from MMU faults if we don't have
1714 * an MMU, but we might get them from range checking
1715 */
1716 ret = op_ret;
1717 return ret;
1718 }
1719
1720 if (op_ret == -EFAULT) {
1721 ret = fault_in_user_writeable(uaddr2);
1722 if (ret)
1723 return ret;
1724 }
1725
1726 if (!(flags & FLAGS_SHARED)) {
1727 cond_resched();
1728 goto retry_private;
1729 }
1730
1731 cond_resched();
1732 goto retry;
1733 }
1734
1735 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1736 if (match_futex (&this->key, &key1)) {
1737 if (this->pi_state || this->rt_waiter) {
1738 ret = -EINVAL;
1739 goto out_unlock;
1740 }
1741 mark_wake_futex(&wake_q, this);
1742 if (++ret >= nr_wake)
1743 break;
1744 }
1745 }
1746
1747 if (op_ret > 0) {
1748 op_ret = 0;
1749 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1750 if (match_futex (&this->key, &key2)) {
1751 if (this->pi_state || this->rt_waiter) {
1752 ret = -EINVAL;
1753 goto out_unlock;
1754 }
1755 mark_wake_futex(&wake_q, this);
1756 if (++op_ret >= nr_wake2)
1757 break;
1758 }
1759 }
1760 ret += op_ret;
1761 }
1762
1763 out_unlock:
1764 double_unlock_hb(hb1, hb2);
1765 wake_up_q(&wake_q);
1766 return ret;
1767 }
1768
1769 /**
1770 * requeue_futex() - Requeue a futex_q from one hb to another
1771 * @q: the futex_q to requeue
1772 * @hb1: the source hash_bucket
1773 * @hb2: the target hash_bucket
1774 * @key2: the new key for the requeued futex_q
1775 */
1776 static inline
1777 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1778 struct futex_hash_bucket *hb2, union futex_key *key2)
1779 {
1780
1781 /*
1782 * If key1 and key2 hash to the same bucket, no need to
1783 * requeue.
1784 */
1785 if (likely(&hb1->chain != &hb2->chain)) {
1786 plist_del(&q->list, &hb1->chain);
1787 hb_waiters_dec(hb1);
1788 hb_waiters_inc(hb2);
1789 plist_add(&q->list, &hb2->chain);
1790 q->lock_ptr = &hb2->lock;
1791 }
1792 q->key = *key2;
1793 }
1794
1795 /**
1796 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1797 * @q: the futex_q
1798 * @key: the key of the requeue target futex
1799 * @hb: the hash_bucket of the requeue target futex
1800 *
1801 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1802 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1803 * to the requeue target futex so the waiter can detect the wakeup on the right
1804 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1805 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1806 * to protect access to the pi_state to fixup the owner later. Must be called
1807 * with both q->lock_ptr and hb->lock held.
1808 */
1809 static inline
1810 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1811 struct futex_hash_bucket *hb)
1812 {
1813 q->key = *key;
1814
1815 __unqueue_futex(q);
1816
1817 WARN_ON(!q->rt_waiter);
1818 q->rt_waiter = NULL;
1819
1820 q->lock_ptr = &hb->lock;
1821
1822 wake_up_state(q->task, TASK_NORMAL);
1823 }
1824
1825 /**
1826 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1827 * @pifutex: the user address of the to futex
1828 * @hb1: the from futex hash bucket, must be locked by the caller
1829 * @hb2: the to futex hash bucket, must be locked by the caller
1830 * @key1: the from futex key
1831 * @key2: the to futex key
1832 * @ps: address to store the pi_state pointer
1833 * @exiting: Pointer to store the task pointer of the owner task
1834 * which is in the middle of exiting
1835 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1836 *
1837 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1838 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1839 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1840 * hb1 and hb2 must be held by the caller.
1841 *
1842 * @exiting is only set when the return value is -EBUSY. If so, this holds
1843 * a refcount on the exiting task on return and the caller needs to drop it
1844 * after waiting for the exit to complete.
1845 *
1846 * Return:
1847 * - 0 - failed to acquire the lock atomically;
1848 * - >0 - acquired the lock, return value is vpid of the top_waiter
1849 * - <0 - error
1850 */
1851 static int
1852 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1853 struct futex_hash_bucket *hb2, union futex_key *key1,
1854 union futex_key *key2, struct futex_pi_state **ps,
1855 struct task_struct **exiting, int set_waiters)
1856 {
1857 struct futex_q *top_waiter = NULL;
1858 u32 curval;
1859 int ret, vpid;
1860
1861 if (get_futex_value_locked(&curval, pifutex))
1862 return -EFAULT;
1863
1864 if (unlikely(should_fail_futex(true)))
1865 return -EFAULT;
1866
1867 /*
1868 * Find the top_waiter and determine if there are additional waiters.
1869 * If the caller intends to requeue more than 1 waiter to pifutex,
1870 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1871 * as we have means to handle the possible fault. If not, don't set
1872 * the bit unecessarily as it will force the subsequent unlock to enter
1873 * the kernel.
1874 */
1875 top_waiter = futex_top_waiter(hb1, key1);
1876
1877 /* There are no waiters, nothing for us to do. */
1878 if (!top_waiter)
1879 return 0;
1880
1881 /* Ensure we requeue to the expected futex. */
1882 if (!match_futex(top_waiter->requeue_pi_key, key2))
1883 return -EINVAL;
1884
1885 /*
1886 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1887 * the contended case or if set_waiters is 1. The pi_state is returned
1888 * in ps in contended cases.
1889 */
1890 vpid = task_pid_vnr(top_waiter->task);
1891 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1892 exiting, set_waiters);
1893 if (ret == 1) {
1894 requeue_pi_wake_futex(top_waiter, key2, hb2);
1895 return vpid;
1896 }
1897 return ret;
1898 }
1899
1900 /**
1901 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1902 * @uaddr1: source futex user address
1903 * @flags: futex flags (FLAGS_SHARED, etc.)
1904 * @uaddr2: target futex user address
1905 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1906 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1907 * @cmpval: @uaddr1 expected value (or %NULL)
1908 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1909 * pi futex (pi to pi requeue is not supported)
1910 *
1911 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1912 * uaddr2 atomically on behalf of the top waiter.
1913 *
1914 * Return:
1915 * - >=0 - on success, the number of tasks requeued or woken;
1916 * - <0 - on error
1917 */
1918 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1919 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1920 u32 *cmpval, int requeue_pi)
1921 {
1922 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1923 int task_count = 0, ret;
1924 struct futex_pi_state *pi_state = NULL;
1925 struct futex_hash_bucket *hb1, *hb2;
1926 struct futex_q *this, *next;
1927 DEFINE_WAKE_Q(wake_q);
1928
1929 if (nr_wake < 0 || nr_requeue < 0)
1930 return -EINVAL;
1931
1932 /*
1933 * When PI not supported: return -ENOSYS if requeue_pi is true,
1934 * consequently the compiler knows requeue_pi is always false past
1935 * this point which will optimize away all the conditional code
1936 * further down.
1937 */
1938 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1939 return -ENOSYS;
1940
1941 if (requeue_pi) {
1942 /*
1943 * Requeue PI only works on two distinct uaddrs. This
1944 * check is only valid for private futexes. See below.
1945 */
1946 if (uaddr1 == uaddr2)
1947 return -EINVAL;
1948
1949 /*
1950 * requeue_pi requires a pi_state, try to allocate it now
1951 * without any locks in case it fails.
1952 */
1953 if (refill_pi_state_cache())
1954 return -ENOMEM;
1955 /*
1956 * requeue_pi must wake as many tasks as it can, up to nr_wake
1957 * + nr_requeue, since it acquires the rt_mutex prior to
1958 * returning to userspace, so as to not leave the rt_mutex with
1959 * waiters and no owner. However, second and third wake-ups
1960 * cannot be predicted as they involve race conditions with the
1961 * first wake and a fault while looking up the pi_state. Both
1962 * pthread_cond_signal() and pthread_cond_broadcast() should
1963 * use nr_wake=1.
1964 */
1965 if (nr_wake != 1)
1966 return -EINVAL;
1967 }
1968
1969 retry:
1970 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1971 if (unlikely(ret != 0))
1972 return ret;
1973 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1974 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1975 if (unlikely(ret != 0))
1976 return ret;
1977
1978 /*
1979 * The check above which compares uaddrs is not sufficient for
1980 * shared futexes. We need to compare the keys:
1981 */
1982 if (requeue_pi && match_futex(&key1, &key2))
1983 return -EINVAL;
1984
1985 hb1 = hash_futex(&key1);
1986 hb2 = hash_futex(&key2);
1987
1988 retry_private:
1989 hb_waiters_inc(hb2);
1990 double_lock_hb(hb1, hb2);
1991
1992 if (likely(cmpval != NULL)) {
1993 u32 curval;
1994
1995 ret = get_futex_value_locked(&curval, uaddr1);
1996
1997 if (unlikely(ret)) {
1998 double_unlock_hb(hb1, hb2);
1999 hb_waiters_dec(hb2);
2000
2001 ret = get_user(curval, uaddr1);
2002 if (ret)
2003 return ret;
2004
2005 if (!(flags & FLAGS_SHARED))
2006 goto retry_private;
2007
2008 goto retry;
2009 }
2010 if (curval != *cmpval) {
2011 ret = -EAGAIN;
2012 goto out_unlock;
2013 }
2014 }
2015
2016 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2017 struct task_struct *exiting = NULL;
2018
2019 /*
2020 * Attempt to acquire uaddr2 and wake the top waiter. If we
2021 * intend to requeue waiters, force setting the FUTEX_WAITERS
2022 * bit. We force this here where we are able to easily handle
2023 * faults rather in the requeue loop below.
2024 */
2025 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2026 &key2, &pi_state,
2027 &exiting, nr_requeue);
2028
2029 /*
2030 * At this point the top_waiter has either taken uaddr2 or is
2031 * waiting on it. If the former, then the pi_state will not
2032 * exist yet, look it up one more time to ensure we have a
2033 * reference to it. If the lock was taken, ret contains the
2034 * vpid of the top waiter task.
2035 * If the lock was not taken, we have pi_state and an initial
2036 * refcount on it. In case of an error we have nothing.
2037 */
2038 if (ret > 0) {
2039 WARN_ON(pi_state);
2040 task_count++;
2041 /*
2042 * If we acquired the lock, then the user space value
2043 * of uaddr2 should be vpid. It cannot be changed by
2044 * the top waiter as it is blocked on hb2 lock if it
2045 * tries to do so. If something fiddled with it behind
2046 * our back the pi state lookup might unearth it. So
2047 * we rather use the known value than rereading and
2048 * handing potential crap to lookup_pi_state.
2049 *
2050 * If that call succeeds then we have pi_state and an
2051 * initial refcount on it.
2052 */
2053 ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2054 &pi_state, &exiting);
2055 }
2056
2057 switch (ret) {
2058 case 0:
2059 /* We hold a reference on the pi state. */
2060 break;
2061
2062 /* If the above failed, then pi_state is NULL */
2063 case -EFAULT:
2064 double_unlock_hb(hb1, hb2);
2065 hb_waiters_dec(hb2);
2066 ret = fault_in_user_writeable(uaddr2);
2067 if (!ret)
2068 goto retry;
2069 return ret;
2070 case -EBUSY:
2071 case -EAGAIN:
2072 /*
2073 * Two reasons for this:
2074 * - EBUSY: Owner is exiting and we just wait for the
2075 * exit to complete.
2076 * - EAGAIN: The user space value changed.
2077 */
2078 double_unlock_hb(hb1, hb2);
2079 hb_waiters_dec(hb2);
2080 /*
2081 * Handle the case where the owner is in the middle of
2082 * exiting. Wait for the exit to complete otherwise
2083 * this task might loop forever, aka. live lock.
2084 */
2085 wait_for_owner_exiting(ret, exiting);
2086 cond_resched();
2087 goto retry;
2088 default:
2089 goto out_unlock;
2090 }
2091 }
2092
2093 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2094 if (task_count - nr_wake >= nr_requeue)
2095 break;
2096
2097 if (!match_futex(&this->key, &key1))
2098 continue;
2099
2100 /*
2101 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2102 * be paired with each other and no other futex ops.
2103 *
2104 * We should never be requeueing a futex_q with a pi_state,
2105 * which is awaiting a futex_unlock_pi().
2106 */
2107 if ((requeue_pi && !this->rt_waiter) ||
2108 (!requeue_pi && this->rt_waiter) ||
2109 this->pi_state) {
2110 ret = -EINVAL;
2111 break;
2112 }
2113
2114 /*
2115 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2116 * lock, we already woke the top_waiter. If not, it will be
2117 * woken by futex_unlock_pi().
2118 */
2119 if (++task_count <= nr_wake && !requeue_pi) {
2120 mark_wake_futex(&wake_q, this);
2121 continue;
2122 }
2123
2124 /* Ensure we requeue to the expected futex for requeue_pi. */
2125 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2126 ret = -EINVAL;
2127 break;
2128 }
2129
2130 /*
2131 * Requeue nr_requeue waiters and possibly one more in the case
2132 * of requeue_pi if we couldn't acquire the lock atomically.
2133 */
2134 if (requeue_pi) {
2135 /*
2136 * Prepare the waiter to take the rt_mutex. Take a
2137 * refcount on the pi_state and store the pointer in
2138 * the futex_q object of the waiter.
2139 */
2140 get_pi_state(pi_state);
2141 this->pi_state = pi_state;
2142 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2143 this->rt_waiter,
2144 this->task);
2145 if (ret == 1) {
2146 /*
2147 * We got the lock. We do neither drop the
2148 * refcount on pi_state nor clear
2149 * this->pi_state because the waiter needs the
2150 * pi_state for cleaning up the user space
2151 * value. It will drop the refcount after
2152 * doing so.
2153 */
2154 requeue_pi_wake_futex(this, &key2, hb2);
2155 continue;
2156 } else if (ret) {
2157 /*
2158 * rt_mutex_start_proxy_lock() detected a
2159 * potential deadlock when we tried to queue
2160 * that waiter. Drop the pi_state reference
2161 * which we took above and remove the pointer
2162 * to the state from the waiters futex_q
2163 * object.
2164 */
2165 this->pi_state = NULL;
2166 put_pi_state(pi_state);
2167 /*
2168 * We stop queueing more waiters and let user
2169 * space deal with the mess.
2170 */
2171 break;
2172 }
2173 }
2174 requeue_futex(this, hb1, hb2, &key2);
2175 }
2176
2177 /*
2178 * We took an extra initial reference to the pi_state either
2179 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2180 * need to drop it here again.
2181 */
2182 put_pi_state(pi_state);
2183
2184 out_unlock:
2185 double_unlock_hb(hb1, hb2);
2186 wake_up_q(&wake_q);
2187 hb_waiters_dec(hb2);
2188 return ret ? ret : task_count;
2189 }
2190
2191 /* The key must be already stored in q->key. */
2192 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2193 __acquires(&hb->lock)
2194 {
2195 struct futex_hash_bucket *hb;
2196
2197 hb = hash_futex(&q->key);
2198
2199 /*
2200 * Increment the counter before taking the lock so that
2201 * a potential waker won't miss a to-be-slept task that is
2202 * waiting for the spinlock. This is safe as all queue_lock()
2203 * users end up calling queue_me(). Similarly, for housekeeping,
2204 * decrement the counter at queue_unlock() when some error has
2205 * occurred and we don't end up adding the task to the list.
2206 */
2207 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2208
2209 q->lock_ptr = &hb->lock;
2210
2211 spin_lock(&hb->lock);
2212 return hb;
2213 }
2214
2215 static inline void
2216 queue_unlock(struct futex_hash_bucket *hb)
2217 __releases(&hb->lock)
2218 {
2219 spin_unlock(&hb->lock);
2220 hb_waiters_dec(hb);
2221 }
2222
2223 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2224 {
2225 int prio;
2226
2227 /*
2228 * The priority used to register this element is
2229 * - either the real thread-priority for the real-time threads
2230 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2231 * - or MAX_RT_PRIO for non-RT threads.
2232 * Thus, all RT-threads are woken first in priority order, and
2233 * the others are woken last, in FIFO order.
2234 */
2235 prio = min(current->normal_prio, MAX_RT_PRIO);
2236
2237 plist_node_init(&q->list, prio);
2238 plist_add(&q->list, &hb->chain);
2239 q->task = current;
2240 }
2241
2242 /**
2243 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2244 * @q: The futex_q to enqueue
2245 * @hb: The destination hash bucket
2246 *
2247 * The hb->lock must be held by the caller, and is released here. A call to
2248 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2249 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2250 * or nothing if the unqueue is done as part of the wake process and the unqueue
2251 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2252 * an example).
2253 */
2254 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2255 __releases(&hb->lock)
2256 {
2257 __queue_me(q, hb);
2258 spin_unlock(&hb->lock);
2259 }
2260
2261 /**
2262 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2263 * @q: The futex_q to unqueue
2264 *
2265 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2266 * be paired with exactly one earlier call to queue_me().
2267 *
2268 * Return:
2269 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2270 * - 0 - if the futex_q was already removed by the waking thread
2271 */
2272 static int unqueue_me(struct futex_q *q)
2273 {
2274 spinlock_t *lock_ptr;
2275 int ret = 0;
2276
2277 /* In the common case we don't take the spinlock, which is nice. */
2278 retry:
2279 /*
2280 * q->lock_ptr can change between this read and the following spin_lock.
2281 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2282 * optimizing lock_ptr out of the logic below.
2283 */
2284 lock_ptr = READ_ONCE(q->lock_ptr);
2285 if (lock_ptr != NULL) {
2286 spin_lock(lock_ptr);
2287 /*
2288 * q->lock_ptr can change between reading it and
2289 * spin_lock(), causing us to take the wrong lock. This
2290 * corrects the race condition.
2291 *
2292 * Reasoning goes like this: if we have the wrong lock,
2293 * q->lock_ptr must have changed (maybe several times)
2294 * between reading it and the spin_lock(). It can
2295 * change again after the spin_lock() but only if it was
2296 * already changed before the spin_lock(). It cannot,
2297 * however, change back to the original value. Therefore
2298 * we can detect whether we acquired the correct lock.
2299 */
2300 if (unlikely(lock_ptr != q->lock_ptr)) {
2301 spin_unlock(lock_ptr);
2302 goto retry;
2303 }
2304 __unqueue_futex(q);
2305
2306 BUG_ON(q->pi_state);
2307
2308 spin_unlock(lock_ptr);
2309 ret = 1;
2310 }
2311
2312 return ret;
2313 }
2314
2315 /*
2316 * PI futexes can not be requeued and must remove themself from the
2317 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2318 * and dropped here.
2319 */
2320 static void unqueue_me_pi(struct futex_q *q)
2321 __releases(q->lock_ptr)
2322 {
2323 __unqueue_futex(q);
2324
2325 BUG_ON(!q->pi_state);
2326 put_pi_state(q->pi_state);
2327 q->pi_state = NULL;
2328
2329 spin_unlock(q->lock_ptr);
2330 }
2331
2332 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2333 struct task_struct *argowner)
2334 {
2335 struct futex_pi_state *pi_state = q->pi_state;
2336 struct task_struct *oldowner, *newowner;
2337 u32 uval, curval, newval, newtid;
2338 int err = 0;
2339
2340 oldowner = pi_state->owner;
2341
2342 /*
2343 * We are here because either:
2344 *
2345 * - we stole the lock and pi_state->owner needs updating to reflect
2346 * that (@argowner == current),
2347 *
2348 * or:
2349 *
2350 * - someone stole our lock and we need to fix things to point to the
2351 * new owner (@argowner == NULL).
2352 *
2353 * Either way, we have to replace the TID in the user space variable.
2354 * This must be atomic as we have to preserve the owner died bit here.
2355 *
2356 * Note: We write the user space value _before_ changing the pi_state
2357 * because we can fault here. Imagine swapped out pages or a fork
2358 * that marked all the anonymous memory readonly for cow.
2359 *
2360 * Modifying pi_state _before_ the user space value would leave the
2361 * pi_state in an inconsistent state when we fault here, because we
2362 * need to drop the locks to handle the fault. This might be observed
2363 * in the PID check in lookup_pi_state.
2364 */
2365 retry:
2366 if (!argowner) {
2367 if (oldowner != current) {
2368 /*
2369 * We raced against a concurrent self; things are
2370 * already fixed up. Nothing to do.
2371 */
2372 return 0;
2373 }
2374
2375 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2376 /* We got the lock. pi_state is correct. Tell caller. */
2377 return 1;
2378 }
2379
2380 /*
2381 * The trylock just failed, so either there is an owner or
2382 * there is a higher priority waiter than this one.
2383 */
2384 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2385 /*
2386 * If the higher priority waiter has not yet taken over the
2387 * rtmutex then newowner is NULL. We can't return here with
2388 * that state because it's inconsistent vs. the user space
2389 * state. So drop the locks and try again. It's a valid
2390 * situation and not any different from the other retry
2391 * conditions.
2392 */
2393 if (unlikely(!newowner)) {
2394 err = -EAGAIN;
2395 goto handle_err;
2396 }
2397 } else {
2398 WARN_ON_ONCE(argowner != current);
2399 if (oldowner == current) {
2400 /*
2401 * We raced against a concurrent self; things are
2402 * already fixed up. Nothing to do.
2403 */
2404 return 1;
2405 }
2406 newowner = argowner;
2407 }
2408
2409 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2410 /* Owner died? */
2411 if (!pi_state->owner)
2412 newtid |= FUTEX_OWNER_DIED;
2413
2414 err = get_futex_value_locked(&uval, uaddr);
2415 if (err)
2416 goto handle_err;
2417
2418 for (;;) {
2419 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2420
2421 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2422 if (err)
2423 goto handle_err;
2424
2425 if (curval == uval)
2426 break;
2427 uval = curval;
2428 }
2429
2430 /*
2431 * We fixed up user space. Now we need to fix the pi_state
2432 * itself.
2433 */
2434 pi_state_update_owner(pi_state, newowner);
2435
2436 return argowner == current;
2437
2438 /*
2439 * In order to reschedule or handle a page fault, we need to drop the
2440 * locks here. In the case of a fault, this gives the other task
2441 * (either the highest priority waiter itself or the task which stole
2442 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2443 * are back from handling the fault we need to check the pi_state after
2444 * reacquiring the locks and before trying to do another fixup. When
2445 * the fixup has been done already we simply return.
2446 *
2447 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2448 * drop hb->lock since the caller owns the hb -> futex_q relation.
2449 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2450 */
2451 handle_err:
2452 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2453 spin_unlock(q->lock_ptr);
2454
2455 switch (err) {
2456 case -EFAULT:
2457 err = fault_in_user_writeable(uaddr);
2458 break;
2459
2460 case -EAGAIN:
2461 cond_resched();
2462 err = 0;
2463 break;
2464
2465 default:
2466 WARN_ON_ONCE(1);
2467 break;
2468 }
2469
2470 spin_lock(q->lock_ptr);
2471 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2472
2473 /*
2474 * Check if someone else fixed it for us:
2475 */
2476 if (pi_state->owner != oldowner)
2477 return argowner == current;
2478
2479 /* Retry if err was -EAGAIN or the fault in succeeded */
2480 if (!err)
2481 goto retry;
2482
2483 /*
2484 * fault_in_user_writeable() failed so user state is immutable. At
2485 * best we can make the kernel state consistent but user state will
2486 * be most likely hosed and any subsequent unlock operation will be
2487 * rejected due to PI futex rule [10].
2488 *
2489 * Ensure that the rtmutex owner is also the pi_state owner despite
2490 * the user space value claiming something different. There is no
2491 * point in unlocking the rtmutex if current is the owner as it
2492 * would need to wait until the next waiter has taken the rtmutex
2493 * to guarantee consistent state. Keep it simple. Userspace asked
2494 * for this wreckaged state.
2495 *
2496 * The rtmutex has an owner - either current or some other
2497 * task. See the EAGAIN loop above.
2498 */
2499 pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2500
2501 return err;
2502 }
2503
2504 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2505 struct task_struct *argowner)
2506 {
2507 struct futex_pi_state *pi_state = q->pi_state;
2508 int ret;
2509
2510 lockdep_assert_held(q->lock_ptr);
2511
2512 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2513 ret = __fixup_pi_state_owner(uaddr, q, argowner);
2514 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2515 return ret;
2516 }
2517
2518 static long futex_wait_restart(struct restart_block *restart);
2519
2520 /**
2521 * fixup_owner() - Post lock pi_state and corner case management
2522 * @uaddr: user address of the futex
2523 * @q: futex_q (contains pi_state and access to the rt_mutex)
2524 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2525 *
2526 * After attempting to lock an rt_mutex, this function is called to cleanup
2527 * the pi_state owner as well as handle race conditions that may allow us to
2528 * acquire the lock. Must be called with the hb lock held.
2529 *
2530 * Return:
2531 * - 1 - success, lock taken;
2532 * - 0 - success, lock not taken;
2533 * - <0 - on error (-EFAULT)
2534 */
2535 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2536 {
2537 if (locked) {
2538 /*
2539 * Got the lock. We might not be the anticipated owner if we
2540 * did a lock-steal - fix up the PI-state in that case:
2541 *
2542 * Speculative pi_state->owner read (we don't hold wait_lock);
2543 * since we own the lock pi_state->owner == current is the
2544 * stable state, anything else needs more attention.
2545 */
2546 if (q->pi_state->owner != current)
2547 return fixup_pi_state_owner(uaddr, q, current);
2548 return 1;
2549 }
2550
2551 /*
2552 * If we didn't get the lock; check if anybody stole it from us. In
2553 * that case, we need to fix up the uval to point to them instead of
2554 * us, otherwise bad things happen. [10]
2555 *
2556 * Another speculative read; pi_state->owner == current is unstable
2557 * but needs our attention.
2558 */
2559 if (q->pi_state->owner == current)
2560 return fixup_pi_state_owner(uaddr, q, NULL);
2561
2562 /*
2563 * Paranoia check. If we did not take the lock, then we should not be
2564 * the owner of the rt_mutex. Warn and establish consistent state.
2565 */
2566 if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2567 return fixup_pi_state_owner(uaddr, q, current);
2568
2569 return 0;
2570 }
2571
2572 /**
2573 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2574 * @hb: the futex hash bucket, must be locked by the caller
2575 * @q: the futex_q to queue up on
2576 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2577 */
2578 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2579 struct hrtimer_sleeper *timeout)
2580 {
2581 /*
2582 * The task state is guaranteed to be set before another task can
2583 * wake it. set_current_state() is implemented using smp_store_mb() and
2584 * queue_me() calls spin_unlock() upon completion, both serializing
2585 * access to the hash list and forcing another memory barrier.
2586 */
2587 set_current_state(TASK_INTERRUPTIBLE);
2588 queue_me(q, hb);
2589
2590 /* Arm the timer */
2591 if (timeout)
2592 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2593
2594 /*
2595 * If we have been removed from the hash list, then another task
2596 * has tried to wake us, and we can skip the call to schedule().
2597 */
2598 if (likely(!plist_node_empty(&q->list))) {
2599 /*
2600 * If the timer has already expired, current will already be
2601 * flagged for rescheduling. Only call schedule if there
2602 * is no timeout, or if it has yet to expire.
2603 */
2604 if (!timeout || timeout->task)
2605 freezable_schedule();
2606 }
2607 __set_current_state(TASK_RUNNING);
2608 }
2609
2610 /**
2611 * futex_wait_setup() - Prepare to wait on a futex
2612 * @uaddr: the futex userspace address
2613 * @val: the expected value
2614 * @flags: futex flags (FLAGS_SHARED, etc.)
2615 * @q: the associated futex_q
2616 * @hb: storage for hash_bucket pointer to be returned to caller
2617 *
2618 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2619 * compare it with the expected value. Handle atomic faults internally.
2620 * Return with the hb lock held and a q.key reference on success, and unlocked
2621 * with no q.key reference on failure.
2622 *
2623 * Return:
2624 * - 0 - uaddr contains val and hb has been locked;
2625 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2626 */
2627 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2628 struct futex_q *q, struct futex_hash_bucket **hb)
2629 {
2630 u32 uval;
2631 int ret;
2632
2633 /*
2634 * Access the page AFTER the hash-bucket is locked.
2635 * Order is important:
2636 *
2637 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2638 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2639 *
2640 * The basic logical guarantee of a futex is that it blocks ONLY
2641 * if cond(var) is known to be true at the time of blocking, for
2642 * any cond. If we locked the hash-bucket after testing *uaddr, that
2643 * would open a race condition where we could block indefinitely with
2644 * cond(var) false, which would violate the guarantee.
2645 *
2646 * On the other hand, we insert q and release the hash-bucket only
2647 * after testing *uaddr. This guarantees that futex_wait() will NOT
2648 * absorb a wakeup if *uaddr does not match the desired values
2649 * while the syscall executes.
2650 */
2651 retry:
2652 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2653 if (unlikely(ret != 0))
2654 return ret;
2655
2656 retry_private:
2657 *hb = queue_lock(q);
2658
2659 ret = get_futex_value_locked(&uval, uaddr);
2660
2661 if (ret) {
2662 queue_unlock(*hb);
2663
2664 ret = get_user(uval, uaddr);
2665 if (ret)
2666 return ret;
2667
2668 if (!(flags & FLAGS_SHARED))
2669 goto retry_private;
2670
2671 goto retry;
2672 }
2673
2674 if (uval != val) {
2675 queue_unlock(*hb);
2676 ret = -EWOULDBLOCK;
2677 }
2678
2679 return ret;
2680 }
2681
2682 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2683 ktime_t *abs_time, u32 bitset)
2684 {
2685 struct hrtimer_sleeper timeout, *to;
2686 struct restart_block *restart;
2687 struct futex_hash_bucket *hb;
2688 struct futex_q q = futex_q_init;
2689 int ret;
2690
2691 if (!bitset)
2692 return -EINVAL;
2693 q.bitset = bitset;
2694
2695 to = futex_setup_timer(abs_time, &timeout, flags,
2696 current->timer_slack_ns);
2697 retry:
2698 /*
2699 * Prepare to wait on uaddr. On success, holds hb lock and increments
2700 * q.key refs.
2701 */
2702 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2703 if (ret)
2704 goto out;
2705
2706 /* queue_me and wait for wakeup, timeout, or a signal. */
2707 futex_wait_queue_me(hb, &q, to);
2708
2709 /* If we were woken (and unqueued), we succeeded, whatever. */
2710 ret = 0;
2711 /* unqueue_me() drops q.key ref */
2712 if (!unqueue_me(&q))
2713 goto out;
2714 ret = -ETIMEDOUT;
2715 if (to && !to->task)
2716 goto out;
2717
2718 /*
2719 * We expect signal_pending(current), but we might be the
2720 * victim of a spurious wakeup as well.
2721 */
2722 if (!signal_pending(current))
2723 goto retry;
2724
2725 ret = -ERESTARTSYS;
2726 if (!abs_time)
2727 goto out;
2728
2729 restart = &current->restart_block;
2730 restart->futex.uaddr = uaddr;
2731 restart->futex.val = val;
2732 restart->futex.time = *abs_time;
2733 restart->futex.bitset = bitset;
2734 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2735
2736 ret = set_restart_fn(restart, futex_wait_restart);
2737
2738 out:
2739 if (to) {
2740 hrtimer_cancel(&to->timer);
2741 destroy_hrtimer_on_stack(&to->timer);
2742 }
2743 return ret;
2744 }
2745
2746
2747 static long futex_wait_restart(struct restart_block *restart)
2748 {
2749 u32 __user *uaddr = restart->futex.uaddr;
2750 ktime_t t, *tp = NULL;
2751
2752 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2753 t = restart->futex.time;
2754 tp = &t;
2755 }
2756 restart->fn = do_no_restart_syscall;
2757
2758 return (long)futex_wait(uaddr, restart->futex.flags,
2759 restart->futex.val, tp, restart->futex.bitset);
2760 }
2761
2762
2763 /*
2764 * Userspace tried a 0 -> TID atomic transition of the futex value
2765 * and failed. The kernel side here does the whole locking operation:
2766 * if there are waiters then it will block as a consequence of relying
2767 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2768 * a 0 value of the futex too.).
2769 *
2770 * Also serves as futex trylock_pi()'ing, and due semantics.
2771 */
2772 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2773 ktime_t *time, int trylock)
2774 {
2775 struct hrtimer_sleeper timeout, *to;
2776 struct task_struct *exiting = NULL;
2777 struct rt_mutex_waiter rt_waiter;
2778 struct futex_hash_bucket *hb;
2779 struct futex_q q = futex_q_init;
2780 int res, ret;
2781
2782 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2783 return -ENOSYS;
2784
2785 if (refill_pi_state_cache())
2786 return -ENOMEM;
2787
2788 to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2789
2790 retry:
2791 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2792 if (unlikely(ret != 0))
2793 goto out;
2794
2795 retry_private:
2796 hb = queue_lock(&q);
2797
2798 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2799 &exiting, 0);
2800 if (unlikely(ret)) {
2801 /*
2802 * Atomic work succeeded and we got the lock,
2803 * or failed. Either way, we do _not_ block.
2804 */
2805 switch (ret) {
2806 case 1:
2807 /* We got the lock. */
2808 ret = 0;
2809 goto out_unlock_put_key;
2810 case -EFAULT:
2811 goto uaddr_faulted;
2812 case -EBUSY:
2813 case -EAGAIN:
2814 /*
2815 * Two reasons for this:
2816 * - EBUSY: Task is exiting and we just wait for the
2817 * exit to complete.
2818 * - EAGAIN: The user space value changed.
2819 */
2820 queue_unlock(hb);
2821 /*
2822 * Handle the case where the owner is in the middle of
2823 * exiting. Wait for the exit to complete otherwise
2824 * this task might loop forever, aka. live lock.
2825 */
2826 wait_for_owner_exiting(ret, exiting);
2827 cond_resched();
2828 goto retry;
2829 default:
2830 goto out_unlock_put_key;
2831 }
2832 }
2833
2834 WARN_ON(!q.pi_state);
2835
2836 /*
2837 * Only actually queue now that the atomic ops are done:
2838 */
2839 __queue_me(&q, hb);
2840
2841 if (trylock) {
2842 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2843 /* Fixup the trylock return value: */
2844 ret = ret ? 0 : -EWOULDBLOCK;
2845 goto no_block;
2846 }
2847
2848 rt_mutex_init_waiter(&rt_waiter);
2849
2850 /*
2851 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2852 * hold it while doing rt_mutex_start_proxy(), because then it will
2853 * include hb->lock in the blocking chain, even through we'll not in
2854 * fact hold it while blocking. This will lead it to report -EDEADLK
2855 * and BUG when futex_unlock_pi() interleaves with this.
2856 *
2857 * Therefore acquire wait_lock while holding hb->lock, but drop the
2858 * latter before calling __rt_mutex_start_proxy_lock(). This
2859 * interleaves with futex_unlock_pi() -- which does a similar lock
2860 * handoff -- such that the latter can observe the futex_q::pi_state
2861 * before __rt_mutex_start_proxy_lock() is done.
2862 */
2863 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2864 spin_unlock(q.lock_ptr);
2865 /*
2866 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2867 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2868 * it sees the futex_q::pi_state.
2869 */
2870 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2871 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2872
2873 if (ret) {
2874 if (ret == 1)
2875 ret = 0;
2876 goto cleanup;
2877 }
2878
2879 if (unlikely(to))
2880 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2881
2882 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2883
2884 cleanup:
2885 spin_lock(q.lock_ptr);
2886 /*
2887 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2888 * first acquire the hb->lock before removing the lock from the
2889 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2890 * lists consistent.
2891 *
2892 * In particular; it is important that futex_unlock_pi() can not
2893 * observe this inconsistency.
2894 */
2895 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2896 ret = 0;
2897
2898 no_block:
2899 /*
2900 * Fixup the pi_state owner and possibly acquire the lock if we
2901 * haven't already.
2902 */
2903 res = fixup_owner(uaddr, &q, !ret);
2904 /*
2905 * If fixup_owner() returned an error, proprogate that. If it acquired
2906 * the lock, clear our -ETIMEDOUT or -EINTR.
2907 */
2908 if (res)
2909 ret = (res < 0) ? res : 0;
2910
2911 /* Unqueue and drop the lock */
2912 unqueue_me_pi(&q);
2913 goto out;
2914
2915 out_unlock_put_key:
2916 queue_unlock(hb);
2917
2918 out:
2919 if (to) {
2920 hrtimer_cancel(&to->timer);
2921 destroy_hrtimer_on_stack(&to->timer);
2922 }
2923 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2924
2925 uaddr_faulted:
2926 queue_unlock(hb);
2927
2928 ret = fault_in_user_writeable(uaddr);
2929 if (ret)
2930 goto out;
2931
2932 if (!(flags & FLAGS_SHARED))
2933 goto retry_private;
2934
2935 goto retry;
2936 }
2937
2938 /*
2939 * Userspace attempted a TID -> 0 atomic transition, and failed.
2940 * This is the in-kernel slowpath: we look up the PI state (if any),
2941 * and do the rt-mutex unlock.
2942 */
2943 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2944 {
2945 u32 curval, uval, vpid = task_pid_vnr(current);
2946 union futex_key key = FUTEX_KEY_INIT;
2947 struct futex_hash_bucket *hb;
2948 struct futex_q *top_waiter;
2949 int ret;
2950
2951 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2952 return -ENOSYS;
2953
2954 retry:
2955 if (get_user(uval, uaddr))
2956 return -EFAULT;
2957 /*
2958 * We release only a lock we actually own:
2959 */
2960 if ((uval & FUTEX_TID_MASK) != vpid)
2961 return -EPERM;
2962
2963 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2964 if (ret)
2965 return ret;
2966
2967 hb = hash_futex(&key);
2968 spin_lock(&hb->lock);
2969
2970 /*
2971 * Check waiters first. We do not trust user space values at
2972 * all and we at least want to know if user space fiddled
2973 * with the futex value instead of blindly unlocking.
2974 */
2975 top_waiter = futex_top_waiter(hb, &key);
2976 if (top_waiter) {
2977 struct futex_pi_state *pi_state = top_waiter->pi_state;
2978
2979 ret = -EINVAL;
2980 if (!pi_state)
2981 goto out_unlock;
2982
2983 /*
2984 * If current does not own the pi_state then the futex is
2985 * inconsistent and user space fiddled with the futex value.
2986 */
2987 if (pi_state->owner != current)
2988 goto out_unlock;
2989
2990 get_pi_state(pi_state);
2991 /*
2992 * By taking wait_lock while still holding hb->lock, we ensure
2993 * there is no point where we hold neither; and therefore
2994 * wake_futex_pi() must observe a state consistent with what we
2995 * observed.
2996 *
2997 * In particular; this forces __rt_mutex_start_proxy() to
2998 * complete such that we're guaranteed to observe the
2999 * rt_waiter. Also see the WARN in wake_futex_pi().
3000 */
3001 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3002 spin_unlock(&hb->lock);
3003
3004 /* drops pi_state->pi_mutex.wait_lock */
3005 ret = wake_futex_pi(uaddr, uval, pi_state);
3006
3007 put_pi_state(pi_state);
3008
3009 /*
3010 * Success, we're done! No tricky corner cases.
3011 */
3012 if (!ret)
3013 goto out_putkey;
3014 /*
3015 * The atomic access to the futex value generated a
3016 * pagefault, so retry the user-access and the wakeup:
3017 */
3018 if (ret == -EFAULT)
3019 goto pi_faulted;
3020 /*
3021 * A unconditional UNLOCK_PI op raced against a waiter
3022 * setting the FUTEX_WAITERS bit. Try again.
3023 */
3024 if (ret == -EAGAIN)
3025 goto pi_retry;
3026 /*
3027 * wake_futex_pi has detected invalid state. Tell user
3028 * space.
3029 */
3030 goto out_putkey;
3031 }
3032
3033 /*
3034 * We have no kernel internal state, i.e. no waiters in the
3035 * kernel. Waiters which are about to queue themselves are stuck
3036 * on hb->lock. So we can safely ignore them. We do neither
3037 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3038 * owner.
3039 */
3040 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3041 spin_unlock(&hb->lock);
3042 switch (ret) {
3043 case -EFAULT:
3044 goto pi_faulted;
3045
3046 case -EAGAIN:
3047 goto pi_retry;
3048
3049 default:
3050 WARN_ON_ONCE(1);
3051 goto out_putkey;
3052 }
3053 }
3054
3055 /*
3056 * If uval has changed, let user space handle it.
3057 */
3058 ret = (curval == uval) ? 0 : -EAGAIN;
3059
3060 out_unlock:
3061 spin_unlock(&hb->lock);
3062 out_putkey:
3063 return ret;
3064
3065 pi_retry:
3066 cond_resched();
3067 goto retry;
3068
3069 pi_faulted:
3070
3071 ret = fault_in_user_writeable(uaddr);
3072 if (!ret)
3073 goto retry;
3074
3075 return ret;
3076 }
3077
3078 /**
3079 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3080 * @hb: the hash_bucket futex_q was original enqueued on
3081 * @q: the futex_q woken while waiting to be requeued
3082 * @key2: the futex_key of the requeue target futex
3083 * @timeout: the timeout associated with the wait (NULL if none)
3084 *
3085 * Detect if the task was woken on the initial futex as opposed to the requeue
3086 * target futex. If so, determine if it was a timeout or a signal that caused
3087 * the wakeup and return the appropriate error code to the caller. Must be
3088 * called with the hb lock held.
3089 *
3090 * Return:
3091 * - 0 = no early wakeup detected;
3092 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3093 */
3094 static inline
3095 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3096 struct futex_q *q, union futex_key *key2,
3097 struct hrtimer_sleeper *timeout)
3098 {
3099 int ret = 0;
3100
3101 /*
3102 * With the hb lock held, we avoid races while we process the wakeup.
3103 * We only need to hold hb (and not hb2) to ensure atomicity as the
3104 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3105 * It can't be requeued from uaddr2 to something else since we don't
3106 * support a PI aware source futex for requeue.
3107 */
3108 if (!match_futex(&q->key, key2)) {
3109 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3110 /*
3111 * We were woken prior to requeue by a timeout or a signal.
3112 * Unqueue the futex_q and determine which it was.
3113 */
3114 plist_del(&q->list, &hb->chain);
3115 hb_waiters_dec(hb);
3116
3117 /* Handle spurious wakeups gracefully */
3118 ret = -EWOULDBLOCK;
3119 if (timeout && !timeout->task)
3120 ret = -ETIMEDOUT;
3121 else if (signal_pending(current))
3122 ret = -ERESTARTNOINTR;
3123 }
3124 return ret;
3125 }
3126
3127 /**
3128 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3129 * @uaddr: the futex we initially wait on (non-pi)
3130 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3131 * the same type, no requeueing from private to shared, etc.
3132 * @val: the expected value of uaddr
3133 * @abs_time: absolute timeout
3134 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3135 * @uaddr2: the pi futex we will take prior to returning to user-space
3136 *
3137 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3138 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3139 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3140 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3141 * without one, the pi logic would not know which task to boost/deboost, if
3142 * there was a need to.
3143 *
3144 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3145 * via the following--
3146 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3147 * 2) wakeup on uaddr2 after a requeue
3148 * 3) signal
3149 * 4) timeout
3150 *
3151 * If 3, cleanup and return -ERESTARTNOINTR.
3152 *
3153 * If 2, we may then block on trying to take the rt_mutex and return via:
3154 * 5) successful lock
3155 * 6) signal
3156 * 7) timeout
3157 * 8) other lock acquisition failure
3158 *
3159 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3160 *
3161 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3162 *
3163 * Return:
3164 * - 0 - On success;
3165 * - <0 - On error
3166 */
3167 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3168 u32 val, ktime_t *abs_time, u32 bitset,
3169 u32 __user *uaddr2)
3170 {
3171 struct hrtimer_sleeper timeout, *to;
3172 struct rt_mutex_waiter rt_waiter;
3173 struct futex_hash_bucket *hb;
3174 union futex_key key2 = FUTEX_KEY_INIT;
3175 struct futex_q q = futex_q_init;
3176 int res, ret;
3177
3178 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3179 return -ENOSYS;
3180
3181 if (uaddr == uaddr2)
3182 return -EINVAL;
3183
3184 if (!bitset)
3185 return -EINVAL;
3186
3187 to = futex_setup_timer(abs_time, &timeout, flags,
3188 current->timer_slack_ns);
3189
3190 /*
3191 * The waiter is allocated on our stack, manipulated by the requeue
3192 * code while we sleep on uaddr.
3193 */
3194 rt_mutex_init_waiter(&rt_waiter);
3195
3196 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3197 if (unlikely(ret != 0))
3198 goto out;
3199
3200 q.bitset = bitset;
3201 q.rt_waiter = &rt_waiter;
3202 q.requeue_pi_key = &key2;
3203
3204 /*
3205 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3206 * count.
3207 */
3208 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3209 if (ret)
3210 goto out;
3211
3212 /*
3213 * The check above which compares uaddrs is not sufficient for
3214 * shared futexes. We need to compare the keys:
3215 */
3216 if (match_futex(&q.key, &key2)) {
3217 queue_unlock(hb);
3218 ret = -EINVAL;
3219 goto out;
3220 }
3221
3222 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3223 futex_wait_queue_me(hb, &q, to);
3224
3225 spin_lock(&hb->lock);
3226 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3227 spin_unlock(&hb->lock);
3228 if (ret)
3229 goto out;
3230
3231 /*
3232 * In order for us to be here, we know our q.key == key2, and since
3233 * we took the hb->lock above, we also know that futex_requeue() has
3234 * completed and we no longer have to concern ourselves with a wakeup
3235 * race with the atomic proxy lock acquisition by the requeue code. The
3236 * futex_requeue dropped our key1 reference and incremented our key2
3237 * reference count.
3238 */
3239
3240 /* Check if the requeue code acquired the second futex for us. */
3241 if (!q.rt_waiter) {
3242 /*
3243 * Got the lock. We might not be the anticipated owner if we
3244 * did a lock-steal - fix up the PI-state in that case.
3245 */
3246 if (q.pi_state && (q.pi_state->owner != current)) {
3247 spin_lock(q.lock_ptr);
3248 ret = fixup_pi_state_owner(uaddr2, &q, current);
3249 /*
3250 * Drop the reference to the pi state which
3251 * the requeue_pi() code acquired for us.
3252 */
3253 put_pi_state(q.pi_state);
3254 spin_unlock(q.lock_ptr);
3255 /*
3256 * Adjust the return value. It's either -EFAULT or
3257 * success (1) but the caller expects 0 for success.
3258 */
3259 ret = ret < 0 ? ret : 0;
3260 }
3261 } else {
3262 struct rt_mutex *pi_mutex;
3263
3264 /*
3265 * We have been woken up by futex_unlock_pi(), a timeout, or a
3266 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3267 * the pi_state.
3268 */
3269 WARN_ON(!q.pi_state);
3270 pi_mutex = &q.pi_state->pi_mutex;
3271 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3272
3273 spin_lock(q.lock_ptr);
3274 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3275 ret = 0;
3276
3277 debug_rt_mutex_free_waiter(&rt_waiter);
3278 /*
3279 * Fixup the pi_state owner and possibly acquire the lock if we
3280 * haven't already.
3281 */
3282 res = fixup_owner(uaddr2, &q, !ret);
3283 /*
3284 * If fixup_owner() returned an error, proprogate that. If it
3285 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3286 */
3287 if (res)
3288 ret = (res < 0) ? res : 0;
3289
3290 /* Unqueue and drop the lock. */
3291 unqueue_me_pi(&q);
3292 }
3293
3294 if (ret == -EINTR) {
3295 /*
3296 * We've already been requeued, but cannot restart by calling
3297 * futex_lock_pi() directly. We could restart this syscall, but
3298 * it would detect that the user space "val" changed and return
3299 * -EWOULDBLOCK. Save the overhead of the restart and return
3300 * -EWOULDBLOCK directly.
3301 */
3302 ret = -EWOULDBLOCK;
3303 }
3304
3305 out:
3306 if (to) {
3307 hrtimer_cancel(&to->timer);
3308 destroy_hrtimer_on_stack(&to->timer);
3309 }
3310 return ret;
3311 }
3312
3313 /*
3314 * Support for robust futexes: the kernel cleans up held futexes at
3315 * thread exit time.
3316 *
3317 * Implementation: user-space maintains a per-thread list of locks it
3318 * is holding. Upon do_exit(), the kernel carefully walks this list,
3319 * and marks all locks that are owned by this thread with the
3320 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3321 * always manipulated with the lock held, so the list is private and
3322 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3323 * field, to allow the kernel to clean up if the thread dies after
3324 * acquiring the lock, but just before it could have added itself to
3325 * the list. There can only be one such pending lock.
3326 */
3327
3328 /**
3329 * sys_set_robust_list() - Set the robust-futex list head of a task
3330 * @head: pointer to the list-head
3331 * @len: length of the list-head, as userspace expects
3332 */
3333 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3334 size_t, len)
3335 {
3336 if (!futex_cmpxchg_enabled)
3337 return -ENOSYS;
3338 /*
3339 * The kernel knows only one size for now:
3340 */
3341 if (unlikely(len != sizeof(*head)))
3342 return -EINVAL;
3343
3344 current->robust_list = head;
3345
3346 return 0;
3347 }
3348
3349 /**
3350 * sys_get_robust_list() - Get the robust-futex list head of a task
3351 * @pid: pid of the process [zero for current task]
3352 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3353 * @len_ptr: pointer to a length field, the kernel fills in the header size
3354 */
3355 SYSCALL_DEFINE3(get_robust_list, int, pid,
3356 struct robust_list_head __user * __user *, head_ptr,
3357 size_t __user *, len_ptr)
3358 {
3359 struct robust_list_head __user *head;
3360 unsigned long ret;
3361 struct task_struct *p;
3362
3363 if (!futex_cmpxchg_enabled)
3364 return -ENOSYS;
3365
3366 rcu_read_lock();
3367
3368 ret = -ESRCH;
3369 if (!pid)
3370 p = current;
3371 else {
3372 p = find_task_by_vpid(pid);
3373 if (!p)
3374 goto err_unlock;
3375 }
3376
3377 ret = -EPERM;
3378 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3379 goto err_unlock;
3380
3381 head = p->robust_list;
3382 rcu_read_unlock();
3383
3384 if (put_user(sizeof(*head), len_ptr))
3385 return -EFAULT;
3386 return put_user(head, head_ptr);
3387
3388 err_unlock:
3389 rcu_read_unlock();
3390
3391 return ret;
3392 }
3393
3394 /* Constants for the pending_op argument of handle_futex_death */
3395 #define HANDLE_DEATH_PENDING true
3396 #define HANDLE_DEATH_LIST false
3397
3398 /*
3399 * Process a futex-list entry, check whether it's owned by the
3400 * dying task, and do notification if so:
3401 */
3402 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3403 bool pi, bool pending_op)
3404 {
3405 u32 uval, nval, mval;
3406 int err;
3407
3408 /* Futex address must be 32bit aligned */
3409 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3410 return -1;
3411
3412 retry:
3413 if (get_user(uval, uaddr))
3414 return -1;
3415
3416 /*
3417 * Special case for regular (non PI) futexes. The unlock path in
3418 * user space has two race scenarios:
3419 *
3420 * 1. The unlock path releases the user space futex value and
3421 * before it can execute the futex() syscall to wake up
3422 * waiters it is killed.
3423 *
3424 * 2. A woken up waiter is killed before it can acquire the
3425 * futex in user space.
3426 *
3427 * In both cases the TID validation below prevents a wakeup of
3428 * potential waiters which can cause these waiters to block
3429 * forever.
3430 *
3431 * In both cases the following conditions are met:
3432 *
3433 * 1) task->robust_list->list_op_pending != NULL
3434 * @pending_op == true
3435 * 2) User space futex value == 0
3436 * 3) Regular futex: @pi == false
3437 *
3438 * If these conditions are met, it is safe to attempt waking up a
3439 * potential waiter without touching the user space futex value and
3440 * trying to set the OWNER_DIED bit. The user space futex value is
3441 * uncontended and the rest of the user space mutex state is
3442 * consistent, so a woken waiter will just take over the
3443 * uncontended futex. Setting the OWNER_DIED bit would create
3444 * inconsistent state and malfunction of the user space owner died
3445 * handling.
3446 */
3447 if (pending_op && !pi && !uval) {
3448 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3449 return 0;
3450 }
3451
3452 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3453 return 0;
3454
3455 /*
3456 * Ok, this dying thread is truly holding a futex
3457 * of interest. Set the OWNER_DIED bit atomically
3458 * via cmpxchg, and if the value had FUTEX_WAITERS
3459 * set, wake up a waiter (if any). (We have to do a
3460 * futex_wake() even if OWNER_DIED is already set -
3461 * to handle the rare but possible case of recursive
3462 * thread-death.) The rest of the cleanup is done in
3463 * userspace.
3464 */
3465 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3466
3467 /*
3468 * We are not holding a lock here, but we want to have
3469 * the pagefault_disable/enable() protection because
3470 * we want to handle the fault gracefully. If the
3471 * access fails we try to fault in the futex with R/W
3472 * verification via get_user_pages. get_user() above
3473 * does not guarantee R/W access. If that fails we
3474 * give up and leave the futex locked.
3475 */
3476 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3477 switch (err) {
3478 case -EFAULT:
3479 if (fault_in_user_writeable(uaddr))
3480 return -1;
3481 goto retry;
3482
3483 case -EAGAIN:
3484 cond_resched();
3485 goto retry;
3486
3487 default:
3488 WARN_ON_ONCE(1);
3489 return err;
3490 }
3491 }
3492
3493 if (nval != uval)
3494 goto retry;
3495
3496 /*
3497 * Wake robust non-PI futexes here. The wakeup of
3498 * PI futexes happens in exit_pi_state():
3499 */
3500 if (!pi && (uval & FUTEX_WAITERS))
3501 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3502
3503 return 0;
3504 }
3505
3506 /*
3507 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3508 */
3509 static inline int fetch_robust_entry(struct robust_list __user **entry,
3510 struct robust_list __user * __user *head,
3511 unsigned int *pi)
3512 {
3513 unsigned long uentry;
3514
3515 if (get_user(uentry, (unsigned long __user *)head))
3516 return -EFAULT;
3517
3518 *entry = (void __user *)(uentry & ~1UL);
3519 *pi = uentry & 1;
3520
3521 return 0;
3522 }
3523
3524 /*
3525 * Walk curr->robust_list (very carefully, it's a userspace list!)
3526 * and mark any locks found there dead, and notify any waiters.
3527 *
3528 * We silently return on any sign of list-walking problem.
3529 */
3530 static void exit_robust_list(struct task_struct *curr)
3531 {
3532 struct robust_list_head __user *head = curr->robust_list;
3533 struct robust_list __user *entry, *next_entry, *pending;
3534 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3535 unsigned int next_pi;
3536 unsigned long futex_offset;
3537 int rc;
3538
3539 if (!futex_cmpxchg_enabled)
3540 return;
3541
3542 /*
3543 * Fetch the list head (which was registered earlier, via
3544 * sys_set_robust_list()):
3545 */
3546 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3547 return;
3548 /*
3549 * Fetch the relative futex offset:
3550 */
3551 if (get_user(futex_offset, &head->futex_offset))
3552 return;
3553 /*
3554 * Fetch any possibly pending lock-add first, and handle it
3555 * if it exists:
3556 */
3557 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3558 return;
3559
3560 next_entry = NULL; /* avoid warning with gcc */
3561 while (entry != &head->list) {
3562 /*
3563 * Fetch the next entry in the list before calling
3564 * handle_futex_death:
3565 */
3566 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3567 /*
3568 * A pending lock might already be on the list, so
3569 * don't process it twice:
3570 */
3571 if (entry != pending) {
3572 if (handle_futex_death((void __user *)entry + futex_offset,
3573 curr, pi, HANDLE_DEATH_LIST))
3574 return;
3575 }
3576 if (rc)
3577 return;
3578 entry = next_entry;
3579 pi = next_pi;
3580 /*
3581 * Avoid excessively long or circular lists:
3582 */
3583 if (!--limit)
3584 break;
3585
3586 cond_resched();
3587 }
3588
3589 if (pending) {
3590 handle_futex_death((void __user *)pending + futex_offset,
3591 curr, pip, HANDLE_DEATH_PENDING);
3592 }
3593 }
3594
3595 static void futex_cleanup(struct task_struct *tsk)
3596 {
3597 if (unlikely(tsk->robust_list)) {
3598 exit_robust_list(tsk);
3599 tsk->robust_list = NULL;
3600 }
3601
3602 #ifdef CONFIG_COMPAT
3603 if (unlikely(tsk->compat_robust_list)) {
3604 compat_exit_robust_list(tsk);
3605 tsk->compat_robust_list = NULL;
3606 }
3607 #endif
3608
3609 if (unlikely(!list_empty(&tsk->pi_state_list)))
3610 exit_pi_state_list(tsk);
3611 }
3612
3613 /**
3614 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3615 * @tsk: task to set the state on
3616 *
3617 * Set the futex exit state of the task lockless. The futex waiter code
3618 * observes that state when a task is exiting and loops until the task has
3619 * actually finished the futex cleanup. The worst case for this is that the
3620 * waiter runs through the wait loop until the state becomes visible.
3621 *
3622 * This is called from the recursive fault handling path in do_exit().
3623 *
3624 * This is best effort. Either the futex exit code has run already or
3625 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3626 * take it over. If not, the problem is pushed back to user space. If the
3627 * futex exit code did not run yet, then an already queued waiter might
3628 * block forever, but there is nothing which can be done about that.
3629 */
3630 void futex_exit_recursive(struct task_struct *tsk)
3631 {
3632 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3633 if (tsk->futex_state == FUTEX_STATE_EXITING)
3634 mutex_unlock(&tsk->futex_exit_mutex);
3635 tsk->futex_state = FUTEX_STATE_DEAD;
3636 }
3637
3638 static void futex_cleanup_begin(struct task_struct *tsk)
3639 {
3640 /*
3641 * Prevent various race issues against a concurrent incoming waiter
3642 * including live locks by forcing the waiter to block on
3643 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3644 * attach_to_pi_owner().
3645 */
3646 mutex_lock(&tsk->futex_exit_mutex);
3647
3648 /*
3649 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3650 *
3651 * This ensures that all subsequent checks of tsk->futex_state in
3652 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3653 * tsk->pi_lock held.
3654 *
3655 * It guarantees also that a pi_state which was queued right before
3656 * the state change under tsk->pi_lock by a concurrent waiter must
3657 * be observed in exit_pi_state_list().
3658 */
3659 raw_spin_lock_irq(&tsk->pi_lock);
3660 tsk->futex_state = FUTEX_STATE_EXITING;
3661 raw_spin_unlock_irq(&tsk->pi_lock);
3662 }
3663
3664 static void futex_cleanup_end(struct task_struct *tsk, int state)
3665 {
3666 /*
3667 * Lockless store. The only side effect is that an observer might
3668 * take another loop until it becomes visible.
3669 */
3670 tsk->futex_state = state;
3671 /*
3672 * Drop the exit protection. This unblocks waiters which observed
3673 * FUTEX_STATE_EXITING to reevaluate the state.
3674 */
3675 mutex_unlock(&tsk->futex_exit_mutex);
3676 }
3677
3678 void futex_exec_release(struct task_struct *tsk)
3679 {
3680 /*
3681 * The state handling is done for consistency, but in the case of
3682 * exec() there is no way to prevent futher damage as the PID stays
3683 * the same. But for the unlikely and arguably buggy case that a
3684 * futex is held on exec(), this provides at least as much state
3685 * consistency protection which is possible.
3686 */
3687 futex_cleanup_begin(tsk);
3688 futex_cleanup(tsk);
3689 /*
3690 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3691 * exec a new binary.
3692 */
3693 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3694 }
3695
3696 void futex_exit_release(struct task_struct *tsk)
3697 {
3698 futex_cleanup_begin(tsk);
3699 futex_cleanup(tsk);
3700 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3701 }
3702
3703 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3704 u32 __user *uaddr2, u32 val2, u32 val3)
3705 {
3706 int cmd = op & FUTEX_CMD_MASK;
3707 unsigned int flags = 0;
3708
3709 if (!(op & FUTEX_PRIVATE_FLAG))
3710 flags |= FLAGS_SHARED;
3711
3712 if (op & FUTEX_CLOCK_REALTIME) {
3713 flags |= FLAGS_CLOCKRT;
3714 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3715 return -ENOSYS;
3716 }
3717
3718 switch (cmd) {
3719 case FUTEX_LOCK_PI:
3720 case FUTEX_UNLOCK_PI:
3721 case FUTEX_TRYLOCK_PI:
3722 case FUTEX_WAIT_REQUEUE_PI:
3723 case FUTEX_CMP_REQUEUE_PI:
3724 if (!futex_cmpxchg_enabled)
3725 return -ENOSYS;
3726 }
3727
3728 switch (cmd) {
3729 case FUTEX_WAIT:
3730 val3 = FUTEX_BITSET_MATCH_ANY;
3731 fallthrough;
3732 case FUTEX_WAIT_BITSET:
3733 return futex_wait(uaddr, flags, val, timeout, val3);
3734 case FUTEX_WAKE:
3735 val3 = FUTEX_BITSET_MATCH_ANY;
3736 fallthrough;
3737 case FUTEX_WAKE_BITSET:
3738 return futex_wake(uaddr, flags, val, val3);
3739 case FUTEX_REQUEUE:
3740 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3741 case FUTEX_CMP_REQUEUE:
3742 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3743 case FUTEX_WAKE_OP:
3744 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3745 case FUTEX_LOCK_PI:
3746 return futex_lock_pi(uaddr, flags, timeout, 0);
3747 case FUTEX_UNLOCK_PI:
3748 return futex_unlock_pi(uaddr, flags);
3749 case FUTEX_TRYLOCK_PI:
3750 return futex_lock_pi(uaddr, flags, NULL, 1);
3751 case FUTEX_WAIT_REQUEUE_PI:
3752 val3 = FUTEX_BITSET_MATCH_ANY;
3753 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3754 uaddr2);
3755 case FUTEX_CMP_REQUEUE_PI:
3756 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3757 }
3758 return -ENOSYS;
3759 }
3760
3761
3762 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3763 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3764 u32, val3)
3765 {
3766 struct timespec64 ts;
3767 ktime_t t, *tp = NULL;
3768 u32 val2 = 0;
3769 int cmd = op & FUTEX_CMD_MASK;
3770
3771 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3772 cmd == FUTEX_WAIT_BITSET ||
3773 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3774 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3775 return -EFAULT;
3776 if (get_timespec64(&ts, utime))
3777 return -EFAULT;
3778 if (!timespec64_valid(&ts))
3779 return -EINVAL;
3780
3781 t = timespec64_to_ktime(ts);
3782 if (cmd == FUTEX_WAIT)
3783 t = ktime_add_safe(ktime_get(), t);
3784 else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3785 t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3786 tp = &t;
3787 }
3788 /*
3789 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3790 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3791 */
3792 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3793 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3794 val2 = (u32) (unsigned long) utime;
3795
3796 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3797 }
3798
3799 #ifdef CONFIG_COMPAT
3800 /*
3801 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3802 */
3803 static inline int
3804 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3805 compat_uptr_t __user *head, unsigned int *pi)
3806 {
3807 if (get_user(*uentry, head))
3808 return -EFAULT;
3809
3810 *entry = compat_ptr((*uentry) & ~1);
3811 *pi = (unsigned int)(*uentry) & 1;
3812
3813 return 0;
3814 }
3815
3816 static void __user *futex_uaddr(struct robust_list __user *entry,
3817 compat_long_t futex_offset)
3818 {
3819 compat_uptr_t base = ptr_to_compat(entry);
3820 void __user *uaddr = compat_ptr(base + futex_offset);
3821
3822 return uaddr;
3823 }
3824
3825 /*
3826 * Walk curr->robust_list (very carefully, it's a userspace list!)
3827 * and mark any locks found there dead, and notify any waiters.
3828 *
3829 * We silently return on any sign of list-walking problem.
3830 */
3831 static void compat_exit_robust_list(struct task_struct *curr)
3832 {
3833 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3834 struct robust_list __user *entry, *next_entry, *pending;
3835 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3836 unsigned int next_pi;
3837 compat_uptr_t uentry, next_uentry, upending;
3838 compat_long_t futex_offset;
3839 int rc;
3840
3841 if (!futex_cmpxchg_enabled)
3842 return;
3843
3844 /*
3845 * Fetch the list head (which was registered earlier, via
3846 * sys_set_robust_list()):
3847 */
3848 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3849 return;
3850 /*
3851 * Fetch the relative futex offset:
3852 */
3853 if (get_user(futex_offset, &head->futex_offset))
3854 return;
3855 /*
3856 * Fetch any possibly pending lock-add first, and handle it
3857 * if it exists:
3858 */
3859 if (compat_fetch_robust_entry(&upending, &pending,
3860 &head->list_op_pending, &pip))
3861 return;
3862
3863 next_entry = NULL; /* avoid warning with gcc */
3864 while (entry != (struct robust_list __user *) &head->list) {
3865 /*
3866 * Fetch the next entry in the list before calling
3867 * handle_futex_death:
3868 */
3869 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3870 (compat_uptr_t __user *)&entry->next, &next_pi);
3871 /*
3872 * A pending lock might already be on the list, so
3873 * dont process it twice:
3874 */
3875 if (entry != pending) {
3876 void __user *uaddr = futex_uaddr(entry, futex_offset);
3877
3878 if (handle_futex_death(uaddr, curr, pi,
3879 HANDLE_DEATH_LIST))
3880 return;
3881 }
3882 if (rc)
3883 return;
3884 uentry = next_uentry;
3885 entry = next_entry;
3886 pi = next_pi;
3887 /*
3888 * Avoid excessively long or circular lists:
3889 */
3890 if (!--limit)
3891 break;
3892
3893 cond_resched();
3894 }
3895 if (pending) {
3896 void __user *uaddr = futex_uaddr(pending, futex_offset);
3897
3898 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3899 }
3900 }
3901
3902 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3903 struct compat_robust_list_head __user *, head,
3904 compat_size_t, len)
3905 {
3906 if (!futex_cmpxchg_enabled)
3907 return -ENOSYS;
3908
3909 if (unlikely(len != sizeof(*head)))
3910 return -EINVAL;
3911
3912 current->compat_robust_list = head;
3913
3914 return 0;
3915 }
3916
3917 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3918 compat_uptr_t __user *, head_ptr,
3919 compat_size_t __user *, len_ptr)
3920 {
3921 struct compat_robust_list_head __user *head;
3922 unsigned long ret;
3923 struct task_struct *p;
3924
3925 if (!futex_cmpxchg_enabled)
3926 return -ENOSYS;
3927
3928 rcu_read_lock();
3929
3930 ret = -ESRCH;
3931 if (!pid)
3932 p = current;
3933 else {
3934 p = find_task_by_vpid(pid);
3935 if (!p)
3936 goto err_unlock;
3937 }
3938
3939 ret = -EPERM;
3940 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3941 goto err_unlock;
3942
3943 head = p->compat_robust_list;
3944 rcu_read_unlock();
3945
3946 if (put_user(sizeof(*head), len_ptr))
3947 return -EFAULT;
3948 return put_user(ptr_to_compat(head), head_ptr);
3949
3950 err_unlock:
3951 rcu_read_unlock();
3952
3953 return ret;
3954 }
3955 #endif /* CONFIG_COMPAT */
3956
3957 #ifdef CONFIG_COMPAT_32BIT_TIME
3958 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3959 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3960 u32, val3)
3961 {
3962 struct timespec64 ts;
3963 ktime_t t, *tp = NULL;
3964 int val2 = 0;
3965 int cmd = op & FUTEX_CMD_MASK;
3966
3967 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3968 cmd == FUTEX_WAIT_BITSET ||
3969 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3970 if (get_old_timespec32(&ts, utime))
3971 return -EFAULT;
3972 if (!timespec64_valid(&ts))
3973 return -EINVAL;
3974
3975 t = timespec64_to_ktime(ts);
3976 if (cmd == FUTEX_WAIT)
3977 t = ktime_add_safe(ktime_get(), t);
3978 else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3979 t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3980 tp = &t;
3981 }
3982 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3983 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3984 val2 = (int) (unsigned long) utime;
3985
3986 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3987 }
3988 #endif /* CONFIG_COMPAT_32BIT_TIME */
3989
3990 static void __init futex_detect_cmpxchg(void)
3991 {
3992 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3993 u32 curval;
3994
3995 /*
3996 * This will fail and we want it. Some arch implementations do
3997 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3998 * functionality. We want to know that before we call in any
3999 * of the complex code paths. Also we want to prevent
4000 * registration of robust lists in that case. NULL is
4001 * guaranteed to fault and we get -EFAULT on functional
4002 * implementation, the non-functional ones will return
4003 * -ENOSYS.
4004 */
4005 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4006 futex_cmpxchg_enabled = 1;
4007 #endif
4008 }
4009
4010 static int __init futex_init(void)
4011 {
4012 unsigned int futex_shift;
4013 unsigned long i;
4014
4015 #if CONFIG_BASE_SMALL
4016 futex_hashsize = 16;
4017 #else
4018 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4019 #endif
4020
4021 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4022 futex_hashsize, 0,
4023 futex_hashsize < 256 ? HASH_SMALL : 0,
4024 &futex_shift, NULL,
4025 futex_hashsize, futex_hashsize);
4026 futex_hashsize = 1UL << futex_shift;
4027
4028 futex_detect_cmpxchg();
4029
4030 for (i = 0; i < futex_hashsize; i++) {
4031 atomic_set(&futex_queues[i].waiters, 0);
4032 plist_head_init(&futex_queues[i].chain);
4033 spin_lock_init(&futex_queues[i].lock);
4034 }
4035
4036 return 0;
4037 }
4038 core_initcall(futex_init);