]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/hrtimer.c
[PATCH] hrtimers: cleanups and simplifications
[mirror_ubuntu-bionic-kernel.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
6 *
7 * High-resolution kernel timers
8 *
9 * In contrast to the low-resolution timeout API implemented in
10 * kernel/timer.c, hrtimers provide finer resolution and accuracy
11 * depending on system configuration and capabilities.
12 *
13 * These timers are currently used for:
14 * - itimers
15 * - POSIX timers
16 * - nanosleep
17 * - precise in-kernel timing
18 *
19 * Started by: Thomas Gleixner and Ingo Molnar
20 *
21 * Credits:
22 * based on kernel/timer.c
23 *
24 * For licencing details see kernel-base/COPYING
25 */
26
27 #include <linux/cpu.h>
28 #include <linux/module.h>
29 #include <linux/percpu.h>
30 #include <linux/hrtimer.h>
31 #include <linux/notifier.h>
32 #include <linux/syscalls.h>
33 #include <linux/interrupt.h>
34
35 #include <asm/uaccess.h>
36
37 /**
38 * ktime_get - get the monotonic time in ktime_t format
39 *
40 * returns the time in ktime_t format
41 */
42 static ktime_t ktime_get(void)
43 {
44 struct timespec now;
45
46 ktime_get_ts(&now);
47
48 return timespec_to_ktime(now);
49 }
50
51 /**
52 * ktime_get_real - get the real (wall-) time in ktime_t format
53 *
54 * returns the time in ktime_t format
55 */
56 static ktime_t ktime_get_real(void)
57 {
58 struct timespec now;
59
60 getnstimeofday(&now);
61
62 return timespec_to_ktime(now);
63 }
64
65 EXPORT_SYMBOL_GPL(ktime_get_real);
66
67 /*
68 * The timer bases:
69 *
70 * Note: If we want to add new timer bases, we have to skip the two
71 * clock ids captured by the cpu-timers. We do this by holding empty
72 * entries rather than doing math adjustment of the clock ids.
73 * This ensures that we capture erroneous accesses to these clock ids
74 * rather than moving them into the range of valid clock id's.
75 */
76
77 #define MAX_HRTIMER_BASES 2
78
79 static DEFINE_PER_CPU(struct hrtimer_base, hrtimer_bases[MAX_HRTIMER_BASES]) =
80 {
81 {
82 .index = CLOCK_REALTIME,
83 .get_time = &ktime_get_real,
84 .resolution = KTIME_REALTIME_RES,
85 },
86 {
87 .index = CLOCK_MONOTONIC,
88 .get_time = &ktime_get,
89 .resolution = KTIME_MONOTONIC_RES,
90 },
91 };
92
93 /**
94 * ktime_get_ts - get the monotonic clock in timespec format
95 *
96 * @ts: pointer to timespec variable
97 *
98 * The function calculates the monotonic clock from the realtime
99 * clock and the wall_to_monotonic offset and stores the result
100 * in normalized timespec format in the variable pointed to by ts.
101 */
102 void ktime_get_ts(struct timespec *ts)
103 {
104 struct timespec tomono;
105 unsigned long seq;
106
107 do {
108 seq = read_seqbegin(&xtime_lock);
109 getnstimeofday(ts);
110 tomono = wall_to_monotonic;
111
112 } while (read_seqretry(&xtime_lock, seq));
113
114 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
115 ts->tv_nsec + tomono.tv_nsec);
116 }
117 EXPORT_SYMBOL_GPL(ktime_get_ts);
118
119 /*
120 * Functions and macros which are different for UP/SMP systems are kept in a
121 * single place
122 */
123 #ifdef CONFIG_SMP
124
125 #define set_curr_timer(b, t) do { (b)->curr_timer = (t); } while (0)
126
127 /*
128 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
129 * means that all timers which are tied to this base via timer->base are
130 * locked, and the base itself is locked too.
131 *
132 * So __run_timers/migrate_timers can safely modify all timers which could
133 * be found on the lists/queues.
134 *
135 * When the timer's base is locked, and the timer removed from list, it is
136 * possible to set timer->base = NULL and drop the lock: the timer remains
137 * locked.
138 */
139 static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer,
140 unsigned long *flags)
141 {
142 struct hrtimer_base *base;
143
144 for (;;) {
145 base = timer->base;
146 if (likely(base != NULL)) {
147 spin_lock_irqsave(&base->lock, *flags);
148 if (likely(base == timer->base))
149 return base;
150 /* The timer has migrated to another CPU: */
151 spin_unlock_irqrestore(&base->lock, *flags);
152 }
153 cpu_relax();
154 }
155 }
156
157 /*
158 * Switch the timer base to the current CPU when possible.
159 */
160 static inline struct hrtimer_base *
161 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base)
162 {
163 struct hrtimer_base *new_base;
164
165 new_base = &__get_cpu_var(hrtimer_bases[base->index]);
166
167 if (base != new_base) {
168 /*
169 * We are trying to schedule the timer on the local CPU.
170 * However we can't change timer's base while it is running,
171 * so we keep it on the same CPU. No hassle vs. reprogramming
172 * the event source in the high resolution case. The softirq
173 * code will take care of this when the timer function has
174 * completed. There is no conflict as we hold the lock until
175 * the timer is enqueued.
176 */
177 if (unlikely(base->curr_timer == timer))
178 return base;
179
180 /* See the comment in lock_timer_base() */
181 timer->base = NULL;
182 spin_unlock(&base->lock);
183 spin_lock(&new_base->lock);
184 timer->base = new_base;
185 }
186 return new_base;
187 }
188
189 #else /* CONFIG_SMP */
190
191 #define set_curr_timer(b, t) do { } while (0)
192
193 static inline struct hrtimer_base *
194 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
195 {
196 struct hrtimer_base *base = timer->base;
197
198 spin_lock_irqsave(&base->lock, *flags);
199
200 return base;
201 }
202
203 #define switch_hrtimer_base(t, b) (b)
204
205 #endif /* !CONFIG_SMP */
206
207 /*
208 * Functions for the union type storage format of ktime_t which are
209 * too large for inlining:
210 */
211 #if BITS_PER_LONG < 64
212 # ifndef CONFIG_KTIME_SCALAR
213 /**
214 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
215 *
216 * @kt: addend
217 * @nsec: the scalar nsec value to add
218 *
219 * Returns the sum of kt and nsec in ktime_t format
220 */
221 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
222 {
223 ktime_t tmp;
224
225 if (likely(nsec < NSEC_PER_SEC)) {
226 tmp.tv64 = nsec;
227 } else {
228 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
229
230 tmp = ktime_set((long)nsec, rem);
231 }
232
233 return ktime_add(kt, tmp);
234 }
235
236 #else /* CONFIG_KTIME_SCALAR */
237
238 # endif /* !CONFIG_KTIME_SCALAR */
239
240 /*
241 * Divide a ktime value by a nanosecond value
242 */
243 static unsigned long ktime_divns(const ktime_t kt, nsec_t div)
244 {
245 u64 dclc, inc, dns;
246 int sft = 0;
247
248 dclc = dns = ktime_to_ns(kt);
249 inc = div;
250 /* Make sure the divisor is less than 2^32: */
251 while (div >> 32) {
252 sft++;
253 div >>= 1;
254 }
255 dclc >>= sft;
256 do_div(dclc, (unsigned long) div);
257
258 return (unsigned long) dclc;
259 }
260
261 #else /* BITS_PER_LONG < 64 */
262 # define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div))
263 #endif /* BITS_PER_LONG >= 64 */
264
265 /*
266 * Counterpart to lock_timer_base above:
267 */
268 static inline
269 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
270 {
271 spin_unlock_irqrestore(&timer->base->lock, *flags);
272 }
273
274 /**
275 * hrtimer_forward - forward the timer expiry
276 *
277 * @timer: hrtimer to forward
278 * @interval: the interval to forward
279 *
280 * Forward the timer expiry so it will expire in the future.
281 * Returns the number of overruns.
282 */
283 unsigned long
284 hrtimer_forward(struct hrtimer *timer, ktime_t interval)
285 {
286 unsigned long orun = 1;
287 ktime_t delta, now;
288
289 now = timer->base->get_time();
290
291 delta = ktime_sub(now, timer->expires);
292
293 if (delta.tv64 < 0)
294 return 0;
295
296 if (interval.tv64 < timer->base->resolution.tv64)
297 interval.tv64 = timer->base->resolution.tv64;
298
299 if (unlikely(delta.tv64 >= interval.tv64)) {
300 nsec_t incr = ktime_to_ns(interval);
301
302 orun = ktime_divns(delta, incr);
303 timer->expires = ktime_add_ns(timer->expires, incr * orun);
304 if (timer->expires.tv64 > now.tv64)
305 return orun;
306 /*
307 * This (and the ktime_add() below) is the
308 * correction for exact:
309 */
310 orun++;
311 }
312 timer->expires = ktime_add(timer->expires, interval);
313
314 return orun;
315 }
316
317 /*
318 * enqueue_hrtimer - internal function to (re)start a timer
319 *
320 * The timer is inserted in expiry order. Insertion into the
321 * red black tree is O(log(n)). Must hold the base lock.
322 */
323 static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
324 {
325 struct rb_node **link = &base->active.rb_node;
326 struct rb_node *parent = NULL;
327 struct hrtimer *entry;
328
329 /*
330 * Find the right place in the rbtree:
331 */
332 while (*link) {
333 parent = *link;
334 entry = rb_entry(parent, struct hrtimer, node);
335 /*
336 * We dont care about collisions. Nodes with
337 * the same expiry time stay together.
338 */
339 if (timer->expires.tv64 < entry->expires.tv64)
340 link = &(*link)->rb_left;
341 else
342 link = &(*link)->rb_right;
343 }
344
345 /*
346 * Insert the timer to the rbtree and check whether it
347 * replaces the first pending timer
348 */
349 rb_link_node(&timer->node, parent, link);
350 rb_insert_color(&timer->node, &base->active);
351
352 timer->state = HRTIMER_PENDING;
353
354 if (!base->first || timer->expires.tv64 <
355 rb_entry(base->first, struct hrtimer, node)->expires.tv64)
356 base->first = &timer->node;
357 }
358
359 /*
360 * __remove_hrtimer - internal function to remove a timer
361 *
362 * Caller must hold the base lock.
363 */
364 static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
365 {
366 /*
367 * Remove the timer from the rbtree and replace the
368 * first entry pointer if necessary.
369 */
370 if (base->first == &timer->node)
371 base->first = rb_next(&timer->node);
372 rb_erase(&timer->node, &base->active);
373 }
374
375 /*
376 * remove hrtimer, called with base lock held
377 */
378 static inline int
379 remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
380 {
381 if (hrtimer_active(timer)) {
382 __remove_hrtimer(timer, base);
383 timer->state = HRTIMER_INACTIVE;
384 return 1;
385 }
386 return 0;
387 }
388
389 /**
390 * hrtimer_start - (re)start an relative timer on the current CPU
391 *
392 * @timer: the timer to be added
393 * @tim: expiry time
394 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
395 *
396 * Returns:
397 * 0 on success
398 * 1 when the timer was active
399 */
400 int
401 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
402 {
403 struct hrtimer_base *base, *new_base;
404 unsigned long flags;
405 int ret;
406
407 base = lock_hrtimer_base(timer, &flags);
408
409 /* Remove an active timer from the queue: */
410 ret = remove_hrtimer(timer, base);
411
412 /* Switch the timer base, if necessary: */
413 new_base = switch_hrtimer_base(timer, base);
414
415 if (mode == HRTIMER_REL)
416 tim = ktime_add(tim, new_base->get_time());
417 timer->expires = tim;
418
419 enqueue_hrtimer(timer, new_base);
420
421 unlock_hrtimer_base(timer, &flags);
422
423 return ret;
424 }
425
426 /**
427 * hrtimer_try_to_cancel - try to deactivate a timer
428 *
429 * @timer: hrtimer to stop
430 *
431 * Returns:
432 * 0 when the timer was not active
433 * 1 when the timer was active
434 * -1 when the timer is currently excuting the callback function and
435 * can not be stopped
436 */
437 int hrtimer_try_to_cancel(struct hrtimer *timer)
438 {
439 struct hrtimer_base *base;
440 unsigned long flags;
441 int ret = -1;
442
443 base = lock_hrtimer_base(timer, &flags);
444
445 if (base->curr_timer != timer)
446 ret = remove_hrtimer(timer, base);
447
448 unlock_hrtimer_base(timer, &flags);
449
450 return ret;
451
452 }
453
454 /**
455 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
456 *
457 * @timer: the timer to be cancelled
458 *
459 * Returns:
460 * 0 when the timer was not active
461 * 1 when the timer was active
462 */
463 int hrtimer_cancel(struct hrtimer *timer)
464 {
465 for (;;) {
466 int ret = hrtimer_try_to_cancel(timer);
467
468 if (ret >= 0)
469 return ret;
470 }
471 }
472
473 /**
474 * hrtimer_get_remaining - get remaining time for the timer
475 *
476 * @timer: the timer to read
477 */
478 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
479 {
480 struct hrtimer_base *base;
481 unsigned long flags;
482 ktime_t rem;
483
484 base = lock_hrtimer_base(timer, &flags);
485 rem = ktime_sub(timer->expires, timer->base->get_time());
486 unlock_hrtimer_base(timer, &flags);
487
488 return rem;
489 }
490
491 /**
492 * hrtimer_init - initialize a timer to the given clock
493 *
494 * @timer: the timer to be initialized
495 * @clock_id: the clock to be used
496 * @mode: timer mode abs/rel
497 */
498 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
499 enum hrtimer_mode mode)
500 {
501 struct hrtimer_base *bases;
502
503 memset(timer, 0, sizeof(struct hrtimer));
504
505 bases = per_cpu(hrtimer_bases, raw_smp_processor_id());
506
507 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_ABS)
508 clock_id = CLOCK_MONOTONIC;
509
510 timer->base = &bases[clock_id];
511 }
512
513 /**
514 * hrtimer_get_res - get the timer resolution for a clock
515 *
516 * @which_clock: which clock to query
517 * @tp: pointer to timespec variable to store the resolution
518 *
519 * Store the resolution of the clock selected by which_clock in the
520 * variable pointed to by tp.
521 */
522 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
523 {
524 struct hrtimer_base *bases;
525
526 bases = per_cpu(hrtimer_bases, raw_smp_processor_id());
527 *tp = ktime_to_timespec(bases[which_clock].resolution);
528
529 return 0;
530 }
531
532 /*
533 * Expire the per base hrtimer-queue:
534 */
535 static inline void run_hrtimer_queue(struct hrtimer_base *base)
536 {
537 ktime_t now = base->get_time();
538 struct rb_node *node;
539
540 spin_lock_irq(&base->lock);
541
542 while ((node = base->first)) {
543 struct hrtimer *timer;
544 int (*fn)(void *);
545 int restart;
546 void *data;
547
548 timer = rb_entry(node, struct hrtimer, node);
549 if (now.tv64 <= timer->expires.tv64)
550 break;
551
552 fn = timer->function;
553 data = timer->data;
554 set_curr_timer(base, timer);
555 timer->state = HRTIMER_RUNNING;
556 __remove_hrtimer(timer, base);
557 spin_unlock_irq(&base->lock);
558
559 /*
560 * fn == NULL is special case for the simplest timer
561 * variant - wake up process and do not restart:
562 */
563 if (!fn) {
564 wake_up_process(data);
565 restart = HRTIMER_NORESTART;
566 } else
567 restart = fn(data);
568
569 spin_lock_irq(&base->lock);
570
571 /* Another CPU has added back the timer */
572 if (timer->state != HRTIMER_RUNNING)
573 continue;
574
575 if (restart == HRTIMER_RESTART)
576 enqueue_hrtimer(timer, base);
577 else
578 timer->state = HRTIMER_EXPIRED;
579 }
580 set_curr_timer(base, NULL);
581 spin_unlock_irq(&base->lock);
582 }
583
584 /*
585 * Called from timer softirq every jiffy, expire hrtimers:
586 */
587 void hrtimer_run_queues(void)
588 {
589 struct hrtimer_base *base = __get_cpu_var(hrtimer_bases);
590 int i;
591
592 for (i = 0; i < MAX_HRTIMER_BASES; i++)
593 run_hrtimer_queue(&base[i]);
594 }
595
596 /*
597 * Sleep related functions:
598 */
599
600 /**
601 * schedule_hrtimer - sleep until timeout
602 *
603 * @timer: hrtimer variable initialized with the correct clock base
604 * @mode: timeout value is abs/rel
605 *
606 * Make the current task sleep until @timeout is
607 * elapsed.
608 *
609 * You can set the task state as follows -
610 *
611 * %TASK_UNINTERRUPTIBLE - at least @timeout is guaranteed to
612 * pass before the routine returns. The routine will return 0
613 *
614 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
615 * delivered to the current task. In this case the remaining time
616 * will be returned
617 *
618 * The current task state is guaranteed to be TASK_RUNNING when this
619 * routine returns.
620 */
621 static ktime_t __sched
622 schedule_hrtimer(struct hrtimer *timer, const enum hrtimer_mode mode)
623 {
624 /* fn stays NULL, meaning single-shot wakeup: */
625 timer->data = current;
626
627 hrtimer_start(timer, timer->expires, mode);
628
629 schedule();
630 hrtimer_cancel(timer);
631
632 /* Return the remaining time: */
633 if (timer->state != HRTIMER_EXPIRED)
634 return ktime_sub(timer->expires, timer->base->get_time());
635 else
636 return (ktime_t) {.tv64 = 0 };
637 }
638
639 static inline ktime_t __sched
640 schedule_hrtimer_interruptible(struct hrtimer *timer,
641 const enum hrtimer_mode mode)
642 {
643 set_current_state(TASK_INTERRUPTIBLE);
644
645 return schedule_hrtimer(timer, mode);
646 }
647
648 static long __sched nanosleep_restart(struct restart_block *restart)
649 {
650 struct timespec __user *rmtp;
651 struct timespec tu;
652 void *rfn_save = restart->fn;
653 struct hrtimer timer;
654 ktime_t rem;
655
656 restart->fn = do_no_restart_syscall;
657
658 hrtimer_init(&timer, (clockid_t) restart->arg3, HRTIMER_ABS);
659
660 timer.expires.tv64 = ((u64)restart->arg1 << 32) | (u64) restart->arg0;
661
662 rem = schedule_hrtimer_interruptible(&timer, HRTIMER_ABS);
663
664 if (rem.tv64 <= 0)
665 return 0;
666
667 rmtp = (struct timespec __user *) restart->arg2;
668 tu = ktime_to_timespec(rem);
669 if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu)))
670 return -EFAULT;
671
672 restart->fn = rfn_save;
673
674 /* The other values in restart are already filled in */
675 return -ERESTART_RESTARTBLOCK;
676 }
677
678 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
679 const enum hrtimer_mode mode, const clockid_t clockid)
680 {
681 struct restart_block *restart;
682 struct hrtimer timer;
683 struct timespec tu;
684 ktime_t rem;
685
686 hrtimer_init(&timer, clockid, mode);
687
688 timer.expires = timespec_to_ktime(*rqtp);
689
690 rem = schedule_hrtimer_interruptible(&timer, mode);
691 if (rem.tv64 <= 0)
692 return 0;
693
694 /* Absolute timers do not update the rmtp value and restart: */
695 if (mode == HRTIMER_ABS)
696 return -ERESTARTNOHAND;
697
698 tu = ktime_to_timespec(rem);
699
700 if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu)))
701 return -EFAULT;
702
703 restart = &current_thread_info()->restart_block;
704 restart->fn = nanosleep_restart;
705 restart->arg0 = timer.expires.tv64 & 0xFFFFFFFF;
706 restart->arg1 = timer.expires.tv64 >> 32;
707 restart->arg2 = (unsigned long) rmtp;
708 restart->arg3 = (unsigned long) timer.base->index;
709
710 return -ERESTART_RESTARTBLOCK;
711 }
712
713 asmlinkage long
714 sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
715 {
716 struct timespec tu;
717
718 if (copy_from_user(&tu, rqtp, sizeof(tu)))
719 return -EFAULT;
720
721 if (!timespec_valid(&tu))
722 return -EINVAL;
723
724 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_REL, CLOCK_MONOTONIC);
725 }
726
727 /*
728 * Functions related to boot-time initialization:
729 */
730 static void __devinit init_hrtimers_cpu(int cpu)
731 {
732 struct hrtimer_base *base = per_cpu(hrtimer_bases, cpu);
733 int i;
734
735 for (i = 0; i < MAX_HRTIMER_BASES; i++, base++)
736 spin_lock_init(&base->lock);
737 }
738
739 #ifdef CONFIG_HOTPLUG_CPU
740
741 static void migrate_hrtimer_list(struct hrtimer_base *old_base,
742 struct hrtimer_base *new_base)
743 {
744 struct hrtimer *timer;
745 struct rb_node *node;
746
747 while ((node = rb_first(&old_base->active))) {
748 timer = rb_entry(node, struct hrtimer, node);
749 __remove_hrtimer(timer, old_base);
750 timer->base = new_base;
751 enqueue_hrtimer(timer, new_base);
752 }
753 }
754
755 static void migrate_hrtimers(int cpu)
756 {
757 struct hrtimer_base *old_base, *new_base;
758 int i;
759
760 BUG_ON(cpu_online(cpu));
761 old_base = per_cpu(hrtimer_bases, cpu);
762 new_base = get_cpu_var(hrtimer_bases);
763
764 local_irq_disable();
765
766 for (i = 0; i < MAX_HRTIMER_BASES; i++) {
767
768 spin_lock(&new_base->lock);
769 spin_lock(&old_base->lock);
770
771 BUG_ON(old_base->curr_timer);
772
773 migrate_hrtimer_list(old_base, new_base);
774
775 spin_unlock(&old_base->lock);
776 spin_unlock(&new_base->lock);
777 old_base++;
778 new_base++;
779 }
780
781 local_irq_enable();
782 put_cpu_var(hrtimer_bases);
783 }
784 #endif /* CONFIG_HOTPLUG_CPU */
785
786 static int __devinit hrtimer_cpu_notify(struct notifier_block *self,
787 unsigned long action, void *hcpu)
788 {
789 long cpu = (long)hcpu;
790
791 switch (action) {
792
793 case CPU_UP_PREPARE:
794 init_hrtimers_cpu(cpu);
795 break;
796
797 #ifdef CONFIG_HOTPLUG_CPU
798 case CPU_DEAD:
799 migrate_hrtimers(cpu);
800 break;
801 #endif
802
803 default:
804 break;
805 }
806
807 return NOTIFY_OK;
808 }
809
810 static struct notifier_block __devinitdata hrtimers_nb = {
811 .notifier_call = hrtimer_cpu_notify,
812 };
813
814 void __init hrtimers_init(void)
815 {
816 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
817 (void *)(long)smp_processor_id());
818 register_cpu_notifier(&hrtimers_nb);
819 }
820