]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/futex.c
futex: Sanitize cmpxchg_futex_value_locked API
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62
63 #include <asm/futex.h>
64
65 #include "rtmutex_common.h"
66
67 int __read_mostly futex_cmpxchg_enabled;
68
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
71 /*
72 * Futex flags used to encode options to functions and preserve them across
73 * restarts.
74 */
75 #define FLAGS_SHARED 0x01
76 #define FLAGS_CLOCKRT 0x02
77 #define FLAGS_HAS_TIMEOUT 0x04
78
79 /*
80 * Priority Inheritance state:
81 */
82 struct futex_pi_state {
83 /*
84 * list of 'owned' pi_state instances - these have to be
85 * cleaned up in do_exit() if the task exits prematurely:
86 */
87 struct list_head list;
88
89 /*
90 * The PI object:
91 */
92 struct rt_mutex pi_mutex;
93
94 struct task_struct *owner;
95 atomic_t refcount;
96
97 union futex_key key;
98 };
99
100 /**
101 * struct futex_q - The hashed futex queue entry, one per waiting task
102 * @list: priority-sorted list of tasks waiting on this futex
103 * @task: the task waiting on the futex
104 * @lock_ptr: the hash bucket lock
105 * @key: the key the futex is hashed on
106 * @pi_state: optional priority inheritance state
107 * @rt_waiter: rt_waiter storage for use with requeue_pi
108 * @requeue_pi_key: the requeue_pi target futex key
109 * @bitset: bitset for the optional bitmasked wakeup
110 *
111 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
112 * we can wake only the relevant ones (hashed queues may be shared).
113 *
114 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
115 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
116 * The order of wakeup is always to make the first condition true, then
117 * the second.
118 *
119 * PI futexes are typically woken before they are removed from the hash list via
120 * the rt_mutex code. See unqueue_me_pi().
121 */
122 struct futex_q {
123 struct plist_node list;
124
125 struct task_struct *task;
126 spinlock_t *lock_ptr;
127 union futex_key key;
128 struct futex_pi_state *pi_state;
129 struct rt_mutex_waiter *rt_waiter;
130 union futex_key *requeue_pi_key;
131 u32 bitset;
132 };
133
134 static const struct futex_q futex_q_init = {
135 /* list gets initialized in queue_me()*/
136 .key = FUTEX_KEY_INIT,
137 .bitset = FUTEX_BITSET_MATCH_ANY
138 };
139
140 /*
141 * Hash buckets are shared by all the futex_keys that hash to the same
142 * location. Each key may have multiple futex_q structures, one for each task
143 * waiting on a futex.
144 */
145 struct futex_hash_bucket {
146 spinlock_t lock;
147 struct plist_head chain;
148 };
149
150 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
151
152 /*
153 * We hash on the keys returned from get_futex_key (see below).
154 */
155 static struct futex_hash_bucket *hash_futex(union futex_key *key)
156 {
157 u32 hash = jhash2((u32*)&key->both.word,
158 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
159 key->both.offset);
160 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
161 }
162
163 /*
164 * Return 1 if two futex_keys are equal, 0 otherwise.
165 */
166 static inline int match_futex(union futex_key *key1, union futex_key *key2)
167 {
168 return (key1 && key2
169 && key1->both.word == key2->both.word
170 && key1->both.ptr == key2->both.ptr
171 && key1->both.offset == key2->both.offset);
172 }
173
174 /*
175 * Take a reference to the resource addressed by a key.
176 * Can be called while holding spinlocks.
177 *
178 */
179 static void get_futex_key_refs(union futex_key *key)
180 {
181 if (!key->both.ptr)
182 return;
183
184 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
185 case FUT_OFF_INODE:
186 ihold(key->shared.inode);
187 break;
188 case FUT_OFF_MMSHARED:
189 atomic_inc(&key->private.mm->mm_count);
190 break;
191 }
192 }
193
194 /*
195 * Drop a reference to the resource addressed by a key.
196 * The hash bucket spinlock must not be held.
197 */
198 static void drop_futex_key_refs(union futex_key *key)
199 {
200 if (!key->both.ptr) {
201 /* If we're here then we tried to put a key we failed to get */
202 WARN_ON_ONCE(1);
203 return;
204 }
205
206 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
207 case FUT_OFF_INODE:
208 iput(key->shared.inode);
209 break;
210 case FUT_OFF_MMSHARED:
211 mmdrop(key->private.mm);
212 break;
213 }
214 }
215
216 /**
217 * get_futex_key() - Get parameters which are the keys for a futex
218 * @uaddr: virtual address of the futex
219 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
220 * @key: address where result is stored.
221 *
222 * Returns a negative error code or 0
223 * The key words are stored in *key on success.
224 *
225 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
226 * offset_within_page). For private mappings, it's (uaddr, current->mm).
227 * We can usually work out the index without swapping in the page.
228 *
229 * lock_page() might sleep, the caller should not hold a spinlock.
230 */
231 static int
232 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
233 {
234 unsigned long address = (unsigned long)uaddr;
235 struct mm_struct *mm = current->mm;
236 struct page *page, *page_head;
237 int err;
238
239 /*
240 * The futex address must be "naturally" aligned.
241 */
242 key->both.offset = address % PAGE_SIZE;
243 if (unlikely((address % sizeof(u32)) != 0))
244 return -EINVAL;
245 address -= key->both.offset;
246
247 /*
248 * PROCESS_PRIVATE futexes are fast.
249 * As the mm cannot disappear under us and the 'key' only needs
250 * virtual address, we dont even have to find the underlying vma.
251 * Note : We do have to check 'uaddr' is a valid user address,
252 * but access_ok() should be faster than find_vma()
253 */
254 if (!fshared) {
255 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
256 return -EFAULT;
257 key->private.mm = mm;
258 key->private.address = address;
259 get_futex_key_refs(key);
260 return 0;
261 }
262
263 again:
264 err = get_user_pages_fast(address, 1, 1, &page);
265 if (err < 0)
266 return err;
267
268 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
269 page_head = page;
270 if (unlikely(PageTail(page))) {
271 put_page(page);
272 /* serialize against __split_huge_page_splitting() */
273 local_irq_disable();
274 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
275 page_head = compound_head(page);
276 /*
277 * page_head is valid pointer but we must pin
278 * it before taking the PG_lock and/or
279 * PG_compound_lock. The moment we re-enable
280 * irqs __split_huge_page_splitting() can
281 * return and the head page can be freed from
282 * under us. We can't take the PG_lock and/or
283 * PG_compound_lock on a page that could be
284 * freed from under us.
285 */
286 if (page != page_head) {
287 get_page(page_head);
288 put_page(page);
289 }
290 local_irq_enable();
291 } else {
292 local_irq_enable();
293 goto again;
294 }
295 }
296 #else
297 page_head = compound_head(page);
298 if (page != page_head) {
299 get_page(page_head);
300 put_page(page);
301 }
302 #endif
303
304 lock_page(page_head);
305 if (!page_head->mapping) {
306 unlock_page(page_head);
307 put_page(page_head);
308 goto again;
309 }
310
311 /*
312 * Private mappings are handled in a simple way.
313 *
314 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
315 * it's a read-only handle, it's expected that futexes attach to
316 * the object not the particular process.
317 */
318 if (PageAnon(page_head)) {
319 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
320 key->private.mm = mm;
321 key->private.address = address;
322 } else {
323 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
324 key->shared.inode = page_head->mapping->host;
325 key->shared.pgoff = page_head->index;
326 }
327
328 get_futex_key_refs(key);
329
330 unlock_page(page_head);
331 put_page(page_head);
332 return 0;
333 }
334
335 static inline void put_futex_key(union futex_key *key)
336 {
337 drop_futex_key_refs(key);
338 }
339
340 /**
341 * fault_in_user_writeable() - Fault in user address and verify RW access
342 * @uaddr: pointer to faulting user space address
343 *
344 * Slow path to fixup the fault we just took in the atomic write
345 * access to @uaddr.
346 *
347 * We have no generic implementation of a non-destructive write to the
348 * user address. We know that we faulted in the atomic pagefault
349 * disabled section so we can as well avoid the #PF overhead by
350 * calling get_user_pages() right away.
351 */
352 static int fault_in_user_writeable(u32 __user *uaddr)
353 {
354 struct mm_struct *mm = current->mm;
355 int ret;
356
357 down_read(&mm->mmap_sem);
358 ret = get_user_pages(current, mm, (unsigned long)uaddr,
359 1, 1, 0, NULL, NULL);
360 up_read(&mm->mmap_sem);
361
362 return ret < 0 ? ret : 0;
363 }
364
365 /**
366 * futex_top_waiter() - Return the highest priority waiter on a futex
367 * @hb: the hash bucket the futex_q's reside in
368 * @key: the futex key (to distinguish it from other futex futex_q's)
369 *
370 * Must be called with the hb lock held.
371 */
372 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
373 union futex_key *key)
374 {
375 struct futex_q *this;
376
377 plist_for_each_entry(this, &hb->chain, list) {
378 if (match_futex(&this->key, key))
379 return this;
380 }
381 return NULL;
382 }
383
384 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
385 u32 uval, u32 newval)
386 {
387 int ret;
388
389 pagefault_disable();
390 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
391 pagefault_enable();
392
393 return ret;
394 }
395
396 static int get_futex_value_locked(u32 *dest, u32 __user *from)
397 {
398 int ret;
399
400 pagefault_disable();
401 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
402 pagefault_enable();
403
404 return ret ? -EFAULT : 0;
405 }
406
407
408 /*
409 * PI code:
410 */
411 static int refill_pi_state_cache(void)
412 {
413 struct futex_pi_state *pi_state;
414
415 if (likely(current->pi_state_cache))
416 return 0;
417
418 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
419
420 if (!pi_state)
421 return -ENOMEM;
422
423 INIT_LIST_HEAD(&pi_state->list);
424 /* pi_mutex gets initialized later */
425 pi_state->owner = NULL;
426 atomic_set(&pi_state->refcount, 1);
427 pi_state->key = FUTEX_KEY_INIT;
428
429 current->pi_state_cache = pi_state;
430
431 return 0;
432 }
433
434 static struct futex_pi_state * alloc_pi_state(void)
435 {
436 struct futex_pi_state *pi_state = current->pi_state_cache;
437
438 WARN_ON(!pi_state);
439 current->pi_state_cache = NULL;
440
441 return pi_state;
442 }
443
444 static void free_pi_state(struct futex_pi_state *pi_state)
445 {
446 if (!atomic_dec_and_test(&pi_state->refcount))
447 return;
448
449 /*
450 * If pi_state->owner is NULL, the owner is most probably dying
451 * and has cleaned up the pi_state already
452 */
453 if (pi_state->owner) {
454 raw_spin_lock_irq(&pi_state->owner->pi_lock);
455 list_del_init(&pi_state->list);
456 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
457
458 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
459 }
460
461 if (current->pi_state_cache)
462 kfree(pi_state);
463 else {
464 /*
465 * pi_state->list is already empty.
466 * clear pi_state->owner.
467 * refcount is at 0 - put it back to 1.
468 */
469 pi_state->owner = NULL;
470 atomic_set(&pi_state->refcount, 1);
471 current->pi_state_cache = pi_state;
472 }
473 }
474
475 /*
476 * Look up the task based on what TID userspace gave us.
477 * We dont trust it.
478 */
479 static struct task_struct * futex_find_get_task(pid_t pid)
480 {
481 struct task_struct *p;
482
483 rcu_read_lock();
484 p = find_task_by_vpid(pid);
485 if (p)
486 get_task_struct(p);
487
488 rcu_read_unlock();
489
490 return p;
491 }
492
493 /*
494 * This task is holding PI mutexes at exit time => bad.
495 * Kernel cleans up PI-state, but userspace is likely hosed.
496 * (Robust-futex cleanup is separate and might save the day for userspace.)
497 */
498 void exit_pi_state_list(struct task_struct *curr)
499 {
500 struct list_head *next, *head = &curr->pi_state_list;
501 struct futex_pi_state *pi_state;
502 struct futex_hash_bucket *hb;
503 union futex_key key = FUTEX_KEY_INIT;
504
505 if (!futex_cmpxchg_enabled)
506 return;
507 /*
508 * We are a ZOMBIE and nobody can enqueue itself on
509 * pi_state_list anymore, but we have to be careful
510 * versus waiters unqueueing themselves:
511 */
512 raw_spin_lock_irq(&curr->pi_lock);
513 while (!list_empty(head)) {
514
515 next = head->next;
516 pi_state = list_entry(next, struct futex_pi_state, list);
517 key = pi_state->key;
518 hb = hash_futex(&key);
519 raw_spin_unlock_irq(&curr->pi_lock);
520
521 spin_lock(&hb->lock);
522
523 raw_spin_lock_irq(&curr->pi_lock);
524 /*
525 * We dropped the pi-lock, so re-check whether this
526 * task still owns the PI-state:
527 */
528 if (head->next != next) {
529 spin_unlock(&hb->lock);
530 continue;
531 }
532
533 WARN_ON(pi_state->owner != curr);
534 WARN_ON(list_empty(&pi_state->list));
535 list_del_init(&pi_state->list);
536 pi_state->owner = NULL;
537 raw_spin_unlock_irq(&curr->pi_lock);
538
539 rt_mutex_unlock(&pi_state->pi_mutex);
540
541 spin_unlock(&hb->lock);
542
543 raw_spin_lock_irq(&curr->pi_lock);
544 }
545 raw_spin_unlock_irq(&curr->pi_lock);
546 }
547
548 static int
549 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
550 union futex_key *key, struct futex_pi_state **ps)
551 {
552 struct futex_pi_state *pi_state = NULL;
553 struct futex_q *this, *next;
554 struct plist_head *head;
555 struct task_struct *p;
556 pid_t pid = uval & FUTEX_TID_MASK;
557
558 head = &hb->chain;
559
560 plist_for_each_entry_safe(this, next, head, list) {
561 if (match_futex(&this->key, key)) {
562 /*
563 * Another waiter already exists - bump up
564 * the refcount and return its pi_state:
565 */
566 pi_state = this->pi_state;
567 /*
568 * Userspace might have messed up non-PI and PI futexes
569 */
570 if (unlikely(!pi_state))
571 return -EINVAL;
572
573 WARN_ON(!atomic_read(&pi_state->refcount));
574
575 /*
576 * When pi_state->owner is NULL then the owner died
577 * and another waiter is on the fly. pi_state->owner
578 * is fixed up by the task which acquires
579 * pi_state->rt_mutex.
580 *
581 * We do not check for pid == 0 which can happen when
582 * the owner died and robust_list_exit() cleared the
583 * TID.
584 */
585 if (pid && pi_state->owner) {
586 /*
587 * Bail out if user space manipulated the
588 * futex value.
589 */
590 if (pid != task_pid_vnr(pi_state->owner))
591 return -EINVAL;
592 }
593
594 atomic_inc(&pi_state->refcount);
595 *ps = pi_state;
596
597 return 0;
598 }
599 }
600
601 /*
602 * We are the first waiter - try to look up the real owner and attach
603 * the new pi_state to it, but bail out when TID = 0
604 */
605 if (!pid)
606 return -ESRCH;
607 p = futex_find_get_task(pid);
608 if (!p)
609 return -ESRCH;
610
611 /*
612 * We need to look at the task state flags to figure out,
613 * whether the task is exiting. To protect against the do_exit
614 * change of the task flags, we do this protected by
615 * p->pi_lock:
616 */
617 raw_spin_lock_irq(&p->pi_lock);
618 if (unlikely(p->flags & PF_EXITING)) {
619 /*
620 * The task is on the way out. When PF_EXITPIDONE is
621 * set, we know that the task has finished the
622 * cleanup:
623 */
624 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
625
626 raw_spin_unlock_irq(&p->pi_lock);
627 put_task_struct(p);
628 return ret;
629 }
630
631 pi_state = alloc_pi_state();
632
633 /*
634 * Initialize the pi_mutex in locked state and make 'p'
635 * the owner of it:
636 */
637 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
638
639 /* Store the key for possible exit cleanups: */
640 pi_state->key = *key;
641
642 WARN_ON(!list_empty(&pi_state->list));
643 list_add(&pi_state->list, &p->pi_state_list);
644 pi_state->owner = p;
645 raw_spin_unlock_irq(&p->pi_lock);
646
647 put_task_struct(p);
648
649 *ps = pi_state;
650
651 return 0;
652 }
653
654 /**
655 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
656 * @uaddr: the pi futex user address
657 * @hb: the pi futex hash bucket
658 * @key: the futex key associated with uaddr and hb
659 * @ps: the pi_state pointer where we store the result of the
660 * lookup
661 * @task: the task to perform the atomic lock work for. This will
662 * be "current" except in the case of requeue pi.
663 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
664 *
665 * Returns:
666 * 0 - ready to wait
667 * 1 - acquired the lock
668 * <0 - error
669 *
670 * The hb->lock and futex_key refs shall be held by the caller.
671 */
672 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
673 union futex_key *key,
674 struct futex_pi_state **ps,
675 struct task_struct *task, int set_waiters)
676 {
677 int lock_taken, ret, ownerdied = 0;
678 u32 uval, newval, curval, vpid = task_pid_vnr(task);
679
680 retry:
681 ret = lock_taken = 0;
682
683 /*
684 * To avoid races, we attempt to take the lock here again
685 * (by doing a 0 -> TID atomic cmpxchg), while holding all
686 * the locks. It will most likely not succeed.
687 */
688 newval = vpid;
689 if (set_waiters)
690 newval |= FUTEX_WAITERS;
691
692 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
693 return -EFAULT;
694
695 /*
696 * Detect deadlocks.
697 */
698 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
699 return -EDEADLK;
700
701 /*
702 * Surprise - we got the lock. Just return to userspace:
703 */
704 if (unlikely(!curval))
705 return 1;
706
707 uval = curval;
708
709 /*
710 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
711 * to wake at the next unlock.
712 */
713 newval = curval | FUTEX_WAITERS;
714
715 /*
716 * There are two cases, where a futex might have no owner (the
717 * owner TID is 0): OWNER_DIED. We take over the futex in this
718 * case. We also do an unconditional take over, when the owner
719 * of the futex died.
720 *
721 * This is safe as we are protected by the hash bucket lock !
722 */
723 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
724 /* Keep the OWNER_DIED bit */
725 newval = (curval & ~FUTEX_TID_MASK) | vpid;
726 ownerdied = 0;
727 lock_taken = 1;
728 }
729
730 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
731 return -EFAULT;
732 if (unlikely(curval != uval))
733 goto retry;
734
735 /*
736 * We took the lock due to owner died take over.
737 */
738 if (unlikely(lock_taken))
739 return 1;
740
741 /*
742 * We dont have the lock. Look up the PI state (or create it if
743 * we are the first waiter):
744 */
745 ret = lookup_pi_state(uval, hb, key, ps);
746
747 if (unlikely(ret)) {
748 switch (ret) {
749 case -ESRCH:
750 /*
751 * No owner found for this futex. Check if the
752 * OWNER_DIED bit is set to figure out whether
753 * this is a robust futex or not.
754 */
755 if (get_futex_value_locked(&curval, uaddr))
756 return -EFAULT;
757
758 /*
759 * We simply start over in case of a robust
760 * futex. The code above will take the futex
761 * and return happy.
762 */
763 if (curval & FUTEX_OWNER_DIED) {
764 ownerdied = 1;
765 goto retry;
766 }
767 default:
768 break;
769 }
770 }
771
772 return ret;
773 }
774
775 /*
776 * The hash bucket lock must be held when this is called.
777 * Afterwards, the futex_q must not be accessed.
778 */
779 static void wake_futex(struct futex_q *q)
780 {
781 struct task_struct *p = q->task;
782
783 /*
784 * We set q->lock_ptr = NULL _before_ we wake up the task. If
785 * a non-futex wake up happens on another CPU then the task
786 * might exit and p would dereference a non-existing task
787 * struct. Prevent this by holding a reference on p across the
788 * wake up.
789 */
790 get_task_struct(p);
791
792 plist_del(&q->list, &q->list.plist);
793 /*
794 * The waiting task can free the futex_q as soon as
795 * q->lock_ptr = NULL is written, without taking any locks. A
796 * memory barrier is required here to prevent the following
797 * store to lock_ptr from getting ahead of the plist_del.
798 */
799 smp_wmb();
800 q->lock_ptr = NULL;
801
802 wake_up_state(p, TASK_NORMAL);
803 put_task_struct(p);
804 }
805
806 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
807 {
808 struct task_struct *new_owner;
809 struct futex_pi_state *pi_state = this->pi_state;
810 u32 curval, newval;
811
812 if (!pi_state)
813 return -EINVAL;
814
815 /*
816 * If current does not own the pi_state then the futex is
817 * inconsistent and user space fiddled with the futex value.
818 */
819 if (pi_state->owner != current)
820 return -EINVAL;
821
822 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
823 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
824
825 /*
826 * It is possible that the next waiter (the one that brought
827 * this owner to the kernel) timed out and is no longer
828 * waiting on the lock.
829 */
830 if (!new_owner)
831 new_owner = this->task;
832
833 /*
834 * We pass it to the next owner. (The WAITERS bit is always
835 * kept enabled while there is PI state around. We must also
836 * preserve the owner died bit.)
837 */
838 if (!(uval & FUTEX_OWNER_DIED)) {
839 int ret = 0;
840
841 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
842
843 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
844 ret = -EFAULT;
845 else if (curval != uval)
846 ret = -EINVAL;
847 if (ret) {
848 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
849 return ret;
850 }
851 }
852
853 raw_spin_lock_irq(&pi_state->owner->pi_lock);
854 WARN_ON(list_empty(&pi_state->list));
855 list_del_init(&pi_state->list);
856 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
857
858 raw_spin_lock_irq(&new_owner->pi_lock);
859 WARN_ON(!list_empty(&pi_state->list));
860 list_add(&pi_state->list, &new_owner->pi_state_list);
861 pi_state->owner = new_owner;
862 raw_spin_unlock_irq(&new_owner->pi_lock);
863
864 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
865 rt_mutex_unlock(&pi_state->pi_mutex);
866
867 return 0;
868 }
869
870 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
871 {
872 u32 oldval;
873
874 /*
875 * There is no waiter, so we unlock the futex. The owner died
876 * bit has not to be preserved here. We are the owner:
877 */
878 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
879 return -EFAULT;
880 if (oldval != uval)
881 return -EAGAIN;
882
883 return 0;
884 }
885
886 /*
887 * Express the locking dependencies for lockdep:
888 */
889 static inline void
890 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
891 {
892 if (hb1 <= hb2) {
893 spin_lock(&hb1->lock);
894 if (hb1 < hb2)
895 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
896 } else { /* hb1 > hb2 */
897 spin_lock(&hb2->lock);
898 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
899 }
900 }
901
902 static inline void
903 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
904 {
905 spin_unlock(&hb1->lock);
906 if (hb1 != hb2)
907 spin_unlock(&hb2->lock);
908 }
909
910 /*
911 * Wake up waiters matching bitset queued on this futex (uaddr).
912 */
913 static int
914 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
915 {
916 struct futex_hash_bucket *hb;
917 struct futex_q *this, *next;
918 struct plist_head *head;
919 union futex_key key = FUTEX_KEY_INIT;
920 int ret;
921
922 if (!bitset)
923 return -EINVAL;
924
925 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
926 if (unlikely(ret != 0))
927 goto out;
928
929 hb = hash_futex(&key);
930 spin_lock(&hb->lock);
931 head = &hb->chain;
932
933 plist_for_each_entry_safe(this, next, head, list) {
934 if (match_futex (&this->key, &key)) {
935 if (this->pi_state || this->rt_waiter) {
936 ret = -EINVAL;
937 break;
938 }
939
940 /* Check if one of the bits is set in both bitsets */
941 if (!(this->bitset & bitset))
942 continue;
943
944 wake_futex(this);
945 if (++ret >= nr_wake)
946 break;
947 }
948 }
949
950 spin_unlock(&hb->lock);
951 put_futex_key(&key);
952 out:
953 return ret;
954 }
955
956 /*
957 * Wake up all waiters hashed on the physical page that is mapped
958 * to this virtual address:
959 */
960 static int
961 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
962 int nr_wake, int nr_wake2, int op)
963 {
964 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
965 struct futex_hash_bucket *hb1, *hb2;
966 struct plist_head *head;
967 struct futex_q *this, *next;
968 int ret, op_ret;
969
970 retry:
971 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
972 if (unlikely(ret != 0))
973 goto out;
974 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
975 if (unlikely(ret != 0))
976 goto out_put_key1;
977
978 hb1 = hash_futex(&key1);
979 hb2 = hash_futex(&key2);
980
981 retry_private:
982 double_lock_hb(hb1, hb2);
983 op_ret = futex_atomic_op_inuser(op, uaddr2);
984 if (unlikely(op_ret < 0)) {
985
986 double_unlock_hb(hb1, hb2);
987
988 #ifndef CONFIG_MMU
989 /*
990 * we don't get EFAULT from MMU faults if we don't have an MMU,
991 * but we might get them from range checking
992 */
993 ret = op_ret;
994 goto out_put_keys;
995 #endif
996
997 if (unlikely(op_ret != -EFAULT)) {
998 ret = op_ret;
999 goto out_put_keys;
1000 }
1001
1002 ret = fault_in_user_writeable(uaddr2);
1003 if (ret)
1004 goto out_put_keys;
1005
1006 if (!(flags & FLAGS_SHARED))
1007 goto retry_private;
1008
1009 put_futex_key(&key2);
1010 put_futex_key(&key1);
1011 goto retry;
1012 }
1013
1014 head = &hb1->chain;
1015
1016 plist_for_each_entry_safe(this, next, head, list) {
1017 if (match_futex (&this->key, &key1)) {
1018 wake_futex(this);
1019 if (++ret >= nr_wake)
1020 break;
1021 }
1022 }
1023
1024 if (op_ret > 0) {
1025 head = &hb2->chain;
1026
1027 op_ret = 0;
1028 plist_for_each_entry_safe(this, next, head, list) {
1029 if (match_futex (&this->key, &key2)) {
1030 wake_futex(this);
1031 if (++op_ret >= nr_wake2)
1032 break;
1033 }
1034 }
1035 ret += op_ret;
1036 }
1037
1038 double_unlock_hb(hb1, hb2);
1039 out_put_keys:
1040 put_futex_key(&key2);
1041 out_put_key1:
1042 put_futex_key(&key1);
1043 out:
1044 return ret;
1045 }
1046
1047 /**
1048 * requeue_futex() - Requeue a futex_q from one hb to another
1049 * @q: the futex_q to requeue
1050 * @hb1: the source hash_bucket
1051 * @hb2: the target hash_bucket
1052 * @key2: the new key for the requeued futex_q
1053 */
1054 static inline
1055 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1056 struct futex_hash_bucket *hb2, union futex_key *key2)
1057 {
1058
1059 /*
1060 * If key1 and key2 hash to the same bucket, no need to
1061 * requeue.
1062 */
1063 if (likely(&hb1->chain != &hb2->chain)) {
1064 plist_del(&q->list, &hb1->chain);
1065 plist_add(&q->list, &hb2->chain);
1066 q->lock_ptr = &hb2->lock;
1067 #ifdef CONFIG_DEBUG_PI_LIST
1068 q->list.plist.spinlock = &hb2->lock;
1069 #endif
1070 }
1071 get_futex_key_refs(key2);
1072 q->key = *key2;
1073 }
1074
1075 /**
1076 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1077 * @q: the futex_q
1078 * @key: the key of the requeue target futex
1079 * @hb: the hash_bucket of the requeue target futex
1080 *
1081 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1082 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1083 * to the requeue target futex so the waiter can detect the wakeup on the right
1084 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1085 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1086 * to protect access to the pi_state to fixup the owner later. Must be called
1087 * with both q->lock_ptr and hb->lock held.
1088 */
1089 static inline
1090 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1091 struct futex_hash_bucket *hb)
1092 {
1093 get_futex_key_refs(key);
1094 q->key = *key;
1095
1096 WARN_ON(plist_node_empty(&q->list));
1097 plist_del(&q->list, &q->list.plist);
1098
1099 WARN_ON(!q->rt_waiter);
1100 q->rt_waiter = NULL;
1101
1102 q->lock_ptr = &hb->lock;
1103 #ifdef CONFIG_DEBUG_PI_LIST
1104 q->list.plist.spinlock = &hb->lock;
1105 #endif
1106
1107 wake_up_state(q->task, TASK_NORMAL);
1108 }
1109
1110 /**
1111 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1112 * @pifutex: the user address of the to futex
1113 * @hb1: the from futex hash bucket, must be locked by the caller
1114 * @hb2: the to futex hash bucket, must be locked by the caller
1115 * @key1: the from futex key
1116 * @key2: the to futex key
1117 * @ps: address to store the pi_state pointer
1118 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1119 *
1120 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1121 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1122 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1123 * hb1 and hb2 must be held by the caller.
1124 *
1125 * Returns:
1126 * 0 - failed to acquire the lock atomicly
1127 * 1 - acquired the lock
1128 * <0 - error
1129 */
1130 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1131 struct futex_hash_bucket *hb1,
1132 struct futex_hash_bucket *hb2,
1133 union futex_key *key1, union futex_key *key2,
1134 struct futex_pi_state **ps, int set_waiters)
1135 {
1136 struct futex_q *top_waiter = NULL;
1137 u32 curval;
1138 int ret;
1139
1140 if (get_futex_value_locked(&curval, pifutex))
1141 return -EFAULT;
1142
1143 /*
1144 * Find the top_waiter and determine if there are additional waiters.
1145 * If the caller intends to requeue more than 1 waiter to pifutex,
1146 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1147 * as we have means to handle the possible fault. If not, don't set
1148 * the bit unecessarily as it will force the subsequent unlock to enter
1149 * the kernel.
1150 */
1151 top_waiter = futex_top_waiter(hb1, key1);
1152
1153 /* There are no waiters, nothing for us to do. */
1154 if (!top_waiter)
1155 return 0;
1156
1157 /* Ensure we requeue to the expected futex. */
1158 if (!match_futex(top_waiter->requeue_pi_key, key2))
1159 return -EINVAL;
1160
1161 /*
1162 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1163 * the contended case or if set_waiters is 1. The pi_state is returned
1164 * in ps in contended cases.
1165 */
1166 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1167 set_waiters);
1168 if (ret == 1)
1169 requeue_pi_wake_futex(top_waiter, key2, hb2);
1170
1171 return ret;
1172 }
1173
1174 /**
1175 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1176 * @uaddr1: source futex user address
1177 * @flags: futex flags (FLAGS_SHARED, etc.)
1178 * @uaddr2: target futex user address
1179 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1180 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1181 * @cmpval: @uaddr1 expected value (or %NULL)
1182 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1183 * pi futex (pi to pi requeue is not supported)
1184 *
1185 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1186 * uaddr2 atomically on behalf of the top waiter.
1187 *
1188 * Returns:
1189 * >=0 - on success, the number of tasks requeued or woken
1190 * <0 - on error
1191 */
1192 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1193 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1194 u32 *cmpval, int requeue_pi)
1195 {
1196 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1197 int drop_count = 0, task_count = 0, ret;
1198 struct futex_pi_state *pi_state = NULL;
1199 struct futex_hash_bucket *hb1, *hb2;
1200 struct plist_head *head1;
1201 struct futex_q *this, *next;
1202 u32 curval2;
1203
1204 if (requeue_pi) {
1205 /*
1206 * requeue_pi requires a pi_state, try to allocate it now
1207 * without any locks in case it fails.
1208 */
1209 if (refill_pi_state_cache())
1210 return -ENOMEM;
1211 /*
1212 * requeue_pi must wake as many tasks as it can, up to nr_wake
1213 * + nr_requeue, since it acquires the rt_mutex prior to
1214 * returning to userspace, so as to not leave the rt_mutex with
1215 * waiters and no owner. However, second and third wake-ups
1216 * cannot be predicted as they involve race conditions with the
1217 * first wake and a fault while looking up the pi_state. Both
1218 * pthread_cond_signal() and pthread_cond_broadcast() should
1219 * use nr_wake=1.
1220 */
1221 if (nr_wake != 1)
1222 return -EINVAL;
1223 }
1224
1225 retry:
1226 if (pi_state != NULL) {
1227 /*
1228 * We will have to lookup the pi_state again, so free this one
1229 * to keep the accounting correct.
1230 */
1231 free_pi_state(pi_state);
1232 pi_state = NULL;
1233 }
1234
1235 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1);
1236 if (unlikely(ret != 0))
1237 goto out;
1238 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
1239 if (unlikely(ret != 0))
1240 goto out_put_key1;
1241
1242 hb1 = hash_futex(&key1);
1243 hb2 = hash_futex(&key2);
1244
1245 retry_private:
1246 double_lock_hb(hb1, hb2);
1247
1248 if (likely(cmpval != NULL)) {
1249 u32 curval;
1250
1251 ret = get_futex_value_locked(&curval, uaddr1);
1252
1253 if (unlikely(ret)) {
1254 double_unlock_hb(hb1, hb2);
1255
1256 ret = get_user(curval, uaddr1);
1257 if (ret)
1258 goto out_put_keys;
1259
1260 if (!(flags & FLAGS_SHARED))
1261 goto retry_private;
1262
1263 put_futex_key(&key2);
1264 put_futex_key(&key1);
1265 goto retry;
1266 }
1267 if (curval != *cmpval) {
1268 ret = -EAGAIN;
1269 goto out_unlock;
1270 }
1271 }
1272
1273 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1274 /*
1275 * Attempt to acquire uaddr2 and wake the top waiter. If we
1276 * intend to requeue waiters, force setting the FUTEX_WAITERS
1277 * bit. We force this here where we are able to easily handle
1278 * faults rather in the requeue loop below.
1279 */
1280 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1281 &key2, &pi_state, nr_requeue);
1282
1283 /*
1284 * At this point the top_waiter has either taken uaddr2 or is
1285 * waiting on it. If the former, then the pi_state will not
1286 * exist yet, look it up one more time to ensure we have a
1287 * reference to it.
1288 */
1289 if (ret == 1) {
1290 WARN_ON(pi_state);
1291 drop_count++;
1292 task_count++;
1293 ret = get_futex_value_locked(&curval2, uaddr2);
1294 if (!ret)
1295 ret = lookup_pi_state(curval2, hb2, &key2,
1296 &pi_state);
1297 }
1298
1299 switch (ret) {
1300 case 0:
1301 break;
1302 case -EFAULT:
1303 double_unlock_hb(hb1, hb2);
1304 put_futex_key(&key2);
1305 put_futex_key(&key1);
1306 ret = fault_in_user_writeable(uaddr2);
1307 if (!ret)
1308 goto retry;
1309 goto out;
1310 case -EAGAIN:
1311 /* The owner was exiting, try again. */
1312 double_unlock_hb(hb1, hb2);
1313 put_futex_key(&key2);
1314 put_futex_key(&key1);
1315 cond_resched();
1316 goto retry;
1317 default:
1318 goto out_unlock;
1319 }
1320 }
1321
1322 head1 = &hb1->chain;
1323 plist_for_each_entry_safe(this, next, head1, list) {
1324 if (task_count - nr_wake >= nr_requeue)
1325 break;
1326
1327 if (!match_futex(&this->key, &key1))
1328 continue;
1329
1330 /*
1331 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1332 * be paired with each other and no other futex ops.
1333 */
1334 if ((requeue_pi && !this->rt_waiter) ||
1335 (!requeue_pi && this->rt_waiter)) {
1336 ret = -EINVAL;
1337 break;
1338 }
1339
1340 /*
1341 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1342 * lock, we already woke the top_waiter. If not, it will be
1343 * woken by futex_unlock_pi().
1344 */
1345 if (++task_count <= nr_wake && !requeue_pi) {
1346 wake_futex(this);
1347 continue;
1348 }
1349
1350 /* Ensure we requeue to the expected futex for requeue_pi. */
1351 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1352 ret = -EINVAL;
1353 break;
1354 }
1355
1356 /*
1357 * Requeue nr_requeue waiters and possibly one more in the case
1358 * of requeue_pi if we couldn't acquire the lock atomically.
1359 */
1360 if (requeue_pi) {
1361 /* Prepare the waiter to take the rt_mutex. */
1362 atomic_inc(&pi_state->refcount);
1363 this->pi_state = pi_state;
1364 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1365 this->rt_waiter,
1366 this->task, 1);
1367 if (ret == 1) {
1368 /* We got the lock. */
1369 requeue_pi_wake_futex(this, &key2, hb2);
1370 drop_count++;
1371 continue;
1372 } else if (ret) {
1373 /* -EDEADLK */
1374 this->pi_state = NULL;
1375 free_pi_state(pi_state);
1376 goto out_unlock;
1377 }
1378 }
1379 requeue_futex(this, hb1, hb2, &key2);
1380 drop_count++;
1381 }
1382
1383 out_unlock:
1384 double_unlock_hb(hb1, hb2);
1385
1386 /*
1387 * drop_futex_key_refs() must be called outside the spinlocks. During
1388 * the requeue we moved futex_q's from the hash bucket at key1 to the
1389 * one at key2 and updated their key pointer. We no longer need to
1390 * hold the references to key1.
1391 */
1392 while (--drop_count >= 0)
1393 drop_futex_key_refs(&key1);
1394
1395 out_put_keys:
1396 put_futex_key(&key2);
1397 out_put_key1:
1398 put_futex_key(&key1);
1399 out:
1400 if (pi_state != NULL)
1401 free_pi_state(pi_state);
1402 return ret ? ret : task_count;
1403 }
1404
1405 /* The key must be already stored in q->key. */
1406 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1407 __acquires(&hb->lock)
1408 {
1409 struct futex_hash_bucket *hb;
1410
1411 hb = hash_futex(&q->key);
1412 q->lock_ptr = &hb->lock;
1413
1414 spin_lock(&hb->lock);
1415 return hb;
1416 }
1417
1418 static inline void
1419 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1420 __releases(&hb->lock)
1421 {
1422 spin_unlock(&hb->lock);
1423 }
1424
1425 /**
1426 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1427 * @q: The futex_q to enqueue
1428 * @hb: The destination hash bucket
1429 *
1430 * The hb->lock must be held by the caller, and is released here. A call to
1431 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1432 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1433 * or nothing if the unqueue is done as part of the wake process and the unqueue
1434 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1435 * an example).
1436 */
1437 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1438 __releases(&hb->lock)
1439 {
1440 int prio;
1441
1442 /*
1443 * The priority used to register this element is
1444 * - either the real thread-priority for the real-time threads
1445 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1446 * - or MAX_RT_PRIO for non-RT threads.
1447 * Thus, all RT-threads are woken first in priority order, and
1448 * the others are woken last, in FIFO order.
1449 */
1450 prio = min(current->normal_prio, MAX_RT_PRIO);
1451
1452 plist_node_init(&q->list, prio);
1453 #ifdef CONFIG_DEBUG_PI_LIST
1454 q->list.plist.spinlock = &hb->lock;
1455 #endif
1456 plist_add(&q->list, &hb->chain);
1457 q->task = current;
1458 spin_unlock(&hb->lock);
1459 }
1460
1461 /**
1462 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1463 * @q: The futex_q to unqueue
1464 *
1465 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1466 * be paired with exactly one earlier call to queue_me().
1467 *
1468 * Returns:
1469 * 1 - if the futex_q was still queued (and we removed unqueued it)
1470 * 0 - if the futex_q was already removed by the waking thread
1471 */
1472 static int unqueue_me(struct futex_q *q)
1473 {
1474 spinlock_t *lock_ptr;
1475 int ret = 0;
1476
1477 /* In the common case we don't take the spinlock, which is nice. */
1478 retry:
1479 lock_ptr = q->lock_ptr;
1480 barrier();
1481 if (lock_ptr != NULL) {
1482 spin_lock(lock_ptr);
1483 /*
1484 * q->lock_ptr can change between reading it and
1485 * spin_lock(), causing us to take the wrong lock. This
1486 * corrects the race condition.
1487 *
1488 * Reasoning goes like this: if we have the wrong lock,
1489 * q->lock_ptr must have changed (maybe several times)
1490 * between reading it and the spin_lock(). It can
1491 * change again after the spin_lock() but only if it was
1492 * already changed before the spin_lock(). It cannot,
1493 * however, change back to the original value. Therefore
1494 * we can detect whether we acquired the correct lock.
1495 */
1496 if (unlikely(lock_ptr != q->lock_ptr)) {
1497 spin_unlock(lock_ptr);
1498 goto retry;
1499 }
1500 WARN_ON(plist_node_empty(&q->list));
1501 plist_del(&q->list, &q->list.plist);
1502
1503 BUG_ON(q->pi_state);
1504
1505 spin_unlock(lock_ptr);
1506 ret = 1;
1507 }
1508
1509 drop_futex_key_refs(&q->key);
1510 return ret;
1511 }
1512
1513 /*
1514 * PI futexes can not be requeued and must remove themself from the
1515 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1516 * and dropped here.
1517 */
1518 static void unqueue_me_pi(struct futex_q *q)
1519 __releases(q->lock_ptr)
1520 {
1521 WARN_ON(plist_node_empty(&q->list));
1522 plist_del(&q->list, &q->list.plist);
1523
1524 BUG_ON(!q->pi_state);
1525 free_pi_state(q->pi_state);
1526 q->pi_state = NULL;
1527
1528 spin_unlock(q->lock_ptr);
1529 }
1530
1531 /*
1532 * Fixup the pi_state owner with the new owner.
1533 *
1534 * Must be called with hash bucket lock held and mm->sem held for non
1535 * private futexes.
1536 */
1537 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1538 struct task_struct *newowner)
1539 {
1540 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1541 struct futex_pi_state *pi_state = q->pi_state;
1542 struct task_struct *oldowner = pi_state->owner;
1543 u32 uval, curval, newval;
1544 int ret;
1545
1546 /* Owner died? */
1547 if (!pi_state->owner)
1548 newtid |= FUTEX_OWNER_DIED;
1549
1550 /*
1551 * We are here either because we stole the rtmutex from the
1552 * pending owner or we are the pending owner which failed to
1553 * get the rtmutex. We have to replace the pending owner TID
1554 * in the user space variable. This must be atomic as we have
1555 * to preserve the owner died bit here.
1556 *
1557 * Note: We write the user space value _before_ changing the pi_state
1558 * because we can fault here. Imagine swapped out pages or a fork
1559 * that marked all the anonymous memory readonly for cow.
1560 *
1561 * Modifying pi_state _before_ the user space value would
1562 * leave the pi_state in an inconsistent state when we fault
1563 * here, because we need to drop the hash bucket lock to
1564 * handle the fault. This might be observed in the PID check
1565 * in lookup_pi_state.
1566 */
1567 retry:
1568 if (get_futex_value_locked(&uval, uaddr))
1569 goto handle_fault;
1570
1571 while (1) {
1572 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1573
1574 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1575 goto handle_fault;
1576 if (curval == uval)
1577 break;
1578 uval = curval;
1579 }
1580
1581 /*
1582 * We fixed up user space. Now we need to fix the pi_state
1583 * itself.
1584 */
1585 if (pi_state->owner != NULL) {
1586 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1587 WARN_ON(list_empty(&pi_state->list));
1588 list_del_init(&pi_state->list);
1589 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1590 }
1591
1592 pi_state->owner = newowner;
1593
1594 raw_spin_lock_irq(&newowner->pi_lock);
1595 WARN_ON(!list_empty(&pi_state->list));
1596 list_add(&pi_state->list, &newowner->pi_state_list);
1597 raw_spin_unlock_irq(&newowner->pi_lock);
1598 return 0;
1599
1600 /*
1601 * To handle the page fault we need to drop the hash bucket
1602 * lock here. That gives the other task (either the pending
1603 * owner itself or the task which stole the rtmutex) the
1604 * chance to try the fixup of the pi_state. So once we are
1605 * back from handling the fault we need to check the pi_state
1606 * after reacquiring the hash bucket lock and before trying to
1607 * do another fixup. When the fixup has been done already we
1608 * simply return.
1609 */
1610 handle_fault:
1611 spin_unlock(q->lock_ptr);
1612
1613 ret = fault_in_user_writeable(uaddr);
1614
1615 spin_lock(q->lock_ptr);
1616
1617 /*
1618 * Check if someone else fixed it for us:
1619 */
1620 if (pi_state->owner != oldowner)
1621 return 0;
1622
1623 if (ret)
1624 return ret;
1625
1626 goto retry;
1627 }
1628
1629 static long futex_wait_restart(struct restart_block *restart);
1630
1631 /**
1632 * fixup_owner() - Post lock pi_state and corner case management
1633 * @uaddr: user address of the futex
1634 * @q: futex_q (contains pi_state and access to the rt_mutex)
1635 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1636 *
1637 * After attempting to lock an rt_mutex, this function is called to cleanup
1638 * the pi_state owner as well as handle race conditions that may allow us to
1639 * acquire the lock. Must be called with the hb lock held.
1640 *
1641 * Returns:
1642 * 1 - success, lock taken
1643 * 0 - success, lock not taken
1644 * <0 - on error (-EFAULT)
1645 */
1646 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1647 {
1648 struct task_struct *owner;
1649 int ret = 0;
1650
1651 if (locked) {
1652 /*
1653 * Got the lock. We might not be the anticipated owner if we
1654 * did a lock-steal - fix up the PI-state in that case:
1655 */
1656 if (q->pi_state->owner != current)
1657 ret = fixup_pi_state_owner(uaddr, q, current);
1658 goto out;
1659 }
1660
1661 /*
1662 * Catch the rare case, where the lock was released when we were on the
1663 * way back before we locked the hash bucket.
1664 */
1665 if (q->pi_state->owner == current) {
1666 /*
1667 * Try to get the rt_mutex now. This might fail as some other
1668 * task acquired the rt_mutex after we removed ourself from the
1669 * rt_mutex waiters list.
1670 */
1671 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1672 locked = 1;
1673 goto out;
1674 }
1675
1676 /*
1677 * pi_state is incorrect, some other task did a lock steal and
1678 * we returned due to timeout or signal without taking the
1679 * rt_mutex. Too late. We can access the rt_mutex_owner without
1680 * locking, as the other task is now blocked on the hash bucket
1681 * lock. Fix the state up.
1682 */
1683 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1684 ret = fixup_pi_state_owner(uaddr, q, owner);
1685 goto out;
1686 }
1687
1688 /*
1689 * Paranoia check. If we did not take the lock, then we should not be
1690 * the owner, nor the pending owner, of the rt_mutex.
1691 */
1692 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1693 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1694 "pi-state %p\n", ret,
1695 q->pi_state->pi_mutex.owner,
1696 q->pi_state->owner);
1697
1698 out:
1699 return ret ? ret : locked;
1700 }
1701
1702 /**
1703 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1704 * @hb: the futex hash bucket, must be locked by the caller
1705 * @q: the futex_q to queue up on
1706 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1707 */
1708 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1709 struct hrtimer_sleeper *timeout)
1710 {
1711 /*
1712 * The task state is guaranteed to be set before another task can
1713 * wake it. set_current_state() is implemented using set_mb() and
1714 * queue_me() calls spin_unlock() upon completion, both serializing
1715 * access to the hash list and forcing another memory barrier.
1716 */
1717 set_current_state(TASK_INTERRUPTIBLE);
1718 queue_me(q, hb);
1719
1720 /* Arm the timer */
1721 if (timeout) {
1722 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1723 if (!hrtimer_active(&timeout->timer))
1724 timeout->task = NULL;
1725 }
1726
1727 /*
1728 * If we have been removed from the hash list, then another task
1729 * has tried to wake us, and we can skip the call to schedule().
1730 */
1731 if (likely(!plist_node_empty(&q->list))) {
1732 /*
1733 * If the timer has already expired, current will already be
1734 * flagged for rescheduling. Only call schedule if there
1735 * is no timeout, or if it has yet to expire.
1736 */
1737 if (!timeout || timeout->task)
1738 schedule();
1739 }
1740 __set_current_state(TASK_RUNNING);
1741 }
1742
1743 /**
1744 * futex_wait_setup() - Prepare to wait on a futex
1745 * @uaddr: the futex userspace address
1746 * @val: the expected value
1747 * @flags: futex flags (FLAGS_SHARED, etc.)
1748 * @q: the associated futex_q
1749 * @hb: storage for hash_bucket pointer to be returned to caller
1750 *
1751 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1752 * compare it with the expected value. Handle atomic faults internally.
1753 * Return with the hb lock held and a q.key reference on success, and unlocked
1754 * with no q.key reference on failure.
1755 *
1756 * Returns:
1757 * 0 - uaddr contains val and hb has been locked
1758 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1759 */
1760 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1761 struct futex_q *q, struct futex_hash_bucket **hb)
1762 {
1763 u32 uval;
1764 int ret;
1765
1766 /*
1767 * Access the page AFTER the hash-bucket is locked.
1768 * Order is important:
1769 *
1770 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1771 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1772 *
1773 * The basic logical guarantee of a futex is that it blocks ONLY
1774 * if cond(var) is known to be true at the time of blocking, for
1775 * any cond. If we locked the hash-bucket after testing *uaddr, that
1776 * would open a race condition where we could block indefinitely with
1777 * cond(var) false, which would violate the guarantee.
1778 *
1779 * On the other hand, we insert q and release the hash-bucket only
1780 * after testing *uaddr. This guarantees that futex_wait() will NOT
1781 * absorb a wakeup if *uaddr does not match the desired values
1782 * while the syscall executes.
1783 */
1784 retry:
1785 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key);
1786 if (unlikely(ret != 0))
1787 return ret;
1788
1789 retry_private:
1790 *hb = queue_lock(q);
1791
1792 ret = get_futex_value_locked(&uval, uaddr);
1793
1794 if (ret) {
1795 queue_unlock(q, *hb);
1796
1797 ret = get_user(uval, uaddr);
1798 if (ret)
1799 goto out;
1800
1801 if (!(flags & FLAGS_SHARED))
1802 goto retry_private;
1803
1804 put_futex_key(&q->key);
1805 goto retry;
1806 }
1807
1808 if (uval != val) {
1809 queue_unlock(q, *hb);
1810 ret = -EWOULDBLOCK;
1811 }
1812
1813 out:
1814 if (ret)
1815 put_futex_key(&q->key);
1816 return ret;
1817 }
1818
1819 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1820 ktime_t *abs_time, u32 bitset)
1821 {
1822 struct hrtimer_sleeper timeout, *to = NULL;
1823 struct restart_block *restart;
1824 struct futex_hash_bucket *hb;
1825 struct futex_q q = futex_q_init;
1826 int ret;
1827
1828 if (!bitset)
1829 return -EINVAL;
1830 q.bitset = bitset;
1831
1832 if (abs_time) {
1833 to = &timeout;
1834
1835 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1836 CLOCK_REALTIME : CLOCK_MONOTONIC,
1837 HRTIMER_MODE_ABS);
1838 hrtimer_init_sleeper(to, current);
1839 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1840 current->timer_slack_ns);
1841 }
1842
1843 retry:
1844 /*
1845 * Prepare to wait on uaddr. On success, holds hb lock and increments
1846 * q.key refs.
1847 */
1848 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1849 if (ret)
1850 goto out;
1851
1852 /* queue_me and wait for wakeup, timeout, or a signal. */
1853 futex_wait_queue_me(hb, &q, to);
1854
1855 /* If we were woken (and unqueued), we succeeded, whatever. */
1856 ret = 0;
1857 /* unqueue_me() drops q.key ref */
1858 if (!unqueue_me(&q))
1859 goto out;
1860 ret = -ETIMEDOUT;
1861 if (to && !to->task)
1862 goto out;
1863
1864 /*
1865 * We expect signal_pending(current), but we might be the
1866 * victim of a spurious wakeup as well.
1867 */
1868 if (!signal_pending(current))
1869 goto retry;
1870
1871 ret = -ERESTARTSYS;
1872 if (!abs_time)
1873 goto out;
1874
1875 restart = &current_thread_info()->restart_block;
1876 restart->fn = futex_wait_restart;
1877 restart->futex.uaddr = uaddr;
1878 restart->futex.val = val;
1879 restart->futex.time = abs_time->tv64;
1880 restart->futex.bitset = bitset;
1881 restart->futex.flags = flags;
1882
1883 ret = -ERESTART_RESTARTBLOCK;
1884
1885 out:
1886 if (to) {
1887 hrtimer_cancel(&to->timer);
1888 destroy_hrtimer_on_stack(&to->timer);
1889 }
1890 return ret;
1891 }
1892
1893
1894 static long futex_wait_restart(struct restart_block *restart)
1895 {
1896 u32 __user *uaddr = restart->futex.uaddr;
1897 ktime_t t, *tp = NULL;
1898
1899 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1900 t.tv64 = restart->futex.time;
1901 tp = &t;
1902 }
1903 restart->fn = do_no_restart_syscall;
1904
1905 return (long)futex_wait(uaddr, restart->futex.flags,
1906 restart->futex.val, tp, restart->futex.bitset);
1907 }
1908
1909
1910 /*
1911 * Userspace tried a 0 -> TID atomic transition of the futex value
1912 * and failed. The kernel side here does the whole locking operation:
1913 * if there are waiters then it will block, it does PI, etc. (Due to
1914 * races the kernel might see a 0 value of the futex too.)
1915 */
1916 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1917 ktime_t *time, int trylock)
1918 {
1919 struct hrtimer_sleeper timeout, *to = NULL;
1920 struct futex_hash_bucket *hb;
1921 struct futex_q q = futex_q_init;
1922 int res, ret;
1923
1924 if (refill_pi_state_cache())
1925 return -ENOMEM;
1926
1927 if (time) {
1928 to = &timeout;
1929 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1930 HRTIMER_MODE_ABS);
1931 hrtimer_init_sleeper(to, current);
1932 hrtimer_set_expires(&to->timer, *time);
1933 }
1934
1935 retry:
1936 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key);
1937 if (unlikely(ret != 0))
1938 goto out;
1939
1940 retry_private:
1941 hb = queue_lock(&q);
1942
1943 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1944 if (unlikely(ret)) {
1945 switch (ret) {
1946 case 1:
1947 /* We got the lock. */
1948 ret = 0;
1949 goto out_unlock_put_key;
1950 case -EFAULT:
1951 goto uaddr_faulted;
1952 case -EAGAIN:
1953 /*
1954 * Task is exiting and we just wait for the
1955 * exit to complete.
1956 */
1957 queue_unlock(&q, hb);
1958 put_futex_key(&q.key);
1959 cond_resched();
1960 goto retry;
1961 default:
1962 goto out_unlock_put_key;
1963 }
1964 }
1965
1966 /*
1967 * Only actually queue now that the atomic ops are done:
1968 */
1969 queue_me(&q, hb);
1970
1971 WARN_ON(!q.pi_state);
1972 /*
1973 * Block on the PI mutex:
1974 */
1975 if (!trylock)
1976 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1977 else {
1978 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1979 /* Fixup the trylock return value: */
1980 ret = ret ? 0 : -EWOULDBLOCK;
1981 }
1982
1983 spin_lock(q.lock_ptr);
1984 /*
1985 * Fixup the pi_state owner and possibly acquire the lock if we
1986 * haven't already.
1987 */
1988 res = fixup_owner(uaddr, &q, !ret);
1989 /*
1990 * If fixup_owner() returned an error, proprogate that. If it acquired
1991 * the lock, clear our -ETIMEDOUT or -EINTR.
1992 */
1993 if (res)
1994 ret = (res < 0) ? res : 0;
1995
1996 /*
1997 * If fixup_owner() faulted and was unable to handle the fault, unlock
1998 * it and return the fault to userspace.
1999 */
2000 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2001 rt_mutex_unlock(&q.pi_state->pi_mutex);
2002
2003 /* Unqueue and drop the lock */
2004 unqueue_me_pi(&q);
2005
2006 goto out_put_key;
2007
2008 out_unlock_put_key:
2009 queue_unlock(&q, hb);
2010
2011 out_put_key:
2012 put_futex_key(&q.key);
2013 out:
2014 if (to)
2015 destroy_hrtimer_on_stack(&to->timer);
2016 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2017
2018 uaddr_faulted:
2019 queue_unlock(&q, hb);
2020
2021 ret = fault_in_user_writeable(uaddr);
2022 if (ret)
2023 goto out_put_key;
2024
2025 if (!(flags & FLAGS_SHARED))
2026 goto retry_private;
2027
2028 put_futex_key(&q.key);
2029 goto retry;
2030 }
2031
2032 /*
2033 * Userspace attempted a TID -> 0 atomic transition, and failed.
2034 * This is the in-kernel slowpath: we look up the PI state (if any),
2035 * and do the rt-mutex unlock.
2036 */
2037 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2038 {
2039 struct futex_hash_bucket *hb;
2040 struct futex_q *this, *next;
2041 struct plist_head *head;
2042 union futex_key key = FUTEX_KEY_INIT;
2043 u32 uval, vpid = task_pid_vnr(current);
2044 int ret;
2045
2046 retry:
2047 if (get_user(uval, uaddr))
2048 return -EFAULT;
2049 /*
2050 * We release only a lock we actually own:
2051 */
2052 if ((uval & FUTEX_TID_MASK) != vpid)
2053 return -EPERM;
2054
2055 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key);
2056 if (unlikely(ret != 0))
2057 goto out;
2058
2059 hb = hash_futex(&key);
2060 spin_lock(&hb->lock);
2061
2062 /*
2063 * To avoid races, try to do the TID -> 0 atomic transition
2064 * again. If it succeeds then we can return without waking
2065 * anyone else up:
2066 */
2067 if (!(uval & FUTEX_OWNER_DIED) &&
2068 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2069 goto pi_faulted;
2070 /*
2071 * Rare case: we managed to release the lock atomically,
2072 * no need to wake anyone else up:
2073 */
2074 if (unlikely(uval == vpid))
2075 goto out_unlock;
2076
2077 /*
2078 * Ok, other tasks may need to be woken up - check waiters
2079 * and do the wakeup if necessary:
2080 */
2081 head = &hb->chain;
2082
2083 plist_for_each_entry_safe(this, next, head, list) {
2084 if (!match_futex (&this->key, &key))
2085 continue;
2086 ret = wake_futex_pi(uaddr, uval, this);
2087 /*
2088 * The atomic access to the futex value
2089 * generated a pagefault, so retry the
2090 * user-access and the wakeup:
2091 */
2092 if (ret == -EFAULT)
2093 goto pi_faulted;
2094 goto out_unlock;
2095 }
2096 /*
2097 * No waiters - kernel unlocks the futex:
2098 */
2099 if (!(uval & FUTEX_OWNER_DIED)) {
2100 ret = unlock_futex_pi(uaddr, uval);
2101 if (ret == -EFAULT)
2102 goto pi_faulted;
2103 }
2104
2105 out_unlock:
2106 spin_unlock(&hb->lock);
2107 put_futex_key(&key);
2108
2109 out:
2110 return ret;
2111
2112 pi_faulted:
2113 spin_unlock(&hb->lock);
2114 put_futex_key(&key);
2115
2116 ret = fault_in_user_writeable(uaddr);
2117 if (!ret)
2118 goto retry;
2119
2120 return ret;
2121 }
2122
2123 /**
2124 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2125 * @hb: the hash_bucket futex_q was original enqueued on
2126 * @q: the futex_q woken while waiting to be requeued
2127 * @key2: the futex_key of the requeue target futex
2128 * @timeout: the timeout associated with the wait (NULL if none)
2129 *
2130 * Detect if the task was woken on the initial futex as opposed to the requeue
2131 * target futex. If so, determine if it was a timeout or a signal that caused
2132 * the wakeup and return the appropriate error code to the caller. Must be
2133 * called with the hb lock held.
2134 *
2135 * Returns
2136 * 0 - no early wakeup detected
2137 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2138 */
2139 static inline
2140 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2141 struct futex_q *q, union futex_key *key2,
2142 struct hrtimer_sleeper *timeout)
2143 {
2144 int ret = 0;
2145
2146 /*
2147 * With the hb lock held, we avoid races while we process the wakeup.
2148 * We only need to hold hb (and not hb2) to ensure atomicity as the
2149 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2150 * It can't be requeued from uaddr2 to something else since we don't
2151 * support a PI aware source futex for requeue.
2152 */
2153 if (!match_futex(&q->key, key2)) {
2154 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2155 /*
2156 * We were woken prior to requeue by a timeout or a signal.
2157 * Unqueue the futex_q and determine which it was.
2158 */
2159 plist_del(&q->list, &q->list.plist);
2160
2161 /* Handle spurious wakeups gracefully */
2162 ret = -EWOULDBLOCK;
2163 if (timeout && !timeout->task)
2164 ret = -ETIMEDOUT;
2165 else if (signal_pending(current))
2166 ret = -ERESTARTNOINTR;
2167 }
2168 return ret;
2169 }
2170
2171 /**
2172 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2173 * @uaddr: the futex we initially wait on (non-pi)
2174 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2175 * the same type, no requeueing from private to shared, etc.
2176 * @val: the expected value of uaddr
2177 * @abs_time: absolute timeout
2178 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2179 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2180 * @uaddr2: the pi futex we will take prior to returning to user-space
2181 *
2182 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2183 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2184 * complete the acquisition of the rt_mutex prior to returning to userspace.
2185 * This ensures the rt_mutex maintains an owner when it has waiters; without
2186 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2187 * need to.
2188 *
2189 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2190 * via the following:
2191 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2192 * 2) wakeup on uaddr2 after a requeue
2193 * 3) signal
2194 * 4) timeout
2195 *
2196 * If 3, cleanup and return -ERESTARTNOINTR.
2197 *
2198 * If 2, we may then block on trying to take the rt_mutex and return via:
2199 * 5) successful lock
2200 * 6) signal
2201 * 7) timeout
2202 * 8) other lock acquisition failure
2203 *
2204 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2205 *
2206 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2207 *
2208 * Returns:
2209 * 0 - On success
2210 * <0 - On error
2211 */
2212 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2213 u32 val, ktime_t *abs_time, u32 bitset,
2214 u32 __user *uaddr2)
2215 {
2216 struct hrtimer_sleeper timeout, *to = NULL;
2217 struct rt_mutex_waiter rt_waiter;
2218 struct rt_mutex *pi_mutex = NULL;
2219 struct futex_hash_bucket *hb;
2220 union futex_key key2 = FUTEX_KEY_INIT;
2221 struct futex_q q = futex_q_init;
2222 int res, ret;
2223
2224 if (!bitset)
2225 return -EINVAL;
2226
2227 if (abs_time) {
2228 to = &timeout;
2229 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2230 CLOCK_REALTIME : CLOCK_MONOTONIC,
2231 HRTIMER_MODE_ABS);
2232 hrtimer_init_sleeper(to, current);
2233 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2234 current->timer_slack_ns);
2235 }
2236
2237 /*
2238 * The waiter is allocated on our stack, manipulated by the requeue
2239 * code while we sleep on uaddr.
2240 */
2241 debug_rt_mutex_init_waiter(&rt_waiter);
2242 rt_waiter.task = NULL;
2243
2244 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2);
2245 if (unlikely(ret != 0))
2246 goto out;
2247
2248 q.bitset = bitset;
2249 q.rt_waiter = &rt_waiter;
2250 q.requeue_pi_key = &key2;
2251
2252 /*
2253 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2254 * count.
2255 */
2256 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2257 if (ret)
2258 goto out_key2;
2259
2260 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2261 futex_wait_queue_me(hb, &q, to);
2262
2263 spin_lock(&hb->lock);
2264 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2265 spin_unlock(&hb->lock);
2266 if (ret)
2267 goto out_put_keys;
2268
2269 /*
2270 * In order for us to be here, we know our q.key == key2, and since
2271 * we took the hb->lock above, we also know that futex_requeue() has
2272 * completed and we no longer have to concern ourselves with a wakeup
2273 * race with the atomic proxy lock acquisition by the requeue code. The
2274 * futex_requeue dropped our key1 reference and incremented our key2
2275 * reference count.
2276 */
2277
2278 /* Check if the requeue code acquired the second futex for us. */
2279 if (!q.rt_waiter) {
2280 /*
2281 * Got the lock. We might not be the anticipated owner if we
2282 * did a lock-steal - fix up the PI-state in that case.
2283 */
2284 if (q.pi_state && (q.pi_state->owner != current)) {
2285 spin_lock(q.lock_ptr);
2286 ret = fixup_pi_state_owner(uaddr2, &q, current);
2287 spin_unlock(q.lock_ptr);
2288 }
2289 } else {
2290 /*
2291 * We have been woken up by futex_unlock_pi(), a timeout, or a
2292 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2293 * the pi_state.
2294 */
2295 WARN_ON(!&q.pi_state);
2296 pi_mutex = &q.pi_state->pi_mutex;
2297 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2298 debug_rt_mutex_free_waiter(&rt_waiter);
2299
2300 spin_lock(q.lock_ptr);
2301 /*
2302 * Fixup the pi_state owner and possibly acquire the lock if we
2303 * haven't already.
2304 */
2305 res = fixup_owner(uaddr2, &q, !ret);
2306 /*
2307 * If fixup_owner() returned an error, proprogate that. If it
2308 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2309 */
2310 if (res)
2311 ret = (res < 0) ? res : 0;
2312
2313 /* Unqueue and drop the lock. */
2314 unqueue_me_pi(&q);
2315 }
2316
2317 /*
2318 * If fixup_pi_state_owner() faulted and was unable to handle the
2319 * fault, unlock the rt_mutex and return the fault to userspace.
2320 */
2321 if (ret == -EFAULT) {
2322 if (rt_mutex_owner(pi_mutex) == current)
2323 rt_mutex_unlock(pi_mutex);
2324 } else if (ret == -EINTR) {
2325 /*
2326 * We've already been requeued, but cannot restart by calling
2327 * futex_lock_pi() directly. We could restart this syscall, but
2328 * it would detect that the user space "val" changed and return
2329 * -EWOULDBLOCK. Save the overhead of the restart and return
2330 * -EWOULDBLOCK directly.
2331 */
2332 ret = -EWOULDBLOCK;
2333 }
2334
2335 out_put_keys:
2336 put_futex_key(&q.key);
2337 out_key2:
2338 put_futex_key(&key2);
2339
2340 out:
2341 if (to) {
2342 hrtimer_cancel(&to->timer);
2343 destroy_hrtimer_on_stack(&to->timer);
2344 }
2345 return ret;
2346 }
2347
2348 /*
2349 * Support for robust futexes: the kernel cleans up held futexes at
2350 * thread exit time.
2351 *
2352 * Implementation: user-space maintains a per-thread list of locks it
2353 * is holding. Upon do_exit(), the kernel carefully walks this list,
2354 * and marks all locks that are owned by this thread with the
2355 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2356 * always manipulated with the lock held, so the list is private and
2357 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2358 * field, to allow the kernel to clean up if the thread dies after
2359 * acquiring the lock, but just before it could have added itself to
2360 * the list. There can only be one such pending lock.
2361 */
2362
2363 /**
2364 * sys_set_robust_list() - Set the robust-futex list head of a task
2365 * @head: pointer to the list-head
2366 * @len: length of the list-head, as userspace expects
2367 */
2368 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2369 size_t, len)
2370 {
2371 if (!futex_cmpxchg_enabled)
2372 return -ENOSYS;
2373 /*
2374 * The kernel knows only one size for now:
2375 */
2376 if (unlikely(len != sizeof(*head)))
2377 return -EINVAL;
2378
2379 current->robust_list = head;
2380
2381 return 0;
2382 }
2383
2384 /**
2385 * sys_get_robust_list() - Get the robust-futex list head of a task
2386 * @pid: pid of the process [zero for current task]
2387 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2388 * @len_ptr: pointer to a length field, the kernel fills in the header size
2389 */
2390 SYSCALL_DEFINE3(get_robust_list, int, pid,
2391 struct robust_list_head __user * __user *, head_ptr,
2392 size_t __user *, len_ptr)
2393 {
2394 struct robust_list_head __user *head;
2395 unsigned long ret;
2396 const struct cred *cred = current_cred(), *pcred;
2397
2398 if (!futex_cmpxchg_enabled)
2399 return -ENOSYS;
2400
2401 if (!pid)
2402 head = current->robust_list;
2403 else {
2404 struct task_struct *p;
2405
2406 ret = -ESRCH;
2407 rcu_read_lock();
2408 p = find_task_by_vpid(pid);
2409 if (!p)
2410 goto err_unlock;
2411 ret = -EPERM;
2412 pcred = __task_cred(p);
2413 if (cred->euid != pcred->euid &&
2414 cred->euid != pcred->uid &&
2415 !capable(CAP_SYS_PTRACE))
2416 goto err_unlock;
2417 head = p->robust_list;
2418 rcu_read_unlock();
2419 }
2420
2421 if (put_user(sizeof(*head), len_ptr))
2422 return -EFAULT;
2423 return put_user(head, head_ptr);
2424
2425 err_unlock:
2426 rcu_read_unlock();
2427
2428 return ret;
2429 }
2430
2431 /*
2432 * Process a futex-list entry, check whether it's owned by the
2433 * dying task, and do notification if so:
2434 */
2435 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2436 {
2437 u32 uval, nval, mval;
2438
2439 retry:
2440 if (get_user(uval, uaddr))
2441 return -1;
2442
2443 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2444 /*
2445 * Ok, this dying thread is truly holding a futex
2446 * of interest. Set the OWNER_DIED bit atomically
2447 * via cmpxchg, and if the value had FUTEX_WAITERS
2448 * set, wake up a waiter (if any). (We have to do a
2449 * futex_wake() even if OWNER_DIED is already set -
2450 * to handle the rare but possible case of recursive
2451 * thread-death.) The rest of the cleanup is done in
2452 * userspace.
2453 */
2454 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2455 if (futex_atomic_cmpxchg_inatomic(&nval, uaddr, uval, mval))
2456 return -1;
2457
2458 if (nval != uval)
2459 goto retry;
2460
2461 /*
2462 * Wake robust non-PI futexes here. The wakeup of
2463 * PI futexes happens in exit_pi_state():
2464 */
2465 if (!pi && (uval & FUTEX_WAITERS))
2466 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2467 }
2468 return 0;
2469 }
2470
2471 /*
2472 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2473 */
2474 static inline int fetch_robust_entry(struct robust_list __user **entry,
2475 struct robust_list __user * __user *head,
2476 unsigned int *pi)
2477 {
2478 unsigned long uentry;
2479
2480 if (get_user(uentry, (unsigned long __user *)head))
2481 return -EFAULT;
2482
2483 *entry = (void __user *)(uentry & ~1UL);
2484 *pi = uentry & 1;
2485
2486 return 0;
2487 }
2488
2489 /*
2490 * Walk curr->robust_list (very carefully, it's a userspace list!)
2491 * and mark any locks found there dead, and notify any waiters.
2492 *
2493 * We silently return on any sign of list-walking problem.
2494 */
2495 void exit_robust_list(struct task_struct *curr)
2496 {
2497 struct robust_list_head __user *head = curr->robust_list;
2498 struct robust_list __user *entry, *next_entry, *pending;
2499 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2500 unsigned int uninitialized_var(next_pi);
2501 unsigned long futex_offset;
2502 int rc;
2503
2504 if (!futex_cmpxchg_enabled)
2505 return;
2506
2507 /*
2508 * Fetch the list head (which was registered earlier, via
2509 * sys_set_robust_list()):
2510 */
2511 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2512 return;
2513 /*
2514 * Fetch the relative futex offset:
2515 */
2516 if (get_user(futex_offset, &head->futex_offset))
2517 return;
2518 /*
2519 * Fetch any possibly pending lock-add first, and handle it
2520 * if it exists:
2521 */
2522 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2523 return;
2524
2525 next_entry = NULL; /* avoid warning with gcc */
2526 while (entry != &head->list) {
2527 /*
2528 * Fetch the next entry in the list before calling
2529 * handle_futex_death:
2530 */
2531 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2532 /*
2533 * A pending lock might already be on the list, so
2534 * don't process it twice:
2535 */
2536 if (entry != pending)
2537 if (handle_futex_death((void __user *)entry + futex_offset,
2538 curr, pi))
2539 return;
2540 if (rc)
2541 return;
2542 entry = next_entry;
2543 pi = next_pi;
2544 /*
2545 * Avoid excessively long or circular lists:
2546 */
2547 if (!--limit)
2548 break;
2549
2550 cond_resched();
2551 }
2552
2553 if (pending)
2554 handle_futex_death((void __user *)pending + futex_offset,
2555 curr, pip);
2556 }
2557
2558 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2559 u32 __user *uaddr2, u32 val2, u32 val3)
2560 {
2561 int ret = -ENOSYS, cmd = op & FUTEX_CMD_MASK;
2562 unsigned int flags = 0;
2563
2564 if (!(op & FUTEX_PRIVATE_FLAG))
2565 flags |= FLAGS_SHARED;
2566
2567 if (op & FUTEX_CLOCK_REALTIME) {
2568 flags |= FLAGS_CLOCKRT;
2569 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2570 return -ENOSYS;
2571 }
2572
2573 switch (cmd) {
2574 case FUTEX_WAIT:
2575 val3 = FUTEX_BITSET_MATCH_ANY;
2576 case FUTEX_WAIT_BITSET:
2577 ret = futex_wait(uaddr, flags, val, timeout, val3);
2578 break;
2579 case FUTEX_WAKE:
2580 val3 = FUTEX_BITSET_MATCH_ANY;
2581 case FUTEX_WAKE_BITSET:
2582 ret = futex_wake(uaddr, flags, val, val3);
2583 break;
2584 case FUTEX_REQUEUE:
2585 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2586 break;
2587 case FUTEX_CMP_REQUEUE:
2588 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2589 break;
2590 case FUTEX_WAKE_OP:
2591 ret = futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2592 break;
2593 case FUTEX_LOCK_PI:
2594 if (futex_cmpxchg_enabled)
2595 ret = futex_lock_pi(uaddr, flags, val, timeout, 0);
2596 break;
2597 case FUTEX_UNLOCK_PI:
2598 if (futex_cmpxchg_enabled)
2599 ret = futex_unlock_pi(uaddr, flags);
2600 break;
2601 case FUTEX_TRYLOCK_PI:
2602 if (futex_cmpxchg_enabled)
2603 ret = futex_lock_pi(uaddr, flags, 0, timeout, 1);
2604 break;
2605 case FUTEX_WAIT_REQUEUE_PI:
2606 val3 = FUTEX_BITSET_MATCH_ANY;
2607 ret = futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2608 uaddr2);
2609 break;
2610 case FUTEX_CMP_REQUEUE_PI:
2611 ret = futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2612 break;
2613 default:
2614 ret = -ENOSYS;
2615 }
2616 return ret;
2617 }
2618
2619
2620 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2621 struct timespec __user *, utime, u32 __user *, uaddr2,
2622 u32, val3)
2623 {
2624 struct timespec ts;
2625 ktime_t t, *tp = NULL;
2626 u32 val2 = 0;
2627 int cmd = op & FUTEX_CMD_MASK;
2628
2629 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2630 cmd == FUTEX_WAIT_BITSET ||
2631 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2632 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2633 return -EFAULT;
2634 if (!timespec_valid(&ts))
2635 return -EINVAL;
2636
2637 t = timespec_to_ktime(ts);
2638 if (cmd == FUTEX_WAIT)
2639 t = ktime_add_safe(ktime_get(), t);
2640 tp = &t;
2641 }
2642 /*
2643 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2644 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2645 */
2646 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2647 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2648 val2 = (u32) (unsigned long) utime;
2649
2650 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2651 }
2652
2653 static int __init futex_init(void)
2654 {
2655 u32 curval;
2656 int i;
2657
2658 /*
2659 * This will fail and we want it. Some arch implementations do
2660 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2661 * functionality. We want to know that before we call in any
2662 * of the complex code paths. Also we want to prevent
2663 * registration of robust lists in that case. NULL is
2664 * guaranteed to fault and we get -EFAULT on functional
2665 * implementation, the non-functional ones will return
2666 * -ENOSYS.
2667 */
2668 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2669 futex_cmpxchg_enabled = 1;
2670
2671 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2672 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2673 spin_lock_init(&futex_queues[i].lock);
2674 }
2675
2676 return 0;
2677 }
2678 __initcall(futex_init);